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Abstract
I present an account of deterministic chance which builds upon the physico-
mathematical approach to theorizing about deterministic chance known as the method
of arbitrary functions. This approach promisingly yields deterministic probabilities
which align with what we take the chances to be—it tells us that there is approximately
a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2
probability of a flipped coin landing heads up—but it requires some probabilistic
materials to work with. I contend that the right probabilistic materials are found in
reasonable initial credence distributions. I note that, with some rather weak normative
assumptions, the resulting account entails that deterministic chances obey a variant
of Lewis’s ‘principal principle’. I additionally argue that deterministic chances, so
understood, are capable of explaining long-run frequencies.

Keywords Deterministic chance · Method of arbitrary functions · Principal principle

1 Introduction

You have a better chance of winning at blackjack than at craps (even if you happen to
win at neither). You have a better chance of getting into an accident at an intersection
than at a roundabout (even if you happen to make it through the intersection unscathed
and crash at the roundabout). A peacock with large and colorful feathers has a better
chance of reproducing than a similar peacock with small and lackluster feathers (even
if both of them end up finding a mate).

I take these truths to be evident. I am a compatibilist about chance. I believe that
fundamental physical determinism is compatible with non-trivial chance. For instance,
I believe that the outcome of a coin toss in aNewtonian universe—an outcomewhich is
uniquely determined by the initial conditions of the tossed coin—is amatter of chance.
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According to compatibilists,1 the chance that this coin lands heads is approximately
50%.2 According to incompatiblists,3 the chance that the coin lands heads is 1, if it
actually does, and 0, if it actually doesn’t.

An incompatibilist will disagree with me about whether chance is compatible with
fundamental physical determinism, yet they are likely to accept the claims in my first
paragraph—or at least some suitably sterilized translation of those claims. Perhaps
they will say that roundabouts decrease the epistemic probability, or what-have-you,
of accidents, while still insisting that the chance of an accident, in a deterministic
world, is 1, if the accident occurs, and 0, if the accident doesn’t occur.4 What is to keep
our disagreement from being merely verbal? Perhaps nothing. Perhaps, once ‘chance’
has been exchanged for ‘epistemic probability’, or what-have-you, the incompatibilist
will accept all the same claims about chance as I. Such an incompatibilist and I have
different views about how the word ‘chance’ ought to be used; but we don’t disagree at
all about the nature of chance (or, if you are such an incompatibilist: we don’t disagree
at all about the nature of epistemic probability).5

For my part, I do think that the word ‘chance’ is appropriately used to describe
deterministic systems; so, when I am speaking, I will use the word ‘chance’ indiscrim-
inately, to refer both to the kinds of chances that exist in worlds whose fundamental
physical laws are deterministic and the kinds of chances that are unique to worlds
whose fundamental physical laws are indeterministic. The former variety of chance I
refer to as ‘deterministic chance’. The latter variety I call ‘tychistic chance.’ Since my
goal is not to argue for any thesis about themeaning of ‘chance’, you should feel free to
translate into your own idiom as you see fit. Nevertheless, even after such translation,
disagreement about the nature of deterministic chance may remain.

To see why, we should turn to the sorts of considerations that motivate incom-
patibilism in the first place. I take it that one of the central intuitions motivating
incompatibilism is well illustrated by the coin-tossing machine constructed by Dia-
conis et al. (2007). This machine can exercise such minute control over the initial
conditions of the toss that it can determine whether the coin lands heads or tails. If
the coin is placed in the machine heads-up, then it will land heads-up; if it is placed

1 For instance, Clark (1987), Loewer (2001), Hoefer (2007), Ismael (2009), Glynn (2010), Sober (2010),
and Strevens (2011).
2 Strictly speaking, a compatibilist needn’t say this. They could say that the chance is 2/3, or π /4, or even
0 or 1. All it takes to be a compatibilist is to assign some proposition a non-trivial chance in a deterministic
world.
3 For instance, Popper (1982), Lewis (1986), and Schaffer (2007).
4 See, for instance, Schaffer (2007).
5 Following philosophical tradition, I reserve the word ‘chance’ for objective probabilities. So, when I
call the probabilistic features of deterministic systems ‘chances’, I mean to place those probabilities on
the objective side of an objective-subjective dichotomy. It may be that the reader disagrees with me about
whether there are deterministic chances because they and I disagree about where to draw the line between
objective and subjective. This is not first and foremost a disagreement about the nature of the probabilistic
features of deterministic systems. It is rather first and foremost a disagreement about how to use our terms.
Others, like Schaffer (2007) and Bradley (2017), will think that chance is whatever plays (well enough)
certain theoretical roles like constraining rational credence and explaining frequencies. Part of my goal here
is to demonstrate that the probabilistic features ascribed to deterministic systems are capable of playing
these kinds of theoretical roles.
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in the machine tails-up, then it will land tails-up.6 It is incredibly difficult to see the
outcome of this machine’s coin toss as a matter of chance. In the presence of such a
machine, one feels as though there simply isn’t anything chancy about the outcome of
the machine’s coin toss at all—or, perhaps, one feels that, when the coin is placed in
the machine heads up, the chance that the coin lands heads is 1 (or as near as tychistic
chance will allow—which is very near). Moreover, there doesn’t appear to be any
important difference between the machine’s coin tosses and our coin tosses—other
than, of course, our epistemic situation with respect to the outcome. In the case of
the machine, we know how the coin will land. In the case of our coin toss, we don’t.
It may well be that the initial conditions of our tossed coin are exactly the same as
the initial conditions of the machine’s tossed coin. So it is quite tempting to conclude
that deterministic chance is just a matter of our epistemic situation with respect to the
outcome, that deterministic chance is not a worldly affair. Thus Laplace (1814) writes:

The curve described by a simple molecule of air or vapor is regulated in a
manner just as certain as the planetary orbits; the only difference between them
is that which comes from our ignorance…Probability is relative, in part to this
ignorance, in part to our knowledge.7

But wait—deterministic chances don’t just earn their keep by telling us how con-
fident to be in the outcome of deterministically chancy processes. They additionally
help to explain certain worldly facts, such as the frequency of heads in a long series of
trials. But facts about our epistemic situation aren’t capable of explaining the outcome
of a physical process like a coin toss. Moreover, chances appear to be sensitive to
physical features of the world, even when we are ignorant of those features. A casino
could hardly protest the charge of using an unfair die by pointing out that nobody
knew that the die was loaded.8 Whether the die is fair seems to be entirely a question
of how the mass in the die is distributed, and not at all a question of our, or anybody’s,
epistemic situation with respect to the distribution of mass in the die.

Deterministic chance is an odd sort of beast. It appears at once subjective and epis-
temic, a chimera of our ignorance, and objective and worldly, the kind of thing that
depends upon and helps to explain features of the natural world. It is my view that an
adequate account of deterministic chance should help to explain this dual nature. My
goal here is to provide such an account. So put aside the question of whether the prob-
abilistic features ascribed to deterministic systems are appropriately called ‘chances’.
What’s interesting in this question—what remains after merely verbal disagreement is
settled—is whether what I choose to call ‘deterministic chance’ (whatever you choose
to call it) is a chimera of our ignorance or a worldly affair. My answer will be: in
some ways, deterministic chance is a matter of our ignorance; in some ways, it is a
worldly affair—the devil, of course, is in the details. To the extent that incompatibilists
deny the worldly aspects of deterministic chance, they and I disagree. Equally, to the

6 I take the existence of this machine to decisively settle, in the negative, Lewis (1986, p. 119)’s question
of whether quantum mechanical chance will infect the tossing of a coin to a degree sufficient to render the
tychistic chance of heads 1/2.
7 Laplace (1814, p. 6).
8 When I say that the die is ‘unfair’, I mean that it is not the case that the chance that one side land up is
the same as the chance that any other side land up.
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extent that compatibilists reject the epistemic aspects of deterministic chance, they
and I disagree.

My account of deterministic chance will take, as its jumping-off point, a physico-
mathematical approach to theorizing about deterministic chance known as the method
of arbitrary functions. This approach is motivated by the insight that deterministic
systems like the spinning of a roulette wheel or the tossing of a coin in a Newtonian
universe have an interesting property: almost any reasonable probability distribution
over the initial conditions of the roulette wheel’s spin or the coin’s toss will induce
a probability very close to 50% to the roulette wheel landing on black and the coin’s
landing heads (Sect. 2). It is tempting to try to parlay this physico-mathematical result
into a metaphysical account of deterministic chance. Any account along these lines
faces the obstacle of explaining away the probability distributions over initial con-
ditions (call these the initial distributions). For if the initial distributions are chance
distributions, then we have not analyzed away the notion of chance, nor in any way
illuminated its compatibility with determinism. We have, rather, merely said some-
thing about how the world’s causal structure and its chance function are interrelated.
Some have attempted to parlay the method of arbitrary functions into an account of
deterministic chance by claiming, roughly, that the initial distribution is just a measure
of the proportion of those initial conditions.9 Others claim that the initial distributions
come from the actual and/or hypothetical frequencies of initial conditions,10 or that the
initial distribution is itself a law of nature.11 In contrast, I will suggest that, roughly,
these initial distributions are reasonable prior credal distributions over the initial condi-
tions (Sect. 4).12 I will argue that this approach is able to explain why chances play the
role they do in scientific practice and every day reasoning. In particular, I will argue, it
is able to show how chances are capable of explaining long-run frequencies and how
they are capable of constraining rational credence. That’s because the account on offer
here, together with some plausible theses about rational credence, ends up entailing a
deterministic variant of Lewis’s ‘principal principle’, which tells us, roughly, that our
credence in a proposition p, conditional on the chance of p being x , ought to be x .

2 Themethod of arbitrary functions

In his Calcul des Probabilités (§§92 & 93), Poincaré introduced a method for deter-
mining the chancy properties of deterministic systems which has come to be known
as the method of arbitrary functions.13 In this section, I will introduce the method of
arbitrary functions by way of two examples, and then say something about how to
generalize the approach.14

9 See Rosenthal (2010, 2012, 2016).
10 See Strevens (2003, 2011), Abrams (2012), and Beisbart (2016).
11 See Albert (2000, 2015), Loewer (2001, 2004, 2007), and Roberts (2016).
12 This puts me in the company of Savage (1971) and Myrvold (2012).
13 vonKries (1886) scooped Poincaré by several years, though he left themathematical details rather vague.
See von Plato (1982) and Zabell (2016).
14 A note on the presentation: the method of arbitrary functions has a long and storied history. My goal
in this section is not to give anything like an adequate introduction to the historical development of these
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V

Fig. 1 The outcome of the roulette wheel spin, as a function of its initial angular velocity. If the initial
angular velocity is in a region shaded grey, then the wheel will stop on black; else, it will stop on red

2.1 The roulette wheel

For purposes of illustration, consider the deterministic system of a
croupier’s spinning a roulette wheel. Just to keep things simple, let’s suppose that
the roulette wheel consists of 36 equally sized, colored pockets. The color of the
pockets alternates between black and red, so that half of the pockets are colored black,
and half are colored red. There is a fixed pointer, and the color of whichever pocket
it points to when the wheel is finished spinning is the winning color. Suppose that
the pointer begins pointing at the start of a black pocket, the croupier gives the wheel
an initial angular velocity of V , and friction causes the wheel’s angular velocity to
decelerate at a constant rate, δ. Then, the wheel’s angular velocity at t will be V −δt . It
will therefore stop rotating at time t∗ = V /δ. At time t , the wheel will have rotated θt

degrees, where θt = V t −0.5δt2. Thus, at the time t∗ when the wheel stops rotating, it
will have rotated a total number of degrees θt∗ , where θt∗ = V t∗ − 0.5δt∗2 = V 2/2δ.
Thus, if V 2/2δ is between 0◦ and 10◦, then black will win; if V 2/2δ is between 10◦
and 20◦, then red will win; if V 2/2δ is between 20◦ and 30◦, then black will win; and
so on.

This is illustrated in Fig. 1, where the area above a velocity, V , is shaded if a spin
with that initial velocity would lead to the roulette wheel stopping on a black pocket,
and is left unshaded if a spin with that initial velocity would lead to the roulette wheel
stopping on a red pocket. Notice that, as the initial velocity V gets greater, the distance
between shaded and unshaded regions gets smaller. In the limit as V goes to infinity,
this distance converges towards zero. (This is because the number of degrees the wheel
rotates is a function of V 2.)

The basic thought behind the method of arbitrary functions is just this: we may
pick any probability density function over the croupier’s spin velocity V (call this an
initial distribution), and this will induce a probability very close to one half to black’s
winning, and a probability very close to one half to red’s winning. That is, we may

Footnote 14 continued
ideas, but rather to simply present them in the form that is currently fashionable. See Strevens (2003, §2.A)
and von Plato (1983) for accessible introductions to this historical development. See Engel (1992) for a
more technical historical introduction.
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V

f1(V )

Fig. 2 The area under the curve f1 mapped to black,
∫
B f1(V ) dV ≈ 1/2

V

f2(V)

Fig. 3 The area under the curve f2 mapped to black,
∫
B f2(V ) dV ≈ 1/2

V

f3(V )

Fig. 4 The area under the curve f3 mapped to black,
∫
B f3(V ) dV ≈ 1/2

pick an arbitrary initial distribution, and we will arrive at a probability of very nearly
one half for black and a probability of very nearly one half for red. See Figs. 2, 3 and
4. That is the thought; but a moment’s reflection shows that it can’t be quite right.
It’s not the case that any initial distribution will induce a probability very close to
one half to black’s winning. Consider the initial distribution shown in Fig. 5. This
initial distribution will induce a probability much greater than one half to the roulette
wheel landing on black, and a probability much less than one half to the roulette wheel
landing on red. (Call this ‘the problem of all too arbitrary functions’.)

A standardway of getting around the problemof all-too arbitrary functions is to shift
attention towards various asymptotic features of the analysis. For instance, Poincaré
(1912) points out that, as the number of equally-sized red and black pockets on the
roulettewheel goes to infinity, the probability of black goes to 1/2, given any absolutely
continuous initial distribution—even the one shown in Fig. 5. Hopf (1934) similarly
points out that, given any absolutely continuous initial distribution, as the friction on
the roulette wheel goes towards zero, the probability of the wheel’s stopping on black

123



Synthese (2021) 198:4339–4372 4345

V

f4(V )

Fig. 5 The problem of all-too arbitrary functions. Not just any probability distributionwill give a probability
of 1/2 to the set of initial conditions which lead to the roulette wheel stopping on black.

∫
B f4(V ) dV �

1/2

approaches 1/2. Others observe that, so long as the initial distribution is absolutely
continuous, in the limit as the initial angular velocity V goes to infinity, the probability
of the wheel’s stopping on black approaches 1/215—this is because, as V gets larger,
the gaps between initial velocities leading to black and initial velocities leading to red
get smaller.16

These are interesting observations, but it isn’t clear what relation these asymptotic
results are supposed to bear to the chance of black. Consider the final approach: even
putting aside the worry that the laws of nature put an upper bound on the value of V ,
the dynamical equation that we were relying upon when we assumed that the initial
velocity determines the outcome of the spin simply does not hold when the velocity
is too large. Were the initial velocity V to get close to the speed of light, the air
molecules wouldn’t have time to get out of the way of the spinning roulette wheel.
Those molecules would fuse with the atoms in the surface of the wheel, releasing a
massive amount of energy. There simply wouldn’t be an answer to the question of
whether the pointer points at a black or red pocket, as both the wheel and the pointer
would be almost instantly vaporized by the ensuing thermonuclear reaction. The point
here is just that the method of arbitrary functions is relying upon certain dynamical
equations which we ought to trust in the case of low velocities, but which we have
positive reason to distrust in the case of high velocities.

Even ifwe don’t find this kind of response troubling—perhaps becausewe think that
limiting behavior can be revelatory, even when we know that that limit is in principle
unreachable17—relying upon limiting probabilities to determine chances makes it
unclear what relationship there could be between the chance of the roulette wheel
stopping on black and the observed frequency of roulette spins which stop on black.
For we know that all of the actual initial velocities are quite low; why, then, would
we expect to learn anything about the actual frequencies by looking at a probability
distribution most of whose mass is atop astronomically high velocities?18 In sum,

15 That is to say: limx→∞
∫
B f (V − x) dV = 1/2.

16 See Keller (1986), in which he determines the probability of heads as the initial upwards and angular
velocities go to infinity, supposing that the initial distribution is absolutely continuous.
17 See Strevens (2003, §2.A) and Butterfield (2011).
18 See Strevens (2011, §3).
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Fig. 6 The outcome of a coin flip as a function of its initial upward velocity (U ) and its initial angular
velocity (A). If 〈U , A〉 lies in the grey area, then the coin will land heads; otherwise, it will land tails

it doesn’t seem to me that the appeal to asymptotics is an effective response to the
problem of all-too-arbitrary functions. I’ll put it aside from here on out. But this leaves
an outstanding problem that an adequate account of deterministic chance built upon
the method of arbitrary functions must solve.

2.2 The coin flip

The method of arbitrary functions analysis is meant to apply to more systems than
a croupier’s spin of a roulette wheel. For another example of this reasoning at work,
consider Keller (1986)’s analysis of the probability that a flipped coin will land heads-
up. Keller asks us to imagine that we flip a coin with radius r , initially laying flat at
height r above the ground with its tails face up,19 by providing it with a certain initial
upward velocity U and a certain angular velocity A (see Fig. 6). Suppose that the coin
rotates about its center of mass with a constant angular velocity. Since, in the earth’s
gravitational field, the vertical acceleration of the coin is −g, the coin’s height at time
t is ht = Ut − 0.5gt2 + r . If we assume that the coin does not bounce, then whatever
side of the coin is facing up when it returns to the height r will be the side which is
facing up after the coin has settled to the ground. The coin will return to height r at
time t∗ = 2U/g. Because the coin’s rate of rotation A is constant, the angle the coin
has rotated at time t , θt , will be equal to At . Thus, when the coin returns to height r ,
it will have rotated θt∗ = 2AU/g degrees. Since the coin began tails up, if 2AU/g
is between 90◦ and 270◦, then coin will land heads. If 2AU/g is between 270◦ and
450◦, then the coin will land tails. If 2AU/g is between 450◦ and 630◦, then the coin
will land heads; and so on.

If we graph those pairs of initial upward velocities and initial angular velocities
〈U , A〉 which lead to the coin landing heads, we get the hyperbolas shown in Fig. 6.
As in the case of the roulette wheel, just about any not-too-arbitrary probability dis-
tribution over the values of 〈U , A〉 will put about half of its mass on values of 〈U , A〉

19 Following Keller, I set the coin’s initial height equal to its radius in order to simplify the math. Nothing
significant changes if we vary the coin’s initial height.
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which lead to the coin landing heads and about half of its mass on values of 〈U , A〉
which lead to the coin landing tails.20

2.3 Themethod of arbitrary functions in general

Suppose that there is a variable O (which we can think of as the outcome of the
chance process) such that the value of O is causally determined by the values of
some other set of variables C1 . . . CN (which we can think of as the causes of the
outcome O). I’ll assume that what it is for O to be causally determined, in the relevant
way, by the values of C1 . . . CN , is for there to be a true dynamical equation of the
form O := φO(C1, . . . , CN ).21 In the case of the roulette wheel, we had the function
B := φB(V ), where V is the initial angular velocity of the roulette wheel, B is a
binary variable which takes the value 1 if the roulette wheel stops on black, and takes
the value 0 if it instead stops on red, and φB is22

φB(V ) =
{
1 if V 2/2δ mod 20 < 10
0 if V 2/2δ mod 20 ≥ 10

(This is the function illustrated in Fig. 1). In the case of the coin flip, we have the
function H := φH (U , A), where U is the coin’s initial upward velocity, A is the
coin’s initial angular velocity, H is a binary variable which takes the value 1 if the
coin lands heads and takes the value 0 if it instead lands on tails, and φH is

φH (U , A) =
{
1 if (2U A/g − 90) mod 360 < 180
0 if (2U A/g − 90) mod 360 ≥ 180

(This is the function shown in Fig. 6.)
A method of arbitrary functions analysis of the deterministic chance of a certain

outcome O = o consists of two components: a dynamical equationφO fromC1 . . . CN

to O and an initial probability distribution f over the potential values of C1 . . . CN .23

From the initial distribution over the values of C1 . . . CN , we induce a probability
distribution over the values of O as follows: we look to the set of initial conditions
such that, according to the dynamical equation φO , those initial conditions lead to the
outcome O = o. Denote this set of initial conditions with ‘φ−1

O [O = o]’. Then, we

20 For a discussion of the application of the method of arbitrary functions to several other chance processes,
see Engel (1992) and Strevens (2003, 2013). For a development of Keller’s analysis which incorporates
precession and shows surprisingly that a flipped coin is slightly more likely to land on whichever face was
up initially (≈ 51%), see Diaconis et al. (2007).
21 I’musing ‘:=’, rather than ‘=’, to emphasize that the value of O is determined by the values ofC1 . . . CN ,
and not vice versa. := is therefore, not a symmetric relation like =.
22 ‘a mod b’ is the remainder when a is divided by b.
23 A few words on notation. Throughout, I will use ‘φO ’ to stand for both the function on the right-hand-
side of a dynamical equation O := φO (C1, C2, . . . , CN ), and also the entire dynamical equation itself.
Also, I will use ‘ f ’ indiscriminately to denote both a probability density function (if the variables over
which it is defined are continuous), a probability mass function (if the variables over which it is defined are
discrete), and the probability function determined by such pdfs or pmfs.
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set the probability of O = o equal to the probability of its causes, φ−1
O [O = o].

f (O = o) = f (φ−1
O [O = o]) (pdp)

Because it gives us a relation between a probability function and a dynamic equation,
I call this equation the ‘probability dynamics principle’ (or ‘pdp’). The pdp says, of
any given probability function, f , that the world’s causal dynamics take f along for
the ride. The pdp is non-trivial. There are many probability functions for which it
obviously does not hold—for instance, if f is an individual’s credence function,24

and that individual is ignorant of the causal relationship between C1 . . . CN and O ,
then there is no reason to expect that pdp will hold of f . However, it seems very
plausible as a constraint on the relationship between chance and causation. Indeed,
many authors who rely upon the pdp fail to explicitly mention the principle at all.
Those who do mention the principle usually do so without comment.

As a first pass, then, the method of arbitrary functions (maf) analysis of determin-
istic chance says the following:

method of arbitrary functions (maf)

If φO and f are suitable, then

Ch(O = o) = f (φ−1
O [O = o])

That is: the chance distribution over outcomes is the result of time-evolving a suit-
able probability distribution along a suitable dynamical equation φO , according to the
probability dynamics principle, pdp. In a slogan: chance is a suitable probability dis-
tribution filtered through suitable dynamics. Once a suitable probability distribution is
supplied, the maf will tell us that a fair coin has about a half chance of landing heads
and that a fair roulette wheel has about a half chance of stopping on black. So too
will it tell us that, if a die has most of its mass concentrated opposite its 6-face, then
it will have a greater than one-sixth chance of landing with its 6 face up; and that, if
the roulette wheel has a greater coefficient of friction in its black regions than its red
regions, then it will have a greater than one half chance of stopping on black.

The restriction to suitable φO and f in maf is important. Not just any initial
distribution f will do. As we saw in Sect. 2.1, if we allow just any initial distribution,
then, by appeal to gerrymandered distributions like the one shown in Fig. 5, we could
give O = o any chance we like. Similarly, not just any dynamical equation φO will do.
At the least, this equation must be correct. Perhaps more than correctness is required
for a dynamical equation to be suitable for the maf analysis. Strevens (2003, 2011,
2013) places a joint requirement on both the initial distribution f and the dynamical
equation φO : he requires, firstly, that the dynamics be such that, for any small (but
not too small) region of the initial conditions space 〈C1, . . . , CN 〉, the proportion
of initial conditions which lead to the outcome O = o is about the same.25 If φO

24 I will be assuming throughout that rational credences are probabilities.
25 As I will be understanding the term ‘microconstant’, the proportion here is calculated with the Lebesgue
measure, corresponding to the intuitive length of a set of points in R, the intuitive area of a set of points in
Footnote 25 continued
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meets this requirement, Strevens says that it is microconstant. In the definition of
microconstancy, how small is small enough (and how small is too small) is left vague.
Given a certain standard for smallness, however, Strevens requires that the initial
distribution f be approximately uniform over small regions of the initial conditions
space. Strevens calls an initial distribution satisfying this condition macroperiodic.
On Strevens’ view, microconstancy and macroperiodicity are necessary conditions on
φO and f being suitable. Notice that these conditions will, all by themselves, rule
out all-too-arbitrary functions like the one shown in Fig. 5. Such functions are not
macroperiodic because they are not approximately uniform over the small (but not too
small) regions relative to which the dynamics are microconstant.

It is unclear whether microconstancy and macroperiodicity should be taken to
be necessary for the existence of a deterministic chance.26 It seems likely that
microconstancy and macroperiodicity are necessary conditions for the existence of a
deterministic chancewhosevalue is (near enough)determinate. For non-microconstant
dynamics and non-macroperiodic initial distributions, it may be that the most that is
determinately true about the chance of the outcome is that it lies in some rather wide
interval; but there’s no obvious reason why this should preclude us from saying, for
instance, that the chance is non-zero or that some event would raise or lower the
chance of the outcome.

3 Themethod of arbitrary functions and themetaphysics of
deterministic chance

The physico-mathematical results from the literature on the method of arbitrary func-
tions are just that: mathematics and physics. These results on their own do not establish
any thesis about the possibility or the nature of deterministic chance. Whether these
results are capable of founding a metaphysics of deterministic chance depends upon
howwe unpack the ‘suitability’ requirement frommaf. In particular, until more is said
about the suitability of f , there is nothing in the result fromSect. 2.2 even guaranteeing
that, in a deterministic universe, the chance of a coin landing heads is strictly between
0 and 1. A staunch incompatiblist could affirm maf but insist that the only suitable
initial distribution is an initial chance distribution. And since non-trivial chance is
ruled out by determinism, in deterministic worlds, f would be a probability measure
which places all of its mass on the actual initial conditions and none of its mass on
any non-actual initial conditions.

In addition to a general skepticism about the possibility of deterministic chance,
there are at least two reasons to be sympathetic to this kind of reaction. In the first place,
there is a technical objection.27 Given any collection of variables, C1, . . . , CN , which
causally determine the value of O in the manner specified by the equation φO , we can

R
2, the intuitive volume of a set of points in R

3, etc. For a more careful definition of Lebesgue measure,
see Bartle (1966).
26 Of course, Strevens need not, and does not, claim that they are. maf provides a sufficient, and not a
necessary, condition for the existence of a deterministic chance.
27 The objection is discussed in Strevens (Strevens 2003, chapter 2), and further emphasized by Rosenthal
(2012).
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cook up another collection of variables, ζ(C1, . . . , CN ), which are transformations of
C1, . . . , CN , and which determine the value of O in a manner specified by a different
dynamical equation ζ(φO). And though these transformations will be quite unnatural
and gerrymandered, we may cook up these alternative variables so as to make the
proportion of the transformed initial conditions which lead to the outcome O = o
take on any value we like.28 In applying maf, we insisted that the initial distribution
over the initial condition space 〈C1, . . . , CN 〉 be not too arbitrary—i.e., that it be
macroperiodic. The skeptic objects: why do we only require the initial distribution to
bemacroperiodic over that initial condition space? For after all, amacroperiodic initial
distribution over 〈C1, . . . , CN 〉 may correspond to a non-macroperiodic distribution
over the transformed initial conditions space.

I believe that there is a problemhere.However, it is not, first and foremost, a problem
for an account of deterministic chance built upon maf. After all, it is important to the
maf analysis that the dynamical equationφO be correct.And it is generally thought that
only certain natural variables are fit to enter into true dynamical equations of this kind.
There is, of course, work to be done in explaining the eligibility of certain variables
and the ineligibility of others.29 But this work is properly viewed as prior to the work
of providing an account of deterministic chance in terms of dynamical equations such
as these. So I’ll put aside worries about gerrymandered transformations of variables
from here on out and assume that correct dynamical equations only utilize the kinds
of standard variables we are familiar with—position, velocity, mass, unemployment,
inflation, and so on—or not-too-unnatural transformations of them (e.g., the kind of
transformations involved in unit-conversion).30

Rosenthal (2012, p. 231) raises what is, I believe, a deeper objection to the project of
using the maf analysis to underpin an account of deterministic chance. The objection
focuses on cases in which there are natural, salient, and microconstant dynamical
equations φCi describing how the values of O’s causes, C1, . . . , CN , are determined
by the values of some prior variables, A1, . . . , AM . In those cases, we may compose
the functions φO and φCi to get a dynamical equation φO ◦ φCi which maps values
of A1, . . . , AM to values of O . That is: once we know both how the variables Ai

determine the variables Ci and how the variables Ci determine the variable O , we
have all we need to know how the variables Ai determine the variable O . And there
is no reason to expect a macroperiodic distribution over the values of A1, . . . , AM

and a macroperiodic distribution over the values of C1, . . . , CN to assign the same
probability to the outcome O = o. Thus, there may be multiple deterministic chances
of the outcome O = o.

28 The proportion here is calculated with the Lebesgue measure. See footnote 25.
29 See, for instance, Woodward (2016).
30 From the perspective of fundamental physics, the variables used to describe many social and biological
systems will appear quite unnatural. Might we then expect some proportion-altering transformation ζ to
deliver variables just as natural as C1, . . . , CN themselves? Perhaps, though I’m inclined to think not; for
I don’t think that the naturalness of high-level variables is to be judged by reducing such variables to the
quantities of fundamental physics. So I’m inclined to think that the standard variables used in higher-level
sciences are themselves rather natural, and the proportion-altering transformations of them rather unnatural.
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For a concrete example of a case like this, consider slot machine.

slot machine Suppose that this is how a casino’s slot machine works: it has a
pseudo-random number generator which produces a real number
between 0 and 1 on each pull of the lever. If a lever pull produces
a number in a certain designated range—say, within the interval
[0.222, 0.223]—then that lever pull gets a payout. Here’s how the
pseudo-random number generator works: it takes a given number
between 0 and 1, S0, known as the seed value, and then determines
the value of the next number, S1, which corresponds to the first pull
of the lever, according to the recurrence equation S1 = (aS0 + b)

mod 1, for some a, b > 0. The next value, S2, corresponding to
the second pull of the lever, is then determined by S2 = (aS1 + b)

mod 1. In general, Sn+1 = (aSn + b) mod 1, for n ≥ 0. Thus,
given the initial seed value and the recurrence equation, it is com-
pletely determined whether the slot machine will pay out on the
300th pull. Suppose additionally that the initial seed value, S0,
was picked in the following manner: the casino owners took six
randomly selected potential seeds, R1, . . . , R6, and then rolled a
standard die to determine which one to feed into the slot machine’s
recurrence equation. When the casino owners did this, of the six
potential seeds, there was one (and only one), R3, which would
lead to the slot machine paying out on the 300th pull.

In the scenario described in slot machine, we could write down a true dynamical
equation according to which whether the slot machine pays out on the 300th pull—
denote this binary variable with ‘P’, for ‘payout’—is determined by the initial seed
value, S0. This equation will tell us that the machine will pay out on the 300th pull
just in case the initial seed value lies within a range of [0, 1] that gets mapped to
[0.222, 0.223] by 300 applications of the recurrence equation. Call this equation ‘φP ’.
And we could write down another true dynamical equation according to which the
initial seed value is determined by the initial conditions of the die roll—if those initial
conditions lead to the die landing with its i face up, then Ri is the initial seed. Call
this equation φS—where ‘S’ is for ‘seed’. But then, by composing φP and φS , we get
an equation according to which whether the slot machine pays out on the 300th pull
is determined by the initial conditions of the die roll. According to this equation—
φP ◦φS—the machine will pay out on the 300th pull just in case the initial conditions
of the die roll lie within a range that lead to the die landing with 3 face-up. Assuming
that the values of a and b are suitable, both φP and φP ◦ φS will be microconstant,
in Strevens’ sense. Let’s also suppose that we’ve chosen our values of a and b so
that a macroperiodic probability distribution over the initial seed value, S, will assign
probability of approximately 1/1000 to the machine paying out on the 300th pull—
and a macroperiodic distribution over the initial conditions of the die roll will assign
a probability of about 1/6 to the machine paying out on the 300th pull.31

31 A function like φP will only be microconstant if we choose an appropriate a and b. To persuade yourself
that this will work out for some choice of a and b, I recommend playing around in Mathematica. For
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Fig. 7 φP is a mapping from the potential values of the initial seed, S, to the value of P . φS is a mapping
from the values of the initial conditions of the die roll, D1, . . . , DN , to the value of S. φ∗

S is a mapping
from the values of the randomly selected potential initial seeds, R1, . . . , R6, and the initial conditions of
the die roll, to the value of S

Supposing that there is some chance that the slot machine pays out on the 300th
pull, we could say any of the following four things about those chances:

1/6) there is a 1/6 chance, and not a 1/1000 chance;
1/1000) there is a 1/1000 chance, and not a 1/6 chance;
both) there is both a 1/6 chance and a 1/1000 chance; or

neither) there is neither a 1/6 chance nor a 1/1000 chance.

If an account of deterministic chance endorses (both), say that it is a multivocal
account. More generally, a multivocal account allows that a single token event may
have multiple deterministic chances. If an account is not multivocal, then say that it
is univocal. A univocal account of deterministic chance must endorse either (1/6),
(1/1000), or (neither).

Any multivocal account of chance incurs an explanatory burden. For, even if they
are both created, the 1/1000th chance and the 1/6th chance are not created equal.
Prima facie, if you know everything described in slot machine, and no more, your
credence that the machine pays out on the 300th pull ought to be 1/6, and it ought not
be 1/1000. If you were told that there were 6000 machines of which the description
in slot machine were true, you ought to expect about 1000 of them to pay out on
the 300th pull; and you ought not expect about 6 of them to pay out on the 300th pull.
And a multivocal account of chance should do something to explain this asymmetry.

You might suspect that the obvious thing to say here is that we should side with the
chances determined by earlier initial conditions over later ones for the purposes of
prediction. For instance, you might think that we should have credence 1/6, rather than
1/1000, on the grounds that the initial conditions of the dynamics φP ◦ φS pre-date
those of φP .32 This approach won’t work for slot machine; for there is also the

Footnote 31 continued
instance, to get a sense of how functions like this behave, you can set a = 9245.8698 and b = 6.282. Then,
define the function f[x_] := Mod[a*x + b, 1], which says what Sn+1 will be, given the input
Sn . To see what this function produces when iterated 300 times, define g[x_] := Nest[f,x,300].
Then, to see whether the output is between 0.222 and 0.223, define h[x_] := If[x ≥ 0.222 &&
x ≤ 0.223, 1, 0]. For a nice visual representation of which initial seeds lead to a payout on the
300th pull, use DiscretePlot[h[g[x]], {x, 0, 1, 0.00001}] to sample 100,000 real numbers
between 0 and 1, at steps of 0.00001, and see whether they lead to a payout on the 300th pull. You’ll see
that about 100 of them do, and those 100 are randomly distributed over the interval between 0 and 1.
32 See Rosenthal (2012, p. 231), who suggests (but does not ultimately endorse—for reasons unrelated
to those in the body above) that, when we model cases like slot machine with proximate dynamical
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equation φ∗
S which is a function from the values of the six potential seeds R1, . . . , R6

and the initial conditions of the die roll, D1, . . . , DN , to the variable S. According to
φ∗

S , the value of S is determined by both the values of the potential seeds and the initial
conditions of the die roll. (We get φS from φ∗

S by simply plugging in the actual values
of the variables R1, . . . , R6.) See Fig. 7. This dynamical equation has initial conditions
which predate those of φS , and the proportion of those initial conditions leading to an
initial seed which leads to a payout is approximately 1/1000. Nevertheless, it does not
appear that this deterministic chance trumps the deterministic chance of 1/6 provided
by the dynamics φP ◦ φS . That is to say: given that we know all of this, it does not
appear that we ought to have a credence of 1/1000 that the machine pays out on the
300th pull. (For, to be clear, if we know all of this, thenwe know that R3 is the only seed
which leads to a payout on the 300th pull, and therefore, we know that the machine
will pay out on the 300th pull if and only if the die lands 3 up—and our credence in
the latter ought to be 1/6.)

There is a common prescription for making predictions when statistical data from
multiple reference classes are available, due originally to Reichenbach (1971). On
this view, if you have statistics from multiple reference classes into which some token
chance set up falls, then you ought to use the statistics from the narrowest reference
class for the purposes of prediction. Applied to the current case, the proposal says that
we should set our credence equal to the deterministic chance which would determine
the narrowest reference class—i.e., the 1/6 chance determined by φP ◦φS . Although I
doubt that choosing the narrowest reference class is, in general, a good prescription, if
we know that all of the frequencies from the various reference classes between which
we have to choose align with some deterministic chance or other, then I endorse the
advice to defer to the narrowest. However, providing a good general rule about how
to defer to deterministic chances when more than one exists is not yet to do anything
to explain why that general rule is a good one to follow. It would be preferable if we
could explain why it is that we ought to defer to the chance which would determine
the narrowest reference class. And one would hope that such an account would follow
naturally from a story about the way in which deterministic chances constrain rational
credence in general. Looking ahead, the account I will offer in Sect. 4 will provide us
with a story like this.

4 A subjectivist account of deterministic chance

As I mentioned in the introduction, many accounts of deterministic chance built upon
themaf analysis endorse positions familiar from thehistory of philosophical theorizing
about probability. For each of these accounts, deterministic chance is a certain kind of
initial distribution filtered through appropriate causal dynamics. Some have followed

Footnote 32 continued
equations like φP , we have “overlooked a nomological factor relevant to the appearance of initial states
and thus (indirectly) for the experimental outcomes. If we step further back and look how the initial states
themselves come about, we should be able to discover this additional factor and re-model the experimental
situation, this time explicitly paying attention to the neglected nomological influence…at some point, when
we had taken all nomological factors relevant to the experimental result into account, we would finally
arrive at a space in application to which [maf yields] the correct outcome probabilities.”
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the classical interpretation of probability in claiming that the initial distribution is,
roughly, a uniform measure over the initial conditions space.33 Others have followed
the actual/hypothetical frequency interpretation of probability in claiming that the
initial distribution is an actual frequency distribution and/or the frequency distribution
which very likely would result from a long series of trials.34 Others have attempted to
utilize a ‘best systems’ account of probability to claim that the initial distribution is a
law of nature.35

In the foregoing survey, one prominent player went missing: the personalist, or
subjectivist. Traditional personalists like Ramsey (1931), de Finetti (1974), and Sav-
age (1954) interpret probability claims as being about particular people’s degrees of
belief, or credences. Savage (1971) explicitly applies this understanding of probability
to the method of arbitrary functions, effectively offering an account of deterministic
chance according to which chance is just particular people’s degrees of belief filtered
through appropriate causal dynamics. His interpretation of the initial distributions as
representing different individual’s degrees of belief leads him to understand deter-
ministic chance as a kind of wide intersubjective agreement among different people’s
credences. For instance, in case of the roulette wheel, Savage writes:

…people with very different opinions about V , as expressed by very different
probability densities for V , may yet have nearly identical probability densities
for black provided only that their opinions about V are sufficiently diffuse…36

Savage died before completing his article on deterministic chance, so it’s unclear
exactly how the accountwas to befleshed out; but the accountwhich he explicitly offers
in the early pages is inadequate in at least three important respects. Firstly, Savage
does not solve the problem of all-too-arbitrary functions. For individuals may very
well have spiky credence distributions like the one shown in Fig. 5—they may even
do so reasonably, if they have evidence about the initial conditions of the dynamics
in question.37 Secondly, as I noted in Sect. 2.3, the pdp simply does not hold for an
individual’s credence function; nor does it hold for a rational individual’s credence
function. For those individuals may not have knowledge of the relevant dynamics, or
they may have misleading evidence suggesting that the dynamics are different than
they actually are (as, for instance, when an individual with knowledge of the dynamics
of die rolls falsely believes a die to be fair).38 Thirdly, individuals need not, and in
general do not, have opinions about the values of the variables which determine the
value of the outcome variable O . Moreover, they need not, and in general do not, have
any idea which variables determine the value of O .

Myrvold (2012) provides a more sophisticated subjectivist account which advances
on the first and third problems faced by Savage’s account. Firstly, he suggests that the

33 Rosenthal (2010, 2012, 2016).
34 Strevens (2003, 2011), Abrams (2012), and Beisbart (2016).
35 Albert (2000, 2015), Loewer (2001, 2004, 2007), and Roberts (2016) (though Roberts is not committed
to a ‘best systems’ account of laws).
36 Savage (1971, pp. 420–21, with slight notational changes).
37 “The conclusion does not apply at all to a person who feels quite sure of the second decimal of V .”
(Savage 1971, p. 421), with notational changes.
38 See von Plato (1983, p. 42).
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initial distributions in maf represent reasonable credences in the initial conditions
of the chance outcome. He believes that this rules out all-too-arbitrary distributions
like the one shown in Fig. 5, for it would not be reasonable to have credences like
those if one did not have any good evidence about the initial velocity of the roulette
wheel’s spin (which, he supposes, we in general cannot have). Secondly, he does
not suppose that the credences in question are people’s actual credences over the
outcome variable—for those people may be ignorant of either the true dynamics or
unopinionated about the initial values of the variables which determine O . Rather,
the credence distributions in question are distributions that it would be reasonable to
adopt, were the individuals informed about the relevant dynamics, and were they to
become opinionated about the initial conditions and the outcome. Thus, we need not
worry about the fact that most people do not actually have credences in the initial
conditions of a coin flip, die roll, etc. Nor do we need to worry about the fact that, in
the absence of information about the relevant dynamics, we should not expect even a
reasonable credence function to satisfy the pdp—for the relevant initial distributions,
on Myrvold’s account, are all conditioned on the relevant dynamics.

These improvements help, but unfortunately not enough. Suppose that you have
very good evidence that the roulette wheel is going to land on black—it doesn’t matter
for our purposes whether this evidence is misleading or not; misleading evidence is
still evidence. Then, the distribution shown in Fig. 5 might be a reasonable credence
distribution to adopt over the values of the variable V , were one to become informed
of the dynamics and opinionated about the value of V . But even though evidence like
this changes how confident you ought to be that the roulette wheel will stop on black,
it does nothing to affect the chance that the roulette wheel stops on black.

I don’t believe that this objection is fatal; and I wish to spend the remainder of this
section developing a variant of the Savage/Myrvold accountwhich is capable of getting
around this worry. The central innovation will be to replace Myrvold’s account—
according to which chance is reasonable credence distributions filtered through the
appropriate dynamics—with an account according to which chance is reasonable ini-
tial, or ur-prior, credence distributions, filtered through the appropriate dynamics.
Restricting the account to reasonable ur-prior distributions allows us to get around the
problem that a reasonable agent may have evidence about the initial conditions of φO

and might, for this reason, adopt a spiky distribution like the one shown in Fig. 5. We
rule such distributions out by only considering credence distributions which it would
be permissible to adopt in the absence of any evidence.

the subjectivist account

For any correct, microconstant dynamical equation φO from 〈C1, . . . , CN 〉 to O ,
if �φO� is the proposition that this dynamical equation is correct and f is a rea-
sonable initial (or ‘ur-prior’) credence distribution defined over O , C1, . . . , CN ,
and �φO�, then,

ChφO (O = o) = f (φ−1[O = o] | �φO�)

In a slogan: chance is reasonable initial credence, conditioned on, and filtered
through, dynamics. (As the subjectivist account provides a multivocal account
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of chance—see Sect. 4.2—I have explicitly indexed the chance function with the rele-
vant dynamical equation, φO . This will be relevant to my derivation of a deterministic
principal principle and my treatment of slot machine below.)

Let us assume that, in the absence of any evidence about the values of C1, . . . ,

CN , spiky distributions like the one shown in Fig. 5 would be unreasonable.39 Then,
the subjective account solves the problem of all-too-arbitrary functions. Note
that this solution does not depend upon anything nearly so strong as the principle of
indifference—that, in the absence of evidence aboutC1, . . . , CN , your credence distri-
bution overC1, . . . , CN ought to be uniform.The subjective account is consistent
with the thought that, in the absence of evidence, there is no credence distribution over
C1, . . . , CN which is determinately rationally required. It does, however, require that
certain very finely-discriminating credence distributions are determinately unreason-
able in the absence of any relevant evidence—e.g., ones for which the credence given
to [v, v∗] differs notably from the credence given to [v + ε, v∗ + ε], for small ε.

Does the subjective account requires us to assume, with White (2005), that
there is a unique credence distribution which is rationally required in the absense of
evidence? As I will be understanding the account, it presupposes that there is some
rational credence to adopt in any proposition in the absense of evidence—though it
may be vague or indeterminate what that credence is.40 That is to say, there may not
be a determinate fact of the matter which credence distribution over initial conditions
we ought to have. For instance, in the maf analysis of the deterministic chance of a
coin flip landing heads, it could be indeterminate whether f gives probability 0.50001
or 0.49999 to the values of 〈U , A〉which lead to the coin landing heads. Nevertheless,
it could still be determinate that f does not give probability 0.6 to those values.41

Assuming a standard semantics for determinacy, then, the subjectivist account

is committed to something like White (2005)’s uniqueness thesis, according to which
there is one and only one doxastic state which is rational given any body of evidence.
However, while this view agrees with White that it is determinate that there is one

39 Why would they be unreasonable? I’m inclined to treat this as a datum for epistemology (pace radical
subjectivist Bayesians), but we could justify it by appealing to a general normative principle like the
following: your credences shouldn’t strongly discriminate between very similar possibilities unless you
have evidence which discriminates between these possibilities. (This is a strictly weaker principle than the
principle of indifference (POI), and one that doesn’t succumb to the usual objections to POI).
40 Here, I am using ‘indeterminate’ in the sense that has become common in the literature on vagueness.
You could be an epistemicist about this kind of indeterminacy, in which case you would understand me as
saying: there is some one rational credence to adopt in any proposition in the absense of evidence—though
nobody can know what it is. Or you may think that this kind of indeterminacy is due to an unsettledness
in the way we use language, or that there’s something genuinely unsettled about normative reality. See
Williamson (1994) for more on different theories of indeterminacy.
41 There is a common framework for representing indeterminate probabilities like these (see van Fraassen
(1990, 2006), Levi (1974), Walley (1991), Joyce (2010), and White (2009)). In this framework, we would
take all the admissible candidates for f and gather them into a set, call it ‘F’. We would then use F to
represent a reasonable initial doxastic state. The probabilities included in F are akin to the admissible
precisifications in supervaluationist theories of vagueness (see Fine (1975) and Keefe (2000)). While a
supervaluationist keeps these admissible precisifications in their metalinguistic interpretation of a theory,
the imprecise probabilist uses them in their first-order theorizing. Frommy perspective, it is better to handle
indeterminacy with respect to reasonable credence in the same way that other indeterminacy is handled,
and to keep the admissible precisifications in the meta-language.
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rational credence to adopt given no evidence, it denies that there is any credence
which it is determinately rational to adopt given no evidence.42

4.1 A deterministic principal principle

In the presence of some rather weak normative assumptions, the subjectivist

account entails a deterministic variant of Lewis (1980)’s Principal Principle. In this
section, I will lay out these normative assumptions and show how they can be used to
derive a deterministic principal principle from the subjectivist account. As we
go, it will be important to clearly distinguish reasonable initial credence distributions
which are defined over C1, . . . , CN and �φO� from those which are not. Throughout
this section, then, I will use ‘ f ’ to stand for a reasonable initial credence function
defined over O . A reasonable initial credence function defined over O and �φO� I
will denote with ‘ fφ’. fφ , then, is opinionated about the outcome variable as well as
the dynamics determining the value of O—though perhaps not the value of the initial
conditions C1, . . . , CN which determine the value of O , according to φO . Finally, a
reasonable initial credence function defined over O , �φO�, and the initial conditions
C1, . . . , CN , I will denote with ‘ fφ,C ’.

Itwill also be important, aswego, to clearly distinguish the claim that theφO -chance
of O = o is x—a proposition we can denote with ‘�ChφO (O = o) = x�’—from the
claim that there is an x chance of O = o—apropositionwe can denotewith ‘�Ch(O =
o) = x�’. The latter hypothesis is an existential generalization over hypotheses like
the former.

�Ch(O = o) = x� ⇐⇒ ∃φO : �ChφO (O = o) = x�

Keeping these propositions separate will be important, since I will first derive what
I will call the particular deterministic principal principle, which says that, for any
particular equation φO , your credence in O = o, given �ChφO (O = o) = x�, and
given any admissible evidence, ought to be x . I will then derive what I will call the
general deterministic principal principle, which says that your credence in O = o,
given that there is an x chance of O = o, �Ch(O = o) = x�, and given any admissible
evidence, ought to be x .

According to the subjectivist account, if we have a microconstant dynam-
ical equation φO , then the claim that the φO -chance of O = o is x is true if
and only if both φO is correct and fφ,C assigns a credence of x to the proposi-
tion φ−1

O [O = o], once fφ,C is conditioned on the true proposition �φO�. Let’s
denote the proposition that fφ,C assigns a credence of x to A, given that E , with

42 To appreciate the distinction in scope here, consider the sorites argument. If you accept that classical
logic is determinately true, then you’ll accept that it is determinately the case that there is an n such that n
is the least number of grains that makes a heap. However, if you think that it’s indeterminate when some
grains go from a heap to a non-heap, then you’ll deny that there is any number n which is determinately the
least number of grains which makes a heap. Similarly, I am suggesting that it’s determinately the case that
there is one and only one rational credence to adopt in the absence of evidence; though it’s indeterminate
which credence it is, so there is no credence which is determinately the one and only rational credence to
adopt in the absence of evidence.
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‘� fφ,C (A | E) = x�’. Then, the subjectivist account tells us that, for some
microconstant φO ,43

�ChφO (O = o) = x� ⇐⇒ � fφ,C (φ−1
O [O = o] | �φO�) = x� ∧ �φO� (1)

Given someweak normative assumptions, we can nowderive a deterministic variant
of the principal principle. The first normative principle we will require is what we can
call a ‘causal induction’ principle. This principle says that, conditional on only the
dynamical equation, �φO�, fφ,C would satisfy the pdp,

causal induction

fφ,C (φ−1
O [O = o] | �φO�) = fφ,C (O = o | �φO�)

Causal induction is an incredibly weak principle. It follows from probabilism
alone. For the proposition �φO� entails that φ−1

O [O = o] ⇔ O = o. And it follows
from probabilism alone that, conditional on A ⇔ B, your credence in A should be
equal to your credence in B. So causal induction should not be controversial.

Causal induction and (1) together entail (2):

�ChφO (O = o) = x� ⇐⇒ � fφ,C (O = o | �φO�) = x� ∧ �φO� (2)

Looking at (2), we can see that, according to the subjectivist account, the claim
that the deterministic φO -chance of O = o is x is the conjunction of two claims: the
first is a normative claim about which credence distribution is rational in the absence of
any evidence; and the second, a descriptive claim about the world’s causal dynamics.
Uncertainty about the chances could therefore result from uncertainty about either of
these conjuncts.

The second normative principle we will require is an enkratic principle which says
how uncertainty about the normative component of a deterministic chance constrains
reasonable credence. The principle says that, where E is any evidence consistent with
it being the case that an initial credence that A, given E , ought to be x , a reasonable
initial credence that A, given E and given that an initial credence in A, given E , ought
to be x , is x .44

enkratic principle

Where ‘ f ∗’ is a rational initial credence function defined over A and E , and f
is a rational initial credence defined over A, E , and � f ∗(A | E) = x�,

f (A | � f ∗(A | E) = x� ∧ E) = x, if defined

43 A comment on notation: I will denote the conjunction of propositions p and q with both ‘p ∧ q’ and
‘pq’.
44 When principles like enkratic principle show up in the literature—e.g., in Elga (2013)—they are
often formulated with a proposition like � f = f�, which says that f is a reasonable initial credence function.
Then, authors state the enkratic requirement as follows: f (A | � f = f�) = f(A). The enkratic principle

in the body is strictly weaker than this principle.
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There are reasons to worry about enkratic principles in general. For instance, if a
certain kind of externalism about evidence is correct, then information about which
response to your evidence is rational can provide additional information about what
your evidence is.45 Then, even though x maybe the rational credence to have in A given
E , the additional information provided by the normative proposition � f ∗(A | E) = x�
may make it rational to have a credence other than x in A. In response to cases
like those, Elga (2013) has argued that principles like enkratic principle need
to be generalized. However, those problem cases—if they are problem cases—only
cause problems for enkratic principles that say something about how knowledge that
f is the rational credence function to adopt in your very epistemic circumstances
ought to impact your current credences. Enkratic principle says nothing about that.
Rather, it only says something about what a reasonable ur-prior credence is, given only
information about what a reasonable ur-prior credence is. And the information that
a reasonable ur-prior is thus-and-so couldn’t possibly convey anything about what
evidence has been acquired, since reasonable ur-priors are the priors that it would be
reasonable to adopt in the absence of any evidence.

We may worry about instances of enkratic principle where � f ∗(A | E) = x�
is false. Perhaps, conditional on the false proposition that a certain initial credence
that A, given E , is rational, a rational initial credence function should stick to its guns
and have whatever credence in A, conditional on E , really is rational. Those who
hold that uncertainty about the a priori requirements of rationality is itself irrational46

will be attracted to this position. For such philosophers, however, I need not appeal to
enkratic principle in the first place. According to the subjectivist account,
facts about deterministic chances are partly descriptive—they are in part to do with
the worldly dynamics—and partly normative—they are in part to do with the credal
distributions it would be rational to hold in the absence of evidence. Uncertainty about
the chances is therefore uncertainty about either the worldly dynamics or the a priori
requirements of rationality, or both. If you hold that uncertainty about the a priori
requirements of rationality is rationally impermissible, then you will think that, for all
true normative propositions of the form � f ∗(A | E) = x�, a rational credence function
f will be certain of these propositions, and all uncertainty about deterministic chance
will be uncertainty about the worldly dynamics. This will suffice for my purposes
here.

There is another position which denies enkratic principle, however, which will
not suffice for my purposes here. On that view, uncertainty about the a priori require-
ments of rationality is rationally permissible, but indicative suppositions about the
requirements of rationality does nothing to affect those requirements. So, even though
it may be permissible for you have a non-zero credence in the false proposition that any
initial credence that A between 1/4 and 1/3 is permissible, so long as no such credence
actually is permissible, you are irrational if your credence that A is between 1/4 and
1/3, conditional on that false proposition. I find such ‘level-splitting’ views somewhat
plausible in cases in which you face uncertainty about your current evidence—but I

45 See Williamson (2000, 2011, 2014).
46 See Titelbaum (2014), who argues for this view from a principle slightly stronger than what I have
named enkratic principle in the body. Throughout, by ‘a priori requirements of rationality’, I just mean
the constraints which rationality places on our doxastic states in the absence of evidence.
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do not find them plausible when it comes to the rational requirements placed on an
initial, ur-prior credence function.47 If you are beholden to a view like this, then I am
afraid that I must leave you behind at this point.

Note that (3) is an instance of enkratic principle, where we have replaced ‘A’
with ‘O = o’, ‘E’ with ‘�φO�’, ‘ f ’ with ‘ fφ’, and ‘ f ∗’ with ‘ fφ,C ’.

fφ(O = o | � fφ,C (O = o | �φO�) = x� ∧ �φO�) = x (3)

And (2) and (3) imply (4).

fφ(O = o | �ChφO (O = o) = x�) = x (4)

Wewill say that evidence E is φO -admissible iff, given knowledge of the normative
proposition � fφ,C (O = o | �φO�) = x� and the dynamical equation �φO�, E is
probabilistically independent of O = o according to fφ .

Admissibility

Total evidence E is φO -admissible just in case

fφ(O = o | � fφ,C (O = o | �φO�) = x� ∧ �φO� ∧ E)

= fφ(O = o | � fφ,C (O = o | �φO�) = x� ∧ �φO�)

Admissibility is relative to a dynamical equation, φO . Bodies of evidence E are φO -
admissible provided that, given �φO� and � f (O = o | �φO�) = x�, they do not
provide information about the outcome O = o. So, for instance, evidence supporting
the hypothesis that this particular roulette wheel spin lands on black is inadmissible
relative to φB . So too is any evidence supporting the hypothesis that the initial velocity
of the roulette wheel spin is between 4.15 and 4.16 m/s, since, given �φB�, such
evidencewould lead fφ,C to rationally change its credence that the roulettewheel stops
on black. It doesn’t matter, in the definition of admissibility, whether this evidence is
misleading or not. All that matters is whether a reasonable initial credence function
would change its credence in O = o in response to the evidence.48

Given this definition of admissibility, (2) and (3) imply that, for any admissible
evidence E ,

fφ(O = o | �ChφO (O = o) = x� ∧ E) = x (5)

(5) gives us a relation between deterministic chance propositions and rational cre-
dence. I will call this constraint the particular deterministic principal principle (to
be contrasted with the general deterministic principal principle below). Putting the
principle in a form familiar from Lewis (1980), it says:

47 For more discussion, see Lasonen-Aarnio (2014, 2015, forthcoming), Horowitz (2014), Greco (2014),
and Titelbaum (2014).
48 Admissibility is defined relative to bodies of total evidence; for, given this definition of admissibility,
admissibility need not agglomerate—simply because E1 is admissible and E2 is admissible, this needn’t
mean that E1 ∧ E2 is admissible.
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particular deterministic principal principle

If A is the proposition that an outcome variable O takes on the value o, X is the
proposition that the φO -chance of A is x , E is any φO -admissible evidence, and
fφ is a reasonable initial credence function defined over A, X , and E , then

fφ(A | X E) = x

This version of the principal principle differs from Lewis’s original formulation of his
tychistic principal principle in two respects: firstly, Lewis’s original formulation of the
principal principle used time to provide a sufficient condition49 for the admissibility
of evidence relative to a chance (viz, the past at t is admissible relative to the time t
chances), whereas the variant above gives a necessary and sufficient condition on the
admissibility of evidence relative to a chance in terms of that evidence’s effect on rea-
sonable initial credence functions. Secondly, particular deterministic principal

principle concerns the chance hypothesis that a particular chance of A is x , rather
than the general hypothesis that there is an x chance of A. Because the subjectivist

account is a multivocal account of chance (see Sect. 4.2), there may be cases in
which there are multiple deterministic chances that A. Particular deterministic

principal principle tells us that, conditional on any of one them and any evidence
which is admissible relative to that chance, our credence that A should align with that
chance.

Particular deterministic principal principle is all the principal principle
I will require in order to handle cases like slot machine (Sect. 4.2) and to show
that particular deterministic chances can explain frequency data (Sect. 4.4). But it
is reasonable to want more than it provides. In both everyday life and in statistical
applications, we entertain deterministic chance hypotheses without having any idea
what dynamical equation might underlie these chance hypotheses. So it would be nice
if we could additionally vindicate what I will call the general deterministic principal
principle.

general deterministic principal principle

If A is the proposition that an outcome variable O takes on the value o, X is the
proposition that there is a deterministic x chance of A, E is any AX -admissible
evidence, and f is a reasonable initial credence function defined over A, X , and
E , then

f (A | X E) = x

The particular deterministic principal principle enjoins you to have credence x in
A, given that a particular dynamical equation φ determines an x chance for A. The
general principal principle tells you to do the same when you know only that some
dynamical equation determines an x chance for A.

Note that, in the statement of general deterministic principal principle,
admissibility is defined relative to the proposition A and the chance hypothesis X . We

49 Or, rather, an “almost sufficient” condition—a qualification Lewis included due to worries about news
from the future.
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will say that the total evidence E is admissible, relative to a chance outcome O = o
and a general chance hypothesis �Ch(O = o) = x�, iff E is admissible relative to
every particular chance hypothesis �ChφO (O = o) = x�, and it is also admissible
relative to every conjunction of such hypotheses.

general admissibility

Total evidence E is O = o, x-admissible just in case, for any conjunction of
particular chance hypotheses which generate an x chance for O = o, X1 . . . X N ,
E is probabilistically independent of O = o, given X1 . . . X N ,

fφ(O = o | X1 . . . X N E) = fφ(O = o | X1 . . . X N )

Given this understanding of admissibility, at least in the special case where there
are at most finitely many potential particular deterministic chances, we may derive
general deterministic principal principle from the particular determin-

istic principal principle with one additional assumption. In what follows, let ‘A’
be the proposition that O = o, and let ‘X1’, ‘X2’, and so on be claims of the form
�Chφ(A) = x� (with fixed A and x and variable φ). Then, the one additional assump-
tion I will need to make is that, for any X1, X2, . . . , X N , given that each of X1 through
X N is true, your credence in A is x .

fφ(A | X1X2 . . . X N ) = x (6)

Then,wemay verify that, for any N chance hypotheses X1, . . . , X N , and any generally
admissible evidence E ,

fφ(A | (X1 ∨ . . . ∨ X N ) E) = x

To see that this is so, begin by asking whether

fφ(A | E X1 ∨ · · · ∨ E X N )
?= x

fφ(AE X1 ∨ · · · ∨ AE X N )

fφ(E X1 ∨ · · · ∨ E X N )

?= x

fφ(AE X1 ∨ · · · ∨ AE X N )
?= x · fφ(E X1 ∨ · · · ∨ E X N )

N∑

k=1

(−1)k−1
∑

i∈Xk

fφ(AE Xi1 · · · Xik )
?= x ·

N∑

k=1

(−1)k−1
∑

i∈Xk

fφ(E Xi1 · · · Xik ) (7)

Where ‘Xk’ is the set of all k-membered subsets of {X1, X2, . . . , X N }, and ‘Xi j ’
is the j th member of i ∈ Xk (given some enumeration). The definition of general
admissibility tells us that E is independent of A conditional on any conjunction of
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chance hypotheses Xi1 · · · Xik , so the left-hand-side of (7) is

N∑

k=1

(−1)k−1
∑

i∈Xk

fφ(A | Xi1 · · · Xik ) · fφ(E Xi1 · · · Xik )

By (6), we have that fφ(A | Xi1 · · · Xik ) = x , so (7) reduces to the trivial equality

x ·
N∑

k=1

(−1)k−1
∑

i∈Xk

fφ(E Xi1 · · · Xik )
�= x ·

N∑

k=1

(−1)k−1
∑

i∈Xk

fφ(E Xi1 · · · Xik )

So, at least in the special case where there are at most finitely many potential particular
deterministic chances, and granting the assumption (6), the general chance hypothesis
�Ch(A) = x� entails that � fφ(A | �Ch(A) = x� ∧ E) = x� when E is admissible.
Therefore, the conjunction

�Ch(A) = x� ∧ � fφ(A | �Ch(A) = x� ∧ E) = x� (8)

is equivalent to �Ch(A) = x�. So a reasonable credence in A given that the chance of
A is x and E must be equal to a reasonable credence that A given the conjunction (8)
and E .

f (A | �Ch(A) = x� ∧ E)

= f (A | �Ch(A) = x� ∧ � fφ(A | �Ch(A) = x� ∧ E) = x� ∧ E) (9)

The enkratic principle then tells us that

f (A | � fφ(A | �Ch(A) = x� ∧ E) = x� ∧ �Ch(A) = x� ∧ E) = x (10)

And, from (9) and (10), we have that

f (A | �Ch(A) = x� ∧ E) = x

which is the general deterministic principal principle.
The subjectivist account thus abides by Lewis’s maxim:

Don’t call any alleged feature of reality “chance” unless you’ve already
shown that you have something, knowledge of which could constrain rational
credence. 50

Note that once we have the deterministic principal principle, we have all that we
need in order to explain how knowledge of frequencies could provide information
about deterministic chance. For this principle tells us that, if our initial credences are
reasonable, and if we update those credences on frequency data by conditionalization,

50 Lewis (1994, p. 484)
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then chance hypotheseswhichmake that datamore likelywill be confirmed to a greater
degree, and chance hypotheses which make that data less likely will be confirmed
to a lesser degree.51 On the subjectivist account, information about the frequency
of heads landings can end up providing us with information about how confident a
better informed, rational inquirer would be that the next coin toss will land heads.
We can come by this information without thereby coming to know anything about the
underlying dynamics which inform this merely hypothetical agent’s credences.52,53

4.2 Slot machine

As I will understand it, the subjectivist account is an account of token chance. I
also assume that a single token outcomemay be correctly described bymultiple correct
dynamical equations. Then, the subjectivist account is a multivocal account of
chance. In slot machine, there is a true dynamical equation, φP , according to which
the outcome variable P is determined by the value of the initial seed, S. There is
another true dynamical equation, φP ◦ φS , according to which the outcome variable
P is determined by the initial conditions of the die roll, D1, . . . , DN . And there is
a third true dynamical equation, φP ◦ φ∗

S , according to which the outcome variable
P is determined by both the initial conditions of the die roll and the potential seeds,
R1, . . . , R6 (See Fig. 7.).

If we suppose that a reasonable initial credence distribution defined over S, and
conditionalized only on the proposition �φP�, would place about 1/1000th of its mass
on values of S leading to a payout on the 300th pull, then there will be a 1/1000 chance
of the machine paying out, determined by the equation φP . If we additionally suppose
that a reasonable initial credence distributions defined over the initial conditions of the
die roll, D1, . . . , DN , and conditionalized only on the proposition �φP ◦ φS�, would
place about 1/6th of its mass on values leading to a payout on the 300th pull, then
there will be a 1/6 chance of the machine paying out, determined by the equation
φP ◦φS . Finally, if we suppose that a reasonable initial credence distributions defined
over both the potential initial seed values and the initial conditions of the die roll, and
conditionalized only on the proposition �φP ◦ φ∗

S�, would place about 1/1000th of
its mass on values leading to a payout on the 300th pull, then there will be (another)
1/1000 chance of the machine paying out, determined by the equation φP ◦ φ∗

S . The
subjectivist account thus endorses answer (both) in slot machine.

The subjectivist account additionally provides a clear explanation of why one
of these chances should hold pride of place for the purposes of prediction, given that
you know everything described in slot machine—that is, it explains why, given
that you know everything described in slot machine, you should have credence 1/6
that the machine pays out. Recall that, in slot machine, you know that exactly one

51 See Lewis (1980, pp. 285–287).
52 Of course, in order to come to know that the deterministic chance of a coin landing heads is 1/2, we
must antecedently know that there is a deterministic chance that the coin lands heads.
53 An interesting case to consider arises whenwe are not uncertain about the dynamics, but we are uncertain
about the requirements of rationality. If we take such cases to be possible then we could acquire a posteriori
confirmation of normative propositions about the requirements of rationality by observing frequency data.
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of the pre-selected seeds will lead to a payout on the 300th pull. If you know this,
then you know �φP ◦ φS�. And �φP ◦ φS� is inadmissible information for both for the
1/1000 chance determined by φP and for the 1/1000 chance determined by φP ◦φ∗

S . A
reasonable initial credence function, conditioned on the setup of the case, will regard
the information that the initial seed value was determined by a die roll in such a way
that, if the die lands 3 up, the initial seed value gets mapped to a payout on the 300th
pull (the information provided by �φP ◦ φS�) as being probabilistically relevant to the
value of the initial seed, S. In the presence of �φP�, �φP ◦ φS� provides information
about the value of S, and thus, provides information about the initial conditions of the
dynamical equation φP . The proposition �φP ◦φS� is therefore inadmissible relative to
the chance determined by φP . Similarly, in the presence of the proposition �φP ◦ φ∗

S�,
the information that iff the die lands 3 up, the initial seed value will be mapped to a
payout on the 300th pull, entails that R3 is the only potential seed which gets mapped
to a payout. Thus, in the presence of �φP ◦φ∗

S�, �φP ◦φS� provides information about
the initial conditions of φP ◦ φ∗

S , and is therefore inadmissible relative to the chance
determined by φP ◦ φ∗

S .
The same thing cannot be said in the other direction. �φP� does not provide infor-

mationwhich is inadmissible for the chance determined byφP ◦φS . Nor does �φP ◦φ∗
S�

provide information which is inadmissible for the chance determined by φP ◦ φS . So,
while your information is inadmissible relative to both of the 1/1000th chances, it is
admissible relative to the 1/6th chance. So the particular deterministic princi-

pal principlewill not tell us to defer to the 1/1000th chances; whereas, it will tell us
to defer to the 1/6th chance. And, given our normative assumptions, the subjectivist

account entails the particular deterministic principal principle. So—and
this is the point—the subjectivist account is able to explain why you should
have a credence of 1/6th, and not 1/1000th, that the machine pays out. It explains why,
though you know about all three of these deterministic chances, only one of them
should guide your predictions.54

4.3 Independence

So far, I have just been talking about the chance of single outcomes. What is it,
according to the subjectivist account, for the chance of two token outcomes
to be independent or dependent? According to the subjectivist account, the
independence of two token outcomes O1 and O2 is just a property of the chance
distribution over 〈O1, O2〉; and this chance distribution is determined in the same
way as every other chance distribution: find some true dynamical equations which
determine the values of O1 and O2 and look at the reasonable credence assignments
to the independent variables in those equations. In a case where we are considering
two outcome variables, however, wemust move from talking about a single dynamical

54 This only holds if you know that exactly one of the pre-selected seeds leads to a payout on the 300th
pull. Without this knowledge, you will not know about the 1/6th chance determined by �φP ◦ φS�. In that
case, the particular deterministic principal principle will tell you that you should have a credence
of 1/1000 that the machine pays out.
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Fig. 8 In the diagrams above, an arrow is drawn from one variable to another just in case the value of the
variable at the tail of the arrow causally determines the value of the variable at the tip. In the far left diagram,
O1 and O2 are causally independent; in the other two diagrams, they are not

equation, O := φO(C1, . . . , CN ), to talking about a system of dynamical equations,

O1 := φO1(C
1
1 , . . . , C1

N )

O2 := φO2(C
2
1 , . . . , C2

M )

If we have a system of equations according to which O1 and O2 are causally inde-
pendent, then a macroperiodic credence distribution over the causes of O1 and O2
will induce, via the (pdp), a joint distribution over O1 and O2 on which those vari-
ables are probabilistically independent of one another. If, on the other hand, we have
a system of equations according to which O1 and O2 are not causally independent,
then a macroperiodic credence distribution over the causes of O1 and O2 may induce,
via the (pdp), a joint distribution on which O1 and O2 are probabilistically dependent
(Fig. 8).

4.4 Explanation

When it comes to the matter of explaining frequency data by appeal to chances, there
are two philosophical camps. In one camp are those who think that high and low
chances alike may explain. In the other camp are those who think that, while high
chances may explain, low chances may not. Following Strevens (2000), call those in
the first camp ‘egalitarians’, and call those in the second camp ‘elitists’. To illustrate:
suppose that we toss a fair e1 coin and a fair £1 coin 1000 times each. The e1 coin
lands heads around 500 times (plus or minus 30), and the £1 coin never lands heads.
Consider the two explanations:

£) The £1 coin never landed heads because there was a (1/2)1000 chance that that
would happen.

e) The e1 coin landed heads about half the time because there was around a 95%
chance that that would happen.

Elitists think that only (e) is a good explanation, whereas egalitarians think that both
(e) and (£) are good explanations. Moderate egalitarians may say that, while (e) and
(£) are both good explanations, (e) is a much better explanation than (£).

One motivation for elitism and moderate egalitarianism comes from a nomic
expectability requirement on explanation. Those who take nomic expectability to be
a necessary condition on explanation will agree with Hempel (1965, p. 337) when he
tells us that a good explanation
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shows that, given the particular circumstances and the laws in question, the
occurrence of the phenomena was to be expected; and it is in this sense that the
explanation enables us to understand why the phenomena occurred.

Deterministic chances, according to the subjectivist account, do precisely this
for long-run frequencies. They show us that, if ae1 coin is tossed 1000 times in a row,
any reasonable credence distribution over the initial conditions of a true system of
dynamical equations governing the outcomes of the sequence of coin tosses—were it
informed about the relevant causal dynamics—would place around 95%of its credence
in those sequences in which about half of the coin tosses land heads. And to show
this is just to show that a frequency of about 1/2 heads was to be expected, given the
chances.

Few nowadays believe that nomic expectability is sufficient for explanation. At a
minimum, we’ll also need the right kind of causal relevance of explanans to explanan-
dum. But the dynamics are causally relevant to the frequency of heads, analogously
to the way that dynamics are causally relevant in equilibrium explanations. In both
cases, dynamical information is known while the precise initial conditions are not;
the only difference is that, in paradigm equilibrium explanations (why did the mar-
ble rest at the bottom of the bowl after being dropped in? Because the bottom of
the bowl is the point of minimum potential energy), the explanandum is entailed
by the explanans. Whereas, in explanations like (e), the explanandum is merely
made highly probable, in the sense that we ought to have a high credence in the
explanandum, given the explanans. So if we accept a nomic expectability require-
ment on explanation, then deterministic chances—understood as the subjectivist

account understands them—should be capable of explaining long-run frequen-
cies.

You may think that nomic expectability is not necessary for explanation. You may
think that all that’s required for a proper explanation is that the explanans are causally
relevant to the explanandum. In this case, you are likely also an egalitarian about
probabilistic explanation, and you should be content to notice that the causal dynamics
of a deterministic chance are causally relevant to the outcome of the sequence of coin
tosses, both in the case of (e) and in the case of (£).

According to the subjectivist account, the claim that the coin had a 1/2 chance
of landing heads is a conjunction of a claim about the world’s causal dynamics and
a normative claim about what is to be expected, given the world’s causal dynamics.
All parties should agree that the causal component of a deterministic chance claim is
explanatorily relevant to the long-run frequency, and that normative facts about what
is to be expected are not. What subjectivist elitists and egalitarians disagree about
is whether, in order for an explanation to be good, the explanans have to make the
explanandum likely. Subjectivist egalitarians think not. Subjectivist elitists think so.
So, in order to show that e is a good explanation, the subjectivist elitist will have
to appeal to the normative component of a deterministic chance. They will say: the
normative fact that a long-run frequency of about 1/2 heads landingswas to be expected
is necessary for the causal dynamics to explain why the coin landed heads about 1/2
of the time. (Although this normative fact does not explain why the coin landed heads
about 1/2 of the time.)
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Loewer and Albert object strongly to the idea that chances, understood along the
lines of the subjectivist account, could explain observed frequencies in this way.
Speaking about statisticalmechanical probabilities, Loewer (2001, p. 611, 615)writes:

What could your ignorance of the initial state of the gas have to do with an
explanation of its behavior?…it is hard to see how these [subjective] probabilities
can be explanatory if they are unrelated to the actual microstate.

With respect to Loewer’s rhetorical question—how could a rational initial credence
distribution explain the behavior of something out in the world?—the correct answer
is: it couldn’t, but the subjectivist account does not have to, and should not,
say that it does. The rational initial credence distributions do not explain why the
coin landed as it did. What explains the frequency of heads landings is just the causal
dynamics. Nevertheless, we may think that a good explanation must show that the
explanandum was to expected. If so, then the normative component of a deterministic
chance will explain why deterministic chances are able to explain some frequencies
(viz., the ones which were to be expected), and not others (viz., the ones which weren’t
to be expected). Of course, explaining why the dynamics provide a good explanation
of the frequency of heads is not itself explaining the frequency of heads. Facts about
rational initial credences do the former; but they do not do the latter.

Compare: on Hempel’s Deductive-Nomological model of explanation, in order for
an explanation to be good, the explanans must entail the explanandum. On this model,
in order to show that an explanation is good, you must appeal to a logical fact about
entailment. Is this logical fact explanatorily relevant to the explanandum? No. The
explanans do all the explanatory work by themselves. It is in virtue of the logical fact
that the explanans are able to explain the explanandum, but the logical fact is not to
be included among the explanans.55 Similarly, the subjectivist elitist should say: in
order for an explanation of the long-run frequency of heads to be good, it must be
that this frequency is to be expected, given the explanans. In order to show that the
subjectivist’s explanation of the long-run frequency of heads is good, they must appeal
to a normative fact about what is to be expected. Is this normative fact explanatorily
relevant to the explanandum? No. The causal dynamics do all the explanatory work
by themselves. It is in virtue of the normative fact that the causal dynamics are able to
explain the long-run frequency of heads, but the normative fact is not to be included
among the explanans.

One thing that appears to bother Albert and Loewer about explaining long-run
frequencies in the way the subjectivist account does is that the chances don’t
entail that the frequencies will be close to the chances. For instance, Loewer (2001,
p. 615) worries that “even if the actual state were a very atypical state the standard
probability distribution would be dictated by [the subjectivist account].”56 This,
however, shouldn’t be an objection to any account of chance. The natural thought is
that the chance of heads being 1/2 doesn’t entail that not every flip will land heads.
Some Humeans are willing to bite the bullet and claim that it does, but even Lewis

55 Cf. Carroll (1895).
56 Loewer is considering an account predicated on the principle of indifference, but his objections apply
with equal force to the subjectivist account.
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admits that this consequence of his view is “certainly very peculiar”.57 It seems to
me, then, that it is a feature, and not a bug, of the subjectivist account that it
allows the possibility of low-chance outcomes.58 If you’re inclined to think that only
explanans which entail the explanandum are genuinely explanatory, then so be it—but,
in that case, you shouldn’t expect that chances can explain long-run frequencies.

5 Conclusion

Deterministic chance is an odd sort of beast. It appears at once subjective and epistemic,
a chimera of our ignorance, and objective and worldly, the kind of thing that depends
upon and helps to explain features of the natural world. I believe that the subjectivist
account of deterministic chance developed here puts us in a position to appreciate
this dual nature. According to the subjectivist account, deterministic chances depend
upon objective features of the causal dynamics of the world. For instance, they are
sensitive to the actual distribution of mass in the die, since the distribution of mass in
the die makes a difference to the dynamics mapping initial conditions of the die roll
to outcomes. So too do these chances depend upon epistemic facts predicated upon a
certain kind of ignorance—though not necessarily our ignorance. They depend upon
the fact that, in ignorance of the precise initial conditions of a deterministically chancy
process, it would be irrational to be very confident in any narrow range of possible
initial conditions. While deterministic chance does not depend upon our ignorance, its
usefulness does. Of course, were we to be aware of the precise initial conditions of a
deterministically chancy process, along with the corresponding dynamics, we would
perhaps have no need of deterministic chances; we could predict and explain without
them. Recall the coin flipping machine constructed by Diaconis et al. (2007). With
this machine, it does not matter that we don’t know the precise physical conditions
of the coin’s toss; for we know something more: we know that the outcome is addi-
tionally governed by a dynamical equation which maps states in which the coin is
set down heads up to states in which the coin lands heads up, and we know that the
coin is set down heads up. This information is inadmissible with respect to the 1/2
chance determined by the dynamical equation φH from Sect. 2.2. When we have this
information, the 1/2 chance of heads remains, though it no longer has any normative
purchase on us. We ought not use it to determine our confidence that the coin lands
heads. Regularly, however, we lack information like this. In these cases, knowledge of
deterministic chances becomes invaluable. This explains why deterministic chances
are able to play the role of an epistemic expert. A deterministic chance is just the
credence that it would be rational to have, were we to know more about the causal
dynamics of the world than we in fact know. By analyzing frequency data, we may

57 Lewis (1994, p. 483).
58 Shouldn’t we still want there to be some connection between chance and frequency?Of coursewe should.
And there is: as the number of independent trials gets larger, so too does the chance that the frequency of
an outcome is close to the chance of that outcome. This is the law of large numbers (stated roughly). It is
the most that we should ever want an account of chance to say about the connection between frequency
and chance; for it is the most that is true about the connection between chance and frequency. And the

subjectivist account says it.

123



4370 Synthese (2021) 198:4339–4372

come to know something about what that credence is without thereby coming to know
anything about the underlying dynamics which inform it—we are afforded a glimpse,
if only a glimpse, of the opinions of a better informed, rational agent.
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