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Abstract
The disjunction problem and the distality problem each presents a challenge that 
any theory of mental content must address. Here we consider their bearing on purely 
probabilistic causal (ppc) theories. In addition to considering these problems sepa-
rately, we consider a third challenge—that a theory must solve both. We call this 
“the hard problem.” We consider 8 basic ppc theories along with 240 hybrids of 
them, and show that some can handle the disjunction problem and some can handle 
the distality problem, but none can handle the hard problem. This is our main result. 
We then discuss three possible responses to that result, and argue that though the 
first two fail, the third has some promise.

Keywords Causality · Disjunction · Distality · Meaning · Mental content · Probability ·  
Semantics

1 Introduction

Causal theories of mental content come in many varieties, but they are all based on 
the same motivating idea—that the content of a given mental representation type is 
determined by what causes tokens of that type.1 If, say, the content of perceptual belief 
type b is the proposition that that’s a dog, then, the story goes, this is because tokens 
of b are caused by the presence of dogs. This is just part of the picture, however, since 
tokens of b are also caused by foxes-at-a-distance, by retinal states of various sorts, 
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and by lots of other things. The general challenge is to say why b’s content is one 
proposition rather than another, and to spell out an answer in the language of causality, 
perhaps employing ideas from logic and probability theory along the way.2

This challenge has many facets. Suppose, for simplicity, that tokens of b occur only 
when they are caused by dogs or by foxes-at-a-distance. If a given causal theory T 
implies that b’s content is the proposition that that’s a dog-or-fox-at-a-distance and 
isn’t the proposition that that’s a dog or the proposition that that’s a fox-at-a-distance, 
then T entails that beliefs of this type never misrepresent—they are never false. It may 
be acceptable that a theory should occasionally judge that some belief types have con-
tents that are never false. However, any theory that goes farther, and judges that mis-
representation is impossible, has gone too far. Misrepresentation is ubiquitous and the-
ories of content, whether they are causal or not, must explain why beliefs have contents 
that are sometimes false. This is the point of the infamous “disjunction problem.”3

The disjunction problem has a cousin, the so-called “distality problem.”4 Suppose 
now that tokens of b are caused by dogs, by retinal states of type s, and by nothing 
else, where dogs cause retinal states of type s, and the latter, in turn, cause tokens 
of b. If b’s content is the proposition that that’s a dog, and a given causal theory T 
says that b’s content is the proposition that a token of s is occurring (which concerns 
the more proximate cause), and isn’t the proposition that that’s a dog (which con-
cerns the more distal cause), then T has made a mistake. Here again, there’s noth-
ing wrong with a theory that entails that some beliefs are about retinal states, but a 
theory that says beliefs are never about events in the external world has gone too far.

The disjunction problem and the distality problem both concern ways in which a 
theory of content can go wrong. To cleanly separate these two problems, it helps to 
think of the disjunction problem as a synchronic problem and the distality problem 
as diachronic (Stampe 1977, 44); see Fig. 1. The arrows from Cd to X, from X to Cp, 
and from Cp to B are causal; they indicate that Cd (the distal cause in the chain) causes 
X, X causes Cp (the proximate cause in the chain), and Cp causes B, where B is the 
proposition that this or that organism has a token of b at a given time.5 The arrow 
from X to X  ∨  Y, in contrast, is logical; it indicates that X logically entails X ∨ Y. The 
issue raised by the disjunction problem concerns whether b’s content is X and isn’t the 

2 Here and throughout our focus in on causal theories of the contents of perceptual belief types. How 
exactly such theories should be incorporated into fully general theories of the contents of belief types is 
a difficult but separate issue (as is the issue of how they should be incorporated into theories of the con-
tents of mental state types other than beliefs). See Adams and Aizawa (2017, sec. 4.4), Buras (2009), and 
Gerken (2014) for relevant discussion.
3 The disjunction problem is widely associated with Fodor. This makes some sense, since Fodor makes 
heavy use of it in his 1984 paper “Semantics, Wisconsin style” and in many subsequent works (e.g., 
Fodor 1987, Ch. 4; 1990a, Ch. 3; b). But there are works prior to Fodor (1984) in which the essence 
of the disjunction problem is discussed (though not under that name). See, e.g., Stampe (1977, 44) and 
Dretske (1983, p. 89). For further discussion and references, see Adams and Aizawa (2017).
4 The distality problem goes back (at least) to Armstrong (1968, Ch. 11) and Dretske (1981, Ch. 6). See 
Adams and Aizawa (2017) for further discussion and references.
5 Here, for ease of presentation, we’re being a bit sloppy. Cd, X, Cp, and B are propositions, not events, 
but causation is a relationship among events, not propositions. We trust that readers will not be thrown 
into confusion by this.
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“simultaneous” proposition X ∨ Y. The issue in the distality problem concerns whether 
b’s content is X and isn’t the “earlier” proposition Cd or the “later” proposition Cp.6

Our interest here is in purely probabilistic causal (ppc) theories. Suppose that 
tokens of b are caused by X1, by X2, …, and by Xn. Let T be a ppc theory. If T entails 
that b’s content is X1 and isn’t X2, …, or Xn, then this is solely because of B’s proba-
bilistic (and causal) profile with respect to X1, X2, …, and Xn. Perhaps, for example, 
it’s because B indicates that X1 is true in that Pr(X1  | B) = 1, but does not do the same 
for any of X2, …, or Xn. More specifically, a ppc theory T takes as “input” a set (per-
haps infinite) of candidate propositions for b’s content (where, since a ppc theory is 
a causal theory, these propositions are restricted to propositions about things that 
can cause tokens of b), a probability distribution defined over B and those proposi-
tions, and nothing else, and then “outputs” a verdict on b’s content—for instance, 
the verdict that b’s content is X and isn’t any other proposition.7

Some causal theories, in contrast, are probabilistic but only “partially” so. They 
take as input not just a set of candidate propositions for b’s content and a probability 
distribution defined over B and those propositions, but also something else.8

We will focus on ppc theories, but this isn’t because we’re convinced that an ade-
quate theory of content should be purely probabilistic. We harbor no such convic-
tion. Our motivation, rather, is that the prospects of ppc theories in the context of 
the disjunction problem and the distality problem have been underexplored in the lit-
erature, and that this gap is unfortunate since a more thorough examination might be 
significant.9 If it turns out that some ppc theories are able to cope with the disjunction 
problem and the distality problem, and if ppc theories are nonetheless problematic as 

Fig. 1  The synchronic disjunction problem and the diachronic distality problem

6 We aren’t assuming that causes always precede their effects; it suffices that this is often the case with 
causal chains leading to belief states.
7 We put “input” and “output” in scare quotes because we aren’t saying that theories of content are deci-
sion procedures in the sense of providing an algorithm.
8 An anonymous reviewer asks whether partially probabilistic causal theories are logically stronger than 
their corresponding purely probabilistic causal theories. Take some ppc theory T and some partially 
probabilistic variant of it T*, and suppose that each theory has the form “For any b and X, b’s content is 
X if and only if …” where the right-hand side of T* is logically stronger than the right-hand side of T. 
It doesn’t follow that T* is logically stronger than T. In fact, it might well be that T and T* are mutually 
exclusive. Compare: the right-hand side of “S is a bachelor if and only if S is an unmarried adult male” 
is logically stronger than the right-hand side of “S is a bachelor if and only if S is an adult male”, but the 
first biconditional is inconsistent with and thus isn’t logically stronger than the second.
9 We aren’t claiming here that there has been absolutely no discussion of ppc theories in the context of 
the disjunction problem and the distality problem. Artiga and Sebastián (forthcoming) examine the theo-
ries of Eliasmith (2005), Rupert (1999), and Usher (2001) in that context. We will discuss these theories 
in what follows. However, the present point is that the class of ppc theories in logical space goes well 
beyond these examples. This should be abundantly clear by the end of Sect. 3.
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a whole, then this isn’t because of the disjunction and distality problems. If, instead, 
it turns out that no ppc theory can handle both problems, then this provides addi-
tional motivation for partially probabilistic theories and also for non-probabilistic 
theories (i.e., theories that don’t take probability distributions as relevant inputs). Fur-
thermore, it might be that a more thorough examination of ppc theories will suggest 
novel theories in the partially probabilistic camp, and perhaps some such theories 
will compare favorably with extant partially probabilistic theories.

The remainder of this paper is divided into five sections. In Sect. 2, we clarify how 
we mean for the disjunction and distality problems to be understood. We also intro-
duce a third problem, which we call “the hard problem.” In Sect. 3, we describe four 
types of ppc theory, and present two theories of each type. We call the eight theories 
in question “T1,” “T2,” and so on. Some of these have been discussed in the extant 
literature, but others are new. We also note several—240, to be exact—hybrids of two 
or more of T1–T8. In Sect. 4, we describe which of our candidate theories can handle 
the disjunction problem, which can handle the distality problem, and which can han-
dle the hard problem. It turns out that though some can handle the first, and some can 
handle the second, none can handle the third. This is our main result. In Sect. 5, we 
consider three potential responses to that result, and argue that the first two fail, but 
the third has some promise. In Sect. 6, we offer some concluding comments.

2  The disjunction problem, the distality problem, and the hard 
problem

2.1  The disjunction problem

Our target theories of content are causal, from which it follows that some candidate 
propositions for b’s content are ruled out from the start. For example, B is ruled out 
as b’s content, on the grounds that b can’t be caused by B’s being true, and proposi-
tions about the future are ruled out as well, and for the same reason.

Consistent with this, consider the following:

(DISJ1)  b’s content is X, X ∨ Y, or Y.
(DISJ2)  1 > Pr(X ∨ Y) > Pr(X&Y) = 0.
(DISJ3)  Pr(B&X) > 0 and Pr(B&Y) > 0.

We will say that a given ppc theory T can handle the disjunction problem if and only 
if there is a belief state b, there are propositions X, X ∨ Y, and Y, and there is a prob-
ability distribution such that (i) (DISJ2) and (DISJ3) hold and (ii) given the assump-
tion that (DISJ1) holds, T outputs the result that b’s content is X and isn’t X ∨ Y or 
Y.10 We propose that an adequate ppc theory of content should be able to handle the 

10 Note that the right-hand side of this biconditional leaves it open that there is a belief state b, there are 
propositions X, X ∨ Y, and Y, and there is a probability distribution such that (i) (DISJ2) and (DISJ3) hold 
and (ii) given the assumption that (DISJ1) holds, it’s not the case that T outputs the result that b’s content 
is X and isn’t X ∨ Y or Y.
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disjunction problem thus understood. A ppc theory that passes this test thus makes 
room for misrepresentation.

The probabilities deployed in (DISJ2) and (DISJ3), and in what follows, should 
not be understood as credences. That would put the cart before the horse, since we 
want to consider theories that characterize propositional contents in terms of prob-
abilities; this means that the probabilities themselves should not involve degrees of 
belief. A broadly “objective” interpretation of probability is needed, but we won’t 
assume any particular objective interpretation here.11,12

Our way of understanding the disjunction problem differs from Fodor’s (1987) in 
that his, but not ours, requires that each of X and Y be causally sufficient but not nec-
essary for b.13 We prefer ours because it doesn’t involve that requirement and thus 
is more general, at least in that respect. We leave it open, however, that an adequate 
theory of content should also be able to handle Fodor’s version of the disjunction 
problem. The important point here is just that an adequate theory of content should 
be able to handle ours.14

Assumptions (DISJ2) and (DISJ3) are pretty modest; for example, they do not 
entail that B is probabilistically dependent on X or on Y. The two assumptions there-
fore fail to reflect a feature of our simple example. We said that tokens of b are 
caused by dogs and by foxes-at-a-distance, and it is natural to assume that these 
causes raise the probability of b’s occurring. This modesty is all for the good, how-
ever, since we are especially interested in finding theories of content that fail to 
solve the disjunction problem. If there is no probability distribution that satisfies 
our austere requirements, there is no probability distribution that satisfies a logically 
stronger set of requirements. We grant, though, that exploring different formulations 
of the disjunction problem is a good project for the future, and we take one step in 
that direction in Sect. 5.3. These points about the disjunction problem also apply to 
our formulation of the distality problem, to which we now turn.

11 There are numerous interpretations of probability; see Hájek (2012) for helpful discussion.
12 An anonymous reviewer objects that ppc theories don’t apply to cases where we lack sample frequen-
cies, and that this is true in many cases of perceptual beliefs. The issue, though, isn’t whether we have 
the requisite sample data. The issue is whether the requisite probabilities exist. If they do, then even if we 
don’t have evidence about their values, ppc theories have application.
13 Here is Fodor’s (1987, p. 102, emphasis original) formulation: “… a viable causal theory of content 
has to acknowledge two kinds of cases where there are disjoint causally sufficient conditions for the 
tokenings of a symbol: the case where the content of the symbol is disjunctive (‘A’ expresses the prop-
erty of being (A v B)) and the case where the content of the symbol is not disjunctive and some of the 
tokenings are false (‘A’ expresses the property of being A, and B-caused ‘A’ tokenings misrepresent)”.
14 It should be clear, then, that we are giving a necessary condition, not a sufficient condition, for the 
adequacy of a theory of content. The same is true with respect to the distality problem and the hard prob-
lem as formulated below.
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2.2  The distality problem

Let’s return to the causal chain depicted in Fig.  1, from Cd to X to Cp to B, and 
consider:

(DIST1)  b’s content is X, Cp, or Cd.
(DIST2)  B’s probability is increased by each of Cp, X, and Cd, Cp’s probability is 

increased by each of X and Cd, and X’s probability is increased by Cd.
(DIST3)  Cp screens-off each of X and Cd from B, and X screens off Cd from each 

of B and Cp.15

These last two propositions are based on the assumption that (a) B is caused by each 
of Cd, X, and Cp, (b) Cp is caused by each of Cd and X, (c) X is caused by Cd, (d) 
causes (at least typically) increase the probabilities of their effects, and (e) events 
often screen-off their causes from their effects.16

We will say that a given ppc theory T can handle the distality problem if and 
only if there is a belief state b, there are propositions X, Cp, and Cd that are causally 
related in the way just described, and there is a probability distribution such that (i) 
(DIST2) and (DIST3) hold and (ii) given the assumption that (DIST1) holds, T out-
puts the result that b’s content is X and isn’t Cp or Cd.17 We propose that an adequate 
ppc theory of content should be able to handle the distality problem thus understood.

We mean for the distality problem to be understood so that it resembles but is dis-
tinct from “the solipsism problem.” The latter says that an adequate theory of mean-
ing must allow for the possibility that organisms have beliefs about things outside 
their own minds. The former goes farther and says that an adequate theory of mean-
ing must allow for the possibility that organisms have beliefs about things outside 
their own bodies; this happens, for example, when you have beliefs about dogs as 
opposed to your retinal states. Any theory that can handle the distality problem can 
handle the solipsism problem, but not vice versa.18

2.3  The hard problem

We will say that a given ppc theory T can handle the hard problem if and only if T 
can handle both the disjunction problem and the distality problem. The hard prob-
lem is harder to handle than the disjunction problem and the distality problem taken 

15 Here we have in mind “no-impact” screening-off: For any P, Q, and R, Q screens-off P from R pre-
cisely when Pr(R | Q & P) = Pr(R | Q) and Pr(R  |  ~ Q & P) = Pr(R  |  ~ Q). This kind of screening-off is logi-
cally stronger than “positive impact screening-off” and “negative impact screening-off” as formulated in 
Roche and Shogenji (2014).
16 We aren’t assuming that causality is transitive. We’re assuming only that some effects are caused both 
by their causes and by the causes of their causes.
17 The distality problem so understood resembles what Artiga and Sebastián (forthcoming, Sec. 3.2) call 
the “wrong distality attribution problem,” but the two are different.
18 Here we assume, contrary to Descartes, that minds have spatial locations – they are inside the bodies 
of minded individuals.
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individually. Why we give the hard problem that moniker will be clear by the end of 
Sect. 4.

3  A gaggle of ppc theories

This section has seven subsections. In the first four, we set out ppc theories T1–T8. 
In the fifth, we provide a table of those eight theories, and note an important dis-
tinction. In the sixth, we relate T1–T8 to various probabilistic theories in the extant 
literature. In the seventh, we provide two schemas for constructing hybrids of two or 
more of T1–T8. The result is a total of 240 additional ppc theories.

3.1  Maximum‑probability theories

Consider the following:

T1: For any b and X, b’s content is X if and only if Pr(X | B) = 1.
T2: For any b and X, b’s content is X if and only if Pr(B | X) = 1.

We call these theories “Maximum-Probability Theories,” since each says that 
whether b’s content is X is a matter of whether a given probability has the maximum 
value of unity. The probability at issue in T1 is the probability of X given B. The 
probability at issue in T2 is the probability of B given X. Since there can be cases 
where the one probability equals unity but the other one does not, T1 and T2 are 
logically distinct.

It might seem that T1 and T2 are too demanding in requiring probabilities of 1, 
and that they should be relaxed so that the probabilities in question need to be high 
but don’t need to be maximally high. However, note that these relaxed versions of 
T1 and T2 would be open to the worry that there’s no non-arbitrary threshold for 
high probability. Why, for example, set the bar at 0.95 as opposed to 0.949?19

Note too that T1 and T2 can be understood so that the probabilities in question 
are restricted to special circumstances. Dretske (1981), for example, defends a the-
ory in the neighborhood of T1 on which Pr(X | B) is relativized to a certain “training” 
period. This allows there to be cases after the relevant training period where B is 
true but X is false.

3.2  Increase‑in‑probability theories

T1 and T2 contrast with the following theories:

19 Note too that what we say about T1 and T2 in relation to the hard problem carries over to T1 and T2 
when relaxed so that the probabilities in question need to be high but don’t need to be maximally high.
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T3: For any b and X, b’s content is X if and only if Pr(X | B) > Pr(X).
T4: For any b and X, b’s content is X if and only if Pr(B | X) > Pr(B).

These are “Increase-in-Probability Theories.” Although neither T3 nor T4 is equiv-
alent with either of T1 and T2, T3 and T4 are equivalent with each other, since 
increase in probability is symmetric. We therefore count them as a single theory, 
which we call “T3/T4.”

We don’t know of any proponents of T3/T4, although Artiga and Sebastian 
(forthcoming) discuss it. We mention this theory for completeness, but there’s a fur-
ther reason: even if T3/T4 is implausible on its own, maybe that theory can be used 
to construct a hybrid theory on which b’s content is X if and only if the right side of 
T3/T4 holds and some additional condition does too. We explore this possibility in 
Sect. 3.7.

T3/T4 resembles T1 and T2: its right-hand side, like T1’s right-hand side and 
T2’s right-hand side, is non-contrastive. To see whether proposition X is the content 
of b, you don’t need to consider an alternative proposition Y. T1, T2, and T3/T4 are 
in that respect unlike the theories to which we now turn.

3.3  Highest‑probability theories

Here are two more theories:

T5: For any b and X, b’s content is X if and only if Pr(X | B) > Pr(Y | B) for any Y 
distinct from X.20

T6: For any b and X, b’s content is X if and only if Pr(B | X) > Pr(B | Y) for any Y 
distinct from X.

These are “Highest-Probability Theories.” The right-hand side of T5 says that the 
probability of X given B is greater than the probability of any other proposition 
given B. The right-hand side of T6 says that the probability of B given X is greater 
than the probability of B given any other proposition. There are cases where the 
right-hand side of the one holds but the right-hand side of the other does not, so T5 
and T6, unlike T3 and T4, are logically distinct.

3.4  Highest‑degree‑of‑confirmation theories

T5 and T6 are contrastive analogues of the non-contrastive T1 and T2. The follow-
ing, in turn, are contrastive analogues of T3 and T4:

T7: For any b and X, b’s content is X if and only if DOC(X, B) > DOC(Y, B) for 
any Y distinct from X.
T8: For any b and X, b’s content is X if and only if DOC(B, X) > DOC(B, Y) for 
any Y distinct from X.

20 Here and throughout by “distinct” we mean “logically independent”.
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These are “Highest-Degree-of-Confirmation Theories,” where, for any propositions 
E and H, DOC(H, E) is the degree to which E confirms H, where confirmation is 
a matter of increase in probability. The right-hand side of T7 says that the degree 
to which B confirms X is greater than the degree to which B confirms any other 
proposition. The right-hand side of T8 says that the degree to which X confirms B is 
greater than the degree to which any other proposition confirms B.

How is degree of confirmation to be measured? Several prima facie plausi-
ble answers to this question have been discussed in the literature.21 One is that the 
degree to which E confirms H is a matter of the difference between H’s probability 
given E (i.e., H’s posterior probability relative to E) and H’s prior probability:

This is the “difference measure” of degree of confirmation. Another prima facie 
plausible answer is that the degree to which E confirms H is a matter of the ratio of 
H’s probability given E and H’s prior probability:

This is the “ratio measure” of degree of confirmation.  DOCDM and  DOCRM 
both meet the following minimal adequacy condition on measures of degree of 
confirmation:

(*)  There is a number n such that DOC(H, E) >/=/< n if and only if 
Pr(H | E) > / = / < Pr(H).22

Here “n” is the neutral point between confirmation and disconfirmation. For 
 DOCDM, the neutral point n is 0; for  DOCRM, the neutral point is 1.

DOCDM and  DOCRM are not equivalent.  DOCRM is symmetric in that  DOCRM(H, 
E) = DOCRM(E, H) in all cases. This isn’t true of  DOCDM, for  DOCDM(H, 
E) ≠ DOCDM(E, H) in some cases.

We take no stand here on whether one of  DOCDM and  DOCRM is preferable to the 
other. It turns out, however, that if T7 and T8 are understood in terms of  DOCRM, 
then T6, T7, and T8 are all logically equivalent to each other. We show this in 
Appendix 1. So, since T6 is already on the table, and since no two of T6, T7, and 
T8 are logically equivalent when T7 and T8 are understood in terms of  DOCDM, we 
shall understand T7 and T8 in terms of  DOCDM.23 This choice allows an additional 
ppc theory to be placed on the table.

DOCDM(H,E) = Pr (H|E)−Pr (H)

DOCRM(H,E) = Pr (H|E)∕Pr (H)

23 In Sect. 5.3, we address variants of T7 and T8 on which neither  DOCDM nor  DOCRM is assumed.

21 See, e.g., Crupi et al. (2007, 2013), Eells and Fitelson (2002), and Roche and Shogenji (2014).
22 This is a compressed way of saying that there is a degree n such that (i) DOC(H, E) > n if and only if 
Pr(H | E) > Pr(H), (ii) DOC(H, E) = n if and only if Pr(H | E) = Pr(H), and (iii) DOC(H, E) < n if and only 
if Pr(H | E) < Pr(H).



7206 Synthese (2021) 198:7197–7230

1 3

3.5  B‑to‑X theories versus X‑to‑B theories

T1–T8 are listed in Table 1. Even though we count T3 and T4 as a single theory, 
we list them separately in the table so as to highlight an important distinction. T1, 
T3, T5, and T7 are “B-to-X” theories in that the right-hand side of each involves a 
conditional probability that “moves” from B as the conditioning proposition to X as 
the conditioned proposition. T2, T4, T6, and T8, in contrast, are “X-to-B” theories in 
that the right-hand side of each involves a conditional probability that “moves” from 
X as the conditioning proposition to B as the conditioned proposition. T3 and T4 
are logically equivalent to each other, but this isn’t true in general when it comes to 
B-to-X theories and their X-to-B counterparts.24

3.6  Extant probabilistic theories

T1–T8 are all inspired by extant probabilistic theories (whether or not they are 
pure). First, T1, T2, and T3/T4 are inspired by Dretske’s (1981, 1983) theory. This 
is a theory on which b’s content is X only if Pr(X | B) = 1 > Pr(X).25 T1 and T2 are 
like Dretske’s in requiring a maximal probability of unity, whereas T3/T4 is like 
Dretske’s in requiring a probability increase. Second, T5 and T6 are inspired by 
Rupert’s (1999) theory, on which Pr(B | X) needs to be greater than Pr(B | Y) for 
any Y distinct from X, but doesn’t need to have the maximal value of unity. Rupert 
restricts his theory to natural kind concepts, and so, strictly speaking, it isn’t identi-
cal to T6 (which isn’t thus restricted). Even so, T6 is obviously similar to Rupert’s, 
and so is T5 in requiring a highest probability as opposed to a maximum probabil-
ity. Third, T7 and T8 are inspired by Eliasmith’s (2005) and Usher’s (2001) theo-
ries. These are theories on which  DOCRM(B, X) needs to be greater than  DOCRM(B, 
Y) for any Y distinct from X, but doesn’t need to clear some absolute threshold.26 
They frame their theories in terms of “information” as opposed to “confirmation,” 
yet T8 is nonetheless similar to their theories, and so is T7 in requiring a highest 
degree of confirmation as opposed to a degree of confirmation greater than some 
absolute threshold.

24 Our distinction between B-to-X theories and X-to-B theories resembles Field’s (1990, p. 106) distinc-
tion between “head-world reliability” and “world-head reliability.” It also corresponds to Nozick’s (1981) 
distinction between “truth-indicating” and “truth-tracking”.
25 Dretske’s theory (1981, 1983) additionally requires, roughly, that X be logically stronger than Y for 
any Y distinct from X such that Pr(Y | B) = 1 > Pr(Y). See Dretske (1981, Ch. 7) on carrying information in 
“completely digitalized form” for the official requirement.
26 Consider the following logarithmic variant of  DOCRM:

Strictly speaking, Eliasmith (2005) and Usher (2001) frame their theories so that  DOCLRM(B, X) needs 
to be greater than  DOCLRM(B, Y) for any Y distinct from X. Since, however,  DOCRM and  DOCLRM are 
ordinally equivalent to each other, it follows that  DOCRM(B, X) > DOCRM(B, Y) for any Y distinct from X 
precisely when  DOCLRM(B, X) > DOCLRM(B, Y) for any Y distinct from X.

DOCLRM(H,E) = log[Pr(H|E)∕Pr(H)]
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3.7  Hybrid theories

There are ppc theories additional to T1–T8. Consider, for example, the following:

T1&T2: For any b and X, b’s content is X if and only if (i) Pr(X | B) = 1 and (ii) 
Pr(B | X) = 1.
T1 ∨ T2: For any b and X, b’s content is X if and only if (i) Pr(X | B) = 1 or (ii) 
Pr(B | X) = 1.

Each of these theories is based on T1 and T2. The difference is that the right-hand 
side of T1&T2 is the conjunction of T1’s and T2’s right-hand sides, whereas the 
right-hand side of T1 ∨ T2 is their disjunction.

This is the tip of the iceberg. T1&T2 is but one of 120 instances of the following 
conjunctive schema (where each theory in question is one of T1–T8):

Ti&Tj&…&Tn: For any b and X, b’s content is X if and only if Ti’s right-hand 
side holds, Tj’s right-hand side holds, …, and Tn’s right-hand side holds.

Similarly, T1 ∨ T2 is but one of 120 instances of the following disjunctive schema 
(where each theory in question is one of T1–T8):

Ti ∨ Tj ∨ … ∨ Tn: For any b and X, b’s content is X if and only if Ti’s right-hand 
side holds, Tj’s right-hand side holds, …, or Tn’s right-hand side holds.

These schemas yield a total of 240 ppc theories in addition to T1–T8. That is a lot.
We will mention additional ppc theories in Sect. 5, but we now have enough the-

ories to get started. There are seven “basic” (non-hybrid) theories (T1, T2, T3/T4, 
T5, T6, T7, and T8) and 240 hybrids formed from these basics (T1&T2, T1&T3, 
etc.).

Table 1  A partial taxonomy of ppc theories

Theory types Theories

Maximum-probability 
theories

T1: For any b and X, b’s content is X 
if and only if Pr(X | B) = 1.

T2: For any b and X, b’s content is X if 
and only if Pr(B | X) = 1.

Increase-in-probability 
theories

T3: For any b and X, b’s content is X 
if and only if Pr(X | B) > Pr(X).

T4: For any b and X, b’s content is X if 
and only if Pr(B | X) > Pr(B).

Highest-probability 
theories

T5: For any b and X, b’s content is X 
if and only if Pr(X | B) > Pr(Y | B) for 
any Y distinct from X.

T6: For any b and X, b’s content is X if 
and only if Pr(B | X) > Pr(B | Y) for any 
Y distinct from X.

Highest-degree-of-con-
firmation theories

T7: For any b and X, b’s content is X 
if and only if DOC(X, B) > DOC(Y, 
B) for any Y distinct from X.

T8: For any b and X, b’s content is X if 
and only if DOC(B, X) > DOC(B, Y) 
for any Y distinct from X.
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4  How theories T1–T8 and their hybrids fare

T1–T8 are a mixed bag when it comes to the disjunction problem. T1 and T5 fall 
prey to the the disjunction problem, whereas the remaining theories—T2, T3/T4, 
T6, T7, and T8—do not. These results are established in Appendix 2. A mix of good 
news and bad also arises in connection with the distality problem, though here the 
pattern is different. T1, T2, T3/T4, T6, T7, and T8 all succumb to the distality prob-
lem, whereas T5 does not. These results are established in Appendix 3. When it 
comes to the hard problem, in contrast, T1–T8 are all in the same boat: each of them 
falls prey to the hard problem. This follows from the fact that each of them falls prey 
to the disjunction problem or the distality problem.

These results are summarized in Table 2. A “Yes” in a cell indicates that the the-
ory in question can handle the problem in question; a “No” in a cell means that the 
theory cannot.

What about the two hundred forty hybrids of two or more of T1–T8 noted in 
Sect.  3.7? It turns out that none of them can handle the hard problem either. We 
show this in Appendix 4. Some of them can handle the disjunction problem, and 
some can handle the distality problem, but none can handle both.

We are not the first to note that various ppc theories have trouble with distality. 
For example, consider this passage from Artiga and Sebastián (forthcoming):

Consider the Fusiform Face Area (FFA), which is usually thought to repre-
sent faces…. Suppose we discover that a certain neural network R in the FFA 
selectively fires with significant intensity when there is a face and also that, 
given that R is active, the entity that is more likely to be present is a face. One 
might think these observations suffice for establishing the fact that the brain 
state represents face according to SGIT. Unfortunately, it is unclear that SGIT 
can deliver this result. Consider, for instance, the set of neuronal structures in 
the thalamus that are active whenever there is a face in front of the subject. If 
R has the highest statistical dependence with faces, it will also normally have 
the highest statistical dependence with these neuronal states in early vision. 
Thus, SGIT would entail that this activity in FFA represents neuronal activa-

Table 2  Which problems can T1–T8 handle?

Disjunction problem Distality problem Hard problem

T1 No No No
T2 Yes No No
T3/T4 Yes No No
T5 No Yes No
T6 Yes No No
T7 Yes No No
T8 Yes No No
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tion in another part of the brain. This is of course an extremely counterintuitive 
result. Indeed, even if there was some principled way of excluding other brain 
states from being represented, other inadequate contents such as face-looking 
thing could probably not be avoided. (Artiga and Sebastián forthcoming, p. 8, 
italics original)

Here “SGIT” is short for “Scientifically Guided Informational Theories.” T6 is an 
example of such a theory, and so is T8 when understood in terms of  DOCRM.27 In 
our terminology, and focusing on T6, Artiga and Sebastián’s worry is that T6 out-
puts the mistaken result that b’s content is the proposition Cp, which describes neu-
ronal activation in the brain, and isn’t X, which describes a face.

There’s an important difference, though, between Artiga and Sebastián’s discus-
sion and ours. Consider the the following claims from the passage just quoted:

If R has the highest statistical dependence with faces, it will also normally 
have the highest statistical dependence with these neuronal states in early 
vision.
Indeed, even if there was some principled way of excluding other brain states 
from being represented, other inadequate contents such as face-looking thing 
could probably not be avoided.

These claims are prima facie plausible, but Artiga and Sebastián provide no argu-
ment in support of them. The claims are simply asserted. In contrast, we prove in 
Appendix 3 that there are no probability distributions such that (i) (DIST2) and 
(DIST3) hold and (ii) given the assumption that (DIST1) holds, T6 outputs the result 
that b’s content is X and isn’t Cp or Cd.28

One final note is in order. The fact that a given theory solves the disjunction prob-
lem or the distality problem doesn’t mean that there are realistic probability distri-
butions—probabilitiy distributions in line with the relevant frequencies in the actual 
world—of the sort in question. Consider T5, for example, and the fact that it can 
handle the distality problem. It could be that no realistic probability distribution is 
such that (i) (DIST2) and (DIST3) hold and (ii) given the assumption that (DIST1) 
holds, T5 outputs the result that b’s content is X and isn’t Cp or Cd. Our adequacy 

27 Why are the theories in question called “informational”? See Artiga and Sebastián (forthcoming, p. 3, 
n. 4) for an explanation. In Sect. 5.2, we discuss two senses of “mutual information” in the literature, and 
how they relate to ppc theories and the hard problem.
28 Artiga and Sebastián consider a theory that we have yet to address. They call it “INFO.” It can be put 
like this:

INFO: For any b and X, b’s content is X if and only if (i) Pr(B | X) > Pr(B | Y) for any Y distinct from 
X and (ii) Pr(X | B) > Pr(X | B*) for any B* distinct from B.

This is like T6 except that it also requires that the probability of X given B be greater than the probability 
of X given any other proposition B* to the effect that the organism in question has a token of belief type 
b* at the time in question. It turns out, though, that our proof that T6 falls prey to the distality problem 
carries over to INFO. The problem is that any probability distribution on which (DIST2) and (DIST3) 
hold is such that Pr(B | X) < Pr(B | Cp).



7210 Synthese (2021) 198:7197–7230

1 3

conditions are very weak, which is why failing to meet them is a death blow to a 
theory, whereas meeting them is a minor victory.29

5  Three potential responses to the hard problem

It would be premature to give up hope at this point, and conclude that no ppc theory 
can handle the hard problem. There are potential responses to consider.

5.1  Weaken T1–T8

In Sect.  3.7, we noted 240 hybrid ppc theories that were formed by using two or 
more of T1–T8. Each of those hybrid theories is like T1–T8 in that it gives a neces-
sary and sufficient condition for b’s meaning X, and each is like T1–T8 in that it falls 
prey to the hard problem. What about ppc theories that are like T1–T8 except that 
they give only a sufficient condition for b’s meaning X or give just a necessary con-
dition for b’s meaning X? Let “TiS” be Ti (for any i = 1, 2, …, 8) when weakened so 
as to give only a sufficient condition for b’s meaning X, and let “TiN” be Ti (for any 
i = 1, 2, …, 8) when weakened so as to give only a necessary condition for b’s mean-
ing X. Can any of theses weaker theories handle the hard problem?

The situation is perfectly uniform when it comes to  T1S–T8S: none of them can 
handle the disjunction problem or the distality problem; hence none of them can 
handle the hard problem. The reason why is straightforward. None of  T1S–T8S gives 
a necessary condition for b’s meaning X, and thus none of them can rule out any 
candidate proposition as b’s content. For example, although there might be cases 
where  T5S outputs the result b’s content is X,  T5S is unable to output the result b’s 
content is not say, X ∨ Y.30

It might seem that the situation is similar with respect to  T1N–T8N. For, it might 
seem that because none of  T1N–T8N gives a sufficient condition for b’s meaning X, 
none of them can “rule in” any candidate proposition as b’s content. However, con-
sider (DISJ1) and (DIST1). The former says that b’s content is X, X ∨ Y, or Y, while 
the latter says that b’s content is X, Cp, or Cd. Take some case where (DIST2) and 

30 It might be objected that since b’s content can’t both be X and be X ∨ Y (though its content might both 
entail X and entail X ∨ Y), any case where  T5S outputs the result b’s content is X is ipso facto a case where 
 T5S outputs the result b’s content isn’t X ∨ Y. The problem, though, is that  T5S itself implies otherwise. 
For, any case where Pr(X | B) = 1 is also a case where Pr(X ∨ Y | B) = 1.

29 An anonymous referee suggests, in effect, that if X causes different retinal states on different occa-
sions, and each such retinal state always causes B, then X’s probability given B is greater than the prob-
abilities of the various retinal-state descriptions (taken individually) given B, and that because of this, b’s 
content is X and isn’t some retinal-state description. This idea is captured by T5, but we have two com-
ments. First, T5 falls prey to the disjunction problem. Second, even if X’s probability given B is higher 
than the probabilities of the various retinal-state descriptions given B, it might be that X’s probability 
given B is not greater than the probability of the disjunction of the various retinal-state descriptions. See 
Roche and Sober (forthcoming, third to last paragraph in section 5) for further discussion.
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(DIST3) hold, and suppose that one of  T5N, for example, rules out each of Cp and Cd 
as b’s content because Pr(X | B) is greater than each of Pr(Cp | B) and Pr(Cd | B). Then 
given the assumption that (DIST1) holds, it follows by  T5N that b’s content is X.

The situation with respect to  T1N–T8N is summarized in Table 3. First, neither 
 T1N nor  T5N can handle the disjunction problem, but the other theories can. Second, 
 T5N can handle the distality problem, but none of the other theories can. Third, none 
of the theories can handle the hard problem. These results are established in Appen-
dix 5.

It’s interesting that the pattern for the necessary-condition theories  T1N–T8N (as 
summarized in Table 3) is identical to the pattern for the necessary-and-sufficient-
condition theories T1–T8 (as shown in Table 2). We conjecture that the reason for 
this confluence is to be found in (DISJ1) and (DIST1).

5.2  Move from confirmation to either correlation or mutual information

It’s not uncommon for theorists to use the term “correlation” in such a way that a 
high degree of correlation is just a matter of a high conditional probability. Con-
sider, for example, the following passage from Fodor:

However, the crude treatment just sketched clearly won’t do: it is open to an 
objection that can be put like this: If there are wild tokenings of R, it follows 
that the nomic dependence of R upon S is imperfect; some R-tokens – the wild 
ones – are not caused by S tokens. Well, but clearly they are caused by some-
thing; i.e., by something that is, like S, sufficient but not necessary for bringing 
Rs about. Call this second sort of sufficient condition the tokening of situa-
tions of type T. Here’s the problem: R represents the state of affairs with which 
its tokens are causally correlated. Some representations of type R are causally 
correlated with states of affairs of type S; some representations of type R are 
causally correlated with states of affairs of type T. So it looks as though what 
R represents is not either S or T, but rather the disjunction (S  ∨  T): The cor-
relation of R with the disjunction is, after all, better than its correlation with 
either of the disjuncts and, ex hypothesi, correlation makes information and 
information makes representation. If, however, what Rs represent is not S but 

Table 3  Which problems can  T1N–T8N handle?

Disjunction problem Distality problem Hard problem

T1N No No No
T2N Yes No No
T3/T4N Yes No No
T5N No Yes No
T6N Yes No No
T7N Yes No No
T8N Yes No No
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(S  ∨  T), then tokenings of R that are caused by T aren’t, after all, wild token-
ings and our account of misrepresentation has gone West. (Fodor 1984, p. 240, 
emphasis original)

Dretske (1983, pp. 83–84) also uses “correlation” to refer to a single conditional 
probability.

Fodor’s claims in the above quote make sense, if “high degree of correlation” 
means high conditional probability. For, switching to our notation, if X and Y each 
entails X ∨ Y but not vice versa (since X and Y are mutually exclusive), it follows that 
Pr(X | B) < Pr(X ∨ Y | B) and Pr(Y | B) < Pr(X ∨ Y | B), which means that B’s “degree of 
correlation” with X ∨ Y is greater than both its degree of correlation with X and its 
degree of correlation with Y.

This usage of “correlation,” however, is miles away from standard usage in statis-
tics. Consider:

This is the Pearson correlation coefficient applied to propositions rather than 
to quantitative variables.31 Pearson’s r(H, E) has a range of [1, −1], where r(H, 
E) > / = / < 0 if and only if Pr(H | E) > / = / < Pr(H). Suppose, for example, that Pr(H 
| E) = 0.990 < 0.999 = Pr(H). Then though Pr(H | E) is high and thus E’s degree of 
correlation as understood by Fodor is high, r(H, E) is negative and thus it isn’t high.

But are there cases where X entails X ∨ Y but not vice versa, and yet it’s not the 
case that r(X, B) < r(X ∨ Y, B)? Yes, for there are cases where X entails X ∨ Y but 
not vice versa, and yet Pr(X | B) > Pr(X) whereas Pr(X ∨ Y | B) < Pr(X ∨ Y).32 Any such 
case is a case where r(X, B) > 0 > r(X ∨ Y, B).

There are clear respects in which correlation as standardly understood in statistics 
is similar to confirmation as standardly understood in Bayesian confirmation theory. 
But, at the same time, there are important differences. Unlike  DOCDM, r is sym-
metric in that r(H, E) = r(E, H) in all cases. And unlike  DOCRM, r is maximal at 1 
precisely when H and E entail each other.33

This suggests that the way to solve the hard problem may be to replace Highest-
Degree-of-Confirmation Theories such as T7 with a Highest-Degree-of-Correlation 
Theory like the following:

r(H,E) =
Pr(H&E) − Pr(H)Pr(E)

√
Pr(H)Pr(∼ H)Pr(E)Pr(∼ E)

31 See Kemeny and Oppenheim (1952, p. 314, proof of Theorem 2) for discussion of how to understand 
correlation in the context of propositions.
32 We give an example in Appendix 2.
33 DOCRM(H, E) can be arbitrarily close to 1 (the neutral point for  DOCRM) when H and E entail each 
other. For, when H and E entail each other,  DOCRM(H, E) = 1/Pr(H), and this ratio approaches 1 as Pr(H) 
approaches 1.
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T9: For any b and X, b’s content is X if and only if r(X, B) > r(Y, B) for any Y dis-
tinct from X.34

However, we show in Appendix 6 that T9 falls prey to the distality problem.35 Hence 
T9 cannot solve the hard problem.

Perhaps if T9 were modified in terms of some degree-of-correlation measure 
other than r, the resulting theory would be able to handle the hard problem. We 
leave that question for the future, and turn now to “mutual information.”

Some philosophers use the expression “mutual information” to refer to the loga-
rithm, base 2, of  DOCRM(H, E):

We noted in Sect. 3.4 that T7 and T8 can be understood in terms of  DOCRM, and 
that if they are so understood, then T6, T7, and T8 are all logically equivalent to 
each other. The same is true if T7 and T8 are understood in terms of mi. This is 
because  DOCRM and mi are ordinally equivalent in that for any H1, H2, E1, and E2, 
 DOCRM(H1, E1)  > / = / < DOCRM(H2, E2) if and only if mi(H1, E1) > / = / < mi(H2, 
E2); see Sect. 3.6 for relevant background. Hence it won’t help to modify T7 and T8 
in terms of mi.

However, there’s another usage of the expression “mutual information” in the lit-
erature. In information theory (Cover and Thomas 2006), the expression “mutual 
information” is standardly used to refer not to mi, but to a weighted average of mi:

Note that whereas H and E are propositions, ΓH = {H1, H2, …, Hn} and ΓE = {E1, E2, 
…, Em} are partitions of propositions (i.e., sets of pairwise mutually exclusive and 
jointly exhaustive propositions).36 Can T7 and T8 be modified by using MI, and if 
so, would this help in terms of handling the hard problem?

It isn’t clear how best to modify T7 and T8 by using MI, but we have a sugges-
tion. Consider:

T10: For any b and X, b’s content is X if and only if there are partitions Γ1 = {B , 
~ B} and Γ2 = {X , Y1, …, Yn} such that (i) MI(Γ1, Γ2) > MI(Γ1, Γ3) for any Γ3 dis-
tinct from Γ2 and (ii) mi(X, B) > mi(Yi, B) for any Yi in Γ2.37

mi(H,E) = log

[
Pr(H|E)
Pr(H)

]

MI(�H,�E) =
∑

i,j
Pr(Hi&Ej) log

[
Pr(Hi|Ej)

Pr(Hi)

]

34 Since r is symmetric, it follows that T9 is logically equivalent to T8 when understood in terms of r.
35 T9 can handle the disjunction problem, but we won’t explain why here.
36 For discussion of how best to interpret MI, see Roche and Shogenji (2018).
37 Since mi is symmetric, it follows that the second condition on the right-hand side of T10 is logically 
equivalent to the condition that mi(B, X) > mi(B, Yi) for any Yi in Γ2.
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Think of this as working in two steps. First, MI narrows down b’s content to the 
members of a particular partition. Call this “the content partition.” Second, mi 
induces a further narrowing, to a particular member of the content partition. For 
example, suppose that the candidate content partitions are Γ2= {X, Y, Z} and 
Γ3={X*, Y*, Z*}, that MI(Γ1, Γ2) is greater than MI(Γ1, Γ3), and that mi(X, B) is 
greater than each of mi(Y, B) and mi(Z, B). Given that MI(Γ1, Γ2) is greater than 
MI(Γ1, Γ3), it follows that the content partition is Γ2, and so, as none of X*, Y*, and 
Z* is a member of that partition, b’s content isn’t X*, Y*, or Z*. Given that Γ2 is the 
content partition, and that mi(X, B) is greater than each of mi(Y, B) and mi(Z, B), it 
then follows that b’s content is X and isn’t Y or Z.

What are the candidate content partitions in the disjunction problem and the 
distality problem? It might seem that one of the candidate content partitions in 
the disjunction problem should include X, X ∨ Y, and Y, and that, similarly, one of 
the candidate content partitions in the distality problem should include X, Cp, and 
Cd. But note that X, X ∨ Y, and Y aren’t pairwise mutually exclusive, and neither 
are X, Cp, and Cd, so no set with X, X ∨ Y, and Y as members or with X, Cp, and 
Cd as members is a partition. We will assume, instead, that the candidate content 
partitions in the context of the disjunction problem are Γ2= {X, Y, ~ X& ~ Y} and 
Γ3={ X ∨ Y, ~ X& ~ Y}, and that the candidate content partitions in the context of the 
distality problem are Γ2={ X, ~ X}, Γ3={ Cp, ~ Cp}, and Γ4={ Cd, ~ Cd}.

We show in Appendix 7 that T10 falls prey to the distality problem and thus can’t 
handle the hard problem.38 Hence, just as it won’t help solve the hard problem to 
move from confirmation to correlation in the sense of r, it also won’t help to move 
from confirmation to mutual information in the sense of MI.

5.3  Move to a degree‑of‑confirmation measure other than  DOCDM

T7 and T8, when understood in terms of  DOCDM, fall prey to the distality prob-
lem, but what if they are modified in terms of some degree-of-confirmation measure 
other than  DOCDM (and also other than  DOCRM)? Does this allow them to handle 
the distality problem? If so, does this modification also enable them to handle the 
hard problem?

Before answering this question, it’s important to note here that our proofs in 
Appendix 3 regarding T7 and T8 go well beyond these theories when understood in 
terms of  DOCDM. Our proof that T7 falls prey to the distality problem generalizes to 
T7 when understood in terms of any degree-of-confirmation measure such that:

Weak Law of Likelihood: For any E, H1, and H2, if (i) Pr(E | H1) > Pr(E | H2) and 
(ii) Pr(E  |  ~ H1) < Pr(E  |  ~ H2), then DOC(H1, E) > DOC(H2, E).39

38 It can be shown that T10, like T9, can handle the disjunction problem, but we won’t bother with that 
here.
39 For discussion of Weak Law of Likelihood and related theses, see Roche and Shogenji (2014).
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Further, our proof that T8 falls prey to the distality problem generalizes to T8 when 
understood in terms of any degree-of-confirmation measure such that:

Final Probability Incrementality: For any E1, E2, and H, if Pr(H | E1) > Pr(H | E2), 
then DOC(H, E1) > DOC(H, E2).40

It won’t help, then, to simply understand T7 and T8 in terms of any old degree-of-
confirmation measure that is distinct from  DOCDM.

However, there are degree-of-confirmation measures on which Weak Law of Like-
lihood or Final Probability Incrementality does not hold. Here is an example:

This is a variant of  DOCDM on which Final Probability Incrementality holds but 
Weak Law of Likelihood does not. Now consider:

T11: For any b and X, b’s content is X if and only if  DOCDM*(X, B) > DOCDM*(Y, 
B) for any Y distinct from X.

It turns out, surprisingly, that T11 can handle the hard problem. We show this in 
Appendix 8.

This does not mean that T11 has any real plausibility in the context of ppc theo-
ries.  DOCDM* is a rather strange-looking measure (to say the least). Why square X’s 
posterior and prior probabilities? Why not instead take them to the third power, or 
the fourth? Further, there are variants of the disjunction problem and the distality 
problem to consider. Consider:

(DISJ4)  Pr(B | X) > Pr(B) and Pr(B | Y) > Pr(B).

Let’s say that a given ppc theory T can handle the disjunction* problem if and only 
if there is a probability distribution D such that (i) (DISJ2), (DISJ3), and (DISJ4) 
hold and (ii) given the assumption that (DISJ1) holds, T outputs the result that b’s 
content is X and isn’t X ∨ Y or Y. If, as it seems, an adequate theory of content should 
be able to handle the disjunction* problem thus understood, then T11 is inadequate. 
For, as we show in Appendix 9, T11 falls prey to the disjunction* problem.

However, the fact that at least one Highest-Degree-of-Confirmation Theory can 
handle the hard problem perhaps provides some hope for ppc theories.

DOCDM∗(H,E) = Pr (H |E)Pr (H |E)−Pr (H)Pr (H)

40 Final Probability Incrementality is logically weaker than the principle that Crupi et al. (2013) call by 
the same name.
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6  Conclusion

The disjunction problem is a problem for some but not all of T1–T8 and their 240 
hybrids, and likewise with respect to the distality problem. The hard problem, in 
contrast, is a problem for every single one of T1–T8 and their 240 hybrids (Sect. 4). 
This generalizes to various weakened versions of T1–T8 (Sect. 5.1), to T7 and T8 
both when they are modified in terms of Pearson’s correlation measure r and when 
they are modified in terms of mutual information MI (Sect. 5.2), to T7 when modi-
fied in terms of any degree-of-confirmation measure that, like  DOCDM, meets Weak 
Law of Likelihood (Sect.  5.3), and to T8 when modified in terms of any degree-
of-confirmation measure that, like  DOCDM, meets Final Probability Incrementality 
(Sect. 5.3). The hard problem is recalcitrant! However, it doesn’t bring down every 
ppc theory in logical space. T11, for instance, can handle it. We don’t claim that T11 
is the right theory of semantic content, in part because it succumbs to the strength-
ened version of the disjunction problem described in Sect. 5.3. Rather, our point is 
that ppc theories have resources that should be scrutinized further, in connection 
with the hard problem, and with respect to other conditions of adequacy as well.41 
We note, in this regard, that although we have looked at a largish number of candi-
date ppc theories, we have used a small handful of formal tools to construct those 
theories; many of those tools are Bayesian. There are other formal frameworks that 
are worth exploring.42

We close with an analogy. Adaptationism is a research program in evolutionary 
biology that aims to explain the current traits of organisms in terms of natural selec-
tion in ancestral populations. It would be absurd to dismiss this research program on 
the grounds that adaptationism has so far failed to explain this or that trait in a given 
biological population. We feel the same way about the development of ppc theories 
of semantic content. This is a research program, and noting defects in this or that 
ppc theory hardly suffices to show that the whole program is bankrupt. Philosophers 
should be just as tenacious as scientists!

Acknowledgements We thank Martha Gibson, Eric Saidel, Alan Sidelle, Larry Shapiro, Tomoji Sho-
genji, Dennis Stampe, Mike Steel, Marius Usher, and two anonymous referees for helpful feedback.

Appendices

Some of the claims in the appendices below can be readily verified by using ele-
mentary probability theory, but others are more difficult. Some are based on various 
results in the extant literature; here readers can refer to the cited works for details. 

41 We remind the reader that what we’ve been saying about “the disjunction problem” and “the distality 
problem” has, for most of this paper, really been about highly specific “versions” of each. As noted in 
Sect. 2, other versions are possible, and exploring them is worthwhile.
42 Here we draw the reader’s attention to Roche and Sober (forthcoming), where the Akaike Information 
Criterion is used to investigate the epistemology of hypotheses that attribute false beliefs.
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Still others were verified or found on Mathematica with Fitelson’s PrSAT (on which 
see Fitelson 2008). This is true, for example, of (A2.3.1) in Appendix 2.

Appendix 1:  DOCRM and T6, T7, and T8

Bayes’s theorem implies that:

These equalities imply:

Given this, it follows that if T7 and T8 are understood in terms of  DOCRM, then the 
right sides of T6, T7, and T8 are all logically equivalent to each other. Hence, if T7 
and T8 are understood in terms of  DOCRM, then T6, T7, and T8 are all logically 
equivalent to each other.

Appendix 2: How T1–T8 fare in terms of the disjunction problem

T1 and Disjunction

Any probability distribution on which (DISJ2) and (DISJ3) holds is such that 
Pr(X | B) < 1. It follows that any such distribution is such that T1 outputs the result that 
b’s content isn’t X. Hence T1 falls prey to the disjunction problem.

T5 and Disjunction

Any probability distribution on which (DISJ2) and (DISJ3) hold is such that 
Pr(X | B) < Pr(X ∨ Y | B) and Pr(Y | B) < Pr(X ∨ Y | B). It follows that any such distribution is 
such that given the assumption that (DISJ1) holds, T5 outputs the result that b’s content 
is X ∨ Y and isn’t X or Y. Hence T5 falls prey to the disjunction problem.

(A1.1)
Pr(X|B)
Pr(X)

=
Pr(B|X)
Pr(B)

(A1.2)
Pr(Y|B)
Pr(Y)

=
Pr(B|Y)
Pr(B)

(A1.3)

Pr(X|B)
Pr(X)

>
Pr(Y|B)
Pr(Y)

for anyY distinct fromX iff

Pr(B|X)
Pr(B)

>
Pr(B|Y)
Pr(B)

for anyY distinct fromX iff

Pr(B|X) > Pr(B|Y) for any Y distinct fromX.
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T2, T3/T4, T6, T7, T8 and Disjunction

Consider the following probability distribution:

X Y B Pr

T T T 0

T T F 0

T F T 10

57

T F F 0

F T T 3

31

F T F 16

29

F F T 10

57

F F F 32

51243

It follows on this distribution that

Hence both (DISJ2) and (DISJ3) hold. It also follows that:

Given (A2.3.3) and the assumption that (DISJ1) holds, each of T2 and T6 out-
puts the result that b’s content is X and isn’t X ∨ Y or Y. Given (A2.3.4), (A2.3.5), 
(A2.3.6), and the assumption that (DISJ1) holds, each of T3/T4, T7, and T8 outputs 
the result that b’s content is X and isn’t X ∨ Y or Y. Hence each of T2, T3/T4, T6, T7, 
and T8 can handle the disjunction problem.43

(A2.3.1)1 > Pr(X ∨ Y) ≈ 0.824 > Pr (X&Y) = 0

(A2.3.2)Pr (B&X) ≈ 0.175 > 0 and Pr (B&Y) ≈ 0.097 > 0

(A2.3.3)Pr (B|X) = 1 > Pr(B|X ∨ Y) ≈ 0.330 > 0.149 ≈ Pr (B|Y)

(A2.3.4)Pr (X|B) ≈ 0.392 > 0.175 ≈ Pr (X)

(A2.3.5)Pr(X ∨ Y|B) ≈ 0.608 < 0.824 ≈ Pr(X ∨ Y)

(A2.3.6)Pr (Y|B) ≈ 0.216 < 0.649 ≈ Pr (Y)

43 There’s nothing special about the above probability distribution. There are lots of other probability 
distributions on which (A2.3.1)–(A2.3.6) all hold, and each of them would have sufficed for our pur-
poses. This point carries over to the probability distribution given below in Appendix 3.
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Appendix 3: How T1–T8 fare in terms of the distality problem

T1 and Distality

Any probability distribution on which (DIST2) and (DIST3) hold is such that 
Pr(X | B) = 1 only if Pr(Cp | B) = 1. Hence any probability distribution on which 
(DIST2) and (DIST3) hold is such that T1 outputs the result that b’s content is X 
only if it also outputs the result that b’s content is Cp. Hence T1 falls prey to the 
distality problem.

T2, T6, T8 and Distality

Any probability distribution on which (DIST2) and (DIST3) holds is such that:

(A3.2.3) and (A3.2.4) imply (see Shogenji 2003):

They further imply:

Given (A3.2.5) and (A3.2.6), and given (A3.2.1) and (A3.2.2), it follows that:

This inequality implies:

By similar reasoning, it can be shown that:

(A3.2.1)Pr(Cp|X) > Pr(Cp)

(A3.2.2)Pr(B|Cp) > Pr(B)

(A3.2.3)Pr(B|Cp&X) = Pr(B|Cp)

(A3.2.4)Pr(B| ∼ Cp&X) = Pr(B| ∼ Cp)

(A3.2.5)Pr(B|X) − Pr(B) =

[
Pr(Cp|X) − Pr(Cp)

][
Pr(B|Cp) − Pr(B)

]

1 − Pr(Cp)

(A3.2.6)Pr(Cp|X) < 1

(A3.2.7)Pr(B|X)−Pr(B) < Pr(B|Cp)−Pr(B)

(A3.2.8)Pr(B|X) < Pr(B|Cp)

(A3.2.9)Pr(B|Cd)−Pr(B) < Pr(B|Cp)−Pr(B)
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Given (A3.2.8), T2 outputs the result that b’s content isn’t X. Given (A3.2.8), 
(A3.2.10), and the assumption that (DIST1) holds, T6 outputs the result that X’s 
content is Cp and isn’t X or Cd. Given (A3.2.7), (A3.2.9), and the assumption that 
(DIST1) holds, T8 outputs the result that X’s content is Cp and isn’t X or Cd. Hence 
each of T2, T6, and T8 falls prey to the distality problem.

T3/T4 and Distality

Any probability distribution on which (DIST2) holds is such that:

Given (A3.3.2), T3/T4 outputs the result that b’s content is X. But given (A3.3.1) 
and (A3.3.3), T3/T4 also outputs both the result that b’s content is Cp and the result 
that b’s content is Cd. Hence T3/T4 falls prey to the distality problem.

T5 and Distality

Consider the following probability distribution:

Cd X Cp B Pr Cd X Cp B Pr

T T T T 72

565

F T T T 51

2260

T T T F 96

113113

F T T F 17

113113

T T F T 1

113

F T F T 17

10848

T T F F 96

1243

F T F F 17

1243

T F T T 0 F F T T 0

T F T F 0 F F T F 0

T F F T 1

67

F F F T 19395421

313141920

T F F F 96

737

F F F F 19395521

35880845

It follows on this distribution that:

(A3.2.10)Pr(B|Cd) < Pr(B|Cp)

(A3.3.1)Pr(B|Cp) > Pr(B)

(A3.3.2)Pr(B|X) > Pr(B)

(A3.3.3)Pr(B|Cd) > Pr(B)

(A3.4.1)Pr(B|Cp) ≈ 0.993 > 0.237 ≈ Pr(B)

(A3.4.2)Pr(B|X) ≈ 0.636 > 0.237 ≈ Pr(B)
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Hence (DIST2) and (DIST3) both hold. It also follows that:

Given the assumption that (DIST1) holds, T5 outputs the result that b’s content is X 
and isn’t Cp or Cd. Hence T5 can handle the distality problem.

T7 and Distality

Any probability distribution on which (DIST2) holds is such that:

These inequalities imply:

(A3.4.3)Pr(B|Cd) ≈ 0.421 > 0.237 ≈ Pr(B)

(A3.4.4)Pr(Cp|X) ≈ 0.598 > 0.151 ≈ Pr(Cp)

(A3.4.5)Pr(Cp|Cd) ≈ 0.357 > 0.151 ≈ Pr(Cp)

(A3.4.6)Pr(X|Cd) ≈ 0.595 > 0.252 ≈ Pr(X)

(A3.4.7)Pr(B|Cp&X) = Pr(B|Cp) ≈ 0.993

(A3.4.8)Pr(B| ∼ Cp&X) = Pr(B| ∼ Cp) ≈ 0.103

(A3.4.9)Pr(B|Cp&Cd) = Pr(B|Cp) ≈ 0.993

(A3.4.10)Pr(B| ∼ Cp&Cd) = Pr(B| ∼ Cp) ≈ 0.103

(A3.4.11)Pr(B|X&Cd) = Pr(B|X) ≈ 0.636

(A3.4.12)Pr(B| ∼ X&Cd) = Pr(B| ∼ X) ≈ 0.103

(A3.4.13)Pr(Cp|X&Cd) = Pr(Cp|X) ≈ 0.598

(A3.4.14)Pr(Cp| ∼ X&Cd) = Pr(Cp| ∼ X) = 0

(A3.4.15)Pr(X|B) ≈ 0.676 > 0.637 ≈ Pr(Cd|B) > 0.632 ≈ Pr(Cp|B)

(A3.5.1)Pr(B|Cp) > Pr(B)

(A3.5.2)Pr(Cp|X) > Pr(Cp)

(A3.5.3)Pr(Cp|B) > Pr(Cp)
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Any probability distribution on which (DIST3) holds is such that:

These equalities imply:

(A3.5.3), (A3.5.4), (A3.5.7), and (A3.5.8) together imply (see Roche and Shogenji 
2014):

(A3.5.9) and (A3.5.10) together imply (see Roche and Shogenji 2014):

By similar reasoning, it can be shown that:

Given the assumption that (DIST1) holds, T7 outputs the result that b’s content is Cp 
and isn’t X or Cd. Hence T7 falls prey to the distality problem.

Appendix 4: How hybrid theories fare in terms of the hard problem

Conjunctive theories based on one or more of T2, T6, T7, and T8

We show in Appendix 3 that any probability distribution on which (DIST2) and 
(DIST3) hold is such that:

(A3.5.4)Pr(X|Cp) > Pr(X)

(A3.5.5)Pr(B|Cp&X) = Pr(B|Cp)

(A3.5.6)Pr(B| ∼ Cp&X) = Pr(B| ∼ Cp)

(A3.5.7)Pr(X|Cp&B) = Pr(X|Cp)

(A3.5.8)Pr(X| ∼ Cp&B) = Pr(X| ∼ Cp)

(A3.5.9)Pr(B|Cp) > Pr(B|X)

(A3.5.10)Pr(B| ∼ Cp) < Pr(B| ∼ X)

(A3.5.11)Pr(Cp|B)−Pr(Cp) > Pr(X|B)−Pr(X)

(A3.5.12)Pr(Cp|B)−Pr(Cp) > Pr(Cd|B)−Pr(Cd)

(A3.2.7)Pr(B|X)−Pr(B) < Pr(B|Cp)−Pr(B)

(A3.2.8)Pr(B|X) < Pr(B|Cp)

(A3.2.9)Pr(B|Cd)−Pr(B) < Pr(B|Cp)−Pr(B)
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It follows that for any conjunctive theory T based on one or more of T2, T6, T7, and 
T8, there are no probability distributions such that (i) (DIST2) and (DIST3) hold 
and (ii) given the assumption that (DIST1) holds, T outputs the result that b’s con-
tent is X and isn’t Cp or Cd. Hence no conjunctive theory based on one or more of 
T2, T6, T7, and T8 can handle the distality problem. Hence no such theory can han-
dle the hard problem.

Conjunctive theories based on T5

We show in Appendix 2 that any probability distribution on which (DISJ2) and (DISJ3) 
hold is such that Pr(X | B) < Pr(X ∨ Y | B) and Pr(Y | B) < Pr(X ∨ Y | B). It follows that for 
any conjunctive theory T based on T5, there are no probability distributions such that 
(i) (DISJ2) and (DISJ3) hold and (ii) given the assumption that (DISJ1) holds, T out-
puts the result that b’s content is X and isn’t X ∨ Y or Y. Hence no conjunctive theory 
based on T5 can handle the disjunction problem. Hence no such theory can handle the 
hard problem.

The T1&T3/T4 Conjunctive Theory

There is only one conjunctive theory left to consider: T1&T3/T4. We note in Appen-
dix 2 that any probability distribution on which (DISJ2) and (DISJ3) hold is such that 
Pr(X | B) < 1. It follows that there are no probability distributions such that (i) (DISJ2) 
and (DISJ3) hold and (ii) T1&T3/T4 outputs the result that b’s content is X. Hence 
T1&T3/T4 falls prey to the disjunction problem. Hence it falls prey to the hard problem.

Disjunctive theories based on one or more of T6, T7, and T8

We show in Appendix 3 that any probability distribution on which (DIST2) and 
(DIST3) hold is such that:

(A3.2.10)Pr(B|Cd) < Pr(B|Cp)

(A3.5.11)Pr(Cp|B)−Pr(Cp) > Pr(X|B)−Pr(X)

(A3.5.12)Pr(Cp|B)−Pr(Cp) > Pr(Cd|B)−Pr(Cd)

(A3.2.7)Pr(B|X)−Pr(B) < Pr(B|Cp)−Pr(B)

(A3.2.8)Pr(B|X) < Pr(B|Cp)

(A3.2.9)Pr(B|Cd)−Pr(B) < Pr(B|Cp)−Pr(B)
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It follows that for any disjunctive theory T based on one or more of T6, T7, and T8, 
there are no probability distributions such that (i) (DIST2) and (DIST3) hold and (ii) 
given the assumption that (DIST1) holds, T outputs the result that b’s content isn’t 
Cp. Hence no disjunctive theory based on one or more of T6, T7, and T8 can handle 
the distality problem. Hence no such theory can handle the hard problem.

Disjunctive theories based on T5

We show in Appendix 2 that any probability distribution on which (DISJ2) and (DISJ3) 
hold is such that Pr(X | B) < Pr(X ∨ Y | B) and Pr(Y | B) < Pr(X ∨ Y | B). It follows that for 
any disjunctive theory T based on T5, there are no probability distributions such that (i) 
(DISJ2) and (DISJ3) hold and (ii) T outputs the result that b’s content isn’t X ∨ Y. Hence 
no disjunctive theory based on T5 can handle the disjunction problem. Hence no such 
theory can handle the hard problem.

Disjunctive theories based on T3/T4

Any probability distribution on which (DIST2) holds is such that Pr(B | Cp) > Pr(B). It 
follows that for any disjunctive theory T based on T3/T4, there are no probability dis-
tributions such that (i) (DIST2) and (DISJ3) hold and (ii) T outputs the result that b’s 
content isn’t Cp. Hence no such theory can handle the Ditality Problem. Hence no dis-
junctive theory based on T3/T4 can handle the hard problem.

T1 ∨ T2

There is only one disjunctive theory left to consider: T1 ∨ T2. We note in Appendix 3 
that any probability distribution on which (DIST2) and (DIST3) hold is such that:

It follows that there are no probability distributions such that (i) (DIST2) and 
(DISJ3) hold and (ii) T1 ∨ T2 outputs the result that b’s content is X and isn’t Cp. 
Hence T1 ∨ T2 falls prey to the distality problem. Hence it falls prey to the hard 
problem.

(A3.2.10)Pr(B|Cd) < Pr(B|Cp)

(A3.5.11)Pr(Cp|B)−Pr(Cp) > Pr(X|B)−Pr(X)

(A3.5.12)Pr(Cp|B)−Pr(Cp) > Pr(Cd|B)−Pr(Cd)

Pr(X|B) = 1 only if Pr(Cp|B) = 1

Pr(B|X) < Pr(B|Cp)
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Appendix 5: How  T1N–T8N fare in terms of the hard problem

T1N and the disjunction problem

We note in Appendix 2 that any probability distribution on which (DISJ2) and 
(DISJ3) holds is such that Pr(X | B) < 1. It follows that any such distribution is such 
that  T1N outputs the result that b’s content isn’t X. Hence  T1N falls prey to the dis-
junction problem.

T2N, T3/T4N,  T6N,  T7N, and  T8N and the disjunction problem

We show in Appendix 2 section that there are probability distributions on which 
(DISJ2) and (DISJ3) hold and:

Given (A2.3.3), and given the assumption that (DISJ1) holds,  T2N,  T6N, and  T8N 
all output the result that b’s content is X. Hence each of  T2N,  T6N, and  T8N can 
handle the disjunction problem. Given (A2.3.4), (A2.3.5), and (A2.3.6), and given 
the assumption that (DISJ1) holds, T3/T4N and  T7N both output the result that b’s 
content is X. Hence T3/T4N and  T7N can handle the disjunction problem.

T5N and the disjunction problem

We note in Appendix 2 that when (DISJ2) and (DISJ3) hold, it follows that 
Pr(X | B) < Pr(X ∨ Y | B). Hence when (DISJ2) and (DISJ3) hold,  T5N rules out X as 
b’s content. Hence  T5N falls prey to the disjunction problem.

T1N and the distality problem

We note in Appendix 3 that when (DIST2) and (DIST3) hold, it follows that Pr(X | B) = 1 
only if Pr(Cp | B) = 1. Hence when (DIST2) and (DIST3) hold,  T1N rules out Cp as b’s 
content only if it also rules out X as b’s content. Hence  T1N falls prey to the distality 
problem.

T2N, T3/T4N,  T6N,  T7N, and  T8N and the distality problem

We show in Appendix 3 that when (DIST2) and (DIST3) hold, it follows that:

(A2.3.3)Pr(B|X) = 1 > Pr(B|X ∨ Y) ≈ 0.330 > 0.149 ≈ Pr(B|Y)

(A2.3.4)Pr(X|B) ≈ 0.392 > 0.175 ≈ Pr(X)

(A2.3.5)Pr(X ∨ Y|B) ≈ 0.608 < 0.824 ≈ Pr(X ∨ Y)

(A2.3.6)Pr(Y|B) ≈ 0.216 < 0.649 ≈ Pr(Y)
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(A3.2.8) implies that Pr(B | X) isn’t equal to 1, that Pr(B | X) isn’t greater than 
Pr(B | Cp), and that Pr(B | X) − Pr(B) isn’t greater than Pr(B | Cp) − Pr(B). Hence when 
(DIST2) and (DIST3) hold,  T2N,  T6N, and  T8N all rule out X as b’s content. Hence 
each of  T2N,  T6N, and  T8N falls prey to the distality problem. Given that (A3.3.1) 
holds when (DIST2) and (DIST3) hold, it follows that when (DIST2) and (DIST3) 
hold, T3/T4N doesn’t rule out Cp as b’s content. Hence T3/T4N falls prey to the dis-
tality problem. Given that (A3.5.11) holds when (DIST2) and (DIST3) hold, it fol-
lows that when (DIST2) and (DIST3) hold,  T7N rules out X as b’s content. Hence 
 T7N falls prey to the distality problem.

T5N and the distality problem

We show in Appendix 3 that there are probability distributions on which (DIST2) and 
(DIST3) hold and:

Given (A3.4.15),  T5N rules out each of Cp and Cd as b’s content. Given this, and 
given the assumption that (DIST1) holds, it follows by  T5N that b’s content is X. 
Hence  T5N can handle the distality problem.

Appendix 6: How T9 fares in terms of the hard problem

First, note that:

(A3.2.8)Pr(B|X) < Pr(B|Cp)

(A3.3.1)Pr(B|Cp) > Pr(B)

(A3.5.11)Pr(Cp|B)−Pr(Cp) > Pr(X|B)−Pr(X)

(A3.4.15)Pr(X|B) ≈ 0.676 > 0.637 ≈ Pr(Cd|B) > 0.632 ≈ Pr(Cp|B)

(A6.1)

r(Cp,B) > r(X,B) iff

Pr(Cp&B) − Pr(Cp)Pr(B)
�

Pr(Cp)Pr(∼ Cp)Pr(B)Pr(∼ B)

>
Pr(X&B) − Pr(X)Pr(B)

√
Pr(X)Pr(∼ X)Pr(B)Pr(∼ B)

iff

�
Pr(Cp&B) − Pr(Cp)Pr(B)

�2

Pr(Cp)Pr(∼ Cp)Pr(B)Pr(∼ B)
>

[Pr(X&B) − Pr(X)Pr(B)]2

Pr(X)Pr(∼ X)Pr(B)Pr(∼ B)
iff

�
Pr(Cp�B) − Pr(Cp)

�2

Pr(Cp)Pr(∼ Cp)
>

[Pr(X�B) − Pr(X)]2

Pr(X)Pr(∼ X)
iff

�
Pr(Cp�B)
Pr(Cp)

− 1

��
Pr(Cp�B) − Pr(Cp)

1 − Pr(Cp)

�
>

�
Pr(X�B)
Pr(X)

− 1

��
Pr(X�B) − Pr(X)

1 − Pr(X)

�
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We show in Appendix 3 that any probability distribution on which (DIST2) and 
(DIST3) hold is such that:

These inequalities imply (see Roche and Shogenji 2014):

It follows that any probability distribution on which (DIST2) and (DIST3) hold is 
such that:

By similar reasoning, it can be shown that any probability distribution on which 
(DIST2) and (DIST3) hold is such that:

It follows that any probability distribution on which (DIST2) and (DIST3) hold is 
such that given the assumption that (DIST1) holds, T9 outputs the result that b’s 
content is Cp and isn’t X or Cd. Hence T9 falls prey to the distality problem.44 Hence 
it falls prey to the hard problem.

Appendix 7: How T10 fares with respect to the hard problem

We noted in Appendix 3 that any probability distribution on which (DIST3) holds is 
such that:

It follows from these equalities that:

(A3.5.9)Pr(B|Cp) > Pr(B|X)

(A3.5.10)Pr(B| ∼ Cp) < Pr(B| ∼ X)

(A6.2)
Pr(Cp|B)
Pr(Cp)

− 1 >
Pr(X|B)
Pr(X)

− 1

(A6.3)
Pr(Cp|B) − Pr(Cp)

1 − Pr(Cp)
>

Pr(X|B) − Pr(X)

1 − Pr(X)

(A6.4)r(Cp,B) > r(X,B)

(A6.5)r(Cp,B) > r(Cd,B)

(A3.5.5)Pr(B|Cp&X) = Pr(B|Cp)

(A3.5.6)Pr(B| ∼ Cp&X) = Pr(B| ∼ Cp)

44 What about the disjunction problem? The probability distribution given in Appendix 2 is such 
that (DISJ2) and (DISJ3) hold. It’s also such that r(X, B) ≈ 0.512 > −0.510 ≈ r(X ∨ Y, B) and r(X, 
B) ≈ 0.512 > − 0.815 ≈ r(Y, B). Given the assumption that (DISJ1) holds, T9 outputs the result that b’s 
content is X and isn’t X ∨ Y or Y. Hence T9 can handle the disjunction problem.
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This means that each member of Γ3 = {Cp, ~ Cp} screens-off each member of 
Γ2 = {X, ~ X} from each member of Γ1 = {B, ~ B}. Given this, it follows by the so-
called “Data Processing Inequality” (Cover and Thomas 2006, Ch. 2) that:

But then there are no probability distributions such that (i) (DIST2) and (DIST3) 
hold and (ii) given the assumption that (DIST1) holds, T10 outputs the result that b’s 
content is X and isn’t Cp or Cd. Hence T10 falls prey to the distality problem. Hence 
T10 falls prey to the hard problem.

Appendix 8: How T11 fares with respect to the hard problem

The probability distribution given in Appendix 2 section is such that (DISJ2) 
holds, (DISJ3) holds, and:

The probability distribution given in  Appendix 3 section is such that (DIST2) holds, 
(DIST3) holds, and:

Given (A8.1), (A8.2), and the assumption that (DISJ1) holds, T11 outputs the result 
that b’s content is X and isn’t X ∨ Y or Y. Hence T11 can handle the disjunction prob-
lem. Given (A8.3), (A8.4), and the assumption that (DIST1) holds, T11 outputs the 
result that b’s content is X and isn’t Cp or Cd. Hence T11 can handle the distality 
problem. Hence T11 can handle the hard problem.

(A7.1)Pr(∼ B|Cp&X) = Pr(∼ B|Cp)

(A7.2)Pr(∼ B| ∼ Cp&X) = Pr(∼ B| ∼ Cp)

(A7.3)Pr(B|Cp& ∼ X) = Pr(B|Cp)

(A7.4)Pr
(
B| ∼ Cp& ∼ X

)
= Pr

(
B| ∼ Cp

)

(A7.5)Pr(∼ B|Cp& ∼ X) = Pr(∼ B|Cp)

(A7.6)Pr(∼ B| ∼ Cp& ∼ X) = Pr(∼ B| ∼ Cp)

(A7.7)MI(Γ1,Γ2 ≤ MI(Γ1,Γ3)

(A8.1)DOCDM*(X,B) ≈ 0.123 > −0.309 ≈ DOCDM*(X ∨ Y ,B)

(A8.2)DOCDM*(X,B) ≈ 0.123 > −0.374 ≈ DOCDM*(Y ,B)

(A8.3)DOCDM*(X,B) ≈ 0.393 > 0.377 ≈ DOCDM*(Cp,B)

(A8.4)DOCDM*(X,B) ≈ 0.393 > 0.277 ≈ DOCDM*(Cd,B)
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Appendix 9: How T11 fares with respect to the disjunction* problem

First, note that:

Any probability distribution on which (DISJ2), (DISJ3), and (DISJ4) hold is such 
that  DOCDM*(X, B) > 0,  DOCDM*(Y, B) > 0, and:

It follows that any probability distribution on which (DISJ2), (DISJ3), and (DISJ4) 
hold is such that given the assumption that (DISJ1) holds, T11 outputs the result 
that b’s content is X ∨ Y and isn’t X or Y. Hence T11 falls prey to the disjunction* 
problem.
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