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Abstract
This paper introduces the logic of evidence and truth LETF as an extension of the
Belnap–Dunn four-valued logic FDE. LETF is a slightly modified version of the logic
LETJ , presented in Carnielli and Rodrigues (Synthese 196:3789–3813, 2017). While
LETJ is equipped only with a classicality operator ◦, LETF is equipped with a non-
classicality operator • as well, dual to ◦. Both LETF and LETJ are logics of formal
inconsistency and undeterminedness in which the operator ◦ recovers classical logic
for propositions in its scope. Evidence is a notion weaker than truth in the sense that
theremay be evidence for a propositionα even ifα is not true. Aswell asLETJ ,LETF is
able to express preservation of evidence and preservation of truth. The primary aim of
this paper is to propose a probabilistic semantics for LETF where statements P(α) and
P(◦α) express, respectively, the amount of evidence available for α and the degree
to which the evidence for α is expected to behave classically—or non-classically
for P(•α). A probabilistic scenario is paracomplete when P(α) + P(¬α) < 1, and
paraconsistent when P(α)+P(¬α) > 1, and in both cases, P(◦α) < 1. If P(◦α) = 1,
or P(•α) = 0, classical probability is recovered for α. The proposition ◦α ∨ •α, a
theorem of LETF , partitions what we call the information space, and thus allows us to
obtain some new versions of known results of standard probability theory.
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1 Introduction

InCarnielli andRodrigues (2017) twoparaconsistent andparacomplete formal systems
were presented, the Basic Logic of Evidence (BLE) and the Logic of Evidence and
Truth (LETJ ). BLE ends up being equivalent to Nelson’s well-known logic N4 but has
been conceived to express preservation of evidence instead of truth. Scenarios with
conflicting evidence—that is, non-conclusive evidence for the truth and the falsity
of α—as well as scenarios with no evidence at all about α are possible, so neither
explosion nor excluded middle hold in BLE. LETJ is an extension of BLE equipped
with a classicality operator ◦. When ◦α holds, classical negation—and so full classical
logic—for α is recovered. According to the intended interpretation, ◦α in LETJ means
that there is conclusive evidence for the truth or falsity of α, so the truth-value of α

has been established as true or false.
Let us call �C and �BLE , respectively, the relation of logical consequence in clas-

sical logic and in BLE. Classical consequence is defined in terms of preservation of
truth: � �C α just in case there is no modelM such that all propositions of � are true
in M , but α is not true inM. The intended interpretation of BLE, on the other hand, is
not based on preservation of truth, but rather on preservation of evidence: � �BLE α

means that the availability of evidence for the premises in � implies that there is also
evidence available for α. Classical logic and BLE, therefore, express different proper-
ties of propositions: truth and availability of evidence. The logic LETJ , in its turn, is
able to express preservation of evidence and preservation of truth—it ‘combines’, in
one and the same formal system, the relations �C and �BLE . The operator ◦ works
like a context switch that divides propositions into those that have a classical and those
that have a non-classical behavior, and BLE is the underlying logic of the latter.

Adequate valuation semantics and decision procedures for BLE and LETJ have
been proposed. These semantics, however, are only able to express the fact that a given
proposition α has or does not have evidence available by attributing, respectively, the
semantic value 1 or 0 to α. Evidence, thus, is treated from a purely qualitative point of
view. A question that presents itself is whether the amount of evidence available for a
givenpropositionα could be quantified.Herewegive a positive answer to this question.

The aimof this paper is to propose a probabilistic semantics for amodified version of
LETJ obtained by dropping the implication symbol → and adding a non-classicality
operator • dual to ◦. While ◦α implies that α behaves classically, a non-classical
behavior of α implies •α. The logic so obtained is an extension of the well-known
logic of First-Degree Entailment (FDE), and we call it LETF , the Logic of Evidence
and Truth based on FDE. As well as LETJ , LETF is suitable to an intuitive reading in
terms of evidence and truth.

In order to capture this idea of preservation of degrees of evidence a non-classical
notion of probability will be employed. The probabilistic semantics proposed here
follows the ideas presented in Bueno-Soler and Carnielli (2016, 2017). Let P(α) = ε

mean that ε is the measure of evidence available for α. We call a probabilistic scenario
paracomplete when P(α)+ P(¬α) < 1, and paraconsistent when P(α)+ P(¬α) >

1. These two cases can be explained, respectively, as ‘too little information’ and
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‘too much information’ about α.1 In both cases, P(◦α) < 1, which means that the
probability measures of α and ¬α are not behaving classically. So, P(◦α) < 1 means
that the information available about α is not reliable, and something must be wrong.
If P(◦α) = 1, standard probability is recovered for α.

With the purpose of understanding the probabilistic semantics proposed here better,
we adopt a notion of information space instead of the standard notion of sample
space. The intuitive idea is to collect all the relevant information about a proposition
α (or about a set of propositions �) and the corresponding measures of evidence. So,
roughly speaking, an information space is constituted by propositions that represent
evidence that can be non-conclusive, contradictory or incomplete, more reliable or less
reliable, and sometimes conclusive (we return to this point in Sect. 4.3 below). Such a
notion of information space requires a generalization of the notion of a partition, and
consequently allows us to obtain generalized versions of standard results of probability
theory such as total probability theorem and Bayes’ rule.2

The remainder of this paper is organized in four sections. Section 2 is dedicated
to the logic FDE. It is shown that FDE is suited to an interpretation in terms of
preservation of evidence. We also present adequate valuation semantics and a decision
procedure for FDE. In Sect. 3, FDE is extended to LETF , and an adequate semantics, a
decision procedure, and some relevant results are presented and discussed. In Sect. 4,
a probabilistic semantics for LETF is defined, and paraconsistent and paracomplete
versions of total probability theorems andBayes’ rule are also presented and discussed.
Finally, in Sect. 5, we discuss some points related to the topics of this paper that could
be developed further.

2 FDE as a logic of preservation of evidence

The inference rules of BLE were obtained by asking whether an inference rule
preserves evidence. Since evidence can be incomplete (no evidence at all) and con-
tradictory (conflicting evidence), explosion and excluded middle do not hold. In BLE,
when α (resp. ¬α) holds, the intended meaning is that there is evidence for the truth
(resp. falsity) of α. Evidence that α is true and evidence that α is false are indepen-
dent of each other, and are treated as such by the formal system. BLE can express the
following four scenarios:

1. Only evidence that α is true: α holds, ¬α does not hold.
2. Only evidence that α is false: ¬α holds, α does not hold.

1 The connections between the notions of evidence and information will be explained in Sect. 2.2.1.
2 Our approach differs from the so-called Dempster–Shafer (DS) theory of evidence, developed by Glenn
Shafer in Shafer (1976) and based on earlier work of Arthur Dempster. DS is focused on degrees of belief
and degrees of plausibility. As Lofti Zadeh points out in his review (Zadeh 1984), the DS theory falls short
as a useful tool for the management of uncertainty (even for expert systems, for which it was designed). Our
approach, as we try to make clear throughout this paper, uses probabilistic semantics intended to quantify
the evidence attributed to a proposition and introduces a new logic with an intuitive reading in terms of
preservation of evidence and truth. That is the reason we cannot rely on the DS ‘mathematical’ theory of
evidence: it is not so attractive as it seems to be at first glance, and lacks the features we are interested in.
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3. No evidence at all: neither α nor ¬α hold.
4. Conflicting evidence: both α and ¬α hold.3

Evidence for a proposition α is explained in Carnielli and Rodrigues (2017, Section 2)
as reasons for believing in α, but these reasons may be non-conclusive or even wrong,
and do not imply the truth of α, nor the belief in α. Thus, evidence is a notion weaker
than truth in the sense that there may be evidence for a proposition α even if α is not
true. Below, in Sect. 2.2.1, starting from the notion of information proposed by Dunn
(2008), we explain evidence in terms of a (perhaps) non-conclusive justification added
to a proposition α or, as Fitting (2016b) puts it, “justifications that might be wrong”.4

Notice that the notion of evidence encompasses non-conclusive as well as conclusive
evidence, and the latter is evidence that establishes the truth-value of a proposition α.

The logic of First-Degree Entailment (FDE) is a paraconsistent and paracomplete
propositional logic in a language with conjunction, disjunction, and negation, with
no theorems nor bottom particles (cf. Anderson and Belnap 1963, 1975; Anderson
et al. 1992; Belnap 1977a, b; Dunn 1976). FDE is a fragment of BLE/N4, obtained by
dropping the implication symbol and the corresponding rules, and it can be interpreted
in terms of preservation of evidence, as well as BLE–the four scenarios above clearly
correspond to the four truth-values proposed by Belnap (1977a, b) (we return to this
point in Sect. 2.2 below).5

Definition 1 TheLogic of First-Degree Entailment (FDE). Let L1 be a languagewith a
denumerable set of sentential letters {p1, p2, p3, . . .}, the set of connectives {¬,∧,∨},
and parentheses. The set of formulas of L1 is obtained recursively in the usual way.
The logic FDE is defined over the language L1 by the following natural deduction
rules:

α β

α ∧ β
∧I

α ∧ β
α ∧E

α ∧ β

β

α
α ∨ β

∨I
β

α ∨ β
α ∨ β

[α]....
γ

[β]....
γ

γ ∨E

3 The expression ‘α holds/does not hold’ here means that α holds/does not hold in BLE. So, here, it does
not mean that α is true/false.
4 Fitting (2016a) presents an embedding of BLE into the modal logic KX4, and an embedding of the later
into the justification logic JX4. The latter is equipped with justification terms that stand for “justification, or
evidence, which may be non-factual, uncertain, or contradictory” (Fitting 2016a, p. 1159). In JX4, ‘t : α’
means that α is justified by reason t. The notion of evidence expressed by KX4 (implicit evidence) and JX4
(explicit evidence) is a “formal alternative” of the “informal” notion of evidence expressed by BLE.
5 The move from BLE and LETJ to (respectively) FDE and LETF has been motivated by some difficulties
in interpreting the implication of BLE in probabilistic terms. The implication of BLE is located somewhere
in between classical and intuitionistic implication: it is not classical because Peirce’s Law does not hold,
and it is not intuitionistic because the equivalence between ¬(α → β) and α ∧ ¬β holds. It is not clear
what would be the intuitive meaning of the attribution of a probabilistic measure to a formula α → β of
BLE, and how this measure would relate to the probabilistic values of α and β. So we decided, at least in
this paper, to work with FDE, the implication-free fragment of BLE.
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¬α

¬(α ∧ β)
¬ ∧ I

¬β

¬(α ∧ β)
¬(α ∧ β)

[¬α]....
γ

[¬β]....
γ

γ ¬ ∧ E

¬α ¬β

¬(α ∨ β)
¬ ∨ I

¬(α ∨ β)

¬α
¬ ∨ E

¬(α ∨ β)

¬β

α

¬¬α
DN ¬¬α

α

A deduction of α from a set of premises �, � �FDE α, is defined as follows: there is
a derivation with conclusion α and all uncancelled hypotheses in �, and the definition
of a derivation is the usual one for natural deduction systems (see e.g. van Dalen 2008,
pp. 35–36).

Other deductive systems have already been presented for FDE (see Omori and
Wansing 2017, Section 2.2), but the natural deduction system proposed here makes the
symmetry between positive and negative rules explicit:∧I and¬∨ I are symmetrical,
∨E and ¬ ∧ E are symmetrical, and so on. This mirrors the fact that positive and
negative evidence are primitive and non-complementary notions, but have symmetric
deductive behavior: the rule∧I expresses the idea that when there is positive evidence
available for both α and β, there is positive evidence for α ∧ β, while the rule ¬ ∨ I
means that when there is negative evidence available for both α and β, there is negative
evidence for α ∨ β.

Theorem 2 Reflexivity, monotonicity, transitivity, and compactness hold for FDE.

Proof These well-known properties of FDE can be easily proved by means of the
natural deduction system above. ��

2.1 Valuation semantics for FDE

We now propose a non-deterministic valuation semantic for FDE.

Definition 3 Valuation semantics for FDE
A valuation semantics for FDE is a collection of FDE-valuations defined as follows:
a function v : L1 → {0, 1} is a FDE-valuation if it satisfies the following clauses:

v1. v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1,
v2. v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1,
v3. v(¬(α ∧ β)) = 1 iff v(¬α) = 1 or v(¬β) = 1,
v4. v(¬(α ∨ β)) = 1 iff v(¬α) = 1 and v(¬β) = 1,
v5. v(α) = 1 iff v(¬¬α) = 1.

Definition 4 We say that a formula α is a semantical consequence of �, � �FDE α,
iff for every valuation v, if v(β) = 1 for all β ∈ �, then v(α) = 1.

This semantics is sound and complete, and provides a decision procedure for FDE.
From now on, in this section, when there is no risk of ambiguity, we will just write �
and � in the place of �FDE and �FDE .
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Theorem 5 Soundness. Let � be a set of formulas, and α a formula of FDE. So,
� � α implies � � α.

Proof The proof is routine. It shows that assuming there are sound derivations for the
premise(s), the derivation obtained by the application of a rule is sound. ��
Theorem 6 Completeness. Let � be a set of formulas, and α a formula of FDE. Then
� � α implies � � α.

Proof Completeness can be proved by a Henkin-style proof. Given � and α such that
� � α, a set � maximal w.r.t α can be obtained in the usual way. So, the proof of the
following propositions is straightforward:

v1′. α ∧ β ∈ � iff α ∈ � and β ∈ �;
v2′. α ∨ β ∈ � iff α ∈ � or β ∈ �;
v3′. ¬(α ∧ β) ∈ � iff ¬α ∈ � or ¬β ∈ �;
v4′. ¬(α ∨ β) ∈ � iff ¬α ∈ � and ¬β ∈ �;
v5′. α ∈ � iff ¬¬α ∈ �.

Let v be the mapping from the language L1 to {0, 1} defined as follows: for every
γ ∈ L1, v(γ ) = 1 iff γ ∈ �. v is a valuation for FDE such that: for every β ∈ �,
v(β) = 1, since� ⊆ �; but v(α) = 0, since α /∈ � (� is maximal w.r.t. α). Therefore,
� � α. ��

The valuation semantics proposed in Definition 3 is non-deterministic in the sense
that the semantic value of a formula¬α is not a function of the value of α. The possible
values a formula can receive are given by quasi-matrices.6 In Example 7 below, we
illustrate how a quasi-matrix works.

Example 7 In FDE:

1. p,¬p ∨ q � q;
2. p,¬(p ∧ q) � ¬q;
3. ¬p ∧ ¬q�⊧¬(p ∨ q);
4. ¬p ∨ ¬q�⊧¬(p ∧ q).

Proof Consider the following quasi-matrix:

6 A quasi-matrix is a non-deterministic matrix that represents non-deterministic valuation semantics. The
notion of quasi-matrix was introduced by da Costa and Alves (1977), where a valuation semantics was
proposed for da Costa’s logic C1 (in da Costa and Alves 1977, p. 624, Definition 11 a detailed explanation
of how to construct a quasi-matrix for C1 can be found). See also Loparic (1986), Loparic (2010) and
Loparic and Alves (1979), where decision procedures based on quasi-matrices are provided for da Costa’s
Cω and for intuitionistic logic.
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The valuations 13 and 14 above show that 1 is invalid, and the valuations 13 and 15
show that 2 is invalid. The remaining cases (De Morgan laws) are left to the reader. ��
Remark 8 The first four rows of the quasi-matrix above display the semantic values
of the propositional variables and the negations of propositional variables that occur
in the formulas at stake. The 5th and 6th rows are given by clauses v2 and v3 of
Definition 3. Note that the semantic value of ¬p is not determined by the value of p:
the value of ¬p bifurcates into 0 and 1 below v(p) = 1 and also below v(p) = 0.
So, being n the number of propositional variables of a given formula, the number
of valuations is finite and bounded by 22n . It is intuitively clear that the valuation
semantics provides a decision procedure for FDE. A detailed algorithm, however,
will be presented elsewhere.

2.1.1 Some facts about FDE

Fact 9 Modus ponens and the deduction theoremdonot hold inFDE for an implication
α → β defined as ¬α ∨ β.

Proof That disjunctive syllogism does not hold in FDE is shown by the following
valuation: v(α) = 1, v(¬α) = 1, v(β) = 0. In order to show that the deduction
theorem does not hold, suppose �, α � β implies � � ¬α ∨ β. So, from α � α we
would get � ¬α ∨ α, but the latter is invalid in FDE. ��
Fact 10 Grounding of contradictoriness
A compound formula α is contradictory in a valuation v, i.e. v(α) = 1 and v(¬α) = 1,
only if at least one propositional letter p that occurs in α is contradictory in v.

Proof Suppose there is a valuation v such that v(α) = v(¬α) = 1. We prove that
there is at least one propositional letter p in α such that v(p) = v(¬p) = 1. If α = p,
clearly, v(α) = v(¬α) = v(p) = v(¬p) = 1. The remaining cases are proved by
induction on the complexity of α.

Case 1. α = ¬¬β. I.H.: if v(β) = v(¬β) = 1, there is a p in β such that
v(p) = v(¬p) = 1. Suppose v(¬¬β) = v(¬¬¬β) = 1. So, by Definition 3,
v(β) = v(¬β) = 1. The result follows by the inductive hypothesis.

Case 2. α = β ∧ γ . I.H.: if v(β) = v(¬β) = 1, there is a p in β such that
v(p) = v(¬p) = 1; mutatis mutandis for γ . Suppose v(β ∧ γ ) = v(¬(β ∧ γ )) = 1.
So, by Definition 3, v(β) = v(γ ) = 1, and either v(¬β) = 1 or v(¬γ ) = 1. By the
inductive hypothesis, there is a p either in β or in γ such that v(p) = v(¬p) = 1. The
remaining cases are left to the reader. ��
Fact 11 Grounding of incompleteness. A compound formula α is incomplete in a val-
uation v, i.e. v(α) = 0 and v(¬α) = 0, only if at least one propositional letter p
that occurs in α is incomplete in v.

Proof Similar to the proof of Fact 10 above. ��
It is to be noted that the converse of Facts 10 and 11 do not hold: there may be a
contradictory (resp. incomplete) atom p in a formula α without α being contradictory
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(resp. incomplete). Let α be the formula p ∨ q and consider the valuation v such that
v(p) = v(¬p) = 1, v(q) = 1 and v(¬q) = 0. In this case, p is a contradictory
propositional letter, but p∨ q is not contradictory. On the other hand, in the valuation
v(p) = v(¬p) = 0, v(q) = 1 and v(¬q) = 0, p is a incomplete propositional letter,
but p∨q is not incomplete. Both valuations make v(p∨q) = 1 and v(¬(p∨q)) = 0.

2.2 Equivalence with Belnap’s four-valued and Dunn’s relational semantics

The valuation semantics proposed above, as expected, is equivalent both to the two-
valued relational semantics proposed byDunn (1976) and to the four-valued semantics
presented by Belnap (1977b).7

Definition 12 Dunn’s relational semantics forFDE. A Dunn-interpretation forFDE is
a relationρ between the set of formulas ofFDE and the valuesT andF,ρ ⊆ L×{T , F},
satisfying the following clauses:

1. ¬αρT iff αρF ,
2. ¬αρF iff αρT ,
3. (α ∧ β)ρT iff αρT and βρT ,
4. (α ∨ β)ρT iff αρT or βρT ,
5. (α ∧ β)ρF iff αρF or βρF ,
6. (α ∨ β)ρF iff αρF and βρF .

Definition 13 A formula α is a Dunn semantic consequence of �, � �D α, iff for all
Dunn-interpretations ρ, if βρT for all β ∈ �, then αρT .

Definition 14 Belnap’s four-valued semantics for FDE. A four-valued interpretation
for FDE is a function vB from the set of formulas of FDE to the semantic values
{T , F, B, N } satisfying the following matrices:

α ¬α

T F
F T
B B
N N

α ∧ β T F B N
T T F B N
F F F F F
B B F B F
N N F F N

α ∨ β T F B N
T T T T T
F T F B N
B T B B T
N T N T N

Definition 15 Let D = {T , B} be the set of designated values of Belnap’s four-valued
semantics. A formula α is a four-valued semantic consequence of �, � �B α, iff for
all four-valued interpretations vB , if vB(β) ∈ D for all β ∈ �, then vB(α) ∈ D.

The valuation semantics of Definition 3, Dunn’s relational semantics of Defini-
tion 12, and Belnap’s four-valued semantics of Definition 14 intend to represent four
scenarios. Belnap (1977b, p. 11) explains the semantic values T, F, N, and B with the

7 The literature has a variety of algorithmic procedures that provide translations between finite-valued
semantics and valuation semantics. One of them is given in Caleiro et al. (2005). For the ease of the reader,
however, we give below a direct proof of the equivalence between FDE-valuations, Dunn’s and Belnap’s
semantics for FDE.
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notion of a computer ‘being told’, so, these values mean, respectively, ‘just told true’,
‘just told false’, ‘told neither true nor false’, and ‘told both true and false’ (we return to
this point in Sect. 2.2.1 below). Dunn (1976, p. 156) explains them in terms of subsets
of {T , F}, so a proposition can be related to {T }, {F}, ∅, and {T , F}. In Sect. 2 above
we explained these four scenarios in terms of availability of evidence.

Although both the valuation semantics proposed here and Dunn’s relational seman-
tics are bi-valued, and end up being equivalent, they have an essential difference: a
valuation is a function from the set of formulas to {0, 1}, while a Dunn interpretation is
a relation between the set of formulas and {T , F}. In the latter, a formula can be related
simultaneously to both T and F, when it is, in the Dunn–Belnap reading, both true and
false, or not related to T nor F, when it is neither true nor false. But these three seman-
tics, as expected, validate the same inferences, i.e. � �FDE α iff � �D α iff � �B α.

Definition 16 (Dunn interpretation induced by an FDE-valuation) Given a FDE-
valuation v, we define a Dunn-interpretation ρv , based on v, as follows:

αρvT iff v(α) = 1
α¬ρvT iff v(α) = 0
αρvF iff v(¬α) = 1
α¬ρvF iff v(¬α) = 0

Definition 17 (FDE-valuation induced by a Dunn-interpretation) Given a Dunn-
interpretation ρ, we define a FDE-valuation vρ , based on ρ, as follows:

vρ(α) = 1 iff αρT
vρ(α) = 0 iff α¬ρT
vρ(¬α) = 1 iff αρF
vρ(¬α) = 0 iff α¬ρF

Lemma 18 Given an FDE-valuation v, then ρv is a Dunn-interpretation.

Proof We have to prove that ρv is a Dunn’s relational semantics as in Definition 12.

1. ¬αρvT iff v(¬α) = 1 iff αρvF
2. ¬αρvF iff v(¬¬α) = 1 iff v(α) = 1 iff αρvT
3. (α ∧ β)ρvT iff v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1 iff αρvT and βρvT
4. (α ∨ β)ρvT iff v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1 iff αρvT or βρvT
5. (α ∧ β)ρvF iff v(¬(α ∧ β)) = 1 iff v(¬α) = 1 or v(¬β) = 1 iff αρvF or βρvF
6. (α ∨ β)ρvF iff v(¬(α ∨ β)) = 1 iff v(¬α) = 1 and v(¬β) = 1 iff αρvF and

βρvF ��
Lemma 19 Given a Dunn-interpretation ρ, then vρ is a FDE-valuation.

Proof We have to prove that vρ is a FDE-valuation as in Definition 3.

1. vρ(α ∧ β) = 1 iff (α ∧ β)ρT iff αρT and βρT iff vρ(α) = 1 and vρ(β) = 1
2. vρ(α ∨ β) = 1 iff (α ∨ β)ρT iff αρT or βρT iff vρ(α) = 1 or vρ(β) = 1
3. vρ(¬(α ∧ β)) = 1 iff (α ∧ β)ρF iff αρF or βρF iff vρ(¬α) = 1 or vρ(¬β) = 1
4. vρ(¬(α∨β)) = 1 iff (α∨β)ρF iffαρF and βρF iff vρ(¬α) = 1 and vρ(¬β) = 1
5. vρ(α) = 1 iff (α)ρT iff ¬αρF iff ¬¬αρT iff vρ(¬¬α) = 1 ��
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Lemma 20 The valuation semantics (Definition 3) and Dunn-interpretation
(Definition 12) are equivalent, that is, given a valuation semantics v there exists a
Dunn-interpretation ρv such that

vρ(α) = 1 iff αρT
vρ(α) = 0 iff α¬ρT
vρ(¬α) = 1 iff αρF
vρ(¬α) = 0 iff α¬ρF

for any proposition α; and vice-versa, given a Dunn-interpretation ρ, there exists a
valuation vρ such that:

αρvT iff v(α) = 1
α¬ρvT iff v(α) = 0
αρvF iff v(¬α) = 1
α¬ρvF iff v(¬α) = 0

for any proposition α.

Proof Immediate from Lemmas 18 and 19 above. ��
Lemma 21 The valuation semantics (Definition3)andBelnap’s four-valued semantics
for FDE (Definition 14) are equivalent.

Proof It follows from Lemma 20 and the well-known fact that Dunn’s and Belnap’s
semantics are equivalent. ��
Theorem 22 The valuation semantics, the Dunn interpretation and the Belnap inter-
pretation define equivalent notions of logical consequence: � �FDE α iff � �B α iff
� �D α.

Proof It follows from Lemmas 20 and 21. ��

2.2.1 On paraconsistency, evidence, and information

FDE is the well-known and widely studied ‘useful four-valued logic’ proposed by
Belnap and Dunn as the underlying logic of an artificial information processor, i.e. a
computer, capable of dealing with information received from different sources that
are not entirely reliable (cf. Belnap 1977a, b; Dunn 1976). The semantic value Both is
intended to represent the circumstance in which there is conflicting information about
α, i.e. both α and ¬α hold, and None is intended to represent the circumstance in
which there is no information at all about α, i.e. neither α nor ¬α holds.

When Belnap explains these four values, he talks about a computer ‘being told’ that
a proposition α is true, or false. The computer should be able to compute the values of
complex propositions and draw inferences from the received information, but it “can
only accept and report information without divesting itself of it” (Belnap 1977b, p. 9).
Of course, contradictory information stored in a database should not be taken as true,
as Belnap (1977a, p. 47) remarks that
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these sentences have truth-values independently of what the computer has been
told; but who can gainsay that the computer cannot use the actual truth-value
of the sentences in which it is interested? All it can possibly use as a basis for
inference is what it knows or believes, i.e., what it has been told.

The computer, when asked, must provide information based only on what it has been
told, otherwise “we would have no way of knowing that its data-base harbored con-
tradictory information” (Belnap 1977b, p. 9).8

This notion of ‘a computer being told’ is clearly weaker than truth, since a computer
may be told that α is true even if it is not the case. So, Belnap is not really talking about
truth simpliciter. On the other hand, Dunn (1976, p. 157) seems not to be totally com-
fortable with the interpretation of FDE in terms of the simultaneous truth of α and¬α:

Do not get me wrong—I am not claiming that there are sentences which are
in fact both true and false. I am merely pointing out that there are plenty of
situations where we suppose, assert, believe, etc., contradictory sentences to be
true, and we therefore need a semantics which expresses the truth conditions of
contradictions in terms of the truth values that the ingredient sentences would
have to take for the contradictions to be true.

Indeed, we should consider Dunn’s relational semantics as a façon de parler, rather
than a claim that true contradictions are possible. Obviously, the simultaneous attribu-
tion of the semantic valueTrue to a pair of propositionsα and¬α is not to be understood
as an acceptance of dialetheism. It is worth noting that at the time Belnap’s and Dunn’s
papers were published, although there were already several paraconsistent formal sys-
tems available, the conceptual discussion about the nature of contradictions accepted
by paraconsistent logics was still in its beginnings. It was a ‘lateral issue’ that had not
yet been brought to the center of debate.

That the four values represented by Belnap–Dunn’s semantics correspond to the
four scenarios of availability of evidence the logic BLE expresses has been shown in
Sect. 2.2 above. The notions of evidence and information, indeed, are akin to each
other, and both are well-suited to a non-dialetheist reading of paraconsistency. Let us
take a closer look at these two notions.

In Carnielli and Rodrigues (2017, Section 2) the notion of evidence for a proposi-
tion α was explained as ‘reasons for believing and/or accepting α’. Evidence, when
conclusive, gives support to the truth (or falsity) of α, and thus it has to do with the jus-
tification of α (or ¬α). The idea behind the recovery operator ◦, introduced in Sect. 3
below, is that if there is conclusive evidence for the truth, or falsity, of a proposition
α, then α is subjected to classical logic. But evidence can be non-conclusive, and so
theremay be conflicting evidence for a proposition α. Besides beingweaker than truth,
evidence does not imply belief: there may be evidence for α, an agent may be aware
of such evidence but still does not believe in α. If there is non-conclusive evidence

8 Belnap’s approach to the problem is akin to the idea, defended by us in a number of places, that a
contradiction α and ¬α can be ‘more informative’ than a single assertion of α, or of ¬α, when neither α

nor ¬α has been conclusively established. Indeed, in such cases, the contradiction makes it explicit that
something is wrong and must be further investigated.
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for α, it means that there is some degree of justification for α that, however, is not
conclusive and might be wrong.9

Dunn (2008, p. 589) explains a ‘bare-boned’ notion of information as:

what is left from knowledge when you subtract, justification, truth, belief, and
any other ingredients such as reliability that relate to justification. Information
is, as it were, a mere “idle thought.” Oh, one other thing, I want to subtract
the thinker. (...) Anyone who has searched for information on the Web does
not have to have this concept drummed home. So much of what we find on the
Web has no truth or justification, and one would have to be a fool to believe it
(...) [Information] is something like a Fregean “thought,” i.e., the “content” of a
belief that is equally shared by a doubt, a concern, a wish, etc.

Information, so understood, is what is expresses by a proposition, indeed similar to
a Fregean thought but without its platonic ingredient. It is objective, does not imply
belief, does not need to be true. The difference between this bare-boned notion of
information and the notion of non-conclusive evidence is that the latter has an epis-
temic ingredient that is lacking by the former. So, we can characterize non-conclusive
evidence as bare-boned information plus a justification that might be wrong. Indeed,
situations in which we have something that may be or may be not a justification
for some proposition α are quite common, and there is nothing wrong in saying that
evidence, conclusive or non-conclusive, is still information: a propositionα is informa-
tion, aswell as the claim thatα has been established as true. The notion of information is
thusmore general than evidence. It is not surprising, therefore, that bothBLE andFDE
are suitable to a non-dialetheist interpretation in terms of evidence and information.

3 Extending FDE to a logic of evidence and truth

FDE will now be extended to the logic LETF , in a similar way to what was done
with BLE obtaining LETJ in Carnielli and Rodrigues (2017). Both LETJ and LETF
are Logics of Formal Inconsistency and Undeterminedness (LFIUs) (cf. Carnielli and
Rodrigues 2017; Carnielli et al. 2019; Marcos 2005). In LFIs,

α,¬α � β, while ◦α, α,¬α � β,

and in LFUs,

� α ∨ ¬α, while ◦α � α ∨ ¬α.10

When ◦α holds, and so excluded middle and explosion are valid, we say that α is
classical. For this reason, in LFIUs, like the logics LETJ and LETF , we say that ◦ is a
classicality operator.

9 This notion of evidence is in linewith the discussion carried out in Achinstein (2010a, b) andKelly (2014).
10 Definitions of Logics of Formal Inconsistency and Undeterminedness can be found in Carnielli et al.
(2019) (Definitions 9 and 11). Note that the notion of incompleteness in the interpretation of FDE in
terms of evidence/information (e.g. Fact 11) is analogous to the notion of undeterminedness in LFUs.
Actually, in our view, except for the same acronym of LFIs, LFUs could well be called Logics of Formal
Incompleteness. The name LFU was established in Marcos (2005) and adopted in Carnielli and Rodrigues
(2017) and Carnielli et al. (2019).
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Like BLE, the logic FDE, interpreted from the viewpoint of preservation of evi-
dence, is not able to express preservation of truth. Indeed, none of the semantics
presented for FDE in Sect. 2.1 can distinguish a context (i) where there there is non-
conclusive evidence for α, so α has not been established as true, but no evidence for
¬α. from another context (ii) where there is conclusive evidence for α and so α has
been established as true, and ¬α does not hold. In both (i) and (ii), α and ¬α receive
respectively the values 1 and 0 by the valuation semantics (Definition 3), or the values
T and F by the Belnap’s four valued semantics (Definition 14), and so we cannot dis-
tinguish between (i) and (ii). The logic LETF , on the other hand, is able to distinguish
these contexts.

Definition 23 The Logic of Evidence and Truth based on FDE (LETF ). Let L2 be
a language with a denumerable set of sentential letters {p1, p2, p3, . . .}, the set of
connectives {◦, •,¬,∧,∨, } and parentheses. The set of formulas of L2 is obtained
recursively in the usual way. The logic LETF is defined over the language L2 by adding
the following rules to the natural deduction system of FDE (Definition 1):

◦α •α
β

Cons ◦α ∨ •α Comp

◦α α ¬α
β

EX P◦ ◦α

α ∨ ¬α
PEM◦

A deduction of α from a set of premises � in LETF , � �LETF α, is defined as follows:
there is a derivation with conclusion α and all uncancelled hypotheses in �. The
definition of a derivation is the usual one for natural deduction systems (see e.g. van
Dalen 2008, pp. 35–36).

Theorem 24 The following properties hold for LETF:

1. Reflexivity: if α ∈ �, then � �LETF α;
2. Monotonicity: if � �LETF β, then �, α �LETF β, for any α;
3. Transitivity (cut): if � �LETF α and �, α �LETF β, then �, � �LETF β;
4. Compactness: if � �LETF α, then there is � ⊆ �, � finite such that � �LETF α.

Proof Straightforward, from the definition of a deduction of α from premises in � in
LETF . ��

Fact 25 The following rules hold in LETF:

α ¬α•α •R1 α ∨ ¬α ∨ •α •R2

Proof We prove •R1. The proof of •R2 is left to the reader.

123



S5464 Synthese (2021) 198 (Suppl 22):S5451–S5480

◦α ∨ •α Comp [◦α]1 α ¬α
•α

EX P◦ [•α]1
•α

1,∨E

��

3.1 On the connectives ◦ and •

The rules PEM◦ and EX P◦ recover classical logic for propositions in the scope of ◦
(this claim will be made precise by Fact 31 below). As well as LETJ , LETF is suitable
to an intuitive reading in terms of different contexts concerned with preservation of
evidence and preservation of truth. But unlike LETJ , LETF has a non-classicality
operator •, dual to the classicality operator ◦. This duality is made clear by the rules
above (Fact 25): R1 is the dual of EX P◦, and R2 is the dual of PEM◦.11 While ◦α

implies a classical behavior for α, a non-classical behavior of α implies •α. Notice
that: (i) ◦α does not imply α, rather, it implies that one and at most one between α

and ¬α holds; (ii) •α does not imply that α and ¬α hold; indeed, according to R2, if
both α and ¬α do not hold, •α holds.

Strictly speaking, ◦α recovers classical logic for α. The intended interpretation of
◦α is that there is conclusive evidence for α or ¬α, and so the truth-value of α is
conclusively established as true or false. On the other hand, if evidence for α is non-
conclusive, or it is contradictory, or there is no evidence at all, then •α holds. The rule
Cons prohibits the circumstance such that there is and there is not conclusive evidence
for α, while Comp expresses the fact that either there is or there is not conclusive
evidence for α.

Since LETF distinguishes conclusive from non-conclusive evidence, it is able to
express the following six scenarios12:

When •α holds, four scenarios of non-conclusive evidence can be expressed:

1. Only evidence that α is true: α holds, ¬α does not hold.
2. Only evidence that α is false: ¬α holds, α does not hold.
3. No evidence at all: both α and ¬α do not hold.
4. Conflicting evidence: both α and ¬α hold.

When ◦α holds, two scenarios can be expressed, tantamount to classical truth and
falsity:

5. Conclusive evidence for α: α is true (◦α ∧ α holds).
6. Conclusive evidence for ¬α: ¬α is true (◦α ∧ ¬α holds).

11 Actually, different versions of LETF can be obtained by adding to FDE, besides Cons and Comp, the
following pair of rules: PEM◦ and EX P◦; •R1 and •R2; PEM◦ and •R1; EX P◦ and •R2. Notice that
the rules EX P◦ and •R2 are dual, as well as PEM◦ and •R1 (cf. Carnielli et al. 2019).
12 In classical logic, ‘α holds’ means that α is true, while in FDE, according to the intended interpretation
in terms of evidence, ‘α holds’ means that there is evidence available for α. In LETF , the meaning of ‘α
holds’ depends on the context: if the context is classical, it means that α is true. This is precisely the point
of the classicality operator ◦. So, two additional scenarios can be expressed, besides the four scenarios of
FDE.
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Of course, a scenario with conclusive evidence for both α and¬α is not allowed, since
it would imply that α is true and false simultaneously. Indeed, if classical logic holds
for α, it cannot be that there is any residual conflicting evidence for α and ¬α.

3.2 Valuation semantics for LETF

Definition 26 A valuation semantics for LETF is obtained by adding the following
clauses to the valuation semantics of FDE (Definition 3):

v6. v(•α) = 1 iff v(◦α) = 0,
v7. If v(◦α) = 1, then v(α) = 1 if and only if v(¬α) = 0.

Definition 27 We say that a formula α is a semantical consequence of �, � �LETF α

iff for every valuation v, if v(β) = 1 for all β ∈ �, then v(α) = 1.

The valuation semantics given above in Definition 26 is sound, complete, and
provides a decision procedure for LETF . From now on, when there is no risk of
ambiguity, we will just write � and � in the place of �LETF and �LETF .

Theorem 28 Soundness and completeness of LETF w.r.t. the valuation semantics:� �
α iff � � α.

Proof In order to prove completeness, the proof of Theorem 6 has to be extended to
include clauses 6′ and 7′ below:

v6′. ◦α ∈ � iff •α /∈ �,
v7 ′. ◦α ∈ � implies ¬α ∈ � iff α /∈ �.

For soundness, it can be shown that rules Cons, Comp, EX P◦, and PEM◦ are sound
with respect to clauses 6 and 7 of Definition 26 above. Details are left to the reader. ��

The quasi-matrix below displays the behavior of the connectives ◦ and • in LETF .

The first two lines display the possible values of p and ¬p. The connectives ◦
and • are primitive and unary, but the semantic values of ◦p and •p depend (non-
deterministically) on the semantic values of p and ¬p. When v(p) = 1 and
v(¬p) = 0, v(p) = 0 and v(¬p) = 1, the value of ◦p and •p bifurcates into 0
and 1. This expresses the fact that ◦p is undetermined in LETF when v(p) 
= v(¬p),
as explained in page 14 above. In terms of evidence, valuations v1 and v6 show, respec-
tively, that no evidence at all, as well as conflicting evidence, implies v(•p) = 1 and
v(◦p) = 0. But if only one holds among p and ¬p (valuations v2 to v5), then v(•p)
and v(◦p) are left undetermined. The rationale of this is that in order to say that p
is true, or false, only the information that there is evidence for the truth, or for the
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falsity, of p is not enough. Something else is needed, namely, the information that
such evidence is conclusive.13

In Example 29 below we illustrate how quasi-matrices work in LETF .

Example 29 In LETF :

1. p ∨ ¬p � ◦p
2. •p � p ∧ ¬p
3. ◦p, p,¬p ∨ q � q;
4. ◦p, p,¬(p ∧ q) � ¬q;

Proof Consider the following quasi-matrix (divided into two parts):

Item 1: since v24(p) = v24(¬p) = 1, v24(p ∨ ¬p) = 1, but v24(◦p) = 0. Item 2:
v1(•p) = 1, but v1(p ∧ ¬p) = 0, since v1(p) = v1(¬p) = 0. For items 3 and 4, it
is easy to check that there is no valuation v such that the premises receive the value 1
but the conclusion receives 0 in v (compare with items 1 and 2 of Fact 7). ��

Remark 30 The 7th row of the quasi-matrix above is given by clause v7 and the 8th
by clause v6 of Definition 26. A quasi-matrix for LETF is finite, and similarly to FDE
(see Remark 8), it is intuitively clear that the valuation semantics provides a decision
procedure for LETF . A detailed algorithm will be presented elsewhere.

13 Note that valuations express evidence available from a purely qualitative point of view. An analogy with
analytical chemistry at this point may be illuminating. Qualitative analysis is concerned with whether or
not some sample contains a given substance, while quantitative analysis asks how much of a substance is
contained in a sample. Analogously, the valuation semantics represents only that there is or there is not
positive and negative evidence available for α, while the probabilistic semantics, presented in Sect. 4 below,
intends to express the amount of such evidence.
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3.3 Some facts about LETF

Fact 31 below shows how the operator ◦ recovers classical logic in LETF .

Fact 31 Recovering classical logic in LETF . Suppose ◦¬n1α1, ◦¬n2α2, . . . , ◦¬nmαm

hold, for ni ≥ 0 (where, ¬ni , ni ≥ 0, represents ni iterations of negations of the
formula αi ). Then, for any formula β formed with α1, α2, . . . , αm over {∧,∨,¬},
β behaves classically.

Proof First, we show that for any value of ni ≥ 0, ◦¬ni αi � αi ∨¬αi and ◦¬ni αi , αi ∧
¬αi � γ , for any γ—i.e. excluded middle and explosion hold for αi .

Suppose ◦¬ni αi holds. So, ¬ni αi ∨ ¬¬ni αi and ¬ni αi ∧ ¬¬ni αi � γ hold. If ni
is even, ¬ni αi �� αi , and if ni is odd, ¬ni αi �� ¬αi . So, it is easily proved that
¬ni αi ∨ ¬¬ni αi � αi ∨ ¬αi . Since we have that ◦¬ni αi � ¬ni αi ∨ ¬¬ni αi , by
transitivity, we get ◦¬ni αi � αi ∨ ¬αi . In order to recover explosion, it can be easily
proved that αi ∧¬αi � ¬ni αi ∧¬¬niαi . Sincewe have that ◦¬ni αi ,¬ni αi ∧¬¬ni αi �
γ , by transitivity, we get ◦¬ni αi , αi ∧ ¬αi � γ .

Remember that full classical logic can be obtained by adding explosion and
excluded middle to the introduction and elimination rules of ∧ and ∨, α1 →
α2 being defined as ¬α1 ∨ α2. Now, in order to prove the result, it is enough
to show that for any formula β formed with α1, α2, . . . , αm over {∧,∨,¬}, if
◦¬n1α1, ◦¬n2α2, . . . , ◦¬nmαm hold, then � β ∨ ¬β and β,¬β � γ hold.

Let � = {◦¬n1α1, ◦¬n2α2, . . . , ◦¬nmαm}.
If β = αi , it has been proved above. The remaining cases are proved by induction

on the complexity of β.

Case 1. β = ¬δ. I.H. �, δ,¬δ � γ and � � δ ∨ ¬δ. It can be easily proved that
�,¬δ,¬¬δ � γ and � � ¬δ ∨ ¬¬δ.

Case 2. β = δ1 ∧ δ2. I.H. �, δ1,¬δ1 � γ and � � δ1 ∨ ¬δ1, mutatis mutandis for δ2.
It can be proved that �, δ1 ∧ δ2,¬(δ1 ∧ δ2) � γ and � � (δ1 ∧ δ2) ∨ ¬(δ1 ∧ δ2) The
remaining cases are left to the reader. ��

We have seen in Fact 9 that for an implication α → β defined in FDE as ¬α ∨ β,
modus ponens and the deduction theorem do not hold. Both are recovered for the
defined implication in LETF for classical propositions.

Fact 32 1.In LETF ,for classical propositions, modus ponens holds:◦α,α,¬α ∨β � β.
Proof

¬α ∨ β

◦α α [¬α]1
β

EX P◦
[β]1

β
1,∨E

��
2. In LETF , the following form of the deduction theorem holds: ◦α, α � β implies
◦α � ¬α ∨ β.
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Proof

◦α

α ∨ ¬α
PEM◦

◦α, [α]1....
β

¬α ∨ β
∨I

[¬α]1
¬α ∨ β

∨I

¬α ∨ β
1,∨E

��
Definition 33 Supplementing and complementing negations (Carnielli et al. 2007,
pp. 12ff)

1. We say that a unary connective ∗ in a logic L is a supplementing negation if:
(i) for some formula α, ∗α is not a bottom particle, and (ii) for any �, α and β:
�, α, ∗α �L β.

2. We say that a unary connective ∗ in a logic L is a complementing negation if: (i)
for some formula α, ∗α is not a top particle;
(ii) for any �, α and β: �, α �L β and �, ∗α �L β implies � �L β.

If ∗ is a complementing negation, for any α, at least one between α and ∗α hold,
and if ∗ is a complementing negation, it cannot be that both α and ∗α hold. Each
one expresses one half of classical negation, the former excluded middle, the latter
explosion. If a logic L has a (primitive or defined) negation connective that is both
supplementing and complementing, thenL has a classical negation. A complementing
negation and a supplementing negation can be defined in LETF .

Definition 34 The following unary connectives can be defined in LETF :

1. The connective truth: ⊕α
de f= ◦α ∧ α;

2. The connective falsity: ∼α
de f= ◦α ∧ ¬α;

3. The connective falsity-excluding: �α
de f= •α ∨ α;

4. The connective truth-excluding: ≈α
de f= •α ∨ ¬α.

The tables are the following:

These connectives have been named for the following reasons. According to the pro-
posed interpretation: (1) ◦α ∧ α means that there is conclusive evidence for α, and so
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α is true (⊕α); (2) ◦α ∧ ¬α means that there is conclusive evidence for the falsity of
α, and so α is false (∼α); (3) •α ∨α means that there is no conclusive evidence for α,
or α holds, and so it excludes the falsity of α (�α); (4) •α ∨¬α means that there is no
conclusive evidence for α, or¬α holds, and so it excludes the truth of α (≈α). It is also
clear from the table above and Definition 33 that ∼α is a supplementing negation [if
v(α) = 1, v(∼α) = 0, they cannot be both 1], while ≈α is a complementing negation
[if v(α) = 0, v(≈α) = 1, they cannot be both 0].14 We conjecture that no classical
negation can be defined in LETF .15

These four connectives enjoy some interesting logical relations w.r.t. each other
that can be displayed by a square of oppositions:

⊕α ∼α

�α ≈α

Contradictory

Contrary

Subcontrary

D
ua
l D

ual

∼α and⊕α are contrary propositions (i.e., they can both be false, but they cannot both
be simultaneously true); ≈α and �α are subcontrary propositions (i.e., they can both
be true, but they cannot both be simultaneously false);⊕α (resp.∼α) is the dual of�α

(resp. ≈α); ⊕α (resp. ∼α) is the contradictory of ≈α (resp. �). Notice that in LETF ,
◦ is the dual of •, and ¬ is the dual of itself [on duality between non-deterministic
connectives in Logics of Formal Inconsistency and Undeterminedness, see Carnielli
et al. (2019)].

Fact 35

1. ◦α ∧ α ∧ ¬α, ◦α ∧ •α, ⊕α ∧ ∼α, ⊕α ∧ ≈α, and �α ∧ ∼α are bottom particles
in LETF .

2. ∼ is a supplementing negation in LETF .
3. ≈ is a complementing negation in LETF .

Proof In a few steps from the rules Cons, EX P◦ and •R2. ��
Theorem 36 The following propositions are theorems of LETF:

14 Although ∼ is explosive, it is not a classical negation, since α ∨ ∼α does not hold, which is shown by
the valuation v(α) = v(¬α) = v(◦α) = 0, and although α ∨ ≈α holds, ≈ is also not a classical negation,
since α,≈α � β does not hold, which is shown by the valuation v(α) = v(¬α) = v(•α) = 1.
15 One possibility for proving that classical negation is not definable in LETF is to adapt the methods of
Lahav et al. (2016), although they are devoted to non-classical negations from a modal viewpoint. We have
been unable however, to find a convincing argument in this direction.
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1. ◦α ∨ •α

2. α ∨ ¬α ∨ •α

3. (•α ∧ α) ∨ (•α ∧ ¬α) ∨ •α ∨ (•α ∧ α ∧ ¬α) ∨ (◦α ∧ α) ∨ (◦α ∧ ¬α)

4. α ∨ ¬α ∨ �α

5. α ∨ ¬α ∨ ≈α

6. ⊕α ∨ ∼α ∨ •α
Proof Items1 and2 follow from the rulesComp and R2.Toprove3, from◦α � α∨¬α,
we obtain ◦α � (◦α ∧ α) ∨ (◦α ∧ ¬α), and so ◦α � (•α ∧ α) ∨ (•α ∧ ¬α) ∨ •α ∨
(•α ∧ α ∧ ¬α) ∨ (◦α ∧ α) ∨ (◦α ∧ ¬α). On the other hand, •α � (•α ∧ α) ∨ (•α ∧
¬α) ∨ •α ∨ (•α ∧ α ∧ ¬α) ∨ (◦α ∧ α) ∨ (◦α ∧ ¬α) holds. Now, use 1 and ∨E . The
proofs of 4, 5, and 6 are left to the reader. Notice that item 3 corresponds to the six
scenarios presented in Sect. 3.1. ��

4 Probabilistic semantics for LETF

We now present a probabilistic semantics for LETF and FDE.

Definition 37 Given a logic L, with a derivability relation � and a language L, a
probability distribution for L is a real-valued function P : L → R satisfying the
following conditions:

1. Non-negativity: 0 ≤ P(α) ≤ 1 for all α ∈ L;
2. Tautologicity: If � α, then P(α) = 1;
3. Anti-Tautologicity: If α = ⊥, then P(α) = 0;
4. Comparison: If α � β, then P(α) ≤ P(β);
5. Finite additivity: P(α ∨ β) = P(α) + P(β) − P(α ∧ β).

The clauses above can be regarded as meta-axioms that define probability functions
for an appropriate logic L just by taking � as the derivability relation of L, and so
the notion of probability can be regarded as logic-dependent. These clauses define
probability functions for both FDE and LETF just by employing respectively �FDE

and �LETF .
16 From now on, we will concentrate on LETF , but it should be clear that

the meta-axioms 1, 4 and 5 above define probability distributions for FDE as well.

Definition 38 LETF -probability distribution. Let � = {α1, . . . , αn, . . .} be a (finite or
infinite) collection of propositions in the language L2 of LETF . A LETF -probability
distribution over � is an assignment of probability values P to the elements of � that
can be extended to a full probability function P : L2 → R according to Definition 37.

It is a common view that the classical truth-values true (1) and false (0) can be
identified with the endpoints of probabilities in the unit interval [0, 1]. On the other
hand, interpretations v : L → {0, 1} of a formal language L can be regarded as
degenerate probability functions P : L → [0, 1]. The class of logics that make

16 Probability functions have been defined in this way for classical logic, for intuitionistic logic without
implication inWeatherson (2003), and for the paraconsistent logicsCi andCie in Bueno-Soler andCarnielli
(2016, 2017).
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possible such an identification can be seen as a special case of probability logic.
The standard view, however, is rather the opposite: it claims that probability logic
presupposes, and so it depends on, classical logic.17 But the connection between
logic and probability theory is far from being restricted to classical logic. The fact that
probability distributions can be defined based on a non-classical consequence relation,
in our view, makes clear that the relation between logic and probability goes beyond
the realm of classical logic.

4.1 Conditional probability

The notion of conditional probability of α given β is defined as usual, for P(β) 
= 0:

P(α/β) = P(α ∧ β)

P(β)

In terms of evidence, a statement P(α/β) is to be read as a measure of how much the
evidence available for β affects the evidence for α.

Some useful theorems of conditional probability of LETF -distributions are the fol-
lowing, with the caveat that P(β) 
= 0 in all cases where P(α/β) is mentioned:

Theorem 39 The following properties hold when the probabilities in the denominators
are different from 0.

1. P(α1 ∧ · · · ∧ αn) = P(α1/α2 ∧ · · · ∧ αn) · · · P(αn−1/αn)P(αn) (Chain Rule).
2. P(α/β ∧ γ ) = P(α/γ )·P(β/α∧γ )

P(β/γ )
.

3. P(α ∧ β/γ ) = P(α/γ ) · P(β/α ∧ γ ) = P(β/γ ) · P(α/β ∧ γ ).
4. P(α ∨ β/γ ) = P(α/γ ) + P(β/γ ) − P(α ∧ β/γ ).
5. P(α ∨ β/γ ) = P(α/γ ) + P(β/γ ) if α and β are logically incompatible, i.e.,

α ∧ β act as a ⊥ (see Sect. 4.2).
6. P(α/β) + P(¬α/β) − P(•α/β) ≤ P(α ∨ ¬α/β).
7. If P(◦α)=1, or equivalently P(•α)=0, then P(α ∨ ¬α)=1 and P(α ∧ ¬α)=0.
8. P(α/β) + P(¬α/β) = 1, if P(◦α) = 1.
9. P(β/◦β) + P(¬β/◦β) = 1.

Proof
Items 1 to 4 are quite elementary properties coming from the general definition
of conditional probability: P(α/β) = P(α∧β)

P(β)
, which gives the alternative product

rule P(α ∧ β) = P(α/β) · P(β). The chain rule (item 1) is derived by successive
applications of product rule. Items 2 to 4 are easy consequences of the definition
of conditional probability and clause 5 of Definition 37.

17 In a recent article, Demey et al. (2013) claim that “probability theory presupposes and extends classical
logic”, and leave aside all the attempts to combine probability theory with non-classical logics. These
attempts, however, not only do exist, but have also been successful in combining probability theory with
non-classical approaches to logical consequence. We think Demey et al. are mistaken, not only because
they ignore non-classical approaches to probability logic, but also because they underestimate the view
according to which classical and some non-classical logics can be seen as special cases of probability logic.
It is worth noting that attempts to put together probability theory and non-classical logics can be traced
back to Łukasiewicz (1913) and Tarski (1935).
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Item 5: since α ∧ β is a bottom particle in this case, P(α ∧ β) = 0, and the result
follows from 4.
Item 6 is a consequence of Fact 25 (α ∧ ¬α � •α), Comparison and elementary
inequalities, plus the definition of conditional probability.
Item 7: Easy consequence of Definition 22, R1 (Fact 24) and Comparison (Defi-
nition 35).
Item 8: If P(◦α) = 1, then by 9 P(α ∨ ¬α) = 1, and by Lemma 40 (below)
we have P((α ∨ ¬α) ∧ β) = P(β) = P((α ∧ β) ∨ (¬α ∧ β)) = P(α ∧ β) +
P(¬α ∧ β) − P(α ∧ ¬α ∧ β). Since P(α ∧ ¬α ∧ β) = 0 [P(◦α) = 1 implies
P(α ∧¬α) = 0], we obtain P(β) = P(α ∧β)+ P(¬α ∧β). Dividing both sides
by P(β) obtains the result, in view of the definition of conditional probability.
Item 9: In LETF , � ◦β ↔ ◦β ∧ (β ∨ ¬β) ↔ (◦β ∧ β) ∨ (◦β ∧ ¬β) (proof left to
the reader). Thus P(◦β) = P((◦β ∧β)∨(◦β ∧¬β)) = P(◦β ∧β)+ P(◦β ∧¬β)

by Finite Additivity, since ◦β ∧ β ∧ ¬β is a bottom particle (Fact 33). Dividing
both sides by P(◦β) yields the result. ��

4.2 Independence and incompatibility

Intuitively, two propositions are independent if the fact that one holds does not have
any effect on whether or not the other holds, and vice-versa. Two propositions α

and β, are said to be independent w.r.t. a distribution P if P(α ∧ β) = P(α) ·
P(β). Two propositions can be independent relative to one probability distribution and
dependent relative to another. Alternatively, independence can be defined as follows:
α is independent of β if P(α/β) = P(α) [or equivalently, P(β/α) = P(β)].18

Classically, α and ¬α are never independent (unless one of them has probability
zero). In view of item 4 of Theorem 42 below, P(α ∧ ¬α) ≤ P(•α), hence when
P(α) · P(¬α) > P(•α), α and ¬α are not independent. In this way, P(•α) can be
regarded as a bound on the ‘degree of independence’ between α and ¬α.

Intuitively, two propositions α and β are logically incompatible if α cannot hold
when β holds, and vice-versa. Two propositions α and β, are said to be logically
incompatible if α, β � γ , for any γ , or equivalently, if α ∧ β is a bottom particle.
Logically incompatible propositions α and β with non-zero probabilities are always
dependent since 0 = P(α ∧ β) 
= P(α) · P(β). Again, for non-zero probabilities,
classically α and ¬α are incompatible, and so dependent. In LETF , however, they are
neither necessarily incompatible nor necessarily dependent, when P(◦α) < 1. We
saw in Fact 35 item 1 that α ∧¬α ∧◦α as well as ◦α ∧•α defines a bottom particle in
LETF . From clause 3 of Definition 37, it follows that for any probability distribution
P , P(α ∧ ¬α ∧ ◦α) = 0 and P(◦α ∧ •α) = 0. So, in LETF α and ∼α are always
logically incompatible and hence dependent, while α and ¬α can be independent.

An interesting property concerning the behavior of probability measures in LETF ,
related to independence in ‘extreme cases’, occurs when P(α) = 1. In such cases

18 Although mathematically equivalent to the former, this characterization of independence by means
of conditional probability is debatable, as shown in Fitelson and Hájek (2017), where it is argued that
the more general Popperian theory of conditional probability should be adopted, leading to a revision
of conventional insights about probabilistic independence. The traditional notions are employed here for
mathematical convenience.
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α is independent from the probability measure of any other distinct proposition β.
This kind of property contributes to the dynamics of evidence, in the sense of the
interpretation of preservation of conclusive and non-conclusive evidence in LETF , in
such a way that the increasing of conclusive evidence tends to truth.

Lemma 40 Independence of propositions with maximal probability. If P(α) = 1 then
P(α ∧ β) = P(α) · P(β), for β 
= α

Proof If P(α) = 1 then P(α ∨ β) = 1 from Comparison, since α � α ∨ β. By Finite
Additivity 1 = P(α ∨ β) = P(α) + P(β) − P(α ∧ β). As P(α) = 1, it follows that
P(α ∧ β) = P(β). ��

The restriction α 
= β in the above lemma intends to avoid the problematic cases
of ‘self-independence’ of extreme events. As mentioned before, two events α and β

are considered to be independent if P(α ∧ β) = P(α) · P(β), for some probability
distribution P . This leads to a puzzling situation concerning eventsα such that P(α) =
0 or P(α) = 1. In such cases, P(α) = P(α ∧ α) = P(α) · P(α) in both cases. In
this way, extreme probabilities can be regarded as independent of themselves, an
uncomfortable situation, as recognized in Fitelson and Hájek (2017).

Lemma 40 leads immediately to the independence of consistent and inconsistent
propositions in extreme cases:

1. If P(◦α) = 1 then P(◦α ∧ β) = P(β), for β 
= ◦α
2. If P(•α) = 1 then P(•α ∧ β) = P(β), for β 
= •α
3. If P(β) = 1 then P(◦α ∧ β) = P(◦α), for β 
= ◦α
4. If P(β) = 1 then P(•α ∧ β) = P(•α), for β 
= •α
Evidence can be increasing or decreasing in an historical series, leading to a dynamic
of evidence. This can be expressed in mathematical terms by elementary series. Let
limi→∞Pi (α) = λ mean that the sequence of values P1(α), P2(α), . . . , Pi (α) . . . is
strictly monotonous and converges to λ ∈ [0, 1].
Lemma 41 The dynamics of evidence

1. If limi→∞Pi (◦α) = 1 or limi→∞Pi (•α) = 0, then limi→∞Pi (α ∨¬α) = 1 and
limi→∞Pi (α ∧ ¬α) = 0.

2. If limi→∞Pi (◦α)=1 or limi→∞Pi (•α)=0, then limi→∞(Pi (α)+Pi (¬α))=1.

Proof Suppose limi→∞ Pi (◦α) = 1; by PEM◦ and Comparison, Pi (◦α) ≤ Pi (α ∨
¬α) ≤ 1. By the SqueezeTheoremof elementary calculus for series (aka the Sandwich
Theorem) limi→∞Pi (α ∨ ¬α) = 1. All other limits are proved in similar ways. ��
The meaning of Lemma 41 is precisely that the values of Pi (◦α) can be interpreted
as degrees of classicality, in the sense that greater values of Pi (◦α) indicate that
the situation is approaching classicality and, conversely, the values of Pi (•α) can be
interpreted as degrees of anticlassicality, in the sense that smaller values of Pi (•α)

indicate that the situation is approaching classicality.
Some useful (though almost all immediate) properties of LETF -distributions are

the following:
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Theorem 42

1. If α �� β, then P(α) = P(β).
2. P(α ∨ β) = P(α) + P(β), if α and β are logically incompatible.
3. P(α ∨ β ∨ γ ) = P(α) + P(β) + P(γ ) − P(α ∧ β) − P(α ∧ γ ) − P(β ∧ γ ) +

P(α ∧ β ∧ γ ).
4. P(α ∧ ¬α) ≤ P(•α).
5. P(◦α) ≤ P(α ∨ ¬α).
6. P(◦α) = 1 − P(•α).
7. P(⊕α ∧ ¬α) = 0, P(∼α ∧ α) = 0.
8. P(◦α ∨ •α) = 1, P(α ∨ ¬α ∨ •α) = 1
9. P(◦α ∨ (α ∧ ¬α)) ≤ P(α ∨ ¬α)

10. 1 + P((α ∨ ¬α) ∧ •α) = P(α ∨ ¬α) + P(•α)

11. 1 + P((α ∧ ¬α) ∨ ◦α) = P(α ∧ ¬α) + P(◦α)

12. If P(◦α) = 1 [or equivalently P(•α) = 0], then P(¬α) = 1 − P(α)

13. If P(◦α) = 1 [or equivalently P(•α) = 0], then P(α ∨ ¬α) = 1 and P(α ∧
¬α) = 0.

Proof Routine, from the axioms of probability and the derivability relation of LETF .
We just sketch the proof of items 12 and 13. For 12, suppose P(◦α) = 1; by items 4
and 5 above, PEM◦, and Comparison, 1 = P(◦α) ≤ P(α ∨ ¬α), and P(α ∧ ¬α) ≤
P(•α) = 0, hence by Finite Additivity P(α ∨ ¬α) + P(α ∧ ¬α) = 1 + 0 =
P(α) + P(¬α). Hence P(¬α) = 1 − P(α). For 13 a similar reasoning as of 12 is
obtained. ��

Items 1 and 2 are usual results in probabilistic logic, and 3 is a particular case of the
Inclusion-Exclusion property for finite probability, easily adapted for propositions,
that hold for arbitrary finite disjunctions (see Grinstead and Snell 1997). Items 4 and 5
establish constraints on the values of P(◦α), P(α) and P(¬α). Item 7 concerns bottom
particles, and 8, theorems of LETF essential for proving total probability theorems
(Sect. 4.3 below). Items 12 and 13 show the classical behavior of probabilities when
P(◦α) = 1.

4.3 Total probability theorems for LETF

In the classical approach to probability, total probability theorems compute the proba-
bility of an event β in a sample space partitioned into exclusive and exhaustive events.
Typically, for a partition in two pieces, a total probability theorem that reflects excluded
middle assumes the following form:

P(β) = P(β ∧ α) + P(β ∧ ¬α).

Here, however, we are not really talking about sample spaces, about events themselves,
but rather about the information related to such events, that we call an information
space. In the standard approach to probability theory, we start from a group of events,
say, the two outcomes of tossing a coin, and attribute probabilities to these events,
whose sum is always equal to 1. Let α express that the toss of a coin comes up heads.
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The sample space is thus divided into two parts, α and¬α, corresponding respectively
to heads and tails (not heads). If the coin behaves as expected, their probability are the
same.

On the other hand, we consider here a language that is able to express information
about some event—for example, the result of a referendum—that comes from different
sources and may be unreliable. Such information is constituted by evidence for ‘yes’
and for ‘no’ that can be non-conclusive, incomplete, contradictory, more reliable or
less reliable, and perhaps even conclusive. Let α express the result ‘yes’, and ¬α the
result ‘no’. In this case, the propositions we are concerned with are α,¬α, ◦α, •α, as
well as other propositions of the language of LETF formed from them, for example,
•α ∨ α, α ∧ ¬α, ◦α ∧ α, etc. A LETF -probability distribution attributes values to
these propositions. The information space is thus constituted by such propositions and
the measures of probabilities attributed to them by a LETF -probability distribution P.
Note that, contrary to the classical case, P(α) + P(¬α) can be greater or less than 1
precisely because α and ¬α do not establish a partition of the information space.

Now, the question is: since we cannot rely on the classical, mutually exclusive
partitions of the sample space, how can total probability theorems be stated? In order
to provide such theorems for LETF , we have to rely on the connectives ◦, •, and on
the connectives defined in Fact 34. We also need a bit of terminology.

Definition 43 (Cleavage). Let us call a cleavage a (finite) family of propositions
{α1, α2, . . . , αn}. A cleavage is said to be exhaustive if α1∨α2∨· · ·∨αn is a tautology,
and so it covers all the information space, possibly with intersections. A cleavage is
said to be exclusivewhen α1∨α2∨· · ·∨αn are pairwise logically incompatible. In this
case, it does not yield intersection of information (in the sense that αi ∧ α j for i 
= j
is a bottom particle), and possibly does not cover the whole space. An exhaustive and
exclusive cleavage is a partition.

Items 2 to 5 of Theorem 36 cleave the information space exhaustively but not exclu-
sively. Items 1 and 6, on the other hand, cleave the information space in parts that are
exhaustive and exclusive, and so they are partitions. Notice that item 4 of Theorem 36
corresponds to the six scenarios of conclusive and non-conclusive evidence that we
have seen in Sect. 3.1. These scenarios can be graphically represented as follows:

•α ∧ α •α ∧ ¬α •α •α ∧ (α ∧ ¬α) ◦α ∧ α ◦α ∧ ¬α

1 2 3 4 5 6

Item1 of Theorem36 above emphasizes the division between non-conclusive evidence
(scenarios 1 to 4) and conclusive evidence (scenarios 5 and 6),while item6, in addition,
splits the conclusive evidence into truth (5) and falsity (6). These propositions can be
understood as expressing different ways we can look at the information space. The
following total probability theorems canbeobtaineddependinguponcertain cleavages,
based on Theorem 36.
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Theorem 44 Total probability theorems

1. P(β) = P(β ∧ ◦α) + P(β ∧ •α), w.r.t. the cleavage {◦α, •α}.
2. P(β) = P(β ∧α)+ P(β ∧¬α)+ P(β ∧•α)− P(β ∧α∧•α)− P(β ∧¬α∧•α),

w.r.t. the cleavage {α,¬α, •α}.
3. P(β) = P(β ∧ ◦α ∧ α) + P(β ∧ ◦α ∧ ¬α) + P(β ∧ •α) − P(β ∧ •α ∧ α ∧ ¬α),

w.r.t. cleavage {•α ∧ α, •α ∧ ¬α, •α, •α ∧ α ∧ ¬α, ◦α ∧ α, ◦α ∧ ¬α}.
4. P(β) = P(β∧α)+P(β∧¬α)+P(β∧�α)−P(β∧α∧�α)−P(β∧¬α∧�α),

w.r.t. the cleavage {α,¬α,�α}.
5. P(β) = P(β∧α)+P(β∧¬α)+P(β∧≈α)−P(β∧α∧≈α)−P(β∧¬α∧≈α),

w.r.t. the cleavage {α,¬α,≈α}.
6. P(β) = P(β ∧⊕α)+ P(β ∧∼α)+ P(β ∧•α), w.r.t. the cleavage {⊕α,∼α, •α}.
Proof 1. β �� (β ∧ ◦α) ∨ (β ∧ •α). So, P(β) = P((β ∧ ◦α) ∨ (β ∧ •α)) =
P(β ∧◦α)+ P(β ∧•α)− P(β ∧◦α∧•α) = P(β ∧◦α)+ P(β ∧•α). The remaining
proofs are left to the reader. In view of Definition 3.1 (connectives ⊕, ∼, �, ≈), some
of these cleavages are equivalent. ��

4.4 Bayes’ rule

As is well-known, Bayes’ rule, or Bayes’ theorem, computes the probability of an
event based on previous information related to that event. The standard Bayes’ rule
proves that, for P(β) 
= 0:

P(α/β) = P(β/α) · P(α)

P(β)

In the equation above, interpreted in terms ofmeasures of evidence rather than standard
probabilities, P(α) denotes the evidence available for α without taking into consid-
eration any evidence for β. The latter is supposed to affect someway the evidence for
α, and so P(α/β) is the measure of the evidence for α after β is taken into account.
P(β/α), usually called the ‘likelihood’ in probability theory, is the evidence for β

when α is considered as given, and P(β), usually called the ‘marginal likelihood’, is
the total evidence available for β, that takes into account all the possible cases where
β may occur. In what follows, we define some relevant versions of Bayes’ rule. Dif-
ferently from the classical case, these versions are not equivalent. They show how the
notion of classicality can modify Bayesian probability updating.
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Theorem 45 Bayes’ Conditionalization Rules

1. P(α/β) = P(β/α) · P(α)

P(β/◦α) · P(◦α) + P(β/•α) · P(•α)

f or P(β) 
= 0, P(◦α) 
= 0, and P(•α) 
= 0.

Proof From the definition of conditional probability and Theorem 44, item 1. ��

2. P(α/β) = P(β/α) · P(α)

P(β/α) · P(α) + P(β/¬α) · P(¬α) + P(β/•α) · P(•α)−
P(β/α ∧ •α) · P(α ∧ •α) − P(β/¬α ∧ •α) · P(¬α ∧ •α)

f or P(β) 
= 0, P(α ∧ •α) 
= 0, and P(¬α ∧ •α) 
= 0.

Proof From the definition of conditional probability and Theorem 44, item 2. ��

3. P(α/β) = P(β/α) · P(α)

P(β/⊕α) · P(⊕α) + P(β/∼α) · P(∼α) + P(β/•α) · P(•α)

f or P(β) 
= 0, P(•α) 
= 0, P(⊕α) 
= 0, andP(�α) 
= 0.

Proof From the definition of conditional probability and Theorem 44, item 6. ��
It should be clear that the process of limit can be easily established for the above
formulations of Bayes’ rules. If lim Pi (◦α) = 1 [or equivalently lim Pi (•α) = 0]
then item 1 above reduces to P(◦α/β) = 1. Analogously, if lim Pi (•α) = 0 [or
equivalently lim Pi (◦α) = 1], then items 2 and 3 above reduce to the standard form
of Bayes’ rule.

5 Final remarks

This paper has been conceived to be a further development of the approach to para-
consistency as preservation of evidence presented in Carnielli and Rodrigues (2017,
2019), where an interpretation of contradictions in terms of non-conclusive evidence
was proposed. The underlying assumption is that there are no true contradictions, but
rather argumentative contexts in which conflicting evidence, as well as the absence of
any evidence, may occur. The valuation semantics is able to express only that there is
or there is not evidence for a proposition α, while the probabilistic semantics presented
here intends to express the degree of evidence enjoyed by a given proposition. The
acceptance of scenarios in which P(α) + P(¬α) > 1, however, does not mean that
there may be something like ‘contradictory sample spaces’, or ‘contradictory proba-
bilistic spaces’. The latter would be the probabilistic counterpart of contradictions in
reality, a view on paraconsistency not endorsed by us. In our view, it is the informa-
tion available about some collection of events that can be contradictory. So, instead of
talking about sample spaces, the concept of an information space has been introduced
here.
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Both LETJ and LETF are Logics of Formal Inconsistency and Undeterminedness
suitable for an intuitive interpretation in terms of preservation of evidence and truth.
The intuition regarding ◦ and • as ‘classically contradictory’ w.r.t. each other had
already been presented in Carnielli et al. (2019, Section 4.4). LETF , however, as far
as we know, is the first formal system where these connectives are both primitive
and have the deductive behavior given by rules Cons and Comp, that are in some
sense analogous to explosion and excluded middle. The connective •, and the fact
that ◦α ∨ •α and α ∨ ¬α ∨ •α are theorems of LETF , are essential for proving total
probability theorems and Bayes’ rules (Theorems 44 and 45).

The probabilistic semantics of LETF has been axiomatically stated inDefinitions 37
and 38. Accordingly, P(α) + P(¬α) can be greater or less than 1, and this is inter-
preted as scenarios, respectively, of conflicting evidence, and little or no evidence.
When P(◦α) = 1, the classical behavior of P(α) and P(¬α) is restored, and this is
interpreted as saying that the evidence available forα and¬α is subjected to the laws of
standard probability theory. But P(◦α) may be less than 1, and in this case, according
to the axioms, it expresses the degree towhich P(α) and P(¬α) are expected to behave
classically [the value of P(◦α) establishes constraints on the values of P(α∨¬α) and
P(α ∧ ¬α), cf. Lemma 41]. Accordingly, P(◦α) < 1 can be intuitively interpreted
as expressing the reliability of the available evidence for α and ¬α: greater reliability
corresponds to a greater degree of classicality.

Our treatment here does not intend to express degrees of belief by means of prob-
ability measures. The notion of evidence for α, as explained in Sect. 2.2.1, does not
imply belief in α. So, the degree of evidence for α measured by a statement P(α) = ε

is not a measure of the belief of an agent in α. However, nothing a fortiori prevents
the formal system proposed here, together with its probabilistic semantics, of being
interpreted, or used, as a tool to measure degrees of belief, uncertainty, or some other
relation between agents and propositions. Similar remarks apply to the connective ◦.
In P(◦α) = ε, the value of ε expresses the degree to which it is expected that P(α)

behaves classically. Indeed, ε can also be interpreted as the degree of reliability of
evidence for α, coherence with previous data or with a historical series of measures
of evidence for α, or even with a subjective ingredient, for example, as the degree of
trustfulness of the belief in α, or certainty/uncertainty of α.

The rules for◦ and•, due to their dual character, showa symmetry that deserves to be
further investigated from the proof-theoretic point of view. There are some extensions
of LETJ and LETF that also deserve to be studied. The operator • and the rules Cons
and Comp can be added to LETJ , obtaining a logic that differs from LETF only in the
implication for the non-classical propositions. Two intuitively appealing equivalences
are the following:

1. ◦α �� ◦◦α
2. ◦α �� ◦¬α

It was shown in Carnielli and Rodrigues (2017, Fact 17) that LETJ has no theorems
of the form ◦α (the same result also holds for LETF ), and it was argued that LETJ
(and so LETF ) was conceived in such a way that ◦ has to be introduced from outside
the formal system. This is in line with the idea that information about conclusive
evidence for a proposition α comes from outside the formal system. But it is also
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very reasonable to suppose that once the truth value of a proposition α has been
established, and so ◦α holds and α has classical behavior, then ◦α, ◦◦α, and so on,
also have classical behavior. Conversely, it is also reasonable to conclude ◦α from
◦◦α, and so on. These ideas are expressed by 1 above. The equivalence 2 above makes
explicit inside the system the first part of the result achieved by Fact 31 (to wit: once
◦¬nα is proved, and so it follows that ¬nα is subjected to classical logic, for any
formula ¬mα, m ≥ 0, ¬mα is also subjected to classical logic). Valuation semantics
for these rules are straightforward, and adding these rules would produce a decidable
formal system.

We believe that the probabilistic semantic relation presented in Sect. 4 will succeed
as a tool for dealingwith real argumentative contexts, including investigative scenarios
and databases concerned with different degrees of evidence attributed to propositions.
But this claim needs to be further investigated.
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