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Abstract
Merely approximate symmetry is mundane enough in physics that one rarely finds any
explication of it. Among philosophers it has also received scant attention compared
to exact symmetries. Herein I invite further consideration of this concept that is so
essential to the practice of physics and interpretation of physical theory. After moti-
vating why it deserves such scrutiny, I propose a minimal definition of approximate
symmetry—that is, one that presupposes as little structure on a physical theory to
which it is applied as seems needed. Then I apply this definition to three topics: first,
accounting for or explaining the symmetries of a theory emeritus in intertheoretic
reduction; second, explicating and evaluating the Curie-Post principle; and third, a
new account of accidental symmetry.

Keywords Symmetry · Approximate symmetry · Similarity · Symmetry breaking ·
Intertheoretic relations · Intertheoretic reduction · Curie’s principle · Accidental
symmetry

1 Introduction: why study the unideal?

Approximate symmetry is ubiquitous. For most of us, our first visual experiences
after birth include the approximate bilateral symmetry of our mothers’ faces; cur-
sory examination of nature finds approximate 60◦ rotational symmetry in snowflakes,
honeycomb, and the Bénard convection cells of shallow boiling water in a saucepan
(Stewart andGolubitsky 1992, pp. 21–22, 100, 149–150; Brading and Castellani 2007,
pp. 1331–1332). By contrast, rarefied exact symmetries are seemingly found only in
more fundamental domains of inquiry, where they have implications for laws of nature,
ontology, the nature of identity, and the methodology of physics and the mathemati-
cal sciences. Perhaps that is one reason why philosophers of physics (and scientists
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more generally) have—idealistically—focused their analytic attention on exact sym-
metries. Yet associating the ideal and exact with the fundamental and that which is of
foundational or philosophical significance can, I suggest, misguide us.

For example, symmetries have long been essential in particle physics as a means
not only to classify and unify species of particles (Brading and Castellani 2007, §8.3),
but also to make predictions in decay and scattering experiments (Bangu 2008, 2013,
§5). The most famous example of this is isospin, a spin-like (i.e., SU(2)) quantity
assigned to nucleons that treated protons and neutrons as different states of what is
fundamentally the same sort of particle. Developed by Heisenberg and Wigner in the
1930s, it was not yet clear whether it was an exact symmetry, since measurements
of the mass of the neutron relative to the proton had yet to be precise enough to
resolve the question. But this did not deter the fruitful application of isospin, for, even
though it arises in fact from a merely approximate symmetry, it still facilitated good
predictions, modulated by perturbation theory, and helped explain the spin structure
of the nucleus. Besides isospin, the discrete symmetries of charge conjugation, parity
transformation, and time reversal are all approximate in the StandardModel of particle
physics, as are higher continuous groups such as SU(3)when applied to flavor quantum
numbers—a historical but still useful precursor to the exact SU(3) for color charge in
the Standard Model—and higher ones still, such as SU(4) and SU(6) (Costa and Fogli
2012; Sundermeyer 2014; Lichtenberg 1970, §1.5).

Any seemingly exact symmetry has the potential to be rendered merely approxi-
mate under the development of science. Indeed, “perhaps one would find that none
of the symmetries [that our theories attribute to Nature] is really exact if our obser-
vational/experimental capabilities were sufficiently improved” (Sundermeyer 2014,
p. 12). Nonetheless, even in such a highly asymmetric world our current theories
would still have domains of applicability in which their descriptions and predictions
would be accurate with a high, if not perfect, degree of approximation. In other words,
a more accurate but less symmetric theory ought to explain how and when a less accu-
rate but more symmetric theory can be so successful. Such an explanation might quite
plausibly attribute approximate symmetry to the less symmetric theory. Approximate
symmetry deserves attention at least because the notion of exact symmetry will not be
sufficient for this explanatory role. Of course, there is much more to say on this topic,
which is the subject of Sect. 3.

After this, I explore two further topics on which the role of approximate symme-
tries in inthertheoretic reduction bears. The first (Sect. 4) concerns what Redhead
(1975) calls the “Curie-Post Principle”, that (roughly) for two theories, one of which
explains the success of the other, the more fundamental theory—the one serving as
the explanans—cannot have more symmetries than the less fundamental theory—the
one serving as the explanandum. The second (Sect. 5) concerns the identification of
accidental symmetries, and their distinction from fundamental symmetries. In a word,
I synthesize what I see as the best features of accounts by Kosso (2000), Lange (2011),
and Redhead (1975), while avoiding their flaws, to describe a symmetry’s being acci-
dental as inherently relational: it denotes the symmetry’s status as approximate or
exact, or the expectation of such a status, in a less fundamental theory with respect to
a more fundamental theory, one with broader scope, that explains its success.
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In order to draw these consequences, however, one must first ask seriously: what
exactly is approximate symmetry?

2 Defining approximate symmetry

2.1 Extant definitions

Commonly invoked, approximate symmetry is rarely defined. Some authors who do so
just identify approximate symmetries with broken symmetries (Costa and Fogli 2012,
pp. 116–117, 189–191, Rosen 1975, pp. 78–80, 1995, p. 128, 2008, p. 134).1 How-
ever, there is good reason to consider these to be distinct concepts. Broken symmetries
are typically divided into two further subtypes, explicit and spontaneous. As Brading
et al. (2017, §4) remark, “Explicit symmetry breaking indicates a situation where
the dynamical equations are not manifestly invariant under the symmetry group con-
sidered” while “Spontaneous symmetry breaking (SSB) occurs in a situation where,
given a symmetry of the equations of motion, solutions exist which are not invariant
under the action of this symmetry without any explicit asymmetric input (whence the
attribute ‘spontaneous’)”.2 In both cases, though, the broken symmetry is the result of
a dynamical process or otherwise involves some comparison between two symmetry
structures (e.g., symmetry groups). For instance, the parity transformation symmetry of
Minkowski spacetime is explicitly broken by introducing amatter Lagrangian that cou-
ples differently to different chiralities, as is nowunderstood to be the casewith theweak
nuclear force. The rotational symmetry of a Lagrangian L = (∇aφ)(∇aφ)+V (φ) for a
scalar field φ with a “Mexican hat” potential V (φ) = −10|φ|2+|φ|4 is spontaneously
broken by the ground states φ = √

5eiθ . In neither case, however, should the mere
broken nature of the symmetry imply that it is still approximate. Some symmetries
are so broken (whether explicitly or spontaneously) that there is no plausible sense in
which they still hold approximately.3

In contrast with this conflation, Castellani (2003a, p. 321) does clearly distinguish
approximate from broken symmetries: “A symmetry can be exact, approximate, or
broken. Exact means unconditionally valid; approximate means valid under certain
conditions; broken can mean different things, depending on the object considered
and its context”4—here, by “different things” Castellani refers to the two types of
broken symmetry, explicit and spontaneous, discussed above. However, she does not
explicitly define what it means for a symmetry to be “valid”. One possibility follows

1 Sundermeyer (2014, pp. 12–13) is an ambiguous case: he calls being approximate and being broken
different “qualities” of non-exact symmetries, but does not explain how (if at all) they are to be distinguished.
His views as presented there seem to be slightly better interpreted as distinguishing broken from approximate
symmetries, but this will not make a difference in what follows.
2 See also Castellani (2003a, §4).
3 The connection between broken and approximate symmetry is so attractive that their conceptual differ-
ences are easy to overlook. As Weinberg (1997, p. 38) points out, in the early 1960s many physicists had
in fact hoped to explain the approximate symmetries of particle phenomena as spontaneously broken exact
symmetries, when in fact these are in general separate phenomena.
4 See also Brading et al. (2017, §4).
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Rosen (2008, pp. 43–44), who uses the descriptor of “valid” regarding approximate
symmetries just to denote those situations or systems inwhich the symmetry is present.
For example, charge conjugation and parity inversion are said to be “valid” concerning
particle processes that do not essentially involve the weak nuclear force—e.g., those
that involve only electromagnetism. But this interpretation just makes approximate
symmetry a kind of exact symmetry that applies to fewer situations. By contrast,
as the examples of the human face and honeycomb at the beginning of this essay
illustrate, approximate symmetry should come in degrees that depend not on the range
of situations in which the symmetry transformation is exact, but how similar the
situation to which it is applied is to one where the symmetry transformation is exact.
In a word, an adequate definition of approximate symmetry should underwrite the
claim that human faces are more or less bilaterally symmetric, depending on the case.
If “valid under certain conditions” means exact under certain conditions, then real
human faces are not even approximately bilaterally symmetric.

Rosen (1995, 2008) has proposed instead to define approximate symmetries and
quantify their degree of approximation with a distance function defined on the abstract
possibility space for the system under consideration, a class which is inclusive of
spaces of states and histories.5 Explaining how this works requires spelling out a bit
more formal detail, as follows.6 Let S be the abstract possibility space of a physical
system: it consists of all the possible ways that states of affairs could be arranged for
the system, according to some theory. Let T be the set of bijective transformations of
S, i.e., the set of injective and surjective functions T : S → S. The elements of T
form a group under composition, but it is not yet appropriate to deem it the (exact)
symmetry group of S—indeed, the specification of such a group will only be relative
to a certain notion of equivalence on the abstract possibility space. So, let ≡ be an
equivalence relation on S, i.e., a reflexive, symmetric, and transitive relation thereon.
Suppose that ≡ represents sameness with respect to some particular class of relevant
properties shared by the elements within each of its equivalence classes and not shared
between them. For instance, if S were the set of kinematically possible histories for
a mechanical system, ≡ could have exactly two equivalence classes, one consisting
of the histories that are solutions to a certain equation (i.e., the dynamically possible
histories), and the other consisting of the histories that are not solutions. Then, the
≡-symmetry group of S would be the largest subgroup T≡ of T such that for all s ∈ S
and T ∈ T≡, T (s) ≡ s. In a word, the ≡-symmetry group of S is the maximal group
of abstract possibility space transformations that preserve ≡.7

5 I take the terminology from Rickles (2008, p. 10). Rosen (1995, 2008) uses “state space” to refer to this
more general type, but this is liable to mislead because it denotes a strictly more narrow class in physics.
6 Here I am glossing in particular Rosen (1995, Chs. 4, 6, 2008, Chs. 6, 10).
7 What about symmetries that preserve relations between possibilities, not just properties thereof? For
example, the inner product of a Hilbert space fixes the transition amplitude between a pair of quantum
states (and much else besides); the unitary transformation of the space are the symmetries that preserve
these relations. Rosen (1995, Ch. 4.7, 2008, Ch. 10.8) implicitly takes the same approach for relations as
with properties, using equivalence relations on the Cartesian product Sn to represent elements of Sn for
which the same n-place relation holds. For simplicity of presentation I will confine attention to the unary
case, but see also footnote 10 for more on symmetries that approximately preserve relations.
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Thus does Rosen define (exact) symmetry.8 To define approximate symmetry, he
further supposes thatS is a pseudometric space, i.e., it is equippedwith a pseudometric
function d : S × S → [0,∞), one that satisfies the following three conditions for all
u, v, w ∈ S,

Null self-distance d(u, u) = 0,
Symmetry d(u, v) = d(v, u),
Triangle inequality d(u, w) ≤ d(u, v) + d(v,w).9

In fact, the pseudometric can replicate the role of the equivalence relation because it
induces an equivalence relation≡d on S in the obvious way: for any u, v ∈ S, u ≡d v

if and only if d(u, v) = 0. But it includes more structure than an equivalence relation,
in the sense that it also assigns positive numerical distances between non-equivalent
possibilities. So for any ε > 0, one can check whether a given transformation T ∈ T
satisfies d(s, T (s)) < ε for all s ∈ S. If it does, it is an (ε-)approximate ≡d -symmetry
of S.10 Clearly any T ∈ T≡d is an approximate ≡d -symmetry of S (for any ε), but
the set of all ε-approximate ≡d -symmetries may only form a groupoid instead of a
group: two ε-approximate ≡d -symmetries composed may not be an ε-approximate
≡d -symmetry.

Importantly, “what is or is not considered an approximate symmetry transformation
depends on howgreat a deviation fromequivalence one iswilling to tolerate,where that
is expressed by the greatest metric ‘distance’ one will accept” (Rosen 2008, p. 132).
Such a deviation is from sameness with regard to the relevant physical features of
the system. Rosen (1995, p. 159) even suggests that “The extent of deviation from
exact symmetry that can still be considered approximate symmetry will depend on the
context and application and could very well be a matter of personal taste”. However,
there ought to be nothing subjective about the choice of d if this whole framework
is to be fruitfully applied in physics: specifying the context of application should
fully determine the relevant pseudometric. In other words, the numerical distance
between two possibilities may depend on contextual relations between the system and
its environment—e.g., what of it can bemeasured or observed and how precisely—that
are at least intersubjectively fixed.

Even if Rosen were to accept this amendment promoting objectivity, one could still
object to the plausibility of a contextual determination of the pseudometric. Rosen does
not suggest anything about the form of the pseudometric, and there are hundreds of
proposals (with more published every year) in the scientific literature on ways of quan-
tifying symmetry in diverse applications (Petitjean 2003). Even a cursory examination

8 What of the compatibility of this proposal with the claim above that approximate symmetry is a form of
broken symmetry? Rosen (1995, 2008) takes an “exact-symmetry-first” approach that requires approximate
symmetry to be defined in relation to an exact symmetry that it approximates.As I describe in the sequel, there
are good reasons instead to take an “approximate-symmetry-first” approach that defines exact symmetry as
a special (but not always present) case of approximate symmetry. (See also especially footnote 19.)
9 Redhead (1975, p. 101) has made a similar suggestion to the effect that d should be a metric, which
would strengthen null self-distance to the identity of indiscernibles: for all u, v ∈ S, d(u, v) = 0 if and
only if u = v.
10 One can extend the application of pseudometrics on S to Sn using the Hausdorff distance—cf. foot-
note 17—or some other relevant generalization. This allows one to define approximate symmetries that
preserve not just properties of possibilities, but also relations between them, as discussed in footnote 7.
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of these ways suggests that scientists do not show how their proposed (a)symmetry
metric is uniquely determined from their particular application’s context; they rather
just argue for their proposal’s plausibility and utility. Simply put, requiring a partic-
ular pseudometric on the abstract possibility space may require more structure than
is determined by this context. For instance, in previous work (Fletcher 2016, 2019),
I have described how in general relativity, sometimes the relevant way to compare
spacetimes involves an (uncountably) infinite collection of pseudometrics, one for
each idealized spacetime observer, that cannot be reduced to a single choice. What’s
more, it isn’t clear why certain features—e.g., the triangle inequality property—are
really so essential to determining how similar two possibilities are.11

2.2 A new proposal

This leads to a natural emendation, which shall constitute my own proposal for formal-
izing approximate symmetry. In particular, instead of beginning from a definition of
exact symmetry and then generalizing, I shall begin with a definition of approximate
symmetry, of which exact symmetry will turn out to be a special case, when it exists.
One advantage of this approach to defining approximate symmetry is that it applies
even when there are no exactly symmetric possibilities—i.e., when exact symmetry
can only be considered an idealization.12 Apropos of the guiding discussion in Sect. 1,
a good definition of approximate symmetry should allow for the possibility of radical
asymmetry that is nevertheless very like symmetry, even when the latter is ultimately
not physically possible.

To do so, instead of a pseudometric I introduce a classR of similarity relations onS,
also called a similarity structure onS (Fletcher forthcoming b). For present purposes, I
shall hew to the traditional characterization thereof (Carnap 1967): a similarity relation
∼ on S is a reflexive and symmetric binary relation on S; for any u, v ∈ S, u ∼ v is
interpreted as “u is similar to v”. Here, reflexivity captures the observation that every
possibility is similar to itself, and symmetry the intuition that the similarity relation
has no “directionality” to it: asserting that u is similar to v is just to assert that v is
similar to u.13 However, unlike an equivalence relation, a similarity relation is not in
general transitive. Sorites-like considerations illuminate why: shades of a color may
be quite similar to others a bit darker and brighter, but transitivity would then imply
that the blackest is a similar shade as the whitest.

11 See also Tversky (1977) for various arguments against these properties when interpreted as pertaining
to a similarity measure.
12 It also avoids technical problems that arise when trying to fix an exactly symmetric possibility as a
reference to which one must compare an approximately symmetric possibility, particularly when there are
infinitely many such choices available (Petitjean 2003, pp. 294–295).
13 These assumptions can well be challenged. Tversky (1977) argues against them on psychological and
linguistic grounds, as they arise for a distance function, even thought he opts for a different sort of numerical
representation of similarity nonetheless. Elsewhere I have provided further concise arguments for dropping
symmetry and weakening reflexivity to quasi-reflexivity (Fletcher forthcoming b). I believe the framework
for approximate symmetry developed in this essay could be extended to these cases, but I shall set that
development aside for now.
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Each relation in a similarity structureR represents a relevant way that the possibil-
ities of S are similar to one another. A pseudometric d on S induces such a family: for
every ε ≥ 0, let u ∼ε v just when d(u, v) ≤ ε.14 This suggests the analogous defini-
tion of approximate symmetry for similarity structures: for any transformation T ∈ T ,
if T (s) ∼ s for all s ∈ S, then T is a ∼-approximate symmetry of S.15 Although
∼ is not in general transitive for the reasons discussed above, if it is transitive, then
this definition reduces to that of an exact symmetry. Thus, defining approximate sym-
metry through similarity structures as I have makes exact symmetry a special case of
approximate symmetry.16

Moreover, it provides a more flexible way of describing degrees of approximation.
Any restriction of a similarity relation—that is, a subset of it—is also a similarity
relation, for reflexivity and symmetry are preserved under the subset relation. If ∼′
⊆ ∼, then ∼′ is at least as discriminating as ∼, in the sense that it determines no
more possibilities than ∼ does to be similar to one another. And if ∼′ � ∼, then
∼′ is (strictly) more discriminating than ∼. This suggests an analogous definition of
one approximate symmetry transformation being at least as (or more) discriminating
than another. To see this, suppose the abstract possibility space S is equipped with
a similarity structure R and consider transformations T , T ′ ∈ T such that for any
∼ ∈ R, if T (s) ∼ s for all s ∈ S then T ′(s) ∼ s for all s ∈ S. T ′ is then at least as
discriminating as T because it preserves similarity relations at least as discriminating
as those that T does. If further there is some ∼ ∈ R such that for all s ∈ S, T ′(s) ∼ s,
while for some s′ ∈ S, T (s′) � s′, then T ′ is (strictly) more discriminating that
T because it preserves similarity relations that are more disciminating than those
that T does. In both of the cases of the similarity relations and the transformations,
discrimination has the structure of a preorder, inherited directed from that structure
of the subset relation. Some transformations will discriminate more than others, but
others will discriminate in incomparable ways.

For example, consider again the case of a similarity structure on an abstract possi-
bility space S induced from a pseudometric thereon. Whenever ε′ ≤ ε, the similarity
relation ∼ε′ is at least as discriminating as the similarity relation ∼ε . Suppose further
that the possibilities in question are positions in Euclidean space of a particular gear,
such as those in Fig. 1. Spur gears—the sort of gearmost have as their mental picture—
are exactly symmetric about their center for rotations of multiples of 360◦/n, where n
is the number of the gear’s teeth. A spur gear also has, for each of its teeth, a reflection
symmetry, whose plane bisects the gear into two “half-circles” through the centers of
the tooth and the gear (much like the reflection symmetries of an n-gon). Helical gears,
by contrast, have only the same rotation symmetries exactly. Any reflection symmetry

14 Gorham (1996) has suggested understanding similarity specifically through a pseudometric, although
he applies it not just to models of a theory but between models and concrete worlds to define verisimilitude.
Such applications are much beyond the present scope of investigation.
15 Just as a similarity structure on S represents relevant ways for individual possibilities to be similar, a
similarity structure on Sn represents ways for n-tuples of possibilities to be similar. A pseudometric on Sn

can induce such a structure, allowing for an analogous definition of an ∼-approximate symmetry of Sn .
(Cf. footnotes 7 and 10.)
16 Perhaps this is compatible with the statement from Castellani (2003a, p. 321) cited above, that an
approximate symmetry is one “valid under certain conditions”, if one takes “certain conditions” to refer to
the set of similarity relations for which a transformation is ∼-preserving.
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Fig. 1 Two sets of gears. Individual spur gears have a wider class of exact symmetries than individual
helical gears, but the latter can have the same class, as approximate symmetries, for sufficiently small helix
angles. Image by Ningbo Twirl Motor Co., Ltd.: http://www.twirlmotor.com/Blog/Industry-news/new-12.
html

will map a right-handed gear into a left-handed one, and vice versa. But if the gear’s
helix angle—the constant angle that the helical teeth make with the axis of rotation
of the gear—is sufficiently small, then even a helical gear could have approximate
reflection symmetry. This will be the case if the pseudometric on S is, for example,
the Hausdorff distance function dH , which sets the distance between two shapes to
be the largest of all the distances from a point in one shape to the closest point in
the other.17 But for a fixed helix angle, there will be a sufficiently small ε such that
a helical gear whose teeth have that angle will not have ∼ε-approximate reflection
symmetry (with respect to dH ). Thus, for helical gears, the rotation symmetries are
more discriminating than the reflection symmetries because the rotation symmetries
preserve ∼0, which is more discriminating than any ∼ε for ε > 0, but the reflection
symmetries do not. In contrast, for spur gears, the rotation symmetries are just as
discriminating as the reflection symmetries because the two types both preserve ∼0.

The foregoing example features similarity relations and transformations that have
totally ordered discrimination, as they are determined from a distance function. But
it is easy to modify the example to induce only partially ordered similarity relations
and transformations. Suppose that in addition to position in Euclidean space, the
abstract possibility space of the gears also includes their monochrome intensity, i.e.,
their grayscale color, ranging from black to white, modeled as a point on the interval
[−1, 1], equipped with the standard distance function. Suppose also then that the
similarity structure includes for every ε ∈ [0, 2] relations ∼′

ε—defined so that for
all u, v ∈ S, u ∼′

ε v when the grayscale color of u and v are within ε—and their
intersections with the relations∼ε . Only the perfectly gray gears (regardless of shape),
those with color value 0, are exactly symmetric under color inversion, which maps a
gear with color x �→ −x . Similarity relations regarding shape and color—ones that
are the intersection of some∼ε and some∼′

ε′—are more discriminating than ones that
take into account shape or color only, such as∼ε and∼′

ε′ , respectively. But none of the
∼ε are at least as discriminating as any of the ∼′

ε′ (for any ε, ε′). Analogously, none
of the color inversion transformations are at least as discriminating as the rotations or

17 In more detail, given two compact sets A and B in a Euclidean space, the Hausdorff distance between
them is dH (A, B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}, where d is the Euclidean dis-
tance function between points (Steen and Seebach (1995 [1978]), pp. 154–155).
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reflections and vice versa, but transformations composed from the elements of these
two groups are more discriminating than the ones from which they are composed.18

In the simple example determined from a distance function, there is a sense in
which when one approximate symmetry is more discriminating than another, it is also
more exact: it lies between the less discriminating symmetry and an exact symmetry
in the discrimination partial order. But discrimination is a relation of broader scope
than comparative exactness, for it applies even in contexts where there is no exact
underlying symmetry, or where there is more than one. Formally, some similarity
relation ∼ may have a restriction ≡ which is also a non-trivial equivalence relation,
i.e., an equivalence relation which is not the identity relation.19 Thus in this case a
≡-symmetry is also a ∼-approximate symmetry, and ≡ is more discriminating than
∼. But in other cases there may be no such restriction ≡.

Example 1 Let S = Z and IZ be the identity relation on Z. Suppose that the similarity
structure for S consists of a single relation, ∼ = {(i, j) : |i − j | ≤ 1}. I.e., the
similarity relation’s extension consists in all pairs of numbers whose elements are
identical or adjacent on the number line. Clearly the only restriction of ∼ that is an
equivalence relation is IZ, while both the successor (i �→ i + 1) and predecessor
(i �→ i − 1) transformations on Z are ∼-approximate symmetries.

It is also elementary to construct examples in which there is more than one restriction
that is a non-trivial equivalence, without there being a single equivalence relation that
contains them.

Example 2 Let S be a four-element set, e.g., the set of cardinal directions S =
{N , E, S,W }, and IS be the identity relation onS. Suppose that the similarity structure
for S consists of a single relation,

∼ = IS ∪ {(N , E), (E, N ), (E, S), (S, E), (S,W ), (W , S), (W , N ), (N ,W )}.

Here are two distinct restrictions of ∼ that are non-trivial equivalence relations:

≡1 = IS ∪ {(N , E), (E, N ), (S,W ), (W , S)},
≡2 = IS ∪ {(E, S), (S, E), (W , N ), (N ,W )}.

Clearly, neither is a subset of the other.

18 For readers interested in more fundamental subject matters than gears: the gear example is analogous
to one involving particles. All known particle interactions are invariant under rotational symmetries, while
only those not involving the weak interaction (cf. gears with a positive helix angle) are also invariant under
parity transformations (cf. reflection symmetry) and charge conjugation (cf. color inversion).
19 By beginning with similarity relations and then asking whether they have any restrictions which are
non-trivial equivalence relations, I am following the “approximate-symmetry-first” approach to approximate
symmetry. In contrast, Słowiński and Vanderpooten (1997) develop an analogous formalism (though for
different purposes) by beginning with equivalence relations and then extending them to similarity relations
(although they do not assume that these relations are symmetric). While the two approaches are extension-
ally equivalent where they are both defined—every similarity relation has the trivial equivalence relation
as a restriction—the differing order of construction and dependence of the Słowiński and Vanderpooten
formalism exemplifies the “exact-symmetry-first” approach.
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Fig. 2 Simulated diffraction
pattern of an icosahedral
quasicrystal along one of the
axes of (approximate) symmetry.
The sizes of the dots represent
intensity on the image as the
light sources passes through
several layers of the
quasicrystal. Image by Steffen
Weber: http://www.jcrystal.com/
steffenweber/qc.html

The restrictions of a similarity relation which are also equivalence relations thus form
a partial order by set inclusion that always has a least element—the trivial equivalence
relation—but does not necessarily have a greatest element.

Part of the significance of the first observation, that there may be approximate sym-
metries without an exact symmetry that they approximate, is that it entails that systems
may admit of approximate symmetry even when the most obvious exact symmetry to
which they correspond is impossible. This underscores the claim, expressed in Sect. 1,
that any of the observed symmetries of Nature may turn out only to be approximate.

One needn’t look to speculative fundamental physics to find it: intriguing concrete
examples are already found in quasicrystals.20 Although there are various definitions
of quasicrystals, what is important for present purposes is that modern crystalography
classifies crystals by their diffraction diagrams: light (such as X-rays) incident on a
solid sample of atoms undergoes diffraction, with the spacings between the atoms
serving as a kind of diffraction grating if the wavelength is carefully chosen so as
not to fall within the atoms’ absorbency spectrum. This so-called Bragg diffraction
produces an image opposite the sample from the light source that is essentially the
Fourier spectrum of diffracted plane waves of light. When the atoms have some order
to their spacing, the pattern displayed is highly concentrated at points on the image,
hence “A crystal is any solid with an essentially discrete diffraction diagram” while
“The symmetry of a crystal is the symmetry implied by its diffraction diagrams”
(Senechal 1995, p. 27). Periodic crystals are those whose exact symmetry includes
translations. It turns out that five-fold rotational symmetry, as depicted in Fig. 2, is
impossible in periodic crystals, but can be observed to a high degree of approximation
in aperiodic crystals—quasicrystals—such as certain aluminum–manganese alloys
that nonetheless have long-range order.21 Thus there is a definite sense in which the

20 Another kind of example is in the designation of a symmetry as being “accidental”, about which I will
say more in Sect. 5.
21 See Senechal (1995) and references therein for more on the mathematics and symmetry properties of
quasicrystals.
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five-fold approximate symmetry of a quasicrystal has no exact crystalline symmetry
which it approximates.

I will explore further implications of this observation for the role of symmetry in
intertheoretical relations in the following sections.

3 Symmetry in intertheoretic reduction: a new proposal

An exemplary new physical theory of a particular system or phenomenon encom-
passed or explains the success of its predecessor. For physical theories actually used
in the practice of science, this intertheoretic relationship is not typically a reduction
in the usual philosophers’ sense of a deduction (of the old theory from the new), for
the two are often incompatible when applied to the self-same phenomena. Rather, it is
somewhat more in the vein of what Post (1971) calls “correspondence” or the “physi-
cists’ sense of reduction” as described by Nickles (1973) and elaborated by Ehlers
(1986): it shows how the (typically) newer, more expansive theory represents more
phenomena successfully, and accounts for how the (typically) older, less expansive
theory represented phenomena successfully by showing that it well approximates the
former in these cases. For instance, this is so for special relativity’s explanation of the
success of Galilean spacetime, and general relativity’s explanation of the success of
special relativity. And it is also the case for effective field theories, where high-energy
versions reproduce to good approximation the predictions of low-energy versions.

My present goal isn’t to discourse on the concepts of reduction or explanation, but
instead indicate how approximate symmetries are implicated therein. One theory may
correspond to or reduce another via a limiting relation or approximation, yet the two
theories may have different symmetries preserving important classes of features they
have in common, such as their empirical features. If one were to think of reduction
as a kind of deduction, this would not pose a problem if every empirical equivalence-
preserving symmetry of the old theory is not only a definable transformation for the
new theory, but also a symmetry thereof.22

However, this is generally not the case: the Poincaré spacetime symmetries of the
special theory of relativity, which preserve all empirical content of each of that theory’s
models, not only fail to preserve this content in general relativity, but not all of those
transformations are in general even definable there (Fletcher forthcoming a). (For
instance, if the spacetime manifold is not diffeomorphic to R4, there will no sets of
Killing vector fields that could form the Poincaré Lie group.) How can the one theory
therefore explain the symmetries of anotherwith an overlapping domain of application,
particularly when those symmetries preserve the explanandum’s empirical content?23

22 The empirical equivalence relation on an abstract possibility space is the equivalence relation on that
space the members of whose equivalence classes represent the same of empirical phenomena. For the
purposes of this section, I am assuming that how the elements of the space represent empirical phenomena
has been given.
23 The domain of application of a theory is the collection of phenomena to which the theory is intended
to apply or represent. This demand for explanation is also considered to be an important heuristic in the
search for and development of new theories (Redhead 1975, p. 107).
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I argue that the pertinent empirical equivalence-preserving symmetries of the
old theory can be explained as being merely approximately empirical equivalence-
preserving in the reducing theory. Thus appreciation of the role of approximation in
many cases of intertheoretic reduction undergirds the epistemic features of symme-
tries. But to do this, onemust slightly expand the formalism for approximate symmetry
introduced in Sect. 2. There, I assumed that transformation are functions on the whole
abstract possibility space S, and that equivalence relations delineating which possi-
bilities have shared properties are relations on S, too. Here, I allow the former to be
partial functions, i.e., be defined on only a proper subset S ′ of the whole abstract pos-
sibility space, and the latter to be equivalence relations on S ′, too. Then the analysis of
transformations as ≡-symmetries or ∼-approximate symmetries proceeds as before,
but restricting their definitional conditions to the domain of definition of the trans-
formation and equivalence relation, S ′. In other words, one allows a transformation
to preserve an equivalence relation ≡ or a similarity relation ∼ just on a subset of
elements of S.

Additionally, onemay consider an abstract possibility spacewhosemembers consist
of the unionof the possibilities ascribed to a systemby two theories, oneold and another
new, the latter of which explains the success of the former. One supposes that the
abstract possibility space is equippedwith a similarity structureR containing similarity
relations relating possibilities of each of the two theories to one another, and which
encode similarities of their relevant—usually, empirical—features. This will be the
casewhen every successfully applied possibility of the old theory is empirically similar
to one of the new theory. The idea is that successful applications of the possibilities
of the old theory could have just as well used a corresponding possibility of the new
theory.

Formally, letO,N ⊆ S denote the possibilities of the old and new theories, respec-
tively.24 Then N explains O relative to R when for every o ∈ O and every ∼ ∈ R,
there is some n ∈ N such that n ∼ o.25 Here, the new theory explains the old (relative
to a similarity structure) via the possibilities that each of the two theories afford. For
example, in the case considered in Sect. 2 where the similarity structure is generated
from a pseudometric, one might restrict the structure to contain all the ∼ε such that
ε ≥ c for some constant c > 0. In the case of the gears, the new theory might contain
flexible continuum states for the gears, while the old theory might only contain rigid
continuum states, certain of which are well-approximated observationally (but not to
arbitrary precision) by flexible states.

With these preliminaries, one can define the formal conditions needed for the expla-
nation of symmetries. Let ≡ be an equivalence relation defined at least on O, and
suppose that T is a partial or total transformation on S that is a ≡-symmetry for O,
i.e., for every o, o′ ∈ O, if o ≡ o′ then T (o), T (o′) ∈ O and T (o) ≡ T (o′). Then
N explains this ≡-symmetry when for every o ∈ O and every ∼ ∈ R that is less
discriminating than ≡, there exists some n ∈ N such that T (n) ∈ N , n ∼ o, and

24 If the successfully applied possibilities ofO are a proper subset thereof, one would restrict attention to
those presently, but this doesn’t make a difference in the formal aspects of the analysis.
25 In other words, there are elements ofN arbitrarily similar to elements ofO; this is formally analogous
to O lying in the topological closure of N . For more on the connections between similarity structure and
topological structure, see Fletcher (forthcoming b).
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T (n) ∼ T (o). In other words, for N to explain the ≡-symmetry for O is for two
conditions to hold: first,N explainsO relative to the similarity relations inR that are
less discriminating than ≡, and second, this explanation ofO byN is invariant under
T . The similarity requirement above describing howN explainsO captures how indi-
vidual successes of the possibilities in O can be explained through the possibilities
ofN . The invariance requirement is intended to capture the further demand that, just
as two possibilities of O related by T that are in the same equivalence class of ≡ are
equally well suited to represent the features they share in common in virtue of being
in that class, there are possibilities in N related by T are adequately similar to those
two of O. Note that this invariance is not required of all the witnesses in N of the
explanation of O: T may well not preserve ∼ for some n and o for which n ∼ o, but
all that matters is that it do so for some.

Interestingly, according to this definition, in order forN to explain an≡-symmetry
T ofO, it is not necessary for T to be even a ∼-approximate symmetry ofN , or even
any subset thereof, including the witnesses to this explanation for any o ∈ O, when
∼ is less discriminating than ≡. To see this, take again the case from Sect. 2 of spur
and helical gears, dividing them into equivalence classes based on their shape. Helical
gears with sufficiently (but not arbitrarily) small helix angle, whether left- or right-
handed, may each be relevantly similar in shape (i.e., related by each ∼ ∈ R) to spur
gears of the same size, but not to each other. Under the parity (mirror) transformation,
the shape of spur gears are invariant, while left- and right-handed helical gears switch
their handedness. So, even if there are truly no spur gears and only helical gears in a
set of gears of interest, the small helix angle of those gears allows one to explain why
a theory that treats any individual helical gear as a spur gear may be adequate, and
why that adequacy does not change under parity transformations, even if the helical
gears are not even approximately symmetric under this transformation.

But, T being a ≡-symmetry of any subset of N that explains O (relative to R) is
sufficient for that subset to explain the ≡-symmetry of O, provided that ≡ is at least
as discriminating as any ∼ ∈ R. To see this, suppose that

1. T , a partial or total transformation on S, is a ≡-symmetry for O;
2. ≡ is at least as discriminating as any ∼ ∈ R;
3. N explains O (relative to R), i.e., for every o ∈ O and every ∼ ∈ R, there is

some n ∈ N such that T (n) ∈ N and n ∼ o; and
4. T is at least a ≡-symmetry of the subset ofN that witnesses the explanation ofO

(relative toR).

Now pick any o,∼, and n over which condition 3 quantifies. By condition 1, o ≡ T (o);
by condition 3, n ∼ o; and by condition 4, n ≡ T (n). Because ≡ is at least as
discriminating as ∼ (condition 2), these first two statements imply n ∼ T (o), which,
combined with the third, implies T (n) ∼ T (o). Since o and∼were arbitrary and some
n exists for any such choice, by definition N—really, the subset thereof witnessing
the explanation—explains the ≡-symmetry of O.26

26 This also shows that it is not enough in general for T to be a∼-approximate symmetry ofN—really, the
subset thereof witnessing the explanation—for n ∼ T (o) and n ∼ T (n) does not imply that T (n) ∼ T (o)
for an arbitrary similarity relation ∼.

123



4824 Synthese (2021) 198:4811–4831

4 Curie-Post principle

Once one establishes a certain intertheoretic relationship between two theories, does
it entail anything about the relationships between their symmetries? Redhead (1975),
following Post (1971), introduces the “Curie-Post Principle” as an analog to Curie’s
principle, which states, roughly, that the symmetries of causes are always to be found in
the symmetries of their effects (Brading and Castellani 2007, §2.2). If one extrapolates
this idea to theories, taking a newer theory as a “cause” whose “effect” is the older
theory it explains, then one arrives at the claim that the symmetries of the newer
theorymust also be found in the theory it explains. Redhead (1975) defends a restricted
version of this principle. Essentially, he considers an old and a new theory, as discussed
above, where both the new theory’s possibilities N and the old theory’s possibilities
O are restricted to those with their common overlapping domain of application and
which have also been “well-confirmed”, i.e., successfully applied. Call these subsets
N ′ and O′, respectively. Furthermore, comparison of the possibilities—e.g., through
the similarity relations of a similarity structure R on O ∪ N—are restricted to those
sensitive only to properties that arewell-defined for the possibilities of the old theory.27

In other words, one assumes that each similarity relation inR is defined onO. Finally,
there is a further restriction on the abstract possibility space of the new theory to just
that subset which explains the successful possibilities of the old (in the sense given
before), i.e., those n ∈ N ′ such that there is some o ∈ O′ for which n ∼ o for each
∼ ∈ R. Call this subset N ′′.

With these preliminaries in hand, he proposes the following restricted version of a
Curie-Post Principle:

Curie-Post(-Redhead) Principle (Informal) “The [possibilities of N ] cannot be more
symmetric than [those of O′] provided the symmetry transformations considered
do not break the [restrictions onN ] used in formulating the correspondence rela-
tion” (Redhead 1975, p. 104).

In fact, he writes that “For transformations which do not break the [restrictions onN ],
[O′] will be approximately symmetric in a sense that could be specified in terms of
the metric” (Redhead 1975, p. 109n24) that defines approximation of the possibilities
of one theory by another. Redhead does not precisely say quite what it means to break
any of the aforementioned restrictions, but here is one possible explication:

Curie-Post(-Redhead) Principle (Formal) For any ≡-symmetry T of N , suppose that
there is a subset N ′′′ ⊆ N ′′ such that N ′′′ explains O′ relative to the similarity
relations ∼ less discriminating than ≡, and T [N ′′′] ⊆ N ′′.
Then T is a ∼-approximate symmetry of O′ for each such ∼.

The conditions stated—that T preserves membership in N ′′ for a set of possibilities
that explain those of O′—are intended to capture the demand that T not “break” the
restrictions on the possibilities of N .

Redhead does not prove his version of this principle. Indeed, as I have explicated
it, it is false, in general. Consider again the case of the gears, but now in which the

27 Technically, Redhead applies this restriction antecedently to the domain restriction and directly to the
models to produce a subtheory of the new theory, but for present purposes we may let this restriction apply
instead to similarity relations included in the similarity space for the new and old theories’ possibilities.
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states of the spur gears areN and those of the left-handed helical gears—with a helix
angle that is small, but not arbitrarily so—O′. Both the shape of the spur gears and
their membership in the class N are invariant under parity (mirror) transformations,
but neither the shape of the left-handed helical gears nor their membership in O′ are
even approximately invariant under them. So, it is entirely possible for the possibilities
of the newer theory that explains the success of the older theory to have symmetries
that the possibilities of the older theory do not have, even approximately, because the
action of T onO′ need not be contained inO′, and even if it is, it need not preserve the
∼ relations. The case is not helped if one assumes that the similarity structure arises
from a (pseudo)metric, as Redhead (1975, p. 101) does, for the case just described can
arise from a metric on the space of shapes for gears.

Although my explication of the principle does not hold in general, perhaps there
are other explications, maybe with further qualifications, that do. After all, there are of
coursemany cases inwhich an old theory does have a transformation as an approximate
symmetry that is an exact symmetry for a new theory that explains its success: consider,
e.g., Lorentz boosts of sufficiently small velocity, which are exact symmetries of
Minkowski spacetime but only approximate symmetries inGalilean spacetime because
they approximate Galilean boosts for sufficiently small bounded (compact) spacetime
regions. Thismay require restricting attention even further to continuous symmetries—
i.e., those that form a topological group—that are sufficiently close to the identity.28

But, I leave the investigation of these possibilities to future work.29

5 Accidental symmetries

I now turn to the characterization of accidental symmetries in physics, for which
I propose a novel account in Sect. 5.4 using the foregoing formalism. It will help
to motivate the need for this account by contrasting it with the developed accounts
available, due to Kosso (2000) (Sect. 5.1), Lange (2011) (Sect. 5.2), and Redhead
(1975) (Sect. 5.3).

5.1 Kosso’s (2000) account

To begin with Kosso’s, his is a holistic, interdependence account: “A symmetry is
fundamental to the extent that other things depend on it and that it depends on other
things” (Kosso 2000, p. 115). The more dependence relations between a symmetry
and other structures in a theory, the more fundamental it is; it is accidental to the extent
that it is not fundamental. The fundamentality of a symmetry is determined through

28 Redhead (1975, p. 109n24) himself in a note to his main text seems to suggest restricting attention to
continuous symmetries, but does not follow through with the suggestion in his official account.
29 Redhead (1975, p. 104) already gives another version of the Principle (his “P2′”) that does not falter
under the sort of counterexample I have described, but only by restricting to cases where the old and new
theory correspond exactly (rather than merely approximately) for the domain of phenomena on which they
overlap. However, it is difficult to find realistic examples of this (so-called “exact correspondence”) in the
development of physics.
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its interdependence with these other structures. We find justification for a symmetry’s
fundamentality, as described in a theory, through its theoretical rigidity:

A claim is theoretically rigid to the extent that it cannot be changed or abandoned
without forcing changes or abandonment of other theoretical claims. …Theo-
retical rigidity is being used here as an epistemic criterion to justify the belief
that a symmetry is fundamental (Kosso 2000, p. 117).

Conversely, we find evidence for a symmetry being accidental to the extent that it
exhibits “no theoretical connection to other events or properties in nature. …It is
accidental in virtue of its lack of interdependence, and it is clearly recognized as
accidental by its theoretical alienation.” (Kosso 2000; p. 118). In Kosso’s holistic
account, therefore, one has evidence that a symmetry is more or less fundamental—
that is, less or more accidental—to the extent that it is well integrated and embedded
in the theory of phenomena in which it is found.

One consequence of this is that one should expect physicists to make comparative
judgments or claims of degree about a symmetry’s putative fundamentality. That is,
if being fundamental or accidental is a matter of degree (of interdependence or inte-
gration), one would expect to find physicists claiming for some certain symmetry that
it is somewhat accidental (or fundamental), or more accidental (or fundamental) than
another. But one does not find this. One finds rather that physicists make categorical
judgments about a symmetry being accidental. For instance, Weinberg (1995, p. 529)
opines that

It often happens …that the effective Lagrangian [at low energies] automatically
obeys one or more symmetries, which are not symmetries of the underlying the-
ory…. Indeed, most of the experimentally discovered symmetries of elementary
particle physics are ‘accidental symmetries’ of this sort.

Such symmetries of the low-energy theory are accidental, simpliciter. Similarly,
Polchinski (2017, p. 18) remarks that “In the context of the Standard Model, global
SU(3) is now seen as an accident, which appears in an approximate way because
the scale of the quark masses happens to be somewhat less than the scale of quark
confinement”. There is no characterization of the degree of theoretical rigidity of the
accidental symmetry, or qualifications about how weak that rigidity is.

One might defend Kosso’s account on the grounds of it being interesting despite
not being an “actor’s category”, in the historians’ sense. But Kosso (2000, p. 109) is
explicit that he intends his account to describe the practices of physics, in particular
particle physicists with regard to the Standard Model. So, Kosso’s account, whether
interesting in its own right, does not seem to capture adequately what physicists mean
by “accidental symmetry”.

5.2 Lange’s (2011) account

Now, one of the features of Kosso’s account is that

An accidental symmetry can be changed or even abandoned without any
collateral changes in nature, since nothing depends on an accidental symme-
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try. …Changing a fundamental symmetry, on the other hand, precipitates a
widespread and radical alternation in the theoretical network, since other things
depend on the fundamental symmetry. (Kosso 2000, p. 119)

Lange (2011, p. 349n7) elevates this feature30 to a characterization of accidental
symmetries, dropping the requirement on interdependence: “I understand accidental
symmetries as symmetries that impose no constraints on the allowable interactions in
that the symmetries might not still have held had there been different kinds of interac-
tions”.31 But the same issue about themismatch between the account’s predictions and
physicists’ usage arises: surely it is possible that some symmetries impose few (but
more than zero) constraints on interactions, while others impose some more. These
intermediate symmetries would not quite be as accidental, but it is difficult to find
expressions of this sort—that is, of the degree of being accidental—among physicists.

5.3 Redhead’s (1975) account

The idea of imposing constraints on other physics is also found in the characterization
of accidental symmetries by Redhead (1975, p. 81): “while expressing interesting fea-
tures of some specialized phenomenon, they are in a sense dynamical accidents having
no fundamental physical significance”. By this he means that they are symmetries that
preserve the properties that they do, such as being a dynamically allowed possibility,
only when applied to a subclass of possibilities—just like the relationship of N ′ to
N in Sect. 3—and which are not held to constrain the development of future physics.
Thus the constraint on allowable interactions provided by accidental symmetries for
Redhead is primarily of heuristic potential for future physics, rather than providing
counterlegal claims about present physics, as it was for Lange (2011). He emphasizes
moreover the malleability of this ascription, that “What may appear initially as an
accidental symmetry may later transpire to have heuristic potential. …Alternatively
putative heuristic symmetries may be downgraded to accidental status” (Redhead
1975, p. 81), giving the examples of gauge symmetry and unitary symmetry in hadron
physics, respectively.

Recognizing the heuristic dimensions of accidental symmetries and how their status
changes relative to theoretical developments importantly contrasts Redhead’s views
with those of Kosso and Lange. But those two were right to see this classification as
having some other (additional) role than a heuristic one: though accidental symmetries
may guide future research, they also bear upon the interpretation of current theories.

30 Astute readers will notice that in this passage Kosso seems to speak categorically about a symmetry
being accidental or fundamental, instead of it being a matter of degree as I had described in Sect. 5.1, but he
switches back in the paragraph following: “A symmetry is really fundamental if it is really interdependent
with many other things in nature” (Kosso 2000, p. 119). Similar switches occur throughout his article.
Thus perhaps the most charitable reading is to interpret the categorical language as elision of the repetitive
qualifications of degree.
31 In a scholarly lapse, Lange (2011) attributes the term “accidental symmetry” toWeinberg (1995, p. 529),
but it appears with a similar sense in the physics literature already in Christian (1952, p. 77). Redhead (1975,
p. 81) is the first I could find who introduced it into the philosophical literature.
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5.4 A new account

In light of my account of approximate symmetries, I believe I can offer a new account
of accidental symmetries that combines the virtues of the three foregoing accounts
without their vices. LetO be an abstract possibility space representing some physical
phenomena from a theory with limited scope, such as one in particle physics restricted
to a particular low-energy scale, and let N be those from a theory of wider scope
that explainsO relative to a similarity structureR encoding, e.g., observable features
of the possibilities. Further, suppose that a transformation T on their joint abstract
possibility space is a symmetry or approximate symmetry (of some equivalence or
similarity relation, respectively). Then T is accidental in O relative toN when, after
T is restricted toN , it is not also a symmetry or approximate symmetry, respectively,
of N ; insofar as such an N is not available but anticipated, one then anticipates
classifying T as accidental (in this relational way). In a word, a symmetry, exact or
approximate, is accidental for the possibilities from a theory relative to another that
explains it when it is not a symmetry for the possibilities from that other theory.

Finding an approximate symmetry in a theory that one anticipates explaining with
another can sometimes be a good heuristic constraint, therefore, on the search for
that explaining theory—cf. footnote 23. As Weinberg (1997, p. 40) advises in the
context of particle physics, “we would be suspicious of any approximate symmetry
that could not be explained as an accidental consequence of the constraints imposed
by renormalizability and the various exact symmetries”. (Here, the exact symmetries
are those anticipated of the explaining theory, and the constraint of renormalizability
restricts further the theories under consideration.) When one has reason to believe that
a symmetry is accidental, even if it is exact, that may influence how one decides to
run a surplus structure argument on it, for “what are ‘unphysical’ surplus features in
the appropriate description at a determinate regime may become physically relevant
features in a very different regime” (Castellani 2003b, pp. 435–436).

Moreover, my characterization of accidental symmetry is categorical, fitting with
physicists’ usage. Although accidental symmetries do not put constraints on the form
of the allowable interactions, just as Lange describes, this is a consequence, not a
characterization, of what it means to be accidental. The reason they do not impose
these constraints is the same reason that they are less integrated or interdependent,
in the sense of Kosso: they arise only from merely effective state ascriptions to the
phenomena, which are superseded by some theory with better accuracy or broader
scope that ascribes possible states to the phenomena for which the putative symmetry
does not hold, as is the case with global SU(3) symmetry, mentioned in the quotation
from Polchinski (2017) in Sect. 5.1.

6 An invitation

With the formal account of approximate symmetry from Sect. 2 in hand, one can at last
investigate conceptual questions regarding approximate symmetries with more preci-
sion. I did so for three sorts of cases pertaining to the role of symmetry in intertheoretic
relations. Besides giving an account of what it means to explain a symmetry of a class
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of possibilities over and above explaining the success of those possibilities individ-
ually (Sect. 3), I also gave a more precise explication of the notion of an accidental
symmetry (Sect. 5) and of the Curie-Post(-Redhead) Principle (Sect. 4), which affirms
the greater symmetry of a theory than another which it explains. Even though that
Principle was shown to be false, I suggested that perhaps further work will reveal a
restriction of it that is true.32

Two other subjects already invite themselves for investigation within this formal
framework. One is the role of approximate symmetry in the more usual applications
of Curie’s Principle to symmetry arguments concerning the origins of asymmetric
phenomena, especially in considerations of cause and effect. There is considerable
debate about the domain of application of such a principle (Brading et al. 2017, §3). But
perhapswith the exception of somewhat informal remarks byRosen (2008, §§5.2, 6.2),
the role of approximate symmetries in arguments that invoke Curie-like principles, and
the status of those arguments, have not received much attention.

The other subject is the role of approximate symmetry in the interpretation of
theories, e.g., their suggested ontologies and role in scientific reasoning and theoriz-
ing. Already van Fraassen (1989) has suggested that exact symmetry can play such a
role in place of laws, but what about approximate symmetry? In a realist vein, Kan-
torovich (2003) has argued that symmetries should be understood as physical relations
or structures that are ontologically prior to (and thus, in certain respects explanatory
of) particles. His presentation of the historical evidence acknowledges that approxi-
mate symmetries played a role in the development of particle physics and the Standard
Model, but he does not substantially develop what implications this has for the onto-
logical interpretation of symemtries.33 Although the initially developed approximate
symmetries were jettisoned for exact local symmetries, it remains entirely possible
that these will only be approximate in some future physics. What status therefore does
their ontological interpretation have now, in light of the defeasibility of our judgments
of their exactness?

But these two subjects hardly exhaust the possibilities. For example: Some have
contended that symmetry plays a role in characterizing what is objective in physics
(Weyl 1952; Nozick 2001; Debs and Redhead 2007); do approximate symmetries
then characterize what is approximately objective? If so, what is the function and
interpretation of approximate objectivity?Could it be understood through approximate
invariance, or a related concept? Others have contended that symmetries play a special
(epistemic) role in discovering the laws of nature, restricting the possible variety of
phenomena we observe: “if the correlations between events changed from day to day,
and would be different for different points of space, it would be impossible to discover
them” (Wigner 1967, p. 29). But it seems that merely approximate symmetry may be
sufficient to play this role (Brading and Castellani 2007, p. 1363); consequently, is
mere similarity, not symmetry, what’s needed to discover physical law? I hope that
this essay has served as an invitation to consider these questions further.

32 See also the remarks in footnote 29.
33 Notwithstanding this general pattern, see footnote 6 of Kantorovich (2003, p. 662).
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Słowiński, R., & Vanderpooten, D. (1997). Similarity relation as a basis for rough approximations. In P. P.

Wang (Ed.), Advances in machine intelligence and soft computing (Vol. 4, pp. 17–33). Durham: Duke
University Press.

Steen, L. A., Seebach, J. A., Jr. (1995 [1978]).Counterexamples in topology (2nd ed.). Mineola, NY: Dover.
Stewart, I., & Golubitsky, M. (1992). Fearful symmetry: Is God a geometer?. Oxford: Blackwell.
Sundermeyer, K. (2014). Symmetries in fundamental physics (2nd ed.). Cham: Springer.
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.
van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Clarendon Press.
Weinberg, S. (1995). The quantum theory of fields (Vol. 1). Cambridge: Cambridge University Press.
Weinberg, S. (1997). Changing attitudes and the standard model. In L. Hoddeson, L. Brown, M. Riordan,

& M. Dresden (Eds.), The rise of the standard model: Particle physics in the 1960s and 1970s (pp.
36–44). Cambridge: Cambridge University Press.

Weyl, H. (1952). Symmetry. Princeton: Princeton University Press.
Wigner, E. P. (1967). Symmetries and reflections. Bloomington, IN: Indiana University Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	An invitation to approximate symmetry, with three applications to intertheoretic relations
	Abstract
	1 Introduction: why study the unideal?
	2 Defining approximate symmetry
	2.1 Extant definitions
	2.2 A new proposal

	3 Symmetry in intertheoretic reduction: a new proposal
	4 Curie-Post principle
	5 Accidental symmetries
	5.1 Kosso's (Kosso2000) account
	5.2 Lange's (Lange2011) account
	5.3 Redhead's (Redhead1975spsREDSII) account
	5.4 A new account

	6 An invitation
	References




