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Abstract

Recent philosophical work has explored the distinction between causal and non-
causal forms of explanation. In this literature, topological explanation is viewed as
a clear example of the non-causal variety—it is claimed that topology lacks tempo-
ral information, which is necessary for causal structure (Pincock in Mathematics and
scientic representation, Oxford University Press, Oxford, 2012; Huneman in Syn-
these 177:213-245, 2010). This paper explores the distinction between topological
and causal forms of explanation and argues that this distinction is not as clear cut
as the literature suggests. One reason for this is that some explanations involve both
topological and causal information. In these “borderline” cases scientists explain some
outcome by appealing to the causal topology of the system of interest. These cases
help clarify a type of topological explanation that is genuinely causal, but that differs
from standard topological and interventionist accounts of explanation (Woodward in
Making things happen, Oxford University Press, Oxford, 2003).

1 Introduction

Modern discussions of scientific explanation often start with the deductive-nomological
model, put forward by Hempel and others in the mid-to-late twentieth century (Hempel
1965). The deductive-nomological model helped popularize the topic of scientific
explanation and it eventually inspired analyses of different forms of explanation.
These forms included statistical, unification-style, and causal explanation, among
many others. Although various types of scientific explanation have been discussed
in this literature, no single type has received as much attention as causal explanation.
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Some have even suggested that this is the only form (or the main form) of expla-
nation in all of science (Skow 2014). After enjoying this attention for the last few
decades, assumptions about the singular importance of causal explanation in science
have drawn criticism in recent work. Much of this criticism is driven by the view
that non-causal explanation is both common and legitimate. One form of non-causal
explanation that is discussed in this literature is topological explanation. While causal
explanations appeal to the causes of some event, topological explanations appeal to
the topological properties of some system. These topological properties are said to
capture some “formal” or mathematical structure of a system, in which this structure
is non-causal and abstracts from lower-level details (Pincock 2012, p. 53). As these
topological features are viewed as explanatory, while lacking causal information, they
are considered straightforward examples of non-causal explanation.

While much of this literature assumes a clear divide between causal and topological
forms of explanation, there are a number of complications for this view. One compli-
cation, is that various “borderline” cases appear to involve aspects of both types of
explanation. In particular, scientists sometimes provide explanations by appealing to
topological properties that are causal in nature—that is to say, by appealing to the causal
topology of a system or a higher level “causal pattern” that is present in some domain.
If a strict, non-overlapping boundary exists between explanations that appeal to causal
and topological properties, how should we understand explanations that appeal to both
of these? What does it mean to say that an explanation appeals to causal topology and
how should we understand these cases? This paper examines a variety of scientific
examples in order to better understand how topology figures in scientific explanation,
which explanatory-why questions it can answer, and whether such explanations are
ever causal in nature.

2 Topological explanation

In the philosophical and mathematical literature, one of the more frequently discussed
examples of topological explanation is the case of the Konigsberg bridges. In this
example, the Pregel River runs through the eighteenth-century city of Konigsberg and
seven bridges connect up two central islands to nearby landmasses.! Given the layout
of these bridges there was interest in determining whether one could walk a path
that crossed each of the bridges exactly and only once. Failed attempts to find such a
route led to two related explanatory-why questions: First, does the Konigsberg bridge
system have a single route that traverses each of its bridges exactly and only once?
And second, what explains whether a bridge system has or lacks such a route?

An answer to these questions was provided by Euler, who represented the bridges
and landmasses graphically, in what is now considered the earliest work in graph
theory and topology (Wilson 1999). Suppose that this bridge system is represented
graphically such that the bridges are represented as edges, landmasses are nodes (or
vertices), and the “degree” of a node refers to the number of edges that are connected
to it, as shown in Fig. 1. Euler proved that in order for there to be a path that traverses

1 Konigsberg is a former German city, which is now Kalingrad, Russia.
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Fig. 1 Introduction to topology (Adams and Franzosa 2008, p. 414)

each bridge only once—something we now call an “Eulerian path”—a bridge system
needs to meet two conditions: all nodes should be connected to each other and there
should be “either zero or two nodes of odd degree” (Euler 1956; Woodward 2019;
Adams and Franzosa 2008). As the Konigsberg bridge system fails to meet all of these
conditions, it lacks such a traversable path.2 In this sense, Euler’s work provided a
“mathematical solution” to the problem of determining and explaining why a system
has or lacks an Eulerian path (Carlson 2001, p. 104).

Euler’s solution to this problem contains at least three features that are viewed as
characteristic of topological explanation. First, the explanation in this case appeals to
the topology of the system, which captures a higher-level structure that abstracts away
from various lower-level details. For Euler, this higher-level structure is represented
graphically by connections between entities in the system, represented abstractly by
edges and nodes. He takes the Konigsberg explanatory-why questions to be concerned
with “geometry of position,” which involves the relative position, organization, and
structure of connections among entities in some domain-later referred to as the “topol-
ogy” of a system. To say that this topology captures a “higher-level” structure means
that this structure can be instantiated or realized by a variety of different physical
or microstructural details (Kosti¢ 2018; Huneman 2010).3 For example, the same
Konigsberg bridge topology can be found across bridges that are composed of differ-
ent materials, such as wood, steel, brick, and so on.

Second, philosophers interpret this topological information as capturing some struc-
ture of the system that is explicitly non-causal (Pincock 2012, p. 53). This is supported
by claims that Euler’s representation lacks any time or temporal element, which
causal structure necessarily contains (Huneman 2010; Pincock 2012). For example,
the Konigsberg bridge topology is said to lack at least two types of causal infor-
mation. It lacks information about the causal process of individuals walking across
bridges and it lacks information about the “material causes” that make up the bridge’s

2 The Kéni gsberg bridge system fails to meet the second condition, as all of its four nodes are of odd degree.

3 As best I know, this interpretation of “level” and “higher-level” originates in the multiple-realizability
literature. In this literature, when some property A can be realized or instantiated by a variety of different
physical details, the multiply-realized property is said to be at a “higher-level” than its “lower-level” realizers
(Putnam 1975). This characterization of “level” helps clarify one form of “abstraction” in these cases—
namely, a higher-level property can “abstract” from the lower-level details that instantiate it.
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microstructure (Pincock 2012, p. 14,53). These “material causes” can be interpreted
as lower-level causal interactions among molecular (and other) entities in a system,
as opposed to physical properties that realize the topological structure.* Both forms
of causal information are absent from the graphical representation of the Konigsberg
bridge topology and they are unnecessary for providing the explanation of interest.
With respect to whether a bridge system has a Eulerian path or not, all that mat-
ters is the topology of the system—its higher-level connections—and not its lower-level
constituents or causal relations.

A third feature of the Kdnigsberg example has to do with dependency relationships,
which concern the relation between the explanans and explanandum. Various accounts
of scientific explanation suggest that all (or many) forms of explanation involve depen-
dency relations that specify how the explanandum is dependent (in some way) on the
explanans (Woodward 2003; Jansson and Saatsi 2017; Reutlinger 2016). In the case
of causal explanation, this dependency is often cashed out in terms of “empirical”
and “causal” difference-making relationships (Woodward 2003). These relationships
capture the fact that manipulations of a cause produce changes in an effect and that
changes in an effect depend on changes in a cause. In the case of causal explanation,
these dependency relations are identified and verified empirically. However, in the
case of topological explanation the dependency relation is provided by mathematical
derivation as opposed to empirical study. For example, once we know the physical,
non-causal structure of the Konigsberg bridge system we can apply mathematical
understanding to answer the explanatory-why questions. This explanatory work is
facilitated by mathematics, as opposed to empirical investigations of causal relations
in the world. In this sense, topological explanations are said to have dependency rela-
tions that are mathematical, while causal explanations have dependency relations that
are empirical (Woodward 2019).

Other examples of topological explanation that are discussed in this literature
originate in ecology and molecular biology. In various ecological examples, mainly
discussed by Huneman, networks and graphs are used to represent connections among
distinct species in an ecosystem (Huneman 2010). In these cases, species are repre-
sented by nodes and the edges that connect them represent prey—predator relationships.
Topological features of these systems are said to explain some of the properties that
they exhibit. For example, one type of topological feature that these systems can
exhibit is the property of being scale-free. A scale-free system is one whose degree
distribution follows a power law, such that few nodes are highly-connected and many
nodes are only minimally connected. This scale-free system has a notable feature—if
single nodes are randomly deleted from the network (in which these deletions rep-
resent the extinction of an entire species), the system is more likely to remain stable
than if it lacked this scale-free character. This is simply because a random deletion in
a scale-free system is more likely to target a minimally-connected node, which will do
less damage than the deletion of a highly-connected node. Alternatively, if the system

4 1If the bridge’s higher-level topology is realized by some microstructure—and realization relations are
not causal-how does this capture abstraction from causal detail? Although Pincock and others are not
explicit about this, one charitable interpretation is that the bridge’s lower-level details consist of molecular
interactions, which are causal in nature. These lower-level causal interactions differ across bridges made of
different materials and they are omitted from representations of the system’s topology.
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is not scale-free, the random deletion is more likely to target a highly-connected node,
which increases chances of collapse. This explains how scale-free systems are stable
or robust in situations of random deletions to the network.

This ecological case exhibits the three characteristics of topological explanation
that are present in the Konigsberg example. In this ecological case, the explanation is
provided by some topological structure, this structure is taken to be non-causal, and
the dependency relation between the explanandum and explanans is mathematical (as
opposed to empirical). As the topological structure is “sufficient” for this explanation
and devoid of causal information, the explanation is viewed as topological and non-
causal. As the explanatorily relevant topology of the system abstracts from lower-level
causal details, these details are viewed as “irrelevant” to the explanation and unable
to “add anything to the understanding” of the explanandum (Huneman 2010, p. 222).

The non-causal nature of this topological explanation is supported in two main ways.
First, similar to the Kdnigsberg case, it is claimed that the relevant topology lacks any
temporal or time-like feature, as “topology is not something that takes place in time”
(Huneman 2010, p. 218). As time is an essential feature of causation, the topological
structure is viewed as clearly non-causal. Second, the non-causal nature of this case is
also supported through Huneman’s response to an objection. Suppose someone objects
to the “non-causal” characterization of the ecological explanation on the grounds that
the prey—predator relationships (the edges connecting nodes in the graph) do contain
causal information. This causal information might be represented as the flow of energy
along prey—predator connections, which is depicted in ecological pathways. Huneman
responds to this objection by indicating that the directionality of these connections is
irrelevant to the explanandum. In order to explain the stable or fragile character of the
system, all you need to know is who is connected to who, not the directionality of
these connections. As Huneman states, “two species can have several kinds of causal
relations” and “the nature of interactions between species—whether A preys on B, or
is parasitic on B, or is preyed on by B, etc.—is not relevant, but only their number
and the global shape of the connections between them as represented by a graph”
(Huneman 2010, p. 219). The suggestion is that, while some causal information and
directionality is present in lower-level characterizations of the system, this information
is not necessary for the explanation and it is absent from the topology.

3 Borderline cases: causal topology

While mainstream philosophical work suggests a clear division between causal and
topological forms of explanation, some scientific examples threaten this view. Various
“borderline” cases appear to involve aspects of both types of explanation. In particular,
scientists sometimes explain by appealing to topological properties that are causal in
nature—that is to say, by appealing to the causal topology of some system of interest.
What can an analysis of these scientific cases contribute to philosophical discussions
of topological explanation? What do these borderline cases reveal?

First, despite conflicting claims in the literature, we have good reason to think that
topology can be causal. This is seen in various forms of topological analysis, includ-
ing network and pathway approaches. These approaches represent biological systems
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graphically, in which nodes correspond to entities, while directed edges (or arrows,
arcs, etc.) correspond to causal relations among these entities. Scientists explicitly state
that these network topologies capture causal information. In describing the components
of these graphs, they claim that “the edges denote interactions among...elements,” in
which these interactions include things “such as ‘is transformed into...” or ‘...binds
to...”, ‘cooperates with...” ” and so on (Palumbo et al. 2006, p. 220). These directed
edges string together causally related entities in sequences that are often referred
to as “pathways” or “causal pathways.” Examples of these include gene expression
pathways, cell signaling pathways, metabolic pathways, developmental pathways, and
ecological pathways (Palumbo et al. 2006, p. 220). When many pathways are inte-
grated together—in a way that represents the causal connections among them—this forms
a network, which captures a more extensive “map,” “chart,” or “web” of causal con-
nections in some domain. These networks capture the topology of causal connections
in some system and they are sometimes referred to as a “wiring topology,” as they
bear similarity to wiring diagrams that trace causal connections in an electrical circuit
(Tun et al. 2006, p. 5).

Does it really make sense to say that a graphical structure has causal topology? Yes—
these network and pathway examples involve topology in the sense that the “topology
of a graph defines how the links between system elements are organized” (Fornito et al.
2016, p. 6). It just so happens that the links in these cases are causal, as opposed to
being undefined or correlational. Furthermore, this organization of causal connections
captures a property that is preserved under continuous deformations of a system.
If we take graphs from the previous examples and change their physical scale, or
rotate, stretch, or reflect them, none of this will change the organization of connections
that they exhibit. While this topological assessment was first applied to undirected
graphs, as seen in Euler’s representation of the Konigsberg bridges, it was later applied
to directed graphs, which contain causal information. As Fornito et al. state, “[t]he
principles of topological analysis have since been extended to more sophisticated
graphs that include both weighted and directed connectivity” (Fornito et al. 2016, p.
6). This is seen in various network analyses in biology, in which scientists frequently
refer to the “causal topology” of some system (Cvijovic et al. 2014; Zamir 2016;
Shipley et al. 2005). Examples of different causal topologies include causal chains
that are linear, branching, and cyclic, and ones that make up more complex structures
such as bow tie and final common pathway configurations.

Second, a number of these cases reveal that causal topology is cited in scientific
explanations. As an example of this, consider the bow tie configuration of T cell
mediated immunity, which is discussed by Jones and Huneman (Jones 2014; Huneman
2018). In this case, the fragility of T cell mediated immunity is explained by the bow
tie topology of immune cell interactions. As seen in Fig. 2, the “bow tie” terminology
refers to a “fan-in, fan-out” structure, in which a variety of different inputs all converge
on and operate through a single node, which then produces a variety of different
outputs. In this example, CD4+ T cells (a particular type of immune cell) are located
at the single node or “knot” position of the bow tie. The bow tie structure of this
system captures a particular topology, with unique consequences. If there is an insult
that targets and immobilizes the CD4+ T cells—at the “knot” of the tie—the entire system
will shut down. This has to do with the fact that all of the upstream signaling converges
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Fig.2 Bow tie structure of T cell mediated immunity (Jones 2014, p. 1138)

on and is mediated through these T cells, making them a point that—if manipulated or
disrupted—will prevent any type of proper downstream response. In other words, the
system-wide shutdown that occurs after T cell attack is explained by the “location of
CD4+ T cells in this structure”—the fact that these cells are located at the knot of the
bow tie, as opposed to being located at some other part of the topology or as opposed
to the topology being different (Jones 2014, p. 1139).

Alternatively, if the topology was different and there was a bypass or an additional
route that connected the upstream signals to the proper downstream effect (without
going through T cells at the knot), T cell malfunction would not lead to the collapse of
the system, as this alternative route could take over. Thus, as differences in the topology
of the system make a difference to the outcome of interest, these cases “show their
explananda to be consequences of a system’s topological properties” (Jones 2014, p.
1136).

Interestingly, Jones and Huneman interpret this bow tie case as a non-causal topo-
logical explanation (Jones 2014, pp. 1139-1140) (Huneman 2018, p. 116). There are a
number of problems with this view. One significant problem is that the relevant topol-
ogy in this case is causal, as opposed to the “formal,” “acausal” structure present in
the Konigsberg and ecological cases. One indication of this is that the Kénigsberg and
ecological cases involve graphs with undirected edges, while the T cell case involves
a graph with directed edges that are causal. This is evident in the figures that scientists
use to represent this case, as arrows capture the directional flow of causal influence
through the system, as seen in Fig. 2.° This is not to suggest that “arrows” or “edges”

5 Figure 2 is from Jones (2014), who has adapted it from Kitano and Oda’s (2006) publication on T cell
mediated immunity.
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always represent causal relationships—these symbols can be used to represent vari-
ous types of non-causal relations.® The use of an arrow (or edge) only indicates the
potential for representation of causality—determining whether it does or not requires
assessing other information. This other information can include verbal descriptions
of the represented system, intentions of the representer, and so on. When we look to
this other information in the bow tie case we find that scientists describe these edges
with causal terminology. Scientists describe this system as a “network of molecu-
lar interactions” and an “interaction pathway,” which involves the “transmission” of
signals to T cells that “stimulate” changes in downstream entities (Kitano and Oda
2006).” Furthermore, these causal characterizations of the system explicitly figure in
explanations of its fragile character (Kitano and Oda 2006, p. 1). This explanation
is derived from the T cell’s “signal coordinator” role—the fact that T cells receive
upstream information, which is delivered downstream. As T cells are a kind of causal
intermediate along this pathway, disrupting their functionality severs a link between
the upstream and downstream portions of the causal chain, effectively “uncoupling”
them (Prochazka et al. 2014, p. 1). However, it is not just that T cells are a causal inter-
mediate in this system, but that they are the sole causal intermediate linking all inputs
to all outputs, which gives the system this fragile property.® If all signals converge on
and operate through T cells, then disrupting these cells can completely shutdown this
transmission.

Suppose we agree that this topology contains causal information. How do we know
that this causal information is really doing the explanatory work? Similar to Huneman’s
ecological case, it might be suggested that a non-causal bow tie topology is sufficient to
provide this explanation. Suppose we remove all causal information from the bow tie
by replacing its arrows with undirected edges. Can this structure explain the fragility
of T cell mediated immunity? Perhaps this explanation is provided by the fact that
the knot is highly-connected (or has a high degree of centrality) and that disrupting
a highly-connected node, no matter what direction these connections take, is what
explains collapse of the system? There are a number of issues with this objection. In
particular, it is not just the high-connectivity (or centrality) of the bow tie’s knot that
explains the fragility of this system. If an upstream or downstream node had a larger
number of connections, the knot would still be the weak point.9 This has to do with
the knot’s location in the network and the fact that it separates all incoming causal

6 One example of this is the use of arrows in conveying relationships of priority, such as trail signs represent-
ing “user hierarchy” (arrows capture who yields to who among pedestrians, cyclists and cars). Alternatively,
a figure or diagram can represent causality without using either arrows or edges or all. For example, it has
been argued that diagrams such as the periodic table represent causal information, despite lacking these
symbols (Ross 2018a).

7 Even Jones’s description reveals the causal nature of this case. He states that “[t]he directionality of
cellular interactions within the immune system pathway determines the pathway’s bowtie structure: various
stimuli activate pathways that converge to activate naive CD4+ T cells, which in turn activate a variety
of responses” (Jones 2014, p. 1139). It should be clear that terms such as “interaction,” “activation,” and
“directionality” are referring to causal relationships in this system.

8 This captures a way that the connections to the T cell variable differs from connections to other variables
in the system.

9 1 would like to thank Carlos Santana for insightful comments regarding this objection. For helpful dis-
cussion of the centrality feature, see (Jackson 2008, pp. 61-65).
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signals from outgoing effects—it captures a kind of bottleneck in this causal process.
Identifying this location of the knot requires causal information about the network
and it explains why intervening on the knot has implications for the entire system. As
all causal information flows through T cells, represented by the knot and bottleneck,
shutting them down collapses all cellular communication in the system. To the extent
that these bow tie explanations depend on identifying causal bottlenecks, they cannot
be provided with network topologies that abstract from causal information.

Third, aside from the causal nature of the bow tie topology, this case is not entirely
different from standard formulations of topological explanation. Similar to these
standard formulations, the explanatorily relevant topology abstracts from lower-level
causal details and generalizes to various contexts. As in the Konigsberg and ecological
cases, explanation in the bow tie case does not appeal to (or depend on) lower-level
causal details that instantiate the bow tie structure. The intricate details of how exactly
different upstream factors all trigger T cells is irrelevant in this case—we only need
to know that the system exhibits causal connections in the bow tie configuration and
not how these causal connections occur or what instantiates them.'® Compare this
to Pincock’s discussions of the Konigsberg example, in which he states “[w]ith the
bridges, we have abstracted away from the material causes of the bridges being in the
shape that they are in, and represented them as they are independently of the details of
their construction” [14] Pincock (2012). We can say something similar about systems
that exhibit the bow tie structure. The bow tie structure can be found across systems
that greatly differ in lower-level detail. None of these systems needs to share lower-
level “material causes” in order to exhibit the same higher-level causal topology. Part
of what this shows is that, abstracting from lower-level detail does not automatically
produce the “abstract acausal” representations that Pincock is interested in—this pro-
cess can produce abstract causal representations too. Abstracting from lower-level
causal detail does not make a structure or representation acausal, as there may be
relevant causal patterns at higher-levels that are shared across systems with different
lower-level details (Reutlinger and Andersen 2017).

The abstract nature of the bow tie topology is related to the generality of this
explanatory pattern—the same explanation can be provided in different systems with the
same causal topology. This is seen in various subfields of biology, such as those focused
on signaling, metabolic, and protein networks, in which the bow tie structure is a “well-
known network topological motif” (Niss et al. 2018). The bow tie topology is also
found in various ordinary life contexts, such as roadways that channel traffic. Consider
a situation in which various one-way roads all converge on a single checkpoint, which
then leads to a set of diverging roads. Similar to the biological cases, if the checkpoint
is shut down all movement of traffic through the system will be stopped—traffic will
build up along the incoming roads and vehicles will not pass the checkpoint. However,
if the topology of the system were altered, for example, by adding a bypass around
this convergence, then disrupting the checkpoint would no longer lead to collapse. An
ordinary life example of this is a bow tie-shaped freight marshaling yard in Bologna,
which scientists compare their biological bow tie cases to (Tieri et al. 2010,p. 7). The

10 For example, we do not need to know if T cells are triggered by the upstream cell (i) sending a chemical
signal, (ii) physically manipulating an extracellular receptor, or any other causal process. It does not matter
how these upstream cells trigger T cells, it just matters that they trigger them.
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bow tie topology generalizes to a wide variety of systems and it explains why these
systems exhibit similar behaviors, despite having different lower-level details.

This bow tie case uncovers a set of examples that have been overlooked in this
literature. These are cases in which the explanatorily relevant topology is causal and
captures a kind of higher-level “causal pattern” or causal topology that reoccurs in
various contexts. In these cases, the explanation is not provided by a particular set of
causal factors, but by the way in which these factors are connected up with each other.
Here we see something similar to Euler’s interest in the “geometry of position”—in
these cases, we are interested in the position, organization, and configuration of causal
connections across nodes and how changes in these features explain changes in some
system-wide outcome of interest.

In order to gain a better understanding of these causal topological cases, let us con-
sider two other examples. A second example comes from biochemistry and involves
the concept of “chokepoint enzymes.” Enzymes are proteins that chemically con-
vert one kind of metabolic substance into another. In the network models shown in
Fig. 3, nodes represent different metabolic materials and the directed edges capture
the enzymatic links between them. These enzymatic links represent the conversion
of an upstream substrate into a downstream product.!’ In this way, directed edges
capture the causal process in which one metabolite is converted into another.'> While
this description captures a metabolite’s participation in a single enzymatic reaction,
any given metabolite is typically “highly-connected” in the sense that it participates
in a multitude of enzyme reactions in a living organism. In other words, when repre-
sented in the graphical framework shown in Fig. 3, any given metabolite is typically
connected to many enzymes—there are many enzymes that produce this metabolite
and many enzymes that use it as a substrate. However, chokepoint enzymes are an
exception to this “highly-connected” norm. Chokepoint enzymes are enzymes that
either uniquely consume or uniquely produce a particular metabolic material (Taylor
et al. 2013). In other words, they are the sole enzyme in the organism that produces a
particular product or that uses it as a substrate. This feature gives these enzymes their
name as they are a “chokepoint,” or the sole connection to a metabolite, among an oth-
erwise highly-connected network. Figure 3 represents a chokepoint enzyme that (A)
uniquely consumes a metabolite and a chokepoint enzyme that (B) uniquely produces
one.

Chokepoint enzymes interest scientists because they are effective drug targets in
disease causing organisms (such as pathogenic bacteria). Destroying an enzyme that
is the sole producer of a metabolite can cause death by starvation, while destroying an
enzyme that is the sole consumer of a metabolite can cause death by over-accumulation.
Thus, as the only enzymatic link to a metabolic material, chokepoint enzymes can be
targeted to potentially destroy the organism. While disrupting any random enzyme in
an organism is unlikely to produce noticeable or serious consequences, disrupting a

1T For example, in the first step of glycolysis the substrate glucose is converted into glucose-6-phosphate
(G-6P) by a particular enzyme (a variety of hexokinase isozymes catalyze this reaction). The framework in
Fig. 3 would represent this in the following way: glucose would be the upstream node, G-6P would be the
downstream node, and the enzyme would be the directed edge between them.

12 For a detailed analysis of the relevant causal factors in these biochemical processes and their role in
explanation, see (Ross 2018b).
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Fig. 3 In this diagram, nodes represent metabolites and arrows represent enzymes. The direction of the
arrow captures the enzyme’s role in converting an upstream metabolic substrate into a downstream product.
In a the yellow node/metabolite has only one arrow leaving it—this means that it has only one enzyme that
consumes it. In b the yellow node/metabolite has only one arrow that enters it-this means that it has only
one enzyme that produces it. These enzymes that either uniquely consume or uniquely produce a given
metabolite are chokepoint enzymes (Taylor et al. 2013, 2)

chokepoint enzyme can be fatal. This is a surprising outcome that deserves explanation.
Why does the disruption of a chokepoint enzyme have this deadly consequence, while
disrupting any other enzyme is harmless? The answer to this question is provided by
the causal topology of the metabolic network and the location of chokepoint enzymes
in this structure. The answer has to do with different ways that these enzymes are
causally connected in the system. The chokepoint enzyme’s single causal connection
to a metabolic material represents a weak link that, if eliminated, shuts down the only
pathway to producing or consuming the material. Depending on the directionality of
this chokepoint enzyme, disrupting it leads to a lethal abundance or lethal deprivation
of some metabolite.

As a third example, consider an ecological food web that is represented Fig. 4. In
this figure, the letters and nodes represent changes in energy levels of species in an
ecosystem, while arrows capture prey—predator relationships between these species.
Each arrow connects up some upstream prey to a downstream predator, in which the
arrows capture the flow of energy through the ecosystem. In this case, C, D, and E are
all different species of fish and A and B are two different species of prey (e.g. a species
of crustacean and clam, respectively).'? Although these species are all located in the
same body of water, scientists identify that fish species C has extremely high levels
of Selenium, which is toxic to this fish and causes various pathologies. Meanwhile,
fish species D and E have normal levels of Selenium and lack these issues (Ross
forthcoming). Scientists want to know what explains these differences in toxic levels
of Selenium across different species of fish. The fact that they are located in the
same body of water, yet have different Selenium levels, is surprising and deserves
explanation.

Scientists explain this fact by appealing to differences in the way that these predators
are connected up in the larger food web. The explanation they provide involves citing
the fact that species A (which is an upstream prey) has high levels of Selenium and that

13 Technically, these letters do not represent the species themselves, but changes in their energy levels. This
allows them to be interpreted with an interventionist framework. For more on this see (Ross forthcoming).
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Fig.4 Ecological food web '
(Ross forthcoming) / \

fish species C is causally connected to species A, while fish species D and E are not. In
this manner, “exposures of top predators can be explained by food web relationships”
and the fact that “predators feed differently” (Stewart et al. 2004, p. 4519 ).

In this case, the pattern of connections between nodes in the graph helps explain
how a toxin accumulates in an ecosystem. The ecological pathways in Fig. 4 outline
chains of causally connected species along which energy and toxic materials flow. If
toxic materials enter into an upstream prey in the ecosystem, these materials can collect
or biomagnify in downstream species in the food chain.!* The contours of these food
chains—which species they connect up and how they link up the ecosystem—dictate
where energy and toxic materials can flow. In the case above, it is the presence or
absence of connections to the upstream prey that explains whether a downstream
predator contains Selenium or not. Changing these causal connections will produce
changes in the explanatory outcome of interest. If fish species C were no longer causally
connected to A (or any primary producer with high Selenium) this species would no
longer have high levels of this compound. If D and E were connected to A, they would
have high levels of this compound. These differences are not captured with lower-level
causal information about “how” a predator captures and eats its prey or how energy
and Selenium move through these pathways. All that matters is that these materials
move through the ecosystem in the ways captured by the causal topology of this food
web diagram.

This section describes three examples of scientific explanation in which an outcome
is explained by appealing to some causal topology of the system of interest. These
cases include: (1) biological bow ties, (2) chokepoint enzymes in biochemistry, and
(3) bioaccumulation along ecological pathways. With respect to current philosophical
accounts of scientific explanation these examples pose an interesting problem. These
examples contain features of both topological and causal explanation, despite the fact
that these types of explanation are viewed as mutually exclusive in the literature. How
should we reconcile the features of these cases with analyses of these two types of
explanation?

14 1t is easy to imagine ordinary life examples that are similar to this case. Suppose Fig. 4 represents a set
of flowing rivers, with the letters and nodes as locations and arrows as segments of river. If one drops a
basket of bread into the river at location A it will ultimately end up at location C, as opposed to locations
D or E. This, of course, is because C is causally connected to A, while D and E are not.
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4 Examining causal topological explanation

These causal topological cases raise a number of questions. First, what does it mean
to say that an explanation is topological? Second, are these explanations really best
understood as both topological and causal? If so, how do we know?

First, how do we know whether an explanation is topological or not? Consider
Huneman’s answer to this question. Huneman states that topological explanation is
“a kind of explanation that relies upon ‘topological’ properties of systems in order to
derive the explanandum as a consequence, and which does not consider mechanisms or
causal processes” (Huneman 2010, p. 213). I will suggest some modifications to these
claims. To begin, we should avoid defining topological explanation in contrast to causal
or mechanistic explanation. It is better to start with the view that explanations involve
dependency relations that specify how the explanandum depends on the explanans
(Woodward 2003; Reutlinger 2016; Jansson and Saatsi 2017). These dependencies
can be understood as “difference-making” relations, which indicate how the explanans
“makes a difference” to the explanandum and, relatedly, how the explanandum depends
on the explanans. This framework specifies three main components of an explanation:
explanans, explanandum, and dependency relation.

With this framework in mind, topological explanation can be defined as any expla-
nation in which topology does the explanatory work. This definition accommodates
both the Konigsberg case and Huneman’s ecological example. In the former, whether
a system has an Eulerian path or not depends on changes in topology, namely, changes
in connections among nodes (or links between bridges). In the later, whether a system
is robust or not, depends on changes in connections among nodes (or relations among
species in an ecosystem), which determine whether the system is scale-free or not.
This suggests that an answer to whether an explanation is topological or not involves
assessing the explanans component. If the explanans involves topological information,
the explanation is topological. If it lacks this information, it is not.

Second, how do we know whether an explanation is causal or not? A helpful way to
address this question involves relying on the same three-component assessment above.
In recent work, a number of philosophers have suggested that one way to understand
the difference between causal and non-causal (or mathematical) explanation is in terms
of dependency relations. It has been claimed that non-causal (mathematical) explana-
tions involve dependency relations that are mathematical, while causal explanations
involve dependency relations that are empirical (Woodward 2003; Jansson and Saatsi
2017; Reutlinger 2016). This is argued for in analyses of the Konigsberg and eco-
logical cases. Both of these cases involve starting with some non-causal topological
structure and then using mathematics alone to answer the explanatory-why question.
Causal explanations do not follow this pattern. Suppose we want to know whether a
gene causes some disease. In this case, we cannot start with some non-causal genetic
information and then apply mathematics to get answer. We need empirical information
about the how the gene acts in the world—about what happens to the disease outcome
when the gene is manipulated, as we find in animal model experiments. In this case, the
genetic factor and disease outcome are connected by an empirical relationship. Alter-
natively, the Konigsberg topological structure and availability of an Eulerian path
are connected by a mathematical one. What this shows is that one way to determine
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whether an explanation is causal or not involves assessing its dependency-relation
component. If the dependency-relation is empirical then the explanation is causal, and
if it is mathematical then the explanation is non-causal.

How do we apply these notions of topological and causal explanation to the causal
topological cases examined in this paper? One helpful way to do this involves com-
paring these causal topological cases to standard interventionist examples of causal
explanation (Woodward 2003). This highlights differences between these cases and
important features of causal topological explanation.

In starting with the interventionist framework, to say that X is a cause of Y means
that an ideal intervention that changes the values of X, in background circumstances
B, produces changes in the values of Y (Woodward 2003). On this framework, causal
relationships between variables are naturally represented with directed acyclic graphs
and are compatible with interpretations of causal structure in network models. Suppose
we are working within this interventionist framework and someone provides us with
the causal diagram shown in Fig. 4. Furthermore, suppose that this diagram captures
something different than the original ecological case. In this new scenario, C, D, and E
represent distinct disease outcomes, while A and B capture the causal factors that lead
up to them (such as a particular virus, gene, and so on). How does causal explanation
work within this interventionist picture? We can address this with our three-component
assessment of explanation, in which we examine the (a) explanandum, (b) explanans,
and (c) dependency relation. The first step involves specifying an explanatory target
or explanandum of interest. In the interventionist framework, the explanatory target
is represented with an effect variable that can take on a variety of different values.
Suppose we are interested in variable “D” in Fig. 4, which represents the occurrence
and nonoccurence of disease D. With this specification of the explanatory target, and
information provided in the causal graph, we can now consider what explains this
target. One way of identifying explanatorily relevant factors involves locating factors
in the causal history of the effect. In the interventionist framework, these causal factors
are represented by upstream cause variables connected to the effect by edges (or
arrows). If we start at variable D and trace backwards, this reveals factors that that
lead up to the production of this disease and can be cited in explaining it. This takes
care of the explanandum and the explanans, but we still have the dependency relation
to consider. In this case, dependency relations between variables are empirical-they
contain information about how changes in one property depend on changes in another,
where these dependencies are obtained from empirical investigations of the world.
This is what we should expect from the interventionist account, as this provides a
causal explanation (as opposed to a non-causal one).

Now we can examine the causal topological cases with the same three-component
criteria. As mentioned above, explanations typically start with the specification of some
(a) explanatory target of interest. However, while the interventionist-explanandum is
well-captured by a single variable in the causal diagram, there is no variable or node
in the network model that captures the explanandum in the topological cases. Instead,
the causal topological cases involve “system-level” explananda that involve differ-
ences across variables in the causal system or some other property of the system that
is not captured by a single variable. As an example of this, consider the ecological-
bioaccumulation case in which the explanatory target consists of differences across
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variables C, D, and E, namely differences in bioaccumulation across different species
of fish. As another example, in the bow tie and chokepoint enzyme cases the explana-
tory targets are system-level properties, such as fragility and collapse, which are not
captured by any variable in the corresponding graphs. Thus, one difference between
the interventionist and causal topological cases is that the latter involve system-level
explanatory targets that are not directed represented in the causal or network models.

Now we can examine the nature of the explanans in these causal topological cases.
Recall that within the interventionist account the explanans is represented by the
upstream causal history of some effect. This feature is not present in the causal topo-
logical cases. This is, at least, because the effect is not represented by a single variable
so there is no identifiable causal chain leading up to it. In these causal topological
cases, the explanatory work is not done by individual causal variables in the his-
tory of an outcome, but by system-level patterns of causal connections among these
variables (and ways in which different connections would lead to differences in the
explanatory target). This marks a serious difference between the causal topological and
interventionist frameworks—causal topological cases appeal to system-level patterns
of causal connections, as opposed to particular causal factors. Causal connections
have a more system-level character than causal factors, because examining causal
connections requires assessing global features of a causal system, as opposed to lim-
iting one’s focus on only those factors in the direct causal history of an effect. As
mentioned earlier, assessing the nature of the explanans helps us determine whether
these cases should be viewed as topological or not. As these cases involve appealing
to topology—the higher-level causal connections present in some system—they should
be viewed as instances of topological explanation.

Finally, we should consider the dependency relation in the causal topological cases.
Getting clear on the nature of this relation is important, because this determines whether
an explanation is causal or non-causal. In causal topological cases, the dependency
relation connects changes in causal topology to changes in a higher-level explana-
tory target of interest. Is this relation purely mathematical or is it empirical? While
a complete response to this question requires more detail, we have good reason to
think that this relation is causal. The main reason for this is that this relation involves
a significant amount of empirical information. Given that mathematical dependency
relations capture how the explanans leads to the explanandum in a way that is derived
from mathematical understanding alone, causal topological cases appear different. In
these cases, changes in causal topological structure are said to lead to the explanatory
outcome. These topological structures are explicitly causal-in considering different
causal connections, we imagine how these differences matter for the causal pro-
cesses that propagate along these connections and, ultimately, for the explanatory
target of interest. The causal topological structures that figure in the explanans con-
tain significant empirical information—each causal link specifies information about a
difference-making relationship between properties in the world. We have good reason
to view these causal topological cases as involving empirical dependency relation,
which suppport causal explanation. However, gaining a more complete understanding
of these relations requires further analysis and is a promising area for future work.

In this section, [ have suggested that one important difference between causal topo-
logical and standard cases of interventionist explanation is that the former has more of
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a system-level character than the latter—that the explanandum and explanans refer to
system-level properties that are not captured by discrete variables in a graph. Consider
an objection to this claim. It might be suggested that the causal topological cases can
be interpreted in a way in which the explananda and explanatia are captured by single
variables. Suppose it is suggested that in understanding the theoretical structure of the
explanation, whatever the explanandum is, it is represented by a single effect variable
and whatever the explanans is, it is represented by a set of causal variables. So if
there is interest in explaining (a) differences in Selenium levels across species or (b)
varying degrees of systemic fragility that—although there are causal graphs that split
these phenomena into many variables—for the purposes of understanding a scientific
explanation, these explanatory targets can be represented by single effect variables.
The same might be said for explanatory factors that make up the explanans—that these
can be understood as discrete, single variables with difference-making connections to
the explanatory target. This objection suggests that the causal topological explanations
are not really “system-level” compared to the the interventionist cases, because their
explananda and explanatia can be captured with discrete variables in a way compatible
with the interventionist framework. Maybe these cases are not really different from
the standard interventionist examples, after all?

In considering scientific explanation from a theoretical perspective any explanan-
dum could be represented as a single effect variable with one or more variables
representing the explanans. This is not contested. The point here is that, in the graph-
ical models that scientists use to provide these explanations, the explanandum and
explanans are system-level properties that are not represented by single variables. A
causal topological structure will necessarily capture some higher-level property of
many causal connections, which is not the case for most explanatory factors in the
interventionist framework.!> The point is not that you cannot represent the explanan-
dum and explanans as single variables in the causal topological cases—it is that the
system-level nature of these properties make them different from the properties in the
explanandum and explanans of standard interventionist cases.

5 Conclusion

Although causal explanation has received significant attention in the philosophical
literature, many now accept that there are legitimate forms of non-causal explana-
tion. While appreciating the nature of non-causal explanation is important, some of
this literature erroneously suggests that all topological explanations are non-causal.
This paper argues that there is no clear-cut distinction between topological and causal
explanation because they are not mutually exclusive. Some topological explanations
are causal, while others are not. We can distinguish causal from non-causal, and topo-
logical from non-topological, but the causal and topological categories overlap. The
approach taken in this paper involves separating explanation into three components:
explanandum, explanans, and dependency relation. One can then compare different

15 For example, a gene that explains a disease does not involve sets of causal connections in the way that
the “bow tie topology” that explains some systemic property does.
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examples or types of scientific explanation by assessing how they differ with respect
to these components. This provides a way to identify novel forms of explanation and
compare them to commonly discussed types of explanation. This approach has promise
for addressing further questions that arise in this literature. For example, how should
we revise our taxonomy of scientific explanation in light of causal topological cases?
Are “causal” and “non-causal” the two main and mutually exclusive categories that all
scientific explanations fall into? Relatedly, do causal topological explanations fall into
the “causal” category or are they in a category of their own? Addressing these ques-
tions will require further attention to the diversity of explanatory patterns in science
and ways in which scientific understanding is generated.
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