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Abstract
This paper discusses an outstanding issue in philosophy of physics concerning the
relation between quantum symmetries and the notion of physical equivalence. Specif-
ically, it deals with a dilemma arising for quantum symmetry breaking that was posed
by Baker (Philos Sci 78:128–148, 2011), who claimed that if two ground states are
connected by a symmetry, even when it is broken, they must be physically equivalent.
However, I argue that the dilemma is just apparent. In fact, I object to Baker’s con-
clusion by showing that the two thermodynamical phases of a ferromagnet, which are
connected by the so-called flip-flop symmetry, are physically inequivalent, thereby
providing a counter-example to his claim.

Keywords Quantum symmetry breaking · Physical equivalence · Ferromagnetism

1 Introduction

Symmetries play an important role in physics. In fact, they are employed in the con-
struction of our most successful theories. Moreover, they prove to be a useful heuristic
tool, for instance in the search for fundamental particles. Informally, a symmetry is
characterized by invariance of certain properties under a specified group of trans-
formations. If the properties that are left unchanged by the symmetry constitute the
empirical content of the description of a physical system, one could argue that the
transformed description ought to be physically equivalent to the original description.
Nevertheless, physics also abounds with examples of symmetry breaking, as it hap-
pens in infinite quantum theory. In such cases, one has a well-defined symmetry and
yet some empirically relevant property does not remain invariant. One thereby faces a
thorny interpretational question, that is whether mathematically different descriptions
connected by a broken symmetry are physically equivalent or physically inequivalent.
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The present paper takes up this issue in the context of quantum symmetry breaking.
Specifically, I address a dilemma raised by Baker (2011) that concerns the relation
between broken symmetries and physical equivalence, and I apply my analysis to the
case of ferromagnetism in quantum statistical mechanics.

The paper is structured as follows. Section 2 introduces the definition of quantum
symmetry within the algebraic approach to physical theories, which enables one to
provide a sharp distinction between broken and unbroken symmetries. In Sect. 3, I
discuss a puzzle put forward by Earman (2003) for quantum symmetry breaking that
arises from the failure of unitary equivalence, whose solution relies on a generalized
version of Wigner’s theorem. I present Baker’s dilemma in the following Sect. 4:
arguably, one would run into a contradiction if one insists that physical equivalence is
both necessary for a quantum symmetry and sufficient for unitary equivalence, since
the latter condition does not hold when a symmetry is broken. Baker’s own solution
is that one should maintain that the presence of a symmetry connecting two ground
states always implies that they are physically equivalent. In particular, in his view, this
claim would hold true in quantum statistical mechanics where the relevant symmetry
is broken in the transition between the pure thermodynamical phases of a ferromagnet.
Section 5 critically discusses some general requirements for physical equivalence that
lie beneath the two horns of the dilemma. Finally, in the last Sect. 6, I will proceed
to show why Baker’s dilemma is just apparent and counter his conclusion in favor of
physical equivalence in the example of ferromagnetism.

2 Symmetry breaking in quantum theory

In the algebraic approach physical systems are described by algebras of observables.
Such a framework proves particularly useful in order to account for infinite quantum
theories where spontaneous symmetry breaking occurs. For the purpose of the present
paper it is sufficient to restrict our focus to von Neumann algebras1 and normal (i.e.
σ -additive) states defined on them. To fix the notation, let S(A) denote the set of all
normal states on the von Neumann algebra A. In particular, a state ω on A induces
the so-called Gelfand–Naimark–Segal (GNS) representation (�ω,Hω, πω), where
Hω is a Hilbert space,2 �ω a vector state in Hω and πω a representation of A such
that πω(A) ⊆ B(Hω). For simplicity, in order for not to overburden the notation,
throughout the text I will mostly refer to the whole triple just with πω. The state can
thus be expressed asω(A) =< �ω, πω(A)�ω > for all elements A ofA and the set of
vectors {πω(A)�ω : A ∈ A} is dense in the underlyingHilbert spaceHω. The cyclicity
of the state ω for the algebra A assures the existence (and uniqueness up to unitary
equivalence) of the corresponding GNS representation. Then, a representation is said

1 More in general, one can describe a physical system by means of a C*-algebra, namely an algebra
of observables equipped with an involution and a norm, which is closed under the uniform topology. Von
Neumann algebras are a special case of C*-algebras, which are just closed under theweak operator topology.
Equivalently, a von Neumann algebra coincides with its double commutant. Unless otherwise specified,
throughout the paper it is assumed that the algebras of observables we deal with are all von Neumann
algebras, for which the results we discuss here hold true.
2 Note that for the kind of GNS representations we consider in the remainder of the paper the underlying
Hilbert space turn out to be separable.
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to be irreducible just in case the underlying Hilbert space contains no proper closed
invariant subspace other than the null space. In particular, the GNS representation
(�ω,Hω, πω) is irreducible if and only if ω is a pure state on A, and hence it cannot
be written as a mixture of other states; alternatively, any mixed state on A induces a
reducible GNS representation of the algebra. Finally, let us stress that by means of
the double commutant theorem one can construct the affiliated algebra π(A)′′, which
corresponds to the weak-operator closure of π(A). In many cases of physical interest,
it is actually necessary to resort to the affiliated algebra in order to define physically
meaningful observables that are not contained in the original algebra.

Within the algebraic approach, one can define a symmetry as the composition of
the following two bijections (Roberts and Roepstorff 1969):

• A *-automorphism α : A −→ A over the algebra, and
• A mapping ᾱ : S(A) −→ S(A) over the set of all states of the algebra, such that

ᾱ(ω) := ω ◦ α−1.

Accordingly, at the level of observables, a symmetry takes the form of an automor-
phism mapping each element A of A onto some other element α(A) belonging to
the algebra. Furthermore, its action has a counterpart ᾱ in the state space S(A) that
is supposed to assure preservation of all expectation values, in the sense that one
has ᾱ(ω ◦ α)(A) = ω(A) for all operators A ∈ A. It follows that, beside the GNS
representation π := (�,H, π) induced by the untransformed state ω, one also con-
structs the GNS representation π ′ := (�′,H′, π ′) induced by the transformed state
ω′ = ᾱ(ω), where π ′ = π ◦ α. Cases of interest for quantum symmetry breaking are
those in which the initial GNS state ω has special physical significance, most notably
when it corresponds to the so-called ground state of some theory, like the vacuum in
quantum field theory or a thermodynamical phase in quantum statistical mechanics.
Then, the above definition enables one to distinguish between unbroken and broken
symmetries, depending on whether or not the said state remains invariant under the
relevant transformation.More to the point, if the ground state is preserved, i.e.ω = ω′,
the symmetry is unbroken; otherwise, if it is not preserved, i.e. ω �= ω′, the symmetry
is broken.

Such a distinction can be further characterized in terms of whether or not there
is any unitary operator implementing the symmetry. In this respect, the following
notions are particularly useful for our discussion of quantum symmetry breaking. An
automorphism α of the algebra A is said to be inner if one can find some unitary
U ∈ A such that α(A) = U∗AU for all elements A of A. That is, at the level of the
algebra of observables, the symmetry is enacted by a unitary operator. However, such
a condition proves too stringent to capture the content of quantum symmetry: in fact,
unless A ≡ B(H), not all automorphisms of the algebra are inner. A weaker notion,
which explicitly depends on a chosen state ω over the algebra, asserts that α is a ω-
inner automorphism just in case there exists some unitary operator U ∈ A such that
the transformed state takes the form ω(α(A)) = ω(U∗AU ) for all A ∈ A. It means
that the action of a symmetry expressed by α on the stateω can be expressed by means
of a unitary operator belonging to the algebra A. Furthermore, there is yet another
notion characterizing an automorphism in terms of a unitary operator, although the
latter is supposed to act across different GNS representations of the algebra rather
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than within the algebra itself. Specifically, an automorphism α is said to be unitarily
implementable in ω just in case there exists a unitary Ū on the Hilbert space H such
that

π(A) = Ū∗π ′(A)Ū

for all A ∈ A. If this condition is verified, theGNS representationsπ andπ ′ induced by
the original stateω and by the transformed stateω′, respectively, are said to be unitarily
equivalent. An important result linking the above defined notions holds that α is ω-
inner if andonly ifπ andπ ′ = π◦α are unitarily equivalent representations (cfr.Glimm
and Kadison 1960).3 Hence, the existence of a unitary operatorU ∈ A implementing
the symmetry expressed byα at the level of the algebra of observables is closely related
to the existence of a unitary operator intertwining the GNS representations induced
by the states connected by ᾱ.

What is more, the fact that a symmetry is unbroken proves sufficient for unitary
equivalence. Indeed, the invariance of the state ω under the automorphism α implies
thatα isω-inner. For, letω(A) = ω(α(A)) for all A ∈ A. Then, for the sake of reductio
ad absurdum, let us assume that α is not ω-inner, and hence for all U ∈ A one can
find some operator A ∈ A such ω(α(A)) �= ω(U∗AU ). By the invariance of ω under
α, this means ω(A) �= ω(U∗AU ), from which it follows that A �= U∗AU . However,
that cannot be true for all unitaries U in the algebra A, since in case U commutes
with A, for instance if it is of the form U := e−i A, then U∗AU = U∗U A = I A, and
hence one would derive the contradiction A �= A. It follows that α must be an ω-inner
automorphism (note, however, that the converse is not true: in fact, not even when α

is an inner automorphism does it follow that ω remains invariant under α). One can
thus infer that, if π and π ′ = π ◦ α are unitary inequivalent, the ground state ω is not
preserved under the automorphism α. This means that the corresponding symmetry is
broken, that is there is some A ∈ A such that ω(A) �= ω(α(A)).

Typical examples of broken symmetries arise in quantum theory for systems with
infinitely many degrees of freedom. In fact, for quantum systems with finitely many
degrees of freedom the GNS representation of the algebra of bounded operators B(H)

induced by any cyclic state is unique up to unitary equivalence, and therefore from a
mathematical point of view quantum symmetry breaking can be rigorously described
just in case one takes an infinite limit. A concrete example of broken symmetry is
given by the spontaneous magnetization of a ferromagnet below critical temperature,
which is our case-study here.

2.1 An example of broken symmetry: the case of ferromagnetism

The spontaneous magnetization of a ferromagnet below the critical temperature Tc,
and hence above the inverse critical temperature βc = 1

Tc
, is a well-known instance

of phase transitions, according to which a substance in equilibrium (e.g. an iron bar
at 771◦ Celsius) passes from the paramagnetic to the ferromagnetic phase even in the

3 In the special case of inner automorphisms, one can even show that if ω is a pure state on A then one
obtains Ū = π(U ) for the unitary operator acting across the representations.
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absence of an external magnetic field. In order to provide a mathematical description
of this phenomenon, let us focus on the Weiss-Ising model for ferromagnetism (Emch
and Knops 1970) in quantum statistical mechanics. There, one considers a chain of
spin- 12 systems arranged along the z axis, each one being indexed by an integer number.
Such spins can be oriented in the up-direction or in the down-direction, depending on
the external magnetic field. Since particles with half-integer spins are fermions, they
obey canonical anticommutation relations: as such, the collection of relevant operators
generates the so-called CAR algebra. Formally, the quantum spin resident at the given
site k ∈ Z of the lattice is represented by the Pauli operator σ z

k , and the corresponding
algebra is isomorphic to the algebra of 2 by 2 complex matrices, that isAk 
 M2(C).
More to the point, for every finite string � ⊂ Z of spins, the overall algebra is given
by the tensor product A� = ⊗

k∈� Ak , to which there is associated the Hamiltonian

H = −
∑

k∈�

[
B + B�,k

]
σ z
k

where B is a homogeneous external magnetic field parallel to the z-axis and B�,k =
1
2

∑
k∈� Jβ

�, jkσ
z
k is the “molecular” average magnetic field, with Jβ

�, jk > 0 for j �= k

and Jβ
�, jk = 0 otherwise. Spontaneous Symmetry Breaking (SSB) manifests itself

in the sense that, notwithstanding the fact that external magnetic field is null, i.e.
B = 0, above the critical inverse temperature βc all spins in the string align in the up-
direction or in the down-direction. Accordingly, the magnetization observable Mz

� =
1

|�|
∑

k∈� σ z
k ought to take on the value +1 or the value −1, respectively. SSB then

occurs when all spins spontaneously flip into one direction or into the other one.
As it turns out, though, the observed behaviour can be represented only by means

of an infinitely long string of spins. In fact, the Jordan–Wigner uniqueness theorem
implies that for a finite number of spins all irreducible representations of the canonical
anticommutation relations are unitarily equivalent to each other, and hence one could
not possibly have symmetry breaking since the ground state would be unique. If one
considers an infinite number of spins, one needs to take the limit |�| −→ ∞. In this
case, the algebra describing the string is constructed by taking the norm closure of
the union of all finite string algebrasA�’s, which gives rise to the quasi-local algebra
A = ⋃

�⊂Z
A� representing the infinite spins chain (which is not actually a von

Neumann algebra). Yet, the magnetization observable cannot be defined as an element
of the quasi-local algebra A, because in general the limit lim|�|−→∞ Mz

� does not
converge in the norm topology. Instead, given some appropriately chosen state ω on
A, one can show that there exists an operator

Mz
B,β = w − lim�⊂Z πB,β(Mz

�)

that converges in the weak topology associated with the GNS representation πB,β

of A induced by ω. It must be stressed that the thus-defined observable actually
belongs to the affiliated algebra πB,β(A)′′. Then, for vanishing external magnetic
field B −→ 0 and inverse temperature β > βc, the magnetization observable Mz

0,β
takes on the expectation value+1 in the pure stateω+ representing all spins up and the
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expectation value−1 in the pure stateω− representing all spins down. These two states
are connected by the flip-flop symmetry α± onA, which corresonds to a 180◦ rotation
along an axis perpendicular to z. Such a symmetry is provably broken, in that its
action is such that ω− = ᾱ±(ω+) and ω+ = ᾱ±(ω−). Indeed, the GNS representation
(�+,H+, π+) induced by ω+ and the GNS representation (�−,H−, π−) induced by
ω− are unitarily inequivalent.

Whether the two available phases of a ferromagnet, and in general any pair of
ground states connected by a broken symmetry, are physically equivalent or physically
inequivalent is a contentious issue in philosophy of physics, which has been expressed
byBaker (2011) in terms of a dilemma arising for quantum symmetry breaking. Before
taking it up, it is worth to discussing a related point concerning the connection between
unitary (in-)equivalence and the physical content of quantum symmetries. I will do so
here below.

3 Earman’s puzzle andW-Unitary equivalence

The failure of unitary equivalence between representations induced by different GNS
states when symmetries are broken in quantum theory is in apparent tension with
the content of a famous theorem by Wigner (1931), according to which quantum
symmetries are expressed by means of unitary operators or anti-unitary operators. In
fact, Wigner’s theorem shows that when A is isomorphic to the algebra of bounded
operators on a Hilbert space, in order to preserve transition probabilities across the
representations, a symmetry α must be implemented by a unitary (or an anti-unitary)
mapping from the original Hilbert space H onto the transformed Hilbert space H′.
Specifically, if W : H −→ H′ is a unitary operator, which we refer to as Wigner
unitary, one obtains the equality

〈ψ, φ〉 = 〈ψ ′, φ′〉

for all vector states ψ and φ inH and all vector states ψ ′ = Wψ and φ′ = Wφ inH′,
thereby assuring preservation of transition probabilities in the form of the square of the
vector product between elements of each Hilbert space.More to the point, owing to the
propertyW ∗W = I of unitary operators, one can show that 〈ψ ′, φ′〉 = 〈Wψ,Wφ〉 =
〈ψ,W ∗Wφ〉 = 〈ψ, φ〉. The physical underpinning of Wigner’s theorem is grounded
on the interpretation of transition probabilities as capturing the empirical content of
quantum theory. Nevertheless, in the case of quantum symmetry breaking, the lack
of a unitary operator intertwining the corresponding GNS representations π and π ′
seems at odds with the desideratum that a Wigner unitary implementing a symmetry
ought to exist.

Arguably, this would lead one to a puzzle that was posed by Earman (2003). As he
pointed out:

[A broken] symmetry... is not unitarily implementable, i.e. its action is not fully
represented by a unitary... But how can this be, sinceWigner’s theoremhas taught
us that a symmetry in QM is represented by a unitary transformation? (p. 338)
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For instance, in the particular case of the Weiss-Ising model for ferromagnetism, the
flip-flop symmetry α± connecting the two phases ω+ and ω− is a rotation along the z-
axis, and as such it ought to be represented by a unitary operator; yet, the corresponding
GNS representations are unitary inequivalent. Earman’s puzzle can then be expressed
along the lines of the following quotation by Baker and Halvorson (2013):

The infinite CAR algebra possesses a non-unitarily implementable automor-
phism which represents a symmetry of the ferromagnet: namely, a 180-degree
rotation which flips all of the spins in the chain. The rotation is therefore a spon-
taneously broken symmetry... But since α is spontaneously broken, π+ must
be unitarily inequivalent to π−. This is where the seeming paradox comes in.
(p. 465)

The solution to the puzzle, which I myself endorse, was already outlined by Earman
himself and subsequently developed by Baker and Halvorson in their (2013) paper.
Here, I wish to reformulate it in a manner that unpacks the technical and conceptual
subtleties involved in the treatment of quantum symmetry breaking, so as to be in a
position to apply it directly to the example of ferromagnetism.

The proposed solution rests on the recognition that a weaker form of Unitary Equiv-
alence is still sufficient to guarantee preservation of transition probabilities, just as
Wigner’s theoremdemands.More to the point, one can introduce a condition that I label
W-Unitary Equivalence, according to which there is a unitary operatorW : H −→ H′
with the property that

π(A) = W ∗π ′(A)W

where A is the von Neumann algebra describing the physical system of interest. In
other words, W-Unitary Equivalence prescribes that, for any element of A, its image
under π ′ is mapped onto the image of some element of A under π . This condition
owes his name to the fact that it is weaker that Unitary Equivalence in the sense that
the representation π does not need to map pointwise to the representation π ′: indeed,
there may well be some element A ∈ A whose image under π is not mapped onto its
image under π ′, that is it is possible that π(A) �= W ∗π ′(A)W . As I show below, that
is exactly what happens when a symmetry is broken.

The label W-Unitary Equivalence is also evocative of the fact that, as demonstrated
by Wigner, a quantum symmetry α is implemented by a unitary operator, and that
is true even when Unitary Equivalence does not hold. That is the content of a result
that Baker and Halvorson (2013) presented as the Wigner Representation Theorem:
accordingly, for any symmetry α on A, there is a unique Wigner unitary W mapping
fromH onto H′ such that

• W� = �′
• π(α−1(A)) = W ∗π ′(A)W for all A ∈ A

Provably, if the GNS representations induced by ω and ω′ are W-unitarily equivalent,
transition probabilities in the form of the inner product between vector states in the
Hilbert spaces H and H′, respectively, are preserved under the action of the unitary
operator W . Note that the Wigner unitary does not intertwine π ′ and π : instead, it
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intertwines π ′ and π ◦ α−1. That assures that ω′(A) is equal to ω(α−1(A)) for all
elements A of the algebraA, in agreement with the definition of quantum symmetries
provided in Sect. 2, whereby ᾱ(ω) := ω ◦ α−1. Indeed,

〈�,π(α−1(A))�〉 = 〈�,W ∗π ′(A)W�〉 = 〈W�,π ′(A)W�〉 = 〈�′, π ′(A)�′〉
Of course, this general fact remains true even when the symmetry α implemented by
W turns out to be broken. Hence, the existence of a quantum symmetry connecting two
ground states does not require unitary equivalence between their GNS representations
but only W-unitary equivalence, thereby explaining away Earman’s puzzle.

In order to fully grasp the content of theWigner representation theorem, it is impor-
tant to carefully distinguish the meaning and the role of the different unitary operators
that are used in the implementation of a quantum symmetry. If one considers the case
in which the symmetry is unbroken, namely ω(α(A)) = ω(A) for all A ∈ A, then, as
we saw above, there are both a unitary operator belonging to the algebraA and a uni-
tary operator acting at the level of representations ofA that implement the symmetry.
Indeed, the corresponding automorphism α overA is ω-inner, meaning that there is a
unitary operator U ∈ A implementing the symmetry with respect to the ground state
ω, which extends to a unitary operator Ū that intertwines the GNS representations
π and π ′ = π ◦ α. However, it should be stressed that the intertwiner Ū does not
coincide with the Wigner unitary W implementing α according to the Wigner rep-
resentation theorem. Indeed, in the case of an unbroken symmetry, it turns out that4

W = I : so, if Ū were equal to W , it would be trivial and it would then follow that
π(A) = Ū∗π ′(A)Ū = π ′(A) for all A, which entails that one would have π ′ = π

rather than π ′ = π ◦α. Instead, when the symmetry is broken, the intertwiner Ū is not
defined at all, since the representations π and π ′ are not unitarily equivalent, whereas
the Wigner unitary W exists and in this case it is non-trivial, i.e. it is different from
the identity I . More to the point, given that one has π ′(A) = W ∗π(α−1(A))W for all
A ∈ A butπ(A) �= π(α−1(A)) for some element A ofA, the uniqueness of theWigner
unitary W implementing the broken symmetry α implies that the representations π

and π ′ can only be W-unitarily equivalent.
In the same vein, one can resolve the seeming paradox pinpointed by Baker and

Halvorson in the example of ferromagnetism in quantum statistical mechanics. The
flip-flop symmetry α± acts as a rotation turning all spins in the up-direction into the
down-direction, and viceversa: yet, it is not represented by any unitary operator U±
in the quasi-local algebraA of the infinite spin chain, nor by any unitary operator Ū±
intertwining the GNS representations ofA induced by the two different ground states
ω+ and ω−, respectively. In fact, π+ and π− are unitarily inequivalent. However,
courtesy of the Wigner representation theorem, the broken symmetry α± must be
implemented by a Wigner unitary W± : H+ −→ H−, which does not map pointwise
between π+ and π−. This means that the unitarily inequivalent representations π+
and π− are just W-unitary equivalent.5 The seeming paradox of ferromagnetism that

4 See Baker and Halvorson (2013) for a proof of this fact, which they refer to as the Specialized Represen-
tation Wigner Theorem.
5 Indeed, for any A ∈ A the action ofW± is such that the element π+(A) belonging to π+(A) ⊆ B(H+)

is transformed into an elementW∗±π+(A)W± belonging to π−(A) ⊆ B(H−), but the resulting operator is
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would stem from Earman’s puzzle is thus resolved by recognizing that the flip-flop
symmetryα± is implemented by a unitary operator without that requiring that theGNS
representations π+ and π− ought to be unitary equivalent. We are now in a position
to turn to the dilemma concerning broken symmetries which Baker (2011) raised in
connection with the example of ferromagnetism in quantum statistical mechanics.

4 A dilemma for broken symmetries

The analysis of the previous section shows how the Wigner representation theorem
enables one to explain away Earman’s puzzle for broken symmetries. Nevertheless,
in doing so the result raises a further challenge to our understanding of quantum
symmetry breaking, especially in the case of ferromagnetism. Indeed, the existence of
a Wigner unitary implementing a quantum symmetry seems to lead one to yet another
problem, which is captured by a dilemma posed by Baker (2011):

[t]he apparent dilemma brings together two separate threads in recent literature.
One thread suggests that the existence of a symmetry... is a mark of physical
equivalence... The second thread suggests that physical equivalence... is possible
only in presence of unitary equivalence. In the examples central to this paper
[e.g. spontaneous magnetization in the Infinite Spins Chain], a symmetry can
exist between representations without a unitary equivalence. The conflict here
is obvious. (p. 129)

In order to outline the logical structure of Baker’s dilemma, let me first note that there
is an underlying premise that is not explicitly stated in the above quotation, namely
that the existence of a symmetry does not imply unitary equivalence. In fact, the GNS
representations induced by ground states connected by a broken symmetry prove to
be unitarily inequivalent. This fact can be formulated as follows:

• (0) Symm. ��⇒ Unit.Equiv.

Having introduced statement (0) as a premise, the conundrum described by Baker then
takes the form of a contradiction between two material conditionals, corresponding to
the horns of the dilemma: that is,

• (1) Symm. �⇒ Phys.Equiv.
• (2) Phys.Equiv. �⇒ Unit.Equiv.

Footnote 5 continued
not equal to π−(A). Else, if it were equal, given that �− = W±�+, the state ω+(A) = 〈�+, π+(A)�+〉
would become

〈W±�−, π+(A)W±�−〉 = 〈�−,W∗±π+(A)W±�−〉 = 〈�−, π−(A)�−〉

for all A in the quasi-local algebra A, which is exactly the state ω−(A): consequently, the two phases
ω+ and ω− = ᾱ±(ω+) of the infinite spins chain would coincide, notwithstanding the fact that they are
connected by the broken symmetry α±. Instead, by appealing to the Wigner representation theorem we can
infer that, rather than being equal to W∗±π+(A)W±, the operator π−(A) is equal to W∗±π+(α±(A))W±
for all A ∈ A.
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On the one hand, according to statement (1), whenever two GNS representations are
connected by a symmetry, they must be physically equivalent; on the other hand,
statement (2) maintains that physical equivalence requires such representations to be
unitarily equivalent. The intended inconsistency between these claims arises once
premise (0) is taken into account. For, the latter states that, given a symmetry α, the
representation π and π ′ = π ◦ α may not be unitarily equivalent, as it happens in
the case of quantum symmetry breaking: yet, if there is such a symmetry, it would
follow from statement (1) that π and π ′ ought to be physically equivalent, which in
turn entails by statement (2) that π and π ′ are necessarily unitarily equivalent. As a
result, it appears as if what enables one to explain away Earman’s puzzle concerning
Wigner’s theorem, namely statement (0), is just what leads one to the above dilemma
plaguing broken symmetries.

As Baker himself argues, the alleged contradiction is just apparent. Indeed, in his
view, one can disarm the dilemma by giving up its second horn, while still maintaining
the first one:

I think its resolution [of the dilemma], on reflection, is also obvious. The first
thread should be pursued at the expense of the second. In infinite quantum theory,
as elsewhere, a symmetry should be enough for physical equivalence. (p.129)

To put it within our logical scheme, Baker’s suggestion is that, when dealing with a
broken symmetry α, in order to avoid a conflict with statement (1) one ought to deny
statement (2), so as to allow for the representations π and π ′ = π ◦ α to be physi-
cally equivalent without being unitarily equivalent. In other words, one would have
to endorse something akin to the following statement, whereby unitary equivalence is
not necessary for physical equivalence:

• (2’) Phys.Equiv. ��⇒ Unit.Equiv.

Allegedly, the reason to abandon statement (2) is that the presence of a symmetry,
whether unbroken or broken, must entail physical equivalence. In fact, as the quotation
indicates, Baker believes that statement (1) holds in general, especially in the context of
infinite quantum theory. To illustrate his claim he uses the example of ferromagnetism
in quantum statistical mechanics, wherein a chain of quantum spins aligned in one
direction spontaneously flips into the other direction.

While I agree that the above dilemma is merely apparent, I contend that, contra
Baker, statement (1) fails in general and hence it needs to be abandoned. More to the
point, I submit that spontaneous symmetry breaking as it occurs in a ferromagnet below
critical temperature shows that the presence of a symmetry α is not at all sufficient
for two unitarily inequivalent representations π and π ′ = π ◦ α to be physically
equivalent. Before developing my claim in greater detail in Sect. 6, let me first expose
and criticize Baker’s own reasons to favor statement (1) over statement (2).

4.1 Is symmetry sufficient for physical equivalence?

The philosophical motivation behind Baker’s (2011) claim that the presence of a sym-
metry, evenwhen it is a broken one, entails physical equivalence lies in his commitment
to a condition of No Primitive Identity, which has been discussed in the literature in
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the context of the metaphysics of spacetime (cfr. Teller 1991; Hoefer 1996). Such
a condition denies that spacetime points possess (indispensable) intrinsic properties
that would make them ontologically different from each other. The condition of No
Primitive Identity is rooted in the principle of Leibniz equivalence, whereby spacetime
symmetry transformations ought not to relate distinct possible worlds. For instance,
applying a translation or a rotation within Newtonian spacetime is expected not to
produce different states of affairs: to the contrary, it would merely lead one to a re-
description of the same physical possibility. That is the sense in which, owing to No
Primitive Identity, spacetime symmetries underwrite physical equivalence.

As an example, Baker offers an analysis of the classical Mexican Hat. There, each
of the points around the lowest edge of the hat represents one of the possible ground
states wherein a ball rolling down from the top of the hat can end up. Arguably, the
availability of multiple ground states signals the presence of a broken symmetry. On
pain of violating No Primitive Identity, these states cannot be physically inequivalent
despite being represented by mathematically distinct points. For Baker, that should be
true even in relativistic spacetime, irrespective of whether one adopts a substativalist
or a relationist ontology. As he puts it,

Both ontologies entail that in the classical symmetry-breaking case under dis-
cussion, there is a unique possible world with least energy, although the state
space of our physical theory includes multiple ground states. So there must be
a many-to-one correspondence between mathematical states and physical pos-
sibilities. Mathematically distinct ground states must be physically equivalent.
(p. 132)

Thus, according to Baker, the fact that different points can be connected by a spacetime
symmetry guarantees that they constitute the same physical state. What is more, he
seems to think that physical equivalence is established whenever there is a symmetry,
even a broken one, that maps between two mathematically distinct ground states. On
this basis, he goes on to claim that the above argument can be extended from classical
spacetime symmetries to quantum theory. Nevertheless, he does not explain how to
formulate an analogue of the classical version of No Primitive Identity in the context of
quantum symmetries. Hence, it is not quite clear how exactly the purported condition
should ground statement (1) in the dilemma for quantum symmetry breaking. Nor does
it follow that a violation of such a statement would compel us to revise our classical
notion of spacetime symmetries.6 I will return to this point at the end of Sect. 6, after
showing that the flip-flop symmetry connecting the two phases of a ferromagnet does
not imply their physical equivalence.

It should also be stressed that Baker contends that symmetry breaking appears to be
more elusive in the quantum case than in the classical one. In fact, in his view, physical
equivalence demands that a translation scheme exists between different mathematical
descriptions of the same physical possibility. In the example of the classical Mexican
Hat, such a scheme is readily available: in cylindrical polar coordinates (r , θ, h), the
transformation θ −→ θ + ε translates between the ground states θ = 0 and θ = ε

6 In this respect, it should be mentioned that Feintzeig (2015) argues that some of the features that Baker
finds puzzling in quantum symmetry breaking are present in examples of classical broken symmetries too.
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in which the ball may end up. Yet, the fact that different quantum states connected by
a broken symmetry induce GNS representations that are unitarily inequivalent seems
to impede their inter-translatability. For, Halvorson and Clifton (2001) elaborated a
translation scheme designed for plausible ontologies of quantum theory, which prov-
ably requires unitary equivalence: accordingly, in the example of an infinitely long
spins chain one must conclude that one cannot translate between the up-polarized and
the down-polarized states. Instead, based on his conviction that the two phases of a
ferromagnet ought to be regarded as physically equivalent so as not to infringe on
the classical notion of spacetime symmetries, Baker’s own diagnosis for the failure of
inter-translatability is that Halvorson and Clifton’s proposal appears as too restrictive.
Hence, he goes on to conjecture that an alternative translation scheme may be enacted
by means of a Wigner unitary mapping between different GNS representations, even
when the latter are unitarily inequivalent. Unfortunately, though, he does not elaborate
further on the details. Be that as it may, as I will argue in the next section, the purported
translation scheme cannot be developed on the basis of the Wigner representation the-
orem since a unitary W implementing a broken symmetry α does not fully preserve
the empirical content in quantum theory.

5 What is physical equivalence?

For the sake of establishingwhether statement (1) and statement (2) inBaker’s dilemma
hold or not, we need to have a better grasp of the concept of physical equivalence, as
well as the way in which it allegedly relates to the presence of a symmetry and/or the
condition of unitary equivalence. Yet, that is not as straightforward as onemay hope. In
fact, while the concepts of symmetry and unitary equivalence have sharpmathematical
definitions, physical equivalence canbehardly formulated in a generalmanner. Instead,
it can be fully evaluated only within the relevant physical contexts, that is on the
basis of the particular physical phenomenon under description. Hence, one cannot
really sustain general statements, as Baker’s dilemma would require. Sure enough,
given that in the algebraic approach certain physical theories, like quantum statistical
mechanics and quantum field theory, are cast within the same formalism, one can still
try to introduce some conceptually motivated, mathematical conditions that ought to
be satisfied in order for physical equivalence to hold. However, such conditions must
then be checked in each specific case. Furthermore, and more importantly, whether
two GNS representations of the algebra of observables are to be viewed as physically
equivalent or not is contingent upon what specific physical states their ground states
are supposed to represent. For instance, Feintzeig (2015) analyzes the example of
a classical spin chain and showed that one can interpret the two possible ground
states as being equivalent or inequivalent depending on whether or not one fixes the
conventional distinction between up and down. Here below, I discuss some general
conditions for physical equivalence that allegedly lie beneath statements (1) and (2)
in Baker’s dilemma and then, in the following section, I address the specific case of
ferromagnetism for the quantum spin chain.

Let me begin by explaining the reasons why some authors, most notably Arageorgis
(1995) and Ruetsche (2003, 2011, 2013), endorse statement (2), namely the claim that
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physical equivalence implies unitary equivalence. In principle, one would expect that,
if two states ω and ω′ are regarded as physically equivalent, one should at least be
able to write ω′ in the GNS representation induced by ω, and viceversa. Specifically,
the folium Fω of a state ω is the set of states that are expressible as density matrices
in the GNS representation πω: as such, it comprises all states that are, so to speak,
“possible” relative to ω. That means that, when a state ω′ does not belong to the
folium of ω, it cannot be written in the GNS representation induced by the latter. It
thus seems plausible to require that for ω and ω′ to be physically equivalent they must
at least lie in each other’s folium. If their GNS representations π and π ′ are unitarily
inequivalent, though, this requirement would be violated. One is therefore tempted to
argue, as Arageorgis first does, that unitary equivalence is a necessary condition for
physical equivalence.

More to the point, there is a weaker, and yet suitable, formal condition for physical
equivalence that is related to unitary equivalence. Accordingly, even if states ω and
ω′ do not lie in each other’s folium, for them to be regarded as physically equivalent
it must be that the intersection between their folia Fω and Fω′ is non-empty. If that is
not the case, namely if

Fω

⋂
Fω′ = ∅,

then the states ω and ω′ are said to be disjoint states. It means that none of the
states that can be written in the GNS representation π can also be written in the GNS
representationπ ′, and viceversa. As Ruetsche (2011) argues, such a condition captures
the idea that ω and ω′ are not possible relative to each other in the sense that, if the two
states are disjoint, the transition probability between them is equal to zero.7 It thus
seems rather natural to think of disjoint states as being physically inequivalent. In other
words, the failure of disjointness is a necessary condition for physical equivalence.
As it turns out, if ω and ω′ are pure states and their GNS representations are unitarily
equivalent, then their folia coincide, i.e. Fω = Fω′ ; whereas if they are not unitarily
equivalent, and the algebra of observable is a factor (namely its center A⋂A′ is a
complex multiple λ of the identity operator I ), then ω and ω′ are disjoint states. That
reinforces Arageorgis’ claim that physical equivalence implies unitary equivalence.

Baker and Halvorson (2013) object to this conclusion on the basis of their solution
to Earman’s puzzle for quantum symmetry breaking. As they write,

[the] argument includes a false premise: the assumption that the existence of a
unitary operator connecting the folia of two representations implies a unitary
equivalence between those representations. As we have shown, though, there is
no such implication if the unitary operator is what we’ve called aWigner unitary.
[p. 468]

In fact, bymeans of theWigner unitaryW implementing a broken symmetry, one could
connect the foliaFω andFω′ without entailing unitary equivalence between π and π ′.
Allegedly, this casts doubts on statement (2) of the dilemma. In turn, it appears as ifW-

7 In algebraic terms the transition probability between two states ω and ω′ is expressed by formula
1 − 1

4 ‖ω − ω′‖2, where ‖ · ‖ is the norm on the state space S(A) (cfr. Roberts and Roepstorff 1969).
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unitary equivalence between the respective GNS representations would be sufficient
for the states ω and ω′ to be physically equivalent even when a symmetry is broken,
in agreement with statement (1) in Baker’s dilemma. Nevertheless, pace Halvorson
and Baker, W-unitary equivalence between the GNS representations π and π ′ does
not imply that the states ω and ω′ cannot be disjoint. In fact, the existence of a Wigner
unitary W connecting the GNS representation of ω and the GNS representation of ω′
does not assure that the respective folia Fω and Fω′ share some common state. For,
when one deals with pure states defined over a factor algebra, if unitary equivalence
fails disjointness holds true. In this case, the representations π and π ′ = π ◦α are still
W-unitary equivalent since they are connected by a symmetry α, but the folia of the
corresponding GNS states ω and ω′ have empty intersection. Therefore, the existence
of a Wigner unitaryW does not prevent two (pure) states from being disjoint: as such,
it cannot be a sufficient condition for their physical equivalence. In the next section
I will show how this fact applies directly to the case of ferromagnetism, where the
ground states ω+ and ω− of the infinite spin chain prove to be disjoint states, even
though they are connected by the flip-flop symmetry α± implemented by the Wigner
unitary W±.

Be that as it may, Baker and Halvorson then go on to argue that the presence
of a symmetry entails physical equivalence because it assures the preservation of
the empirical content of quantum theory, in the sense that the Wigner unitary W
implementing a symmetry α always leaves transition probabilities invariant.

If we further assume (as conventional wisdom dictates) that a quantum theory’s
symmetries preserve all empirical content, then the folia of at least some pairs of
inequivalent representations must be empirical equivalent if spontaneous sym-
metry is possible. [p. 468]

Agreed, it seems quite reasonable to demand that, for two mathematical states and
respective folia to be physically equivalent, the symmetry transformation connecting
them must not change the empirical content. Yet, that requires one to specify what
exactly is the latter. In quantum theory the empirical content is expressed in terms of
the expectation values of physical observables. For our purposes, we can identify (at
least) two distinct senses in which such a concept is intended in connection with quan-
tum symmetries. According to the first sense, any symmetry is by definition supposed
to preserve expectation values in that it yields ᾱ(ω◦α)(A) = ω(A) for all observables
A inA (see Sect. 2). In other words, the state ω is mapped onto itself if one applies the
bijection ᾱ over the state space S(A) together with the automorphism α of the algebra
A. The Wigner representation theorem then guarantees that the unitary operator W
implementing a symmetry does not change the transition probabilities in the form
of the inner product between vectors in the underlying Hilbert space, even when the
symmetry is broken. According to the second sense, instead, one refers to the expec-
tation values of observables as being computed in the ground state. The expectation
value of the observable A computed in state ω is thus given by < �,π(A)� >. How-
ever, it turns out that in the case of quantum symmetry breaking not all expectation
values remain the same under the relevant transformation from ω into ω′ = ω ◦ α:
in fact, when a symmetry is broken, one has < �,π(A)� >�=< �′, π ′(A)�′ >

for some A ∈ A. So, the question whether the empirical content is unchanged by a
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given symmetry has a different answer depending on the particular sense in which one
understands the concept of preservation of expectation values.

Baker and Halvorson just intend this concept in the first rather than in the second
sense, and that is why they maintain that the preservation of the empirical content
of a quantum theory is captured by the invariance of transition probabilities. Under
their interpretation, a symmetry would thus be sufficient for physical equivalence.
It is indeed such a presupposition that grounds both Baker’s (2011) commitment to
statement (1) and his denial of statement (2) in the alleged dilemma. Nonetheless,
when a symmetry is broken, the numerical disagreement between the probabilities
assigned to a given physical observable by the initial state ω and by the transformed
stateω′, respectively, does make an empirically significant difference. So, even though
the empirical content encoded in a quantum state certainly includes transition prob-
abilities, it should not be merely restricted to them. It follows that the preservation
of transition probabilities under a quantum symmetry proves too weak a condition to
assure physical equivalence between a pair of states. As a consequence, contrary to
Baker’s own conjecture, one cannot even construct a translation scheme based on the
Wigner unitaryW mapping between unitarily inequivalent GNS representationsπ and
π ′, on pain of overriding a physically relevant part of the empirical content. That is true,
in particular, in the example of a ferromagnet in quantum statistical mechanics, where
empirically distinct phases assign different expectation values to the magnetization
observable. Let us now proceed to develop the argument for physical inequivalence in
this particular case-study.

6 Coexistence of empirically distinct thermodynamical phases

According to Baker’s dilemma, given that the presence of a symmetry does not imply
unitary equivalence, i.e. statement (0), one would run into a contradiction if one main-
tains that physical equivalence is both necessary for a symmetry, i.e. statement (1),
and sufficient for unitary equivalence, i.e. statement (2). Specifically, when dealing
with a broken symmetry, for which unitary equivalence fails, the combination of the
two horns of the dilemma would lead one to the false conclusion that unitary equiv-
alence holds. It thus appears as if one is bound to choose between statement (1) and
statement (2). However, in my view, the alleged conflict between these two statements
is just apparent, since their truth rests on what one means exactly by physical equiv-
alence, and that, as it was explained in the previous section, is not a matter that can
be decided on the basis of purely formal conditions. In fact, the claim that two GNS
representations induced by mathematically distinct states on the observable algebra
be physically equivalent depends on the particular physical phenomenon under inves-
tigation. As a consequence, one cannot quite establish general statements concerning
physical equivalence, as in Baker’s dilemma: rather, one must evaluate it on a case-
by-case basis. Thus, in order to determine whether or not the GNS representations π

and π ′ = π ◦ α connected by the broken symmetry α are physically equivalent one
must take into account what kind of physical states their respective ground states ω

and ω′ = ᾱ(ω) over the algebra A correspond to. In particular, this means that the
analysis of the two phases of a ferromagnet in quantum statistical mechanics is ulti-
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mately independent from other examples of broken symmetries in infinite quantum
theory.

In order to enforce this fact, it is worth to start by contrasting the infinite spin chain
with a case-study discussed by Baker and Halvorson (2013). Specifically, as an exam-
ple of how the content of the Wigner representation theorem would allegedly cast
doubts onto the claim that physical equivalence requires unitary equivalence, they cite
the multiplicity of vacuum representations in quantum field theory. In a nutshell, the
algebraic formulation of quantum field theory establishes a correspondence between
bounded regions O of Minkowski spacetime M and local algebras A(O) of observ-
ables, whose structure is determined by a set of physical and mathematical axioms
[see Haag (1996) for more details, which we cannot review here]. In this context, the
quasi-local algebra A is given by the norm closure of the net of all local algebras
defined over the entire Minkowski spacetime, that is A = ⋃

O⊂MA(O). The latter
admits multiple unitarily inequivalent representations, each of which is determined by
a different vacuum state. Baker and Halvorson then argue as follows:

What are the necessary conditions for physical equivalence between field-
theoretic states?... [T]he existence of a symmetry is often taken to imply physical
equivalence in the fullest sense (see Baker 2011). The notion that unitary equiv-
alence is a necessary condition for physical equivalence should now appear
quite suspect. Insofar as the so-called “Hilbert space conservative” interpretation
of quantum field theory identifies physical equivalence with unitary equiva-
lence (see Ruetsche 2002), that interpretation must come into question as well.
(p. 467)

The view named by Laura Ruetsche “Hilbert space conservatism”, which the above
quotation refers to, maintains that the observables retaining physical significance are
not those belonging to the abstract quasi-local algebraA, but rather those correspond-
ing to the self-adjoint elements of the affiliated algebraπ0(A)′′ mappingover a concrete
Hilbert space, which is constructed by means of the representation π0 induced by the
vacuum state ω0. The vacuum is characterized as the unique state within its own GNS
representation that is invariant under the Poincaré group, namely the group of rela-
tivistic spacetime symmetries of quantum field theory. So, according to Hilbert space
conservatism, given any pair of distinct vacuum statesω0 andω′

0, their respective GNS
representations π0 and π ′

0 being unitarily inequivalent means that they are physically
inequivalent as well. Yet, as different ground states they are connected by a broken
symmetry, call it α0, and hence there exists a corresponding Wigner unitary W0 pre-
serving the transition probabilities in the form of the inner product between vectors in
the underlying Hilbert spaces H0 and H′

0. If so, Baker and Halvorson’s criterion for
physical equivalence based on the Wigner representation theorem would be satisfied
in quantum field theory, at least if one endorses Hilbert space conservatism. Arguably,
as it stands, this conclusion would not go through if one adopts other possible views
recognized by Ruetsche, such as “Algebraic imperialism”, for which the prominent
concept is the abstract observable algebra itself instead of its concrete Hilbert space
representations. It is not our purpose here to settle this contentiousmatter in the context
of quantum field theory. Rather, the issue at stake is whether or not one could extend
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the same argument put forward by Baker and Halvorson to the case of ferromagnetism
in quantum statistical mechanics.

Recall that in the Weiss–Ising model the two ground states ω+ and ω− on the
quasi-local algebra A = ⋃

�⊂Z
A� describing the infinite spin chain are meant to

represent different thermodynamical phases, inwhich all spins are oriented towards the
up direction or towards the down direction, respectively. Thus, intuitively, the physical
states of affairs they correspond to are not quite the same, at least once a distinction
between up and down has been conventionally fixed. In what follows I will argue in
favor of this claim by providing some compelling reasons why, contrary to Baker’s
(2011) own argument, the statesω+ andω− inducing the respective representationsπ+
and π− are to be regarded as physically inequivalent. For one, being defined as stable
equilibriumGibbs states at the same inverse temperature β, they constitute empirically
distinct pure phases in the sense that they prove to be disjoint states assigning different
expectation values to the magnetization observable. That means that a significant part
of the empirical content is not preserved under the flip-flop symmetryα±. Furthermore,
in order to model all relevant thermodynamical phenomena, one needs to be able to
describe cases of co-existence of phases, which often occur in nature: accordingly, it
must be possible for the ground states ω+ and ω− to form a mixture, wherein the two
pure phases are both present at the same time while remaining physically separated
from each other. That actually leads us to a different conclusion than the one reached
by Baker and Halvorson in the case of quantum field theory. Let me elaborate on these
points in greater detail.

In ordinary quantum mechanics, an equilibrium state at inverse temperature β is
given by the entropy-maximizing Gibbs state expressed by the density operator ρ =

e−βH

Tr(e−βH )
, where H denotes the Hamiltonian of the systemwith discrete spectrum. It is

taken to represent a pure thermodynamical phase in that, beside exhibiting the stable
behaviour typical of equilibrium [see Emch (2007) for a systematic review of this
fact], when being computed in such a state the thermodynamical macroproperties of a
physical system, like themagnetization observable in a ferromagnet, prove dispersion-
free. Specifically, we say that a self-adjoint operator A is dispersion-free in the state
ω just in case ω(A2) = (ω(A))2, which implies that ω ascribes probability equal to 1
to some eigenvalues of A. For our purposes here, it is just important to stress that the
requirement of assigning dispersion-free values to thermodynamical macroproperties
is satisfied by factor states, namely by states whose affiliated algebras have trivial
center: specifically, the state ω on the algebra A having GNS representation π is a
factor just in case π(A)′′ ∩ π(A)′ = {λI } with λ being a complex number and I the
identity operator. As it turns out, any pure state is a factor state, and thus it behaves
like an equilibriumGibbs state with respect to thermodynamical macroproperties. Yet,
since in finite quantum statistical mechanics a Gibbs state is unique, when a ground
state is assumed to have this form there cannot be symmetry breaking unless one
describes the system in the thermodynamical limit. For instance, as noted in Sect. 2.1,
in the Weiss–Ising model a magnetization observable Mz

B,β at inverse temperature β

with external field B parallel to the z-axis is constructed only when taking the limit
|�| −→ ∞ for an infinitely long spin chain. That enables one to define multiple
thermodynamical phases at the same inverse temperature. Indeed, given that ω+ and
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ω− are pure states on the quasi-local algebraA, they are factor states that give rise to the
affiliated algebras π+(A)′′ and π−(A)′′ by means of their respective GNS irreducible
representations. As such, both ground states of the infinite spin chain are interpreted as
pure thermodynamical phases, assigning dispersion free values to the magnetization
observable. What is more, and that is the crucial point here, they can be shown to be
empirically distinct phases, which makes them physically inequivalent.

Indeed, as explained in the previous section, general claims that unitary equivalence
is necessary for physical equivalence typically rest on the requirement that two states
are disjoint in sense that their folia do not share any common element. The thermo-
dynamical phases ω+ and ω− fulfill such a requirement since they are pure states on
the quasi-local algebra A and their GNS representations π+ and π− are not unitarily
equivalent. Granted, it is also true that the flip-flop symmetry α± is implemented by
a Wigner unitary operator W± that leaves transition probabilities invariant, as Baker
and Halvorson’s alleged sufficient condition for physical equivalence would demand.
Nevertheless, being a broken symmetry, α± fails to preserve the full empirical content
of the theory in the sense that the expectations values of the magnetization observable
computed in the ground states ω+ and ω− do not agree with each other. For, such an
observable takes on the value+1 in ω+, as well as in any other state in its foliumFω+ ;
and, likewise, it takes on the value −1 in ω−, as well as in any other state in its folium
Fω− . What is worse, given that Mz

B,β does not belong to A but rather to the affiliated
algebra generated by the GNS representation of a given state, if it is constructed in
π+(A)′′ then it is not even defined in π−(A)′′, and viceversa. This fact thus corrob-
orates the claim that the pure thermodynamical phases ω+ and ω− are empirically
distinct.

Actually, Baker himself recognizes that the magnetization observable acquires a
different physical meaning in the two representations π+ and π−, but he insists that the
latter should still be regarded as physically equivalent so as to allow for a translation
scheme.

This is the sort of “translating” that symmetry transformations do all the time.
For example, when we take a model of a+z-polarized magnet and transform the
z coordinate to −z, we will change the expectation value of the observable for
magnetization along z, say from 1 to −1. The believer in Leibniz equivalence
would say that we have thereby changed which physical quantity this operator
denotes. As long as we keep that in mind, there should be no obstacle to con-
structing a translation scheme. [p. 145; where the notation has been suitably
modified]

It thus seems that, for Baker, the flip-flop symmetry α± that transforms, say, the phase
ω+ into the phase ω− would just correspond to a mere change of coordinates from
+z into −z. However, this overlooks the fact that phase transition is a real physical
phenomenon. That is, when spontaneous magnetization occurs even in the absence of
an external magnetic field B, all spins in the chain align either in the up-direction or in
the down-direction along the z-axis: so, once the spins are thus oriented, the distinction
between the two possible states of affairs is not purely a matter of convention about
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how to fix the spatial direction.8 Magnetization can then be defined as a physically
meaningful observable only with respect to the particular GNS representation one
chooses. Baker’s purported translation scheme based on the Wigner representation
theorem does not formally capture this fact, and hence it can hardly be used to establish
physical equivalence in the example of a ferromagnetism.

Be that as it may, there is another more compelling reason to deny that statement
(1) in Baker’s dilemma holds in quantum statistical mechanics, namely the fact that
pure thermodynamical phases can co-exist at the same time. That is a physical phe-
nomenon typically observed when a system undergoes phase transitions. For instance,
in condensed matter physics, one can have a state in which ice and water are both
there. Likewise, when the critical temperature is reached, the state of a ferromagnet is
expressed by a mixture of the two stable equilibrium states ω+ and ω−, which means
that both pure phases are present together. Indeed, in the familiar Weiss–Ising model
with an infinitely long spin chain, a well-defined magnetization observable Mz

0,βc
for

a null external magnetic field B = 0 and inverse critical temperature βc can be con-
structed just as an element of the algebra π0,β(A)′′ affiliated with the GNS (reducible)
representation π0,β induced by the mixed state9 ω0,β = 1

2ω+ + 1
2ω− over the quasi-

local algebra A. It is important to stress that, just as its components ω+ and ω−, such
a mixture ω0,β corresponds to a thermodynamical equilibrium state. In order to see
how that is possible, we need to formalize this fact within a framework having the
resources to accommodate multiple equilibria at the same temperature. The sought-
after algebraic structure is provided by the Kubo–Martin–Schwinger (KMS) states,
which generalize the notion of Gibbs states in infinite quantum statistical mechanics.

Let σt denote the one-parameter automorphism group over the algebra A, repre-
senting the dynamics of the system in the course of time t . By definition, a state ω

on A is a KMS state with respect to σt at inverse temperature β just in case, for all
elements A, B ∈ A, one has

ω(σt (B)A) = ω(Aσt+iβ(B))

The KMS condition thus expresses stability under the dynamical group σt , which is a
typical feature of equilibrium states. For any fixed β, one can define a setK(β) of KMS
states with the above property. In finite quantum mechanics where the Gibbs state is
unique K(β) is a singleton, but in the thermodynamical limit it becomes a convex set
containing more than one element. In the specific example of the infinite spin chain in
theWeiss–Ising model, at the inverse critical temperature the mixed stateω0,β induces
a one-parameter automorphism group σt that determines a convex set K(βc) of KMS
states. The states ω+ and ω− then prove to be extremal for such a set, in the sense
that they cannot be written as a convex combination of other elements of K(βc). In
fact, extremal states are factor states and therefore they are dispersion-free for the

8 As I stressed at the beginning of section 5, Feintzeig (2015) makes a similar point for the classical spin
chain.
9 Note that, strictly speaking, the pure states ω+ and ω− should be written in such a way to display their
dependence on 0 and β, like the mixed states of which they are the components. However, in order for not
to overburden the notation, for simplicity here I drop the subscripts relative to the external magnetic field
and the inverse temperature, just as I have done in the rest of the paper.
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magnetization observable Mz
0,βc

, just as pure thermodynamical phases are supposed
to be. More to the point, one can find projections P+ and P− residing in the center
of the affiliated algebra π0,β(A)′′ such that one can write ω+(A) = ω(P+AP+)

ω(P+)
and

ω−(A) = ω(P−AP−)
ω(P−)

for all A in the quasi-local algebraA. Therefore, the fact that the

mixtureω0,β = 1
2ω++ 1

2ω− represents a physically significant state demonstrates that
the states ω+ and ω− can co-exist as empirically distinct thermodynamical phases. As
such, they must be physically inequivalent: otherwise, the mixture ω0,β of which they
are pure components would not correspond to the observed phenomenological state
of affairs it purports to describe.

In the last analysis, the possibility of co-existence of phases indicates that the
previously discussed argument by Baker and Halvorson in favor of the physical equiv-
alence between the GNS representations of different vacuum states in quantum field
theory does not go through in quantum statistical mechanics. Indeed, as they claim,
if one embraces Hilbert space conservatism, the empirical content is fully encoded
within each GNS representation taken in isolation, and hence it should be preserved
under a symmetry transformation across differentGNS representations.Ultimately, the
underlying idea rests on the uniqueness of the vacuum state within its own irreducible
representation, namely the fact that in a concrete quantum field theory there could only
be one state having the same properties ascribed to the vacuum. That presupposes (via
superselection rules) that one cannot construct a state combining two distinct vacuum
states ω0 and ω′

0, for instance in the form of a superposition. Instead, as I have just
argued, in quantum statistical mechanics one must be able to combine together two
pure thermodynamical phases, like the ground states ω+ and ω− of a ferromagnet, if
one wishes to describe empirically relevant phenomena. Granted, one cannot take a
superposition ofω+ andω− either, and in fact each phase is also unique within its own
irreducible representation; yet, one can form a physicallymeaningfulmixtureω0,β that
induces a reducible GNS representationwhose affiliated algebraπ0,β(A)′′ enables one
to reconstruct both pure statesω+ andω−. Therefore, Hilbert space conservatism does
not have the resources to accommodate multiple co-existing thermodynamical phases,
which entails that the argument put forward by Baker and Halvorson in quantum field
theory does not hold here. The account of symmetry breaking in terms of KMS states
(which Liu and Emch 2005 refers to as the decompositional account) just puts us in a
position to see this point clearly within the framework of algebraic quantum statistical
mechanics. That enforces the fact that the putative relation between the presence of
a broken symmetry and the notion of physical equivalence must be evaluated with
respect to each specific physical context.10

Finally, let me conclude with a few remarks concerning Baker’s (2011) thesis that
the presence of a symmetry is sufficient for physical equivalence, that is statement
(1) in his alleged dilemma for broken symmetries. Recall from Sect. 4.1 that this
reflects his commitment to the metaphysical principle of No Primitive Identity rooted
in the classical notion of spacetime symmetries, according to which any two spacetime
points, say x and x ′, should not be ontologically distinct inasmuch as they can be
mapped into each other by some symmetry transformation. Allegedly, it entails that

10 An extended discussion about the difference between the treatment of symmetry breaking between
quantum statistical mechanics and quantum field theory can be found in Fraser (2012).
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when two mathematically distinct states are connected by a symmetry, even a broken
one, they should represent the same physical possibility. Now, the failure of the two
ground states of an infinite spin chain to be physical equivalent despite being related by
the flip-flop symmetry clearly provides a counter-example to Baker’s thesis. So, one
may as well wonder whether it also leads one to a violation of No Primitive Identity.

However, I submit that this is not really the case since such a condition is not directly
relevant to the treatment of ferromagnetism in quantum statistical mechanics. For one,
the theory is not formulated within a quadri-dimensional spacetime manifold: indeed,
the quasi-local algebra A is just constructed in Euclidean three-space, whereas the
temporal dimension t is introduced independently, for instance by means of the one-
parameter automorphism group σt dictating the time-evolution of the system under
description. More to the point, the covariance axiom of quantum statistical mechanics
to which A is supposed to obey requires that the relevant symmetries are translations
along the spin chain. That means that, if one considers two spin systems located in
the spatial positions x and x ′, respectively, one can map one into the other by means
of a translation, and yet both ground states ω+ and ω− remain invariant under such a
transformation. So, the relevant symmetry is not broken at all in this case. Instead, the
flip-flop symmetry α± is broken, yet it is not really a spacetime symmetry of the sort
contemplated by No Primitive Identity. For, in the example of the classical Mexican
Hat, the ground states of the system are represented by points x and x ′ having distinct
locations in space. Quite differently, the flip-flop symmetry has just the effect to invert
the orientation of all the spins in the infinite chain: its action corresponds to a spatial
rotation of 180 degrees, but it is applied at the same fixed point in space where each
spin is located. In other words, rather than mapping between different spatial points
x and x ′, the transformation α± simply flips the spin orientation of a system at point
x while keeping the system in the same spatial location. Hence, we can conclude
that the fact that the ground states ω+ and ω− are physically inequivalent despite
being connected by the quantum symmetry α± does not entail any conflict with the
metaphysical principle of No Primitive Identity, even if it is in flat contradiction with
statement (1) in Baker’s dilemma.

7 Conclusion

Baker’s dilemma raises important philosophical issues concerning the concepts of
symmetry, unitary equivalence and physical equivalence, especially in the case of
quantum symmetry breaking. However, his alleged dilemma is merely apparent.
Indeed, while the relations between the existence of a symmetry, whether broken
or unbroken, and the fulfillment of unitary equivalence can be determined mathemat-
ically, questions about physical equivalence ought to be settled just on a case-by-case
basis, depending on the specific physical situation under description. As a conse-
quence, one can hardly establish general facts involving physical equivalence, such
as statement (1) and statement (2) in the dilemma. In particular, throughout the paper
I argued that, contrary to what Baker claims, the presence of a symmetry mapping
between two ground states is not at all sufficient for the latter to be physically equiv-
alent. More to the point, by focusing on the example of ferromagnetism in quantum
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statistical mechanics, I showed how the pure thermodynamical phases of the Weiss–
Ising model corresponding to the ground states in which all spins are oriented in the
up-direction and in the down-direction, respectively, must be regarded as physically
inequivalent even though they are connected by a symmetry, which in fact turns out
to be a broken one.
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