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Abstract
To remedy the lack of precision attached to the concept of coherence, a plethora of 
probabilistic measures has been developed. To broaden the perspective, we do not 
focus on the differences between these quantitative but the differences between qual-
itative approaches to coherence by comparing three probabilistic definitions for the 
relation denoted by ‘coheres with’. To reveal the different logics underlying these 
relations, we introduce a considerable number of formal properties and examine 
whether the given coherence relations possess them. Among these properties are not 
only the classics reflexivity, symmetry and transitivity, but also a variety of features 
that concern propositions containing negation, conjunction and disjunction, as well 
as features that concern inconsistency, entailment and equivalence.

Keywords Probability · Formal epistemology · Coherence

1 Introduction

Coherence is usually understood as a property of sets of propositions hanging 
together or dovetailing with each other. Apart from this minimal condition, however, 
the concept of coherence is notorious for its elusiveness. To gain precision, there has 
been developed a vast number of probabilistic measures in the last 20 years. Among 
them are measures quantifying coherence in terms of deviation from probabilistic 
independence (cf. Schupbach 2011; Shogenji 1999), relative set-theoretic overlap 
(cf. Glass 2002; Meijs 2006; Olsson 2002) or degree of mutual confirmation (cf. 
Douven and Meijs 2007; Fitelson 2003, 2004; Roche 2013). What is more, within 
each of these families there are, often a good many, measures that are not even ordi-
nally equivalent.

In this paper, we will not dwell on the differences between these quantitative 
accounts but broaden the view by studying the differences between three qualitative, 

 * Mark Siebel 

 Michael Schippers 
 mi.schippers@uni-oldenburg.de

1 Department of Philosophy, University of Oldenburg, Oldenburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-020-02542-1&domain=pdf


7698 Synthese (2021) 198:7697–7714

1 3

yet probabilistic approaches to coherence. More exactly, we offer three probabilis-
tic definitions for the relation denoted by ‘coheres with’, which is assumed to hold 
between two propositions, and study the different logics underlying these relations.

The structure of the paper is as follows. Section 2 presents some formal prelimi-
naries and our three relations of coherence: incremental coherence, absolute coher-
ence and strong coherence. In Sect.  3, various formal properties are introduced in 
order to examine whether the given coherence relations possess them. Among these 
properties are the standard properties of binary relations, viz. reflexivity, symmetry 
and transitivity. Since we define coherence for a propositional language, we also 
include a variety of properties that concern the coherence of propositions containing 
Boolean connectives. For example, we go into the question whether two conjunctions 
x ∧ z and y ∧ z cohere if the conjuncts they differ in, i.e. x and y, cohere. Our study is 
confined to negation, conjunction and disjunction. Conditionals are implicitly treated 
insofar as x → y is logically equivalent to x̄ ∨ y and such propositions can be substi-
tuted salva validitate in probabilistic formulas. Moreover, we address some properties 
to which attention was already directed within the debate on probabilistic measures 
of coherence, namely, properties concerning inconsistency, entailment and equiva-
lence. One of the questions in this context is whether x coheres with z if x coheres 
with a proposition y that entails z. Finally, Sect. 4 offers a brief summary and outlook.

Our survey takes 28 properties into account. Some readers may find some of the 
results unexciting because they are in line with their expectations. However, aside 
from the fact that there will hopefully remain enough unexpected results for eve-
ryone, we can at least take up the cause of providing mathematical proofs for all 
results, whether unexpected or not.

2  Coherence as a relation

Let L be a finite propositional language, i.e. a set of formulae closed under some 
functionally complete selection of classical connectives. Let P: L → [0, 1] be a prob-
ability function over L, i.e. a non-negative, real-valued function such that P(x) = 1 
if x ∈ L is a tautology, and P(x ∨ y) = P(x) + P(y) if x, y ∈ L are inconsistent. By Lc 
we denote the set of all contingent propositions in L, viz. propositions that are nei-
ther logically true nor logically false. Furthermore, let P be the set of all regular 
probability functions over L, i.e. probability functions such that P(x) = 1 iff x ∈ L is a 
tautology, and P(x) = 0 iff x ∈ L is a contradiction. Then coherence can be construed 
as a relation on contingent propositions ~ ⊆ Lc× Lc such that x ~ y holds if x and y are 
coherent, and x ≁ y otherwise.1

1 Such a relation must not be confused with the binary coherence relation that is in the focus of Bovens 
and Hartmann’s (2003, chs. 1.4 and 2.2) account. Bovens and Hartmann are interested in the relation 
‘is no less coherent than’, while we are interested in ‘coheres with’. Even if the latter relation’s scope is 
extended to sets of propositions, these relations remain independent of each other. For a set that is no less 
coherent than another set need not cohere with it, and a set that coheres with another set need not be no 
less coherent than it.
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When explicating coherence in probabilistic terms, the majority of approaches 
appeals to C.I. Lewis’ (1946, p. 338) characterisation in terms of mutual confirma-
tion: “A set of statements […] will be said to be congruent if and only if they are so 
related that the antecedent probability of any one of them will be increased if the 
remainder of the set can be assumed as given premises.” The notion of confirma-
tion applied here is the one that is most prominent in Bayesian confirmation theory, 
namely, confirmation as probability-raising (cf. Earman 1992; Fitelson 1999; How-
son and Urbach 2006). In this incremental sense, evidence y confirms a hypothesis 
x just in case y increases the firmness of x, which in probabilistic terms means that 
P(x|y) > P(x). Since P(x|y) > P(x) is equivalent to P(x|y) > P(x|ȳ) , the corresponding 
relation of incremental coherence can also be defined as follows:

(IC)  x ~i y iff P(x|y) > P(x|ȳ) and P(y|x) > P(y|x̄).

Note that it is possible to dispense with one of the conditions because 
P(x|y) > P(x|ȳ) is equivalent to P(y|x) > P(y|x̄) . Since it is not possible to simplify 
the next definition in this way, however, we adhere to our ‘over-explicit’ wording 
in order to perspicuously stress the differences.

It often goes unnoticed that ‘confirmation’ is an ambiguous term even when 
understood in a probabilistic manner. There is an increase in probability if y 
raises x’s probability merely to, say, .01, so that x is still highly improbable. Car-
nap (1962, xvf.) has thus distinguished confirmation as increase in firmness from 
confirmation as firmness. The latter is sometimes called ‘absolute confirmation’, 
and it holds if the posterior probability P(x|y) exceeds a threshold t beyond which 
x receives sufficient firmness. In order to let a hypothesis be firm just in case its 
negation is not firm, the threshold t should be identified with .5.

These reflections on confirmation have a bearing on coherence because they 
show that coherence as mutual confirmation can be spelled out in at least two 
ways. Apart from mutual incremental confirmation, which was defined in (IC), 
there is also mutual absolute confirmation. It obtains among two propositions 
x and y if both P(x|y) and P(y|x) exceed .5. Since P(x|y) > .5 is equivalent to 
P(x|y) > P(x̄|y) , coherence in this absolute sense can also be introduced as follows:

(AC)  x ~a y iff P(x|y) > P(x̄|y) and P(y|x) > P(ȳ|x).

Here it is not possible to dispense with one of the conditions because P(x|y) 
may be greater than .5 while P(y|x) is smaller.

The incremental coherence relation ~i corresponds directly to the measures 
obtainable from Douven and Meijs’ (2007) recipe by utilising a measure of incre-
mental confirmation, as well as to the measures that quantify coherence in terms 
of deviation from probabilistic independence. More exactly, x  ~i  y holds if and 
only if the set {x, y} is assessed coherent by any of these measures because these 
measures assign coherence just in case P(x|y) exceeds P(x̄|y) and thus P(y|x) 
exceeds P(ȳ|x) . But what about the measure advocated by Roche (2013) and the 
overlap measures proposed by Glass (2002), Meijs (2006) and Olsson (2002)?
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The overlap measures agree on taking the coherence of two propositions x and y 
to be P(x ∧ y)/P(x ∨ y). These measures are not provided with a neutral point where 
incoherence turns into coherence. Since their values range from 0 to 1, however, 
one may give .5 a trial. Then it would not be possible that x and y are coherent 
on the overlap measures whereas they are incoherent in the sense of (AC). For if 
P(x ∧ y)/P(x ∨ y) > .5, then 2 P(x ∧ y) > P(x ∨ y), and therefore 2 P(x ∧ y) > P(x) and 
2 P(x ∧ y) > P(y). But this is neither compatible with P(x|y) = P(x ∧ y)/P(y) < .5, 
nor is it compatible with P(y|x) = P(x ∧ y)/P(x) < .5, because the former implies 2 
P(x ∧ y) < P(y) and the latter 2 P(x ∧ y) < P(x). Conversely, there are propositions that 
are coherent on (AC) while the overlap measures offer a value smaller than .5. The 
conditions of (AC) could thus be deemed necessary but not sufficient for coherence 
in the overlap sense.

However, there is also an argument for a threshold of 1/3. The overlap for two 
propositions can be rewritten as ( P(x|y)−1 + P(y|x)−1 − 1)−1 (cf. Glass 2002). Hence, 
if both P(x|y) and P(y|x) are greater than .5, then the overlap measures take on a 
value greater than 1/3. Given this threshold, quite the reverse is true. Then the con-
ditions of (AC) are sufficient but not necessary for coherence in the overlap sense.

Things are clearer when we turn to Roche’s measure because it is supplemented 
with a natural threshold. While Roche applies Douven and Meijs’ recipe for constru-
ing measures of mutual confirmation, he does not insert a measure of incremental 
confirmation but the posterior P(x|y) as a measure of how much y confirms x in 
the absolute sense. One may thus think that the verdicts of Roche’s measure coin-
cide with the relation of absolute coherence defined by (AC). And indeed, if x and 
y are coherent according to (AC), i.e. P(x|y) and P(y|x) are both greater than .5, 
then Roche’s measure registers coherence because the neutral point .5 is exceeded 
on average. Conversely, however, x and y can be coherent on Roche’s measure but 
incoherent in the absolute sense because the averaging integrated into this measure 
allows for compensation. If P(x|y) is much greater than .5 while P(y|x) is only a bit 
below .5, then, although the conditions of (AC) are not satisfied, the neutral point of 
Roche’s measure is exceeded.

Even though (AC)’s conditions are thus stronger than the ones of Roche’s meas-
ure, we adhere to our definition of absolute coherence in order to obtain a one-to-
one counterpart to the definition of incremental coherence (IC). Remember that (IC) 
specifies coherence in the sense of mutual incremental confirmation, i.e. incremental 
confirmation of both x by y and y by x. To parallel this approach, (AC) provides the 
conditions for mutual absolute confirmation, entailing both that y has to absolutely 
confirm x and that x has to absolutely confirm y.

To round off the presentation of qualitative approaches to coherence, note that it 
is possible to introduce a relation combining the previous proposals. A third notion 
of confirmation merges firmness and increase in firmness by stating that evidence y 
confirms hypothesis x just in case x is not only firm in the light of y but is also firmer 
than it was before. In probabilistic terms, this means that P(x|y) is both greater than 
P(x̄|y) and P(x|ȳ).2 The resulting strong coherence relation ~s obtains just in case 
both ~a and ~i obtain:

2 Cf. Achinstein’s (2001, chs. 3f.) discussion of these three approaches to confirmation.
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(SC)  x ~s y iff x ~a y and x ~i y.

If x ~s y, then most probabilistic measures of coherence agree that the set {x, y} is 
coherent. Again, the overlap measures constitute an exception if tentatively supple-
mented with a neutral point of .5. Consider a random cast of a dodecagonal dice. Let 
x be the proposition that a 3, 4, 5, 6 or 7 was thrown and y the proposition that it was 
a 5, 6, 7, 8 or 9. Then P(x|y) = P(y|x) = 3/5, in order that x ~a y. Furthermore, since 
P(x) = P(y) = 5/12, we also get x  ~i  y and hence x  ~s  y. But P(x ∧ y)/P(x ∨ y) = 3/7 
and thus smaller than the threshold .5. However, if we deploy the threshold 1/3, the 
overlap measures agree with assigning coherence if (SC) is satisfied. For this thresh-
old is exceeded if the propositions are coherent in the sense of (AC), i.e. P(x|y) and 
P(y|x) are greater than .5.

3  The logic of coherence

3.1  Basic properties

We start our investigation into the logic of coherence by examining some of the 
most prominent properties of relations, to wit, reflexivity, symmetry and transitivity. 
The upshot is that, although the coherence relations previously defined are reflexive 
and symmetric, they are not transitive. This, we will argue, is as it should be. Here 
are the formal characterisations of the first two properties:

(REF)  For any x ∈ Lc and any P ∈ P: x ~ x.
(SYM)  For any x, y ∈ Lc and any P ∈ P: if x ~ y, then y ~ x.

The coherence relations defined by (IC), (AC) and (SC) are reflexive and symmet-
ric. (All proofs are given in the “Appendix”.) Whereas the latter result seems uncon-
troversial, the former might be considered problematic. For it is usually assumed 
that coherence is a property of non-singleton sets of propositions, in order that 
‘self-coherence’ is regarded as a degenerate case at best (cf. Akiba 2000; Fitelson 
2003). However, there are situations in which the coherence of mental or linguistic 
occurrences with identical contents enters the limelight. Just consider two witnesses 
having the same belief and thus issuing the same statement, or one person exactly 
repeating something she asserted before. It is quite natural to describe the scenario 
involving the two witnesses by the qualitative claim that what they testify to coheres 
for the very reason that it is identical. It is even natural to proceed with the quantita-
tive claim that, due to this identity, the testimonies are maximally coherent. And the 
same is true, mutatis mutandis, for other scenarios with identical contents.

At the utmost, one might argue that, while this holds for contingent propositions, 
it does not hold for contradictions. The latter lack ‘self-coherence’ because of the 
inner tension they are exposed to. But first, our considerations have been restricted 
to contingent propositions. And secondly, we are concerned here with a relation of 
agreement between whole propositions. Although contradictions consist of parts 
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that do not fit together, this is far from implying that these wholes do not fit together. 
One may even maintain that they match in an important respect because they share 
the feature of self-contradiction. Hence, we consider it appropriate to impose sym-
metry on coherence.3

The third basic property is transitivity:

(TRA)  For any x, y, z ∈ Lc and any P ∈ P: If x ~ y and y ~ z, then x ~ z.

At first sight, it is tempting to require that a coherence relation is transitive. The 
proposition that someone’s pet, Tweety, is a bird coheres with the proposition that 
it has wings; the latter proposition coheres with the proposition that Tweety can 
fly; and so do the propositions that Tweety is a bird and can fly. However, a slight 
variation shows that transitivity does not hold in general. Although the proposi-
tion that Tweety is a penguin coheres with the proposition that it is a bird, which in 
turn coheres with the proposition that it can fly, the propositions ‘Tweety is a pen-
guin’ and ‘Tweety can fly’ are highly incoherent (cf. Bovens and Hartmann 2003, 
ch. 2). Hence, it is an advantage that the coherence relations ~a, ~i and ~s violate 
transitivity.4

Up to now, the logic underlying these relations is the same because they coin-
cide in being symmetric and reflexive but not transitive. However, differences will 
emerge in the next sections when, among other things, the interplay between coher-
ence and Boolean connectives is examined. Table 1 is a summary of the relations’ 
performances with respect to the basic conditions considered thus far.

3.2  Coherence, negation and inconsistency

In this section, we dwell on some constraints involving negation and incon-
sistency. From a quantitative perspective, it is usually assumed that a proposi-
tion x and its negation x̄ constitute a case of maximal incoherence (cf. Fitelson 
2003; Roche 2013; Schippers and Siebel 2015). If we dispense with quantitative 

Table 1  Basic properties (REF) (SYM) (TRA)

~i + + −
~a + + −
~s + + −

4 As shown by Schippers (2014), there are nonetheless screening-off conditions that guarantee transitiv-
ity for each of the above relations.

3 In the last resort, it is possible to add the constraint that coherence relations obtain between x and y 
only if x ≠ y. This would merely entail that reflexivity is no longer among the possible properties of these 
relations. Note also that, to model cases of identical contents in a set-theoretical manner, one may draw 
on multisets because they can contain the same proposition more than one time.
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verdicts, there remains the qualitative requirement that such a pair of contradic-
tory propositions is always assessed incoherent:

(INC)  For any x ∈ Lc and any P ∈ P: x ≁ x̄

This principle can be extended to all pairs involving inconsistent propositions. 
For any pair of propositions, let x ⊥ y denote that x and y are inconsistent. Then 
we may add the following strengthened condition for coherence relations:

(INC′)  For any x, y ∈ Lc such that x ⊥ y and any P ∈ P: x ≁ y.

Both conditions are easily seen to be satisfied by all qualitative coherence rela-
tions defined above. In this regard, these relations are again on a par.

A different picture emerges with respect to the following negation symmetry 
condition:

(NSC)  For any x, y ∈ Lc and any P ∈ P: if x ~ y, then x̄ ~ ȳ.

According to (NSC), the coherence of a pair of propositions spreads to their 
negations: if x and y are coherent, then so are x̄ and ȳ . While this condition is satis-
fied by ~i, it is violated by ~a and hence also by ~s. The former is a straightforward 
consequence of the fact that probabilistic relevance is inherited to negations. If x is 
probabilistically relevant to y (and vice versa), then so is x̄ to ȳ (and vice versa). In 
contrast, this does not hold for absolute confirmation. Even if P(x|y) > P(x̄|y) and 
P(y|x) > P(ȳ|x) , the values of P(x̄|ȳ) and P(ȳ|x̄) are in no way determined. They may 
exceed P(x|ȳ) and P(y|x̄) , respectively, or fall short of them.

Here is an example illustrating that the absolute coherence relation violates 
(NSC). Consider a standard card deck. Let x be the proposition that the drawn card 
is either a number or a court card, and let y be the proposition that the card is either 
a number card or an ace. Then both P(x|y) > P(x̄|y) and P(y|x) > P(ȳ|x) , and hence 
x ~a y. On the other hand, x̄ is the proposition that the drawn card is an ace while ȳ 
is the proposition that it is a court card. Since these negations are inconsistent, they 
are to be regarded as incoherent. Note also that this example does not prove incre-
mental coherence to violate (NSC) because x and y are not coherent in the incremen-
tal sense. The reason is that these propositions are subcontrary, i.e. cannot be false 
together. Since the negation of one of these propositions therefore implies the other 
proposition, they are negatively relevant to each other, with the result that x ≁i y (cf. 
Siebel 2004). Thus, the example cannot be used to cast doubt on ~i but is to be con-
sidered an example revealing the different logics underlying the relations ~i and ~a.

No such disagreement occurs with respect to the following consistency condition 
involving the pairs (x, y) and (x, ȳ ). According to this condition, a proposition does 
not cohere both with another proposition and its negation:

(CON)  For any x, y ∈ Lc and any P ∈ P: if x ~ y, then x ≁ ȳ.
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While this constraint is met by all three coherence relations, disagreement arises 
when we, as we have already done in the case of (INC), extend it to all cases of 
inconsistency. (CON) states that no proposition x coheres with another proposition 
y and its negation ȳ . But straightforward negation is only one type of inconsistency. 
We might thus assume that no proposition x coheres both with y and z if the latter 
are inconsistent, regardless of whether the inconsistency arises from straightforward 
negation or something else:

(CON′)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and y ⊥ z, then x ≁ z.

While both ~a and ~s satisfy (CON′), it is violated by ~i. This should come as no 
surprise given that (CON′) closely resembles a condition that keeps apart the under-
lying confirmation relations. According to this condition, no proposition x can both 
confirm a proposition y and another proposition z that is inconsistent with y. This 
condition is satisfied by absolute confirmation while being violated by incremental 
confirmation (cf. Crupi and Tentori 2015). A summary of the results for the con-
straints involving negation is given in Table 2.

3.3  Coherence, conjunction and disjunction

This section focuses on the interplay between coherence and conjunction on the 
one hand, and coherence and disjunction on the other hand. The first two principles 
are sometimes called ‘weak ∧-composition’ and ‘weak ∨-composition’ (cf. Huber 
2007):

(WAC)  For any x, y ∈ Lc and any P ∈ P: if x ~ y, then x ~ x ∧ y.
(WOC)  For any x, y ∈ Lc and any P ∈ P: if x ~ y, then x ~ x ∨ y.

According to these principles, if a proposition x coheres with another proposi-
tion y, then it also coheres with the conjunction and disjunction of x and y. Both 
constraints are met by all coherence relations at issue. But what about the inverse 
direction? Do x and y cohere if x coheres with x ∧ y or x ∨ y, respectively? The first 
of these principles is sometimes labelled ‘weak consequence’ (cf. Huber 2007). We 
thus use the titles ‘weak consequence for conjunctions’ and ‘weak consequence for 
disjunctions’:

(WCC)  For any x, y ∈ Lc and any P ∈ P: if x ~ x ∧ y, then x ~ y.
(WCD)  For any x, y ∈ Lc and any P ∈ P: if x ~ x ∨ y, then x ~ y.

Table 2  Negation and 
inconsistency properties

(INC) (INC′) (NSC) (CON) (CON′)

~i + + + + −
~a + + − + +
~s + + − + +
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Both constraints are violated by all coherence relations, and there is a good rea-
son for this behaviour. After all, x’s cohering with x ∧ y or x ∨ y may be due to the 
fact that it coheres only with the x-part of the conjunction or disjunction while the 
y-part is irrelevant to x.

Next, consider a random pair of propositions (x, y). Regardless of whether x and y 
themselves fit together, it might be tempting to assume that x coheres with the con-
junction x ∧ y and the disjunction x ∨ y:

(EOC)  For any x, y ∈ Lc such that x ∧ y ∈ Lc and any P ∈ P: x ~ x ∧ y or y ~ x ∧ y.
(EOD)  For any x, y ∈ Lc such that x ∨ y ∈ Lc and any P ∈ P: x ~ x ∨ y or y ~ x ∨ y.

The incremental relation of coherence ~i conforms to these principles. Since x ∧ y 
implies x, it increases x’s firmness; and since x implies x ∨ y, it increases the disjunc-
tion’s firmness. Hence, due to the fact that increase in firmness is symmetric, we 
obtain coherence in the incremental sense. By contrast, x ∧ y may be highly improb-
able in the light of x, and x may be highly improbable in the light of x ∨ y. Therefore, 
these pairs need not be coherent in the absolute or the strong sense. Table 3 is a 
summary of the results so far.

There is another ‘disjunctive weakening’ property that is satisfied by ~a. Again, 
we introduce it together with its conjunctive counterpart. Suppose that there is a 
pair of propositions (x, y) such that x coheres with y. The idea then is that the coher-
ence of these propositions should spread to the pair that can be obtained from (x, 
y) by adding an arbitrary proposition z as a conjunct or disjunct to each element? 
Here are the corresponding ‘conjunctive strengthening’ and ‘disjunctive weakening’ 
conditions:

(CSC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y, then x ∧ z ~ y ∧ z.
(DWC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y, then x ∨ z ~ y ∨ z.

While both constraints are violated by ~i and ~s, the latter is satisfied by ~a. That 
is, on the absolute interpretation of coherence, although strengthening coherent 
propositions by conjunction may destroy their coherence, weakening them by dis-
junction is a coherence-preserving procedure.

The disjunctive weakening condition can be reframed as follows. We know 
that all three coherence relations are reflexive so that z ~ z for each z ∈ Lc. Hence, 
if also x ~ y, the question is whether merging these coherent pairs of propositions 
either by conjunction or disjunction preserves coherence. The answer of the incre-
mental account is twice no while the absolute account at least allows for disjunctive 

Table 3  Conjunction and 
disjunction properties (part I)

(WAC) (WOC) (WCC) (WCD) (EOC) (EOD)

~i + + − − + +
~a + + − − − −
~s + + − − − −
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merging. But why is disjunctive merging allowed in such a case? Does this rest on 
the reflexivity property, in order that merging is coherence-preserving only if the 
same proposition z is added? Or is it possible to generalise (DWC) to any coherent 
pair of propositions (z, z′), regardless of whether z′ is identical with z or not? For 
reasons of completeness, we will again introduce the generalised merging properties 
for conjunctions and disjunctions:

(CMC)  For any x, y, z, z′ ∈ Lc and any P ∈ P: if x ~ y and z ~ z′, then x ∧ z ~ y ∧ z′.
(DMC)  For any x, y, z, z′ ∈ Lc and any P ∈ P: if x ~ y and z ~ z′, then x ∨ z ~ y ∨ z′.

Given the previous considerations, it probably comes as no surprise that ~i does 
not meet these constraints. What is more interesting is that the same holds for ~a. 
Although (DMC) is satisfied by ~a in the special case z = z′, the general condition is 
violated. But this is quite reasonable. Consider the pairs (x, ȳ ) and (y, x̄ ). Probability 
distributions making these pairs coherent in the absolute or the incremental sense 
abound. By (CMC), however, it would be allowed to conclude that the conjunctive 
proposition x ∧ y coheres with the conjunctive proposition x̄ ∧ ȳ , which is highly 
counterintuitive. Analogously, (DMC) entails the counterintuitive consequence that 
the disjunctive propositions x ∨ y and x̄ ∨ ȳ are coherent. Hence, the coherence rela-
tions’ refusal to comply with these principles agrees with intuition.

For a similar pair of principles, consider three propositions x, y and z such that x 
and y both cohere with z. The question then is whether the conjunction or disjunc-
tion of x and y also coheres with z. We call the corresponding constraints the ‘left 
and’ and ‘left or’ condition5:

(LAC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ z and y ~ z, then x ∧ y ~ z.
(LOC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ z and y ~ z, then x ∨ y ~ z.

Analogously, let x cohere both with y and z. Here the question is whether x also 
coheres with the conjunction or disjunction of y and z. These conditions will be 
labelled ‘right and’ and ‘right or’:

(RAC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and x ~ z, then x ~ y ∧ z.
(ROC)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and x ~ z, then x ~ y ∨ z.

Thanks to the symmetry of the coherence relations, (LAC) and (RAC), as well as 
(LOC) and (ROC), amount to the same thing. For example, by replacing in (LAC) x 
by y, y by z and z by x, and by exchanging what is to the left and what is to the right 
of the relation sign ~ , we reach (RAC). We thus confine our argumentation to (LAC) 
and (LOC).

As it turns out, all four conditions are violated by all three coherence relations. 
As to (LAC), this is quite reasonable. Let x be the proposition that Ann has a season 

5 The former constraint is sometimes labelled “cautious monotonicity’ (cf. Huber 2007).
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ticket for Liverpool FC, y the proposition that she has a season ticket for Manchester 
United, and z the proposition that she is an ultra who supports either Liverpool FC 
or Manchester United. Taken by themselves, x and y cohere with z. But the tradi-
tional hostility between fans of Liverpool FC and fans of Manchester United ensures 
that a person with season tickets for both teams will hardly be an ultra who supports 
one of these teams. Hence, the conjunction x ∧ y does not cohere with z.

The case is less clear for (LOC) because it is hard to come up with such a con-
crete example. However, assume that both pairs (x, z) and (y, z) are only slightly 
coherent, i.e. close to being neither coherent nor incoherent. Then it could be the 
case that, by conjoining x and y by disjunction, this slight coherence turns into slight 
incoherence. Hence, the only conjunction and disjunction conditions on which ~a 
and ~i disagree are (EOC), (EOD) and (DWC). The first two are satisfied by ~i and 
violated by ~a, while for the latter the reverse is the case. A summary of the further 
results within this section is given in Table 4.

3.4  Coherence, entailment and equivalence

In the last section, we focus on conditions involving logical entailment and equiva-
lence. Let ⊢ stand for entailment and ⊣⊢ for equivalence. It is a straightforward con-
sequence of the laws governing probability that the probabilistic coherence relations 
defined by (IC), (AC) and (SC) are not affected when propositions are replaced by 
equivalent propositions. That is, all relations satisfy the following conditions on ‘left 
logical equivalence’ and ‘right logical equivalence’:

(LLE)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and y ⊣⊢ z, then x ~ z.
(RLE)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and x ⊣⊢ z, then z ~ y.

Similarly, equivalence itself is a case of coherence. One may quibble over the 
claim that tautologies or contradictions are always coherent because they are equiva-
lent. But if contingent propositions are equivalent, there is no reason to deny them 
coherence.6 The corresponding constraint, which is met by all three coherence rela-
tions, reads as follows:

Table 4  Conjunction and disjunction properties (part II)

(CSC) (DWC) (CMC) (DMC) (LAC) (LOC) (RAC) (ROC)

~i − − − − − − − −
~a − + − − − − − −
~s − − − − − − − −

6 It has also been argued that logically equivalent propositions are maximally coherent (cf. Fitelson 
2003; Siebel and Wolff 2008; contrast Olsson and Schubert 2007). Since we are interested in coherence 
only from a qualitative perspective, we will not dwell on this and related issues.
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(CEQ)  For any x, y ∈ Lc and any P ∈ P: if x ⊣⊢ y, then x ~ y.

But what happens when we replace the equivalence condition in the previous 
constraints by mere entailment? Starting with (CEQ), is it also true that unilateral 
entailment implies coherence, in order that the following condition is satisfied by 
our relations?

(CEN)  For any x, y ∈ Lc and any P ∈ P: if x ⊢ y, then x ~ y.

It is a well-known fact that entailment among contingent propositions implies 
probabilistic relevance; and since probabilistic relevance is symmetric, entailment 
implies incremental coherence. That is, ~i satisfies (CEN). But this is not true for 
the absolute coherence relation ~a. Even if x entails y, and therefore P(y|x) exceeds 
P(ȳ|x) , the latter need not be the case for P(x|y) and P(x̄|y) . In other words, x’s entail-
ing y is compatible with a low conditional probability of x given y; consequently, 
there need not be absolute coherence (and also no strong coherence).

Finally, let us consider counterparts to the first two equivalence principles. They 
are sometimes called ‘left monotonicity’ and ‘right monotonicity’:

(LMO)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and y ⊢ z, then x ~ z.
(RMO)  For any x, y, z ∈ Lc and any P ∈ P: if x ~ y and z ⊢ x, then z ~ y.

None of these constraints is met by any of our coherence relations. There is ample 
reason for why they must not meet (RMO). Let z be identical with a conjunction 
x ∧ z′, in order that z entails x. If x coheres with y, (RMO) rules that z, i.e. x ∧ z′, also 
coheres with y. But even if the conjunct x coheres with y, the conjunct z′ could be a 
proposition that does not cohere with y. And if the incoherence of z′ and y is much 
stronger than the coherence of x and y, the overall result might be that x ∧ z′ does not 
cohere with y. An analogous argument undermines (LMO). Let x, y and z be propo-
sitions such that x coheres with y and z = y ∨ z′. Then, although z is entailed by y, it 
need not cohere with x. For z′ could be a proposition that is highly incoherent with x, 
so that the coherence of x and y is surpassed by the incoherence of x and z′. Table 5 
gives a summary for all properties considered within this section.

Table 5  Entailment and 
equivalence properties

(LLE) (RLE) (CEQ) (CEN) (LMO) (RMO)

~i + + + + − −
~a + + + − − −
~s + + + − − −
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4  Conclusion

Three probabilistic coherence relations were introduced in order to examine their 
logical properties. These properties included reflexivity, symmetry and transitiv-
ity, features concerning negation, conjunction and disjunction, as well as features 
involving inconsistency, entailment and equivalence. The upshot of the discussion is 
twofold. On the one hand, the given characterisations of coherence widely comply 
with intuitive judgements. On the other hand, the different logical structures under-
lying these relations were revealed. More exactly, it was shown that there are a num-
ber of conditions whose satisfaction depends on the chosen coherence relation.

There are different routes to continue our study. One may integrate further prop-
erties to foster insights into the logics of the given coherence relations. Or one may 
examine alternative coherence relations. Three such possibilities come readily to 
mind. First of all, remember that the definition of absolute coherence (AC) offers 
stronger conditions than Roche’s measure. The former requires that both P(x|y) 
and P(y|x) exceed .5, whereas the latter merely calls for an average that exceeds 
.5. One may thus weaken (AC) by making use of Roche’s condition: x  ~R  y iff 
( P(x|y) + P(y|x))/2 > .5. Secondly, there is a variant of strong coherence demand-
ing not only that both ~i and ~a hold but more specifically that P(x|y) > .5 > P(x) and 
P(y|x) > .5 > P(y). This variant rests on a fourth conception of confirmation. Remem-
ber that evidence y confirms hypothesis x in the absolute sense if x is firm in the 
light of y, i.e. P(x|y) > .5. According to the fourth conception, x should not only be 
firm in the light of y but rather be made firm by y, which means that it has not been 
firm before. This is captured by ruling that y raises the probability of x from a value 
smaller than .5 to a value greater than .5. Thirdly, a way of developing further coher-
ence relations is to vary the threshold t beyond which a hypothesis is regarded as 
sufficiently firm. That is, instead of requiring that the posterior probabilities exceed 
.5, one could choose another threshold t ∈ [0, 1) so that the pair of propositions (x, y) 
is coherent iff both P(x|y) and P(y|x) exceed t.

It is evident that these three ways of developing further coherence relations can 
be interblended, thereby giving rise to numerous alternatives. We leave the investi-
gation of these and other extensions of the present study to future research.

Funding This study was supported by Deutsche Forschungsgemeinschaft (Grant Number SI 1731/1-1).

Appendix

(REF)  P(x|x) = 1, and P(x|x̄) = P(x̄|x) = 0. Hence, the definientia of (IC), (AC) 
and therefore also (SC) are satisfied.

(SYM)  (AC), (IC) and thus also (SC) require bidirectional confirmation in ran-
dom order.
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(TRA)  This is a straightforward consequence of the fact that the underlying 
accounts of confirmation are not transitive (cf. Douven 2011; Roche and 
Shogenji 2014; Shogenji 2003).

(INC)  P(x|x) = P(x̄|x̄) = 1, and P(x|x̄) = P(x̄|x) = 0. Hence, since x and x̄ are con-
tingent and the probability function P is regular, P(x|x̄) < P(x) < P(x|x) 
and P(x̄|x) < P(x̄) < P(x̄|x̄) . The definientia of (IC) and (AC), and thus also 
(SC), are therefore violated.

(INC′)  If x ⊥ y, then P(x|y) = P(y|x) = 0. Hence, P(x|y) < P(x) and P(x|y) < P(x|ȳ) , 
as well as P(y|x) < P(y) and P(y|x) < P(y|x̄) . That is, the definientia of (IC) 
and (AC), and thus also (SC), are again violated.

(NSC)  First, if x  ~i  y, then P(x|y) > P(x), which is for all contingent proposi-
tions equivalent to P(ȳ|x̄) > P(ȳ) . Analogously, P(y|x) > P(y) is equiv-
alent to P(x̄|ȳ) > P(x̄ ). Thus, if x  ~i  y, then also x̄  ~i  ȳ , in order that ~i 
satisfies (NSC). Secondly, probability distribution P1 in Table  6 shows 
that neither ~s nor ~a satisfies (NSC). According to this distribution, 
P
1
(x|y) ≈ .731 > .637 ≈ P1(x) > .5, and P

1
(y|x) ≈ .812 > .707 ≈ P1(y) > .5. 

Hence, x ~s y and therefore x ~a y. However, P
1
(ȳ|x̄) ≈ .477 < .5 and hence 

neither x̄ ~a ȳ nor x̄ ~s ȳ.
(CON)  If x ~s y, then P(y|x) > P(y) and P(y|x) > P(ȳ|x) . Hence, P(ȳ|x) < P(ȳ) and 

P(ȳ|x) < P(y|x̄) }, and therefore x ≁i ȳ and x ≁a ȳ and thus also x ≁s ȳ.
(CON′)  Consider probability distribution P6 in Table  7. Here 

P
6
(x|y) = 1 > .5 = P6(x) and P

6
(y|x) = .5 > .25 = P6(y); hence, x  ~i  y. Fur-

thermore, P
6
(z|x) = .5 > .25 = P6(z) and P

6
(x|z) = 1 > .5 = P6(x), so that 

also x ~i z. Nonetheless, y ⊥ z because P6(y ∧ z) = 0, with the result that ~i 
violates (CON′). On the other hand, if x ~a y, then P(y|x) > .5 and hence 

Table 6  Probability distributions 
for pairs of propositions

x y P1 P2 P3 P4 P5

1 1 15/29 3/16 5/34 0 1/10
1 0 3/25 45/256 13/44 1/4 0
0 1 11/58 11/32 13/44 1/4 8/10
0 0 251/1450 75/256 49/187 2/4 1/10

Table 7  Probability distributions for triples of propositions, where ai = 1 − Pi(x ∨ y ∨ z)

x y z P6 P7 P8 P9 P10 P11 P12 P13

1 1 1 0 1/691 7/53 0 26/105 4/17 61/213 0
1 1 0 1/4 5/36 29/101 0 10/43 5/67 0 85/169
1 0 1 1/4 1/199 0 1/16 3/40 1/32 0 36/145
1 0 0 0 1/56 0 7/16 0 1/24 3/16 0
0 1 1 0 25/56 9/34 7/16 4/43 1/34 5/69 0
0 1 0 0 14/53 0 1/16 1/70 1/26 0 0
0 0 1 0 6/49 15/67 0 5/37 18/89 44/976 0
0 0 0 2/4 a7 a8 0 a10 a11 a12 a13



7711

1 3

Synthese (2021) 198:7697–7714 

P(ȳ|x) ≤ .5. Hence, since P(ȳ|x) = P(ȳ ∧ z|x) + P(ȳ ∧ ̄z|x ), P(ȳ ∧ z|x) ≤ .5. 
Finally, since y ⊥ z, z implies ȳ , in order that P(ȳ ∧ z|x) = P(z|x) ≤ .5. That 
is, x ≁a z and x ≁s z, entailing that both relations satisfy (CON′).

(WAC)  As to incremental coherence, since P is regular and x is contin-
gent, P(x|x ∧ y) = 1 > P(x). Due to the symmetry of incremental con-
firmation, it also holds that P(x ∧ y|x) > P(x ∧ y); hence, x  ~i  x ∧ y. 
As to absolute coherence, since P is regular and x is contingent, 
P(x|x ∧ y) = 1 > P(x̄|x ∧ y). Moreover, P(x ∧ y|x) = P(y|x) and P(x ∧ y|x)  
= P(x̄ ∨ ȳ|x) = P(ȳ|x) . Since x  ~a  y, we also get P(y|x) > P(ȳ|x) , so that 
P(x ∧ y|x) = P(y|x) > P(ȳ|x) = P(x ∧ y|x ). Hence, x  ~a x ∧ y. Therefore, all 
three accounts satisfy (WAC).

(WOC)  As to incremental coherence, since P is regular and x is contingent, 
P(x ∨ y|x) = 1 > P(x). Due to the symmetry of incremental confirmation, we 
thus get x ~i x ∨ y. As to absolute coherence, P(x ∨ y|x) = 1 > 0 = P(x ∨ y|x ). 
Furthermore, since x  ~a  y, P(x|y) > P(x̄|y) , and therefore 
P(x ∧ y) > P(x̄ ∧ y). Hence, P(x) = P(x ∧ y) + P(x ∧ ȳ) > P(x̄ ∧ y) + P(x ∧ ȳ) 
 > P(x̄ ∧ y). Consequently, P(x|x ∨ y) = P(x)/P(x ∨ y) > P(x̄ ∧ y)/P(x ∨ y) = P(
x̄|x ∨ y). This means that x ~a x ∨ y and x ~s x ∨ y, so that all three accounts 
satisfy (WOC).

(WCC)  According to probability distribution P2 in Table 6, P2(x ∧ y|x) ≈ .516 > .5 
> .188 ≈ P2(x ∧ y), and P2(x|x ∧ y) = 1 > .5 > P2(x). Hence, x ~i x ∧ y and x ~a 
x ∧ y, so that also x  ~s x ∧ y. However, P2(x|y) ≈ .353 < 0.363 ≈ P2(x) < .5. 
Therefore, neither x ~i y nor x ~a y, entailing that x ~s y does not hold, too.

(WCD)  Consider again distribution P2. P2(x|x ∨ y) ≈ .514 > .5 > .363 ≈ P2(x), and 
P2(x ∨ y|x) = 1 > .707 ≈ P2(x ∨ y) > .5. Thus, x ~i x ∨ y and x ~a x ∧ y, imply-
ing that also x ~s x ∨ y But since P2(x|y) < P2(x) < .5, x and y are assessed 
incoherent on all three accounts.

(EOC)  Since x is contingent and P is regular, P(x|x ∧ y) = 1 > P(x). Therefore, by 
the symmetry of incremental confirmation, P(x ∧ y|x) > P(x ∧ y), in order 
that ~i satisfies (EOC). On the other hand, as is shown by distribution P3 
in Table  6, there are situations in which P3(x ∧ y|x) = P3(x ∧ y|y) ≈ .332 
< P3(x ∧ y) ≈ 0.147 < .5. Hence, neither x ~ x ∧ y nor y ~ x ∧ y for either ~a 
or ~s.

(EOD)  Since x ∨ y is contingent and P is regular, P(x ∨ y|x) = 1 > P(x ∨ y). Hence, 
by symmetry also P(x|x ∨ y) > P(x), entailing that x ~i x ∨ y. But distribu-
tion P4 in Table 6 proves possible that P(x|x ∨ y) = P(y|x ∨ y) = .5, so that 
neither x ~ x ∨ y nor y ~ x ∨ y for either ~a or ~s.

(CSC)  Consider probability distribution P7 in Table  7. P7(x|y)  
≈ .165 > .163 ≈ P7(x), in order that by symmetry x ~i y. However, P7(x ∧ 
z|y ∧ z) ≈ .003 < .006 ≈ P7(x ∧ z), implying that x ∧ z ~i y ∧ z does not hold. 
Furthermore, according to distribution P8 in the same table, P8(x|y)  
≈ .613 > .5 > .419 ≈ P8(x) and P8(y|x) = 1 > .684 ≈ P8(y) > .5; therefore 
x ~s y. But P8(x ∧ z|y ∧ z) ≈ .333 < .5, with the result that both ~a and ~s vio-
late (CSC).
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(DWC)  To show that ~a satisfies (DWC), assume that x ∨ z ≁a y ∨ z because P(x 
∨ z|y ∨ z) = P(x ∧ y ∧ z|y ∨ z) + P(x ∧ y ∧ ̄z|y ∨ z) + P(x ∧ ̄y ∧ z|y ∨ z) + P(x̄ ∧ y ∧ -
z|y ∨ z) + P(x̄ ∧ ȳ ∧ z|y ∨ z) ≤ .5. Since P(x ∧ ȳ ∧ ̄z|y ∨ z) = P(x̄ ∧ ȳ ∧ ̄z|y ∨ z) = 
0, this implies that the remaining probability P(x̄ ∧ y ∧ ̄z|y ∨ z) > .5. Hence, 
P(x̄ ∧ y ∧ ̄z|y) ≥ P(x̄ ∧ y ∧ ̄z|y ∨ z) > .5. But this entails that P(x ∧ y ∧ z|y)  
+ P(x ∧ y ∧ ̄z|y) = P(x|y) ≤ .5, so that x ≁a y. Since an analogous argument 
applies if x ∨ z ≁a y ∨ z because P(y ∨ z|x ∨ z) ≤ .5, ~a satisfies (DWC). Fur-
thermore, distribution P7 in Table 7 proves that ~i does not meet this con-
straint. Here, x ~i y but P7(x ∨ z|y ∨ z) ≈ .730 < .732 ≈ P7(x ∨ z), so that x ∨ z 
≁i y ∨ z. One can easily find similar distributions showing that ~s also vio-
lates (DWC).

(CMC)  We have seen that (CSC) is violated by all coherence relations, that is, it 
is possible that x ~ y but x ∧ z ≁ y ∧ z. Since reflexivity implies that z ~ z, it 
is also possible that x ~ y and z ~ z but x ∧ z ≁ y ∧ z. Hence, if z′ = z, then it is 
possible that x ~ y and z ~ z′ while x ∧ z ~ y ∧ z′. Hence, (CMC) is also vio-
lated by all coherence relations.

(DMC)  By analogy with (CMC), the fact that ~s and ~i violate (DWC) entails that 
they also violate (DMC). To show that, although ~a satisfied (DWC), it 
does not satisfy (DMC), let y be ȳ , z be y and z′ be x̄ , and assume that 
x ~a ȳ and y ~a x̄ . Probability distribution P9 in Table 7 provides an exam-
ple because all relevant conditional probabilities for these pairs equal 1. 
However, it is clearly not the case that x ∨ y ~a ȳ ∨ x̄.

(LAC)  Probability distribution P10 in Table 7 shows that none of the coherence 
relations satisfies (LAC). P10(x|z) ≈ .586 > .555 ≈ P10(x) > .5, P10(z|x)  
≈ .581 > .551 ≈ P10(z) > .5, P10(y|z) ≈ .619 > .587 ≈ P10(y) > .5 and P10(z|y)  
≈ .580 > .551 ≈ P10(z) > .5. Hence, x ~s z and y ~s z. However, P10(x ∧ y|z)  
≈ .450 < .480 ≈ P10(x ∧ y|z) < .5. Therefore, neither x ∧ y ~i z nor x ∧ y ~a z, 
and a fortiori not x ∧ y ~s z.

(LOC)  An example showing that none of the accounts satisfies (LOC) is given 
by probability distribution P11. P11(x|z) ≈ .535 > .532 ≈ P11(x) > .5, P11(z|x)  
≈ .501 > .5 > .498 ≈ P11(z), P11(y|z) ≈ .531 > .527 ≈ P11(y) > .5 and P11(z|y)  
≈ .502 > .5 > .498 ≈ P11(z). Accordingly, x ~s z and y ~s z. But P11(z|x ∨ y) 
≈ .493 < .498 ≈ P11(z) < .5. Hence, it is not the case that x ∨ y ~ z for each of 
the three accounts.

(RAC)  Due to the symmetry of the coherence relations, (RAC) is equivalent to 
(LAC).

(ROC)  Due to the symmetry of the coherence relations, (ROC) is equivalent to 
(LOC).

(LLE)  This is a straightforward consequence of the fact that the laws governing 
probability are not affected when propositions are replaced by equivalent 
propositions.

(LRE)  Ditto.
(CEQ)  If x and y are equivalent, then P(x|y) and P(y|x) equal 1 and are thus 

smaller than .5. Moreover, since x and y are contingent and P is regular, it 
is also entailed that P(x|y) > P(x̄|y) and P(y|x) > P(ȳ|x) . Hence, x ~ y for all 
three relations.
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(CEN)  If x entails y, then P(y|x) = 1. Hence, since y is contingent and P is regular, 
it is also implied that P(y|x) > P(y). By symmetry we obtain P(x|y) > P(x), 
with the result that x ~i y. On the other hand, consider probability distribu-
tion P5 in Table 6. Here x entails y because P5(y|x) = 1 with x and y being 
contingent. However, P5(x|y) = 1/9, so that neither x ~a y nor x ~s y.

(LMO)  According to probability distribution P12 from Table  7, P12(x|y)  
≈ .798 > .5 > .474 ≈ P12(x) and P12(y|x) ≈ .604 > .5 > .359 ≈ P12(y). There-
fore, x ~ y for all three coherence relations. Furthermore, y ⊢ z because 
P12(z|y) = 1 with z and y being contingent. However, x ~ z holds for no 
relation because P12(x|z) ≈ .352 < .474 ≈ P12(x) < .5.

(RMO)  Consider probability distribution P13. P13(x|y) = 1 > .751 > .5 ≈ P13(x) and 
P13(y|x) ≈ .670 > .503 ≈ P13(y) > .5. Hence, x ~ y on all three accounts. 
Moreover, z ⊢ x because P12(x|z) = 1 with x and z being contingent. 
Nonetheless, we have P13(y|z) = 0 < .5 < .503 ≈ P13(y), implying that y ~ z 
obtains for none of the accounts.
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