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Abstract
While scientific inquiry crucially relies on the extraction of patterns from data, we still
have a far from perfect understanding of the metaphysics of patterns—and, in particu-
lar, of what makes a pattern real. In this paper we derive a criterion of real-patternhood
from the notion of conditional Kolmogorov complexity. The resulting account belongs
to the philosophical tradition, initiated by Dennett (J Philos 88(1):27–51, 1991), that
links real-patternhood to data compressibility, but is simpler and formally more per-
spicuous than other proposals previously defended in the literature. It also successfully
enforces a non-redundancy principle, suggested by Ladyman and Ross (Every thing
must go: metaphysics naturalized, Oxford University Press, Oxford, 2007), that aims
to exclude from real-patternhood those patterns that can be ignored without loss of
information about the target dataset, and which their own account fails to enforce.

Keywords Kolmogorov complexity · Real patterns · Structure functions ·
Algorithmic information theory · Metaphysics of science

1 Introduction

Scientific inquiry often depends on the extraction of patterns from data. The huge
datasets and corpora typical of many contemporary scientific projects have only made
this dependence more obvious and central. Genomics (Barrett et al. 2013), connec-
tomics (Sporns et al. 2005) and astronomy (Feigelson and Babu 2012) are obvious
examples, but the trend is quite general. Philosophers of science have been paying
increasing attention to patterns, so as to keep up with this trend, but also in the hope
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that these entities will fruitfully supplement other entities, such as natural kinds, in the
metaphysics of science (Andersen 2017; Ladyman and Ross 2007; McAllister 2003a,
b, 2011, 2015, 2017; Petersen 2013).

On the other hand, as is often the case when a new theoretical tool starts to gain
prominence, we still have a far from perfect understanding of the notion of a pattern
itself. In this paper we propose a way to spell this out that builds upon Ladyman
and Ross’s theory of real patterns (RP henceforth), the most sophisticated account
currently on offer. RP substantially extends and refines the idea (first proposed by
Dennett (1991) and prefigured, more or less explicitly, by Bogen and Woodward
(1988), and Rissanen (1998), among many others) that there are patterns in a dataset
D insofar as one can describe a computer program that outputs D while being shorter
than D—a program, that is, that compresses D. The underlying insight is that patterns
correspond to redundancies in the dataset, and it is these redundancies that are exploited
by the algorithm implemented by the program.

A further question is what, precisely, is a pattern. The “underlying insight” just
mentioned does not take a stand on this: we are invited to conclude that there are
patterns present in D if D is compressible, but we have been given no guidance, for
any entity P, as to whether it is warranted to claim that P is a pattern in D. This is the
question that Don Ross and James Ladyman take up in a series of papers culminating
with their 2007 book, and which results in their RP account of real patterns. While RP
represents substantial progress towards the development of a metaphysics of patterns,
somewhat surprisingly its concrete formulation has not been closely scrutinized in
the literature—perhaps, we speculate, because it is built with a computer-theoretic
toolbox that is comparatively alien to many metaphysicians of science.

Close scrutiny shows that RP is not without problems: one of the goals of this theory
is to provide a criterion of non-redundancy (also, interchangeably, indispensability)
for patterns—the idea, roughly, being that one should count as real all and only those
patterns such that ignoring them results in an incomplete description of the world. We
will show that RP does not succeed in providing such a criterion. We will also offer
an alternative definition of a real pattern, simpler and more formally perspicuous than
RP, that provides a workable criterion of indispensability.

Before getting on to that, though, it is important to clarify the scope of our discussion
in this paper. In the literature we are engaging with, “real” is taken with a grain of salt:
e.g. Dennett refuses to answer the question of whether his account of real patterns
is “a sort of instrumentalism or a sort of realism” (1991, p. 51), and Ladyman and
Ross (also L&R henceforth) explicitly endorse “a version of instrumentalism about all
propositions referring to self-subsistent individual objects, chairs and electrons alike”
but also “realism about the domain of scientific description” (2007, p. 198). For our
current purposes, this is the sort of realism that matters. We are currently interested in
developing a coherent notion of a real pattern, in the comparatively soft understanding
of realism typical of the literature on real patterns. That is, we are after a principled
way to ground the claim that some patterns are, but some other patterns are not, present
in a certain dataset. Whether the criterion for real-patternhood to be developed here is
also able to underpin stronger versions of scientific realism (having to do, for example,
with the existence of certain objects or kinds of objects) is an extremely interesting
topic that will have to be taken up on another occasion.
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A point of terminology: L&R use “pattern” to refer to arbitrary strings of symbols,
independently of whether they can be used to compress a dataset or not (see Fn. 6). We
will use “string” for this purpose. In this paper we reserve “pattern” for the Dennettian
notion of an aspect of a dataset that makes it compressible. Finally, we will follow
L&R in using “real pattern” to refer to non-redundant (Dennettian) patterns, where
non-redundancy is understood as above.1

In Sect. 2 we introduce Dennett’s original insight, and the computer-theoretic
notions on which it builds. In Sect. 3 we explain why current approaches to model
selection in algorithmic information theory don’t tell the whole story about patterns.
In Sect. 4 we summarize Ladyman and Ross’s RP account. Then, in Sect. 5, we present
an important shortcoming of RP: we describe a model that shows that it does not abide
by their own indispensability principle—sketched above, and presented more fully in
Sect. 4. Finally, in Sect. 6 we propose a better definition of a real pattern, based on
the notion of conditional Kolmogorov complexity, which successfully incorporates an
indispensability principle. Section 7 offers some concluding remarks.

2 Algorithmic complexity and patterns

Philosophical inquiry into the role and nature of patterns in science kicks off with
Daniel Dennett’s seminal “Real Patterns” (1991). Dennett’s main insight is that pat-
ternhood is linked to algorithmic compression. This is just the compression that
contemporary everyday life has since made us familiar with: FLAC sound files or
TIFF image files are compressed, in the sense that these files are shorter than the
uncompressed WAV or bitmap originals. Speech transmitted wirelessly through cell
phone networks is also heavily compressed (Rappaport and Theodore 1996). What all
instances of algorithmic compression have in common, regardless of their medium or
the object of compression, is the fact that a target object is faithfully reproduced by
something shorter than a full bit-by-bit description.2

For a more explicit example, consider the following two objects: the first object is
a list of results from a series of one million tosses of a fair coin (1 encodes heads, and
0 tails): 0100011011…; the second object is the following list of one million binary
digits: 010101…010101. Since we are dealing with a fair coin, the first object is a
random string of 0s and 1s. The second string, however, involves an obvious pattern:
it’s a repetition of “01” half a million times. In order to describe the first string there are
no substantial shortcuts to writing, digit by digit, the results of each coin toss. On the
other hand, the second string can be fully reproduced via an algorithmic description
that is much shorter than the full string: (roughly) “print ‘01’ half a million times”.

1 The above informal characterization of non-redundancy will be sharpened in Sect. 4.
2 Speech compression is an instance of lossy compression, where faithfulness of compression is judged
by a certain distortion measure, or loss function (Cover and Thomas 2006, ch. 10; Shannon 1959). The
main notion of compression we rely on in what follows, on the other hand, is lossless compression, in
which the original file and the decoded version thereof are identical. TIFF, FLAC and others such as
DEFLATE, typically used in zip files, arewidely popular lossless algorithms.We note that the very existence
of lossless compression algorithms appears to be in some tension with McAllister’s (2003a) claim that
empirical datasets are incompressible—insofar, e.g., as empirical datasets can contain photographs or audio
recordings. We won’t pursue this topic here.
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The first, random string is incompressible. The second, patterned one incorporates
redundancies that can be exploited by a compression algorithm.

Chaitin (1966), Kolmogorov (1965) and Solomonoff (1964a, b), the founders of
algorithmic information theory, suggested independently that a sequence should be
considered random if and only if it is incompressible. Dennett conjoined this thesis
with the idea that a string has patterns to the extent that it is not purely random: “a
[string] is not random—has a pattern—if and only if there is some more efficient way
of describing it” (1991, p. 32). In a nutshell, a pattern in a dataset is any aspect of the
dataset that allows it to be compressed.

Aswe explained above, compressibility in a string is to be thought of as affording the
existence of comparatively short programs that can output the string in question.3 For
some strings there will be multiple programs of different lengths that can output them,
but we will be interested only in the shortest such program. The maximum achievable
algorithmic compression, or Kolmogorov Complexity, K(S), of a given string, S, is the
length of the shortest program that outputs S. The Kolmogorov complexity of strings
will be frequently appealed to in what follows.

A related notion is the complexity of a string, S, conditional on another string, T, or
conditional Kolmogorov complexity K(S|T). This is the length of the shortest program
that outputs S, when it is allowed to use T as an input. Suppose, for example, that we
have to compress a string, S, which encodes a recording of a spoken conversation.
The length of the shortest program that outputs S (i.e. the program that represents the
best possible compression of S) gives us K(S). But suppose further that we have a
computer library, T, that encodes certain speech statistics typical of recordings such
as S. This will often mean that we can write a shorter program that prints S, if we use
T as an additional input to the program. The shortest such program gives us K(S|T).

Finally, one can quantify the amount of information an object x carries about another
object y—the mutual information between x and y—as a measure of the reduction in
the amount of descriptive effort one has to make to describe y after coming to know
x. More formally, if S and T are strings, the algorithmic mutual information between
them, I(S:T), is:

I(S:T) � K(S) − K(S|T). (Li and Vitányi 2008, definition 3.9.2)

3 Model selection is not pattern individuation

Weclaimed above thatDennett’s foundational insightwas that a pattern in somedataset
is any aspect of it that allows it to be compressed. “Any aspect” is, of course, rather
unspecific. A full theory of patterns, if it is to help us to recognize and individuate
patterns, needs to spell out in more detail what these compression-enabling aspects of

3 In formal presentations of Kolmogorov complexity (e.g. Li and Vitányi 2008, p. 107), the programs we
have been alluding to are inputs to a reference universal Turing machine (UTM). For the purposes of this
paper, we can just think of the reference UTM as implementing one of the very many popular Turing-
complete programming languages—say, Python, or Javascript. Petersen (2018, p. 2) discusses whether the
choice of UTM introduces a bias in the resulting account of patterns (for example, by making any arbitrary
dataset, however big and random, compressible and hence patterned) and concludes, with Li and Vitányi
(2008, p. 112), that a small enough UTM will make any such potential bias negligible.
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Fig. 1 Denoising based on structure functions (from Vereshchagin and Vitányi 2010, p. 3446)

datasets amount to. In the following sectionwe discuss Ladyman andRoss’s attempt to
provide this detail (2007; Ross 2000). Beforehand, in this section, let us briefly discuss
an approach in algorithmic information theory to a related question, and explain why
this approach does not deliver an account of patterns, at least not as metaphysicians
of science employ this notion.

Consider a noisy image; e.g. the right cross in Fig. 1 (reproduced fromVereshchagin
andVitányi 2010, p. 3446).We can intuitively analyze this object into two components:
first “the information accounting for the useful regularity present in the object” (Vitányi
2006, p. 4617), which captures the noiseless cross to its left; and a meaningless one,
“the information accounting for the remaining accidental information” (ibid.), which
captures the noise.

The way algorithmic information theory approaches this analysis (following sug-
gestions made by Kolmogorov in the early 70s and in his 1965) is by devising ways to
encode the object in which the relevant code has two parts. The first part captures the
meaningful information of the object (i.e. provides a model of the object); the second
part captures the noisy remainder. In the foundational “structure functions” version of
this idea (Vereshchagin and Vitányi 2006, 2010), this two-part code is implemented as
follows. To encode a string x, we first identify a set S such that x is a typical member
of S. Being a typical member of a set simply means that, in order to pick out x from the
other members of S, there’s no shorter procedure than giving x’s position in an arbi-
trary enumeration of S’s members. A two-part code, then, can be constructed that first
reconstructs S (this takes K(S) bits, by the definition of Kolmogorov complexity), and
then gives x’s position in S (this takes log|S| bits, where |S| is S’s size). S corresponds
to the best model of the data; x’s position in S corresponds to the noisy remainder.

It can be shown (Vereshchagin and Vitányi 2006, p. 3269) that for each string x
there are optimal sets for which the sum K(Soptimal) + log|Soptimal| is equal to K(x).
That is, somewhat surprisingly, the K(Soptimal) term (which captures the meaningful
information in x by identifying the simplest set inwhich x is a typicalmember) together
with the log|Soptimal| term (which captures the noisy remainder by picking out x from
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a brute enumeration) add up to the Kolmogorov complexity of the original string (up
to an additive constant). The best meaning-plus-noise code for x is as good as the best
possible code for x.4

While algorithmic model selection is designed to help us distinguish meaningful
from meaningless in a dataset, there are at least two respects in which it does not
provide a solution to the problem real-pattern theorists are interested in. First, the
two-part code idea aims at reconstructing the original string x in its entirety. In our
case, x would correspond to an empirical dataset, and applying the procedure just
sketchedwould leave uswith a specification ofallmeaningful regularities in the dataset
together with the remaining noise. But almost all patterns identified in actual scientific
practice correspond to partial regularities in the target dataset. For one example among
very many, take CpG islands: areas of DNA with a high concentration of the CpG
dinucleotide. The abundance of CpG in a certain stretch of DNA is a clear pattern,
widely studied in epigenetics (Bird 1986; Larsen, Gundersen, Lopez, and Prydz 1992).
Yet, of course, full knowledge ofwhereCpG islands are, on its own, does not allowus to
reconstruct a full genome. In general, patterns in a dataset illuminate important aspects
of it, without fully describing it. Model selection in the algorithmic information-
theoretic tradition, as described above, offers no guidance as to how to uncover or
describe patterns in this sense.

The first problem we have mentioned with the model selection approach is that
it offers a way to identify all meaningful information in a dataset, in one go, but
not a way to identify partial, incomplete portions of this information, which is what
patterns are.5 The second respect in which model selection is not the right tool for
pattern discovery stems from the fact that many of the patterns identified by scientists
are partially constituted by what, arguably, is noise by the lights of model selection.
Again, for one example among many, the DNA of the C. elegans worm contains non-
coding regions of 10-base-pair periodic adenine (A)/thymine (T)-clusters (or PATCs).
These are regions of non-coding DNA in which stretches of a few consecutive As
and stretches of a few consecutive Ts happen more or less every ten bases, and they
make up approximately 10% of the C. elegans genome (Frøkjær-Jensen et al. 2016).
PATCs have been described as important patterns in the C. elegans genome, as they
appear to play a role in allowing germline expression of transgenes, in regions the
expression of which is otherwise silenced (ibid.). The fact that the clusters in PATCs
happen every 10 bases (and not every 20 or 40), and that the bases involved are A and
T (and not C or G) is likely to be random happenstance to a certain degree—that is,
noise, in model-selection parlance. But it is PATCs themselves, their noisy ingredients
included, and not just the “meaningful” core identified by structure functions, that are
relevant to C. elegans genetics.

4 The foregoing few paragraphs only scratch the surface of the algorithmic approach to model selection.
This is the aim of so-called algorithmic statistics. We point the interested reader to Gács et al. (2001),
Vereshchagin and Shen (2017) and references therein for in-depth discussion and alternatives to the struc-
ture–function two-part code.
5 To be clear: this is a problem insofar aswewant to usemodel selection as amethod for identifying patterns.
Model selection is a perfectly clear goal in algorithmic statistics, and the structure–function approach has
much to recommend it, when used for its intended purpose.
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An account that accommodates partial patterns (such as CpG islands), and noise-
including patterns (such as PATCs) is thus in order. Before presenting our own, we
turn now to describing the most developed, if ultimately unsuccessful, account of this
sort.

4 Ladyman and Ross’s real patterns theory6

L&R’s main idea is that the “aspects” of datasets that enable compression can be cap-
tured by identifying strings that partially encode the original dataset—these strings
will be the patterns in the dataset. We will soon be more precise than this; but we can
already note that there can bemany different strings that partially encode a dataset—in-
deed, there can be sets of mutually redundant strings, in the sense that each of them
informs us of the very same aspects of the target dataset.

L&R contend that the right theory of real patterns should provide guidance in
the process of choosing which members to recognize as real patterns, from those
possible sets of mutually redundant strings. That is, a theory of patterns must help us
to distinguish between potentially useful but ultimately dispensable patterns, which
one can ignore without any ontological loss, and patterns such that ignoring them
results in an incomplete description of the target dataset (cf. Ladyman and Ross 2007,
p. 231):

Non-redundancy principle: Include in your ontology all and only those patterns
that are required for a full (lossless) reconstruction of the target dataset.

L&R define real patterns as follows:

A pattern7 P is real iff
(i) it is projectible; and
(ii) it has a model that carries information about at least one pattern D in an
encoding that has logical depth less than the bit-map encoding of D, and where
D is not projectible by a physically possible device computing information about
another real pattern of lower logical depth than P (Ladyman and Ross 2007,
p. 233)8

This definition uses a number of comparatively uncommon technical terms. Our first
aim in this section will be to present a version of L&R’s theory of real patterns
that captures the main gist of their original definition, but is both simpler and more

6 We are greatly indebted to an anonymous referee for some very generous and detailed input that has much
improved this section.
7 Keep in mind that patterns simpliciter for L&R are just what we have called “strings”. This is what Fn.
51 in Ladyman and Ross (2007) amounts to saying: “A mere pattern is a locatable address associated with
no projectible or non-redundant object” (ibid., p. 231). See also ibid., p. 229: “From the ontological point of
view, a non-projectible pattern exactly resembles the traditional philosophical individual.” For the meaning
of “locator” and cognates in L&R’s system, see ibid., p. 121ff. For the related notion of “perspective” see
ibid., p. 224.
8 We have changed the variable names to align them with the ones we use in this paper.
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continuous with the rest of the literature on patterns. We will now discuss each of the
technical terms in turn.

4.1 Projectibility

Projectibility is used twice in the definition. L&R say that an entity x projects an
entity y (notated x→y) iff it is possible to calculate y from x (ibid., p. 224). Take,
for example, a system of physical bodies moving about in space. We might want to
predict some future positions and velocities of one particular object, given data about
the current positions and velocities of a range of objects. Let x be a specification of
the position and velocity of those objects at time t; and let y be a specification of the
position and velocity of our target object at a later point in time. If it is possible to
effect a computation x→y which outputs y from input x (by, say, solving differential
equations that correspond to some deterministic theory of gravity), we say that x
projects y. If an object x projects an object y, then x doesn’t merely carry some amount
of information about y: it carries all the information necessary to specify y without
residue. In algorithmic complexity terms: for any strings x and y, x projects y iff K(y|x)
� 0, up to an additive constant independent of x and y.

According to L&R, a pattern (e.g. a differential equation, as in the example above)
that makes possible a projection, x→y, in the sense explained, is projectible—as in
clause (i) above—if it affords projecting ys for multiple unobserved input xs. As L&R
point out, this condition aims to “avoid trivialization of projectibility by reference to [a
computer] that simply implements the one-step inference rule ‘Given input [x], output
[y]’” (ibid.). Yet it could be argued that the appeal to multiple unobserved inputs
doesn’t avoid trivialization: projecting multiple ys for multiple xs is computationally
equivalent to projecting a single, bigger y (say, an array of the original ys) from a
single, bigger x (an array of the original xs). Again here, there is a Turing machine that
calculates the bigger y from the bigger x by (paraphrasingL&R) “simply implementing
the one-step inference rule ‘Given input [bigger x], output [bigger y]’”.

In our paper we are, in effect, taking “y is projectible from x” to mean “a trivial
(very short, etc.) universal Turing machine running x as its program outputs y”. This
seems to capture what L&R want projectibility to do, while avoiding triviality. In a
Kolmogorov complexity setting these constraints on universal Turing machines are
standard (see Fn. 2).

4.2 Models

L&R’s definition also makes reference to models of patterns. This has two functions
in L&R’s construction: first, it helps make explicit that, in order to apply algorithmic
complexity theory to real-world phenomena, we need to translate them into strings.
Second, it makes the definition applicable to cases in which we “may have access
only to a model of the pattern in question” (e.g. when the pattern is the interior of
the Sun, ibid. p. 233). The counterexample to RP that we will be considering in the
sequel is formulated directly in terms of strings. This will allow us to sidestep these
complications.
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4.3 Encodings

As we saw above, there are patterns in datasets iff the latter can be compressed. The
uncompressed, raw version of a dataset (for example, the raw lists of numbers and text
that result from research) is what L&R call its bit-map encoding (see ibid., p. 232).
This is the string we are calling “D” in this paper. Other, more sophisticated encodings
of the dataset might provide more economical (shorter) representations of it, if it is
compressible.

4.4 Logical depth

Finally, the logical depth of a string is the number of steps necessary to output it from
its minimal program (Bennett 1995). John Collier, co-author with Ladyman and Ross
of the main chapter on real patterns in Ladyman and Ross (2007), has given reasons to
opt for logical depthwhen discussing physical complexity in (Collier 2001; Collier and
Hooker 1999). In our context, this is a relatively idiosyncratic choice: it is universally
understood that the main measure of algorithmic complexity is Kolmogorov complex-
ity (Grünwald andVitányi 2008) and this is also the notion used inmost other papers in
the philosophical literature on real patterns (Dennett 1991;McAllister 2003b; Petersen
2013, 2018). We will opt for a Kolmogorov-complexity version of L&R’s definition
of real patterns. In any event, the examples we will use to make our points in this paper
are, in Bennett’s sense, logically shallow. That is, for them, Kolmogorov complexity
equals logical depth (and, indeed, mostly equals length). Still, if one wishes to stick to
logical depth, this is perfectly doable. Where we say “Kolmogorov complexity” one
should read “logical depth”, and where we say “conditional Kolmogorov complexity”
one should read “relative logical depth” (Bennett 1995, Definition 1.1).

With these clarifications in mind, we can now present a succinct version of L&R’s
definition:

RP: A pattern P is a real iff there is a dataset D such that

(i) I(D:P)>0; and
(ii) there is no Q such that K(D|Q) � 0 and K(Q)<K(P).

The definition, first, says that for a string P to be a real pattern it has to carry information
about some dataset D—which in turn means that a program that has P as input and
outputs D can be shorter than a program that outputs D and has no inputs. This captures
the Dennettian compressibility condition on patternhood. Second, the definition says
that if P is a real pattern, then no pattern shorter than P has all the information needed
to specify D without residue. This attempts to enforce the non-redundancy principle
above: if there were a pattern that losslessly compressed D as a whole, while being
shorter than P, then P would indeed be superfluous for the purpose of describing D.

There is an asymmetry in how this definition handles the Dennettian and the non-
redundancy ingredients: on the one hand it is deemed enough that P carry some, not
all, information about D; yet, on the other hand, redundancy is averted by appealing
to projectibility—which, recall, requires a pattern to be fully informative about D, if
it is to make P redundant. This combination is an understandable theoretical choice.
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Fig. 2 Constructing D

First, non-redundancy cannot be implemented in terms of information-carrying. If the
second part of the definition merely read

(ii)* there is no Q such that K(D|Q)<K(D) and K(Q)<K(P)

then the unreasonable consequence would be that patterns less complex than P, that
carried less information about D than P, would make P redundant. Second, and con-
versely, for the sort of reason seen in the previous section, the Dennettian insight
cannot be implemented in terms of projection: it is unreasonable to rule that the only
real patterns in a dataset are those patterns that fully reconstruct the dataset (recall
CpG islands).

This combination is an understandable theoretical choice, but it is the wrong one.
As we will show in the following section, the interplay between projectibility and
information-carrying in clause (ii) of RP doesn’t quite behave as intended, and this
can be used to smuggle in very noisy patterns, and have them counted as real.

5 The problem

In RP, putatively real patterns are tested by how well they explain a dataset D. We will
now present a toy model in which D is a string constructed as follows. We first take
three 200 MB9 random binary strings, A1, A2, and A3. The concatenation of these
three strings, we call A. Second, we construct D as the concatenation of two exact
copies of A. The size of D, thus, is (200×3)×2 � 1200 MB (see Fig. 2). Alongside

9 A megabyte (MB) is one million bytes.
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D, we construct another pattern, Q, as the concatenation of A1 and an extra 200 MB
of random binary digits—i.e. A1 plus a lot of superfluous noise.10

Now, A is a real pattern in D: it is repeated twice, verbatim, in the dataset. This is
borne out by RP: first, A carries a great deal of information about D; and second, D is
not projectible by any program computing information from a pattern that is shorter
than A.

To see that the first condition is met (that A carries information about D) we simply
show that K(D|A)�K(D), which, as per the definition of mutual information, entails
that I(D:A)�0. D consists of a repeated 600 MB random (hence, incompressible)
string, so K(D) must be larger (but not much larger) than 600 MB. Now, on the other
hand, if we are to write a program that outputs D, and we can use A as an extra input
(as per the definition of conditional Kolmogorov complexity, presented above) the
program can be as simple as concatenating two copies of A. Listing 1 is a function
that does exactly that.11

Listing 1

This program has a size of approximately 54 bytes.12 This, then, is an upper bound
for K(D|A), and it is much smaller than K(D)∼600 MB. A, as expected, is highly
informative about D: I(D:A) � K(D) − K(D|A)~600 MB.

The second condition for A to be a real pattern is that D is not projectible by any
program shorter than A—i.e. shorter than 600 MB—and, as we have already seen, it
is not: A is a random, and therefore incompressible, component of D. It is impossible
for any program shorter than A to produce a copy of A and, a fortiori, impossible for
any program shorter than A to produce a copy of D.

Now, it is also intuitively compelling that long substrings in A are real patterns in
the D dataset. Suppose, for example, that D-researchers haven’t yet found out about
the full pattern A, but have discovered that A1 is repeated twice in D. Uncovering
this fact about D would be very valuable for making sense of its structure—plausibly,
the situation in genomics is relevantly analogous to this toy example. Again here, RP
agrees with this intuitive assessment: A1 is a real pattern in the RP sense. The program
that reconstructs D given A1 as an extra input has to concatenate it with A2 and

10 For ease of discussion, we have designed our example so that redundancies in the dataset are readily
apparent. Of course, in more realistic examples, sophisticated coding might be needed in order to squeeze
the redundant material out of our target string. The kind of argument we develop here applies to more
realistic cases as well.
11 In what follows we will give our example algorithms in pseudocode—i.e. a dialect that does not corre-
spond to any particular programming language, but can be readily translated to many of them and is tailored
to maximize readability for humans. It may have occurred to some readers that the choice of coding scheme
or programming language used to describe an object can condition the minimum achievable length for
describing it and thus, seemingly, that different languages will introduce different Ks for the same object.
This is correct, but the apparent relativity thus introduced does not affect the objectivity of K as a measure of
compressibility: K is equal for every programming language up to an additive constant that is independent
of the string to be compressed itself (Grünwald 2007, p. 10).
12 At least in our laptop. The exact number will vary slightly from platform to platform.
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A3, concatenate the resulting string, A, with itself, and then output it. A pseudocode
function that does this is given by Listing 2.13

This program will be just over 400 MB long, with the definitions of substrings A2
and A3, each 200 MB long, taking by far the biggest chunk of this space. 400 MB is
therefore a good estimate for K(D|A1): about two-thirds of K(D). Again here, 400MB
is not enough to reconstruct D, which needs at least the 600 MB of A, so A1 counts
as a real pattern in D according to RP.

The problem comes with the Q pattern. This, recall, is just A1 with an extra 200MB
of noise, so it’s very clearly redundant relative to A1 for the purpose of describing D.
Yet, it too passes muster as a real pattern according to RP. First, it carries as much
information about D as A1 does. The program that reconstructs D from Q will simply
keep the first 200 MB of Q, that is, A1, and then proceed as before:

This program has a very similar length to the one in Listing 2. That is,
K(D|A1)∼K(D|Q). And again here, while Q is double the size of A1, it is, at 400 MB,
still much smaller than K(D)—and, as we have explained, no string shorter than K(D)
will be able to reproduce (i.e. project) D. So Qmeets the RP definition of a real pattern.

In general, any string that both carries information about D and is smaller than K(D)
will count as a real pattern according to RP. This, as Q shows, is an unwelcome result
given the goal expressed by the non-redundancy principle: it is trivial to multiply the
redundant patterns that pass the RP test by taking a real pattern and adding to it any
amount of noise such that the total length is less than the Kolmogorov complexity of
the original dataset.

13 In fact, if, as we said, scientists have not yet learned that A2 and A3 are repeated in D, these two strings
should occur twice in listing 2, once for each repetition. This detail does not interfere with our point, and
we have omitted it so as not to complicate the structure of the example.
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6 A solution

How should we fix this? In the model developed in the previous section, the redun-
dant pattern Q is longer than the non-redundant pattern A1. A quick—but obviously
wrong—fix would be to rule that between any two strings, say L and S, that carry
information about a target dataset, D, the longer one, L, should be discarded in favor
of the shorter one, S. This would result in Q being discarded in favor of A1, as desired.
The problem, of course, is that this “quick fix” pays no heed to which particular
chunks of information the two contending strings carry about D. For example, it could
be that L is identical to A1 and S to the first half of A2. In that case, it would make
no sense to deem L superfluous simply because it is longer than S, because L and S
make complementary contributions to our understanding of D.

What we need, if we are to decide whether one putative real pattern is redundant
relative to another, is a way of specifying when two patterns carry, not just the same
amount of information, but also the same specific pieces of information about an
object. The general question of how to express this desideratum is an open problem
in information theory, explored in the partial information decomposition framework
(Griffith et al. 2014; Williams and Beer 2010), although, as far as we are aware,
it has been discussed less in algorithmic information theory. Fortunately, conditional
Kolmogorov complexity allows us to arrive at the relevant notion of pattern redundancy
without having to solve the general problem of partial information decomposition. We
first define D-dispensability:

D-dispensability: A pattern Q that carries information about a dataset D is D-
dispensable iff there is another pattern P such that:
(i) K(D|P,Q) � K(D|P)
(ii) K(P)<K(Q)

Clause (i) captures the idea that the information Q carries about D is part of the
information P carries about D. This is not a claim about information quantities, but
about the actual pieces of information carried by these strings: if having Q as an extra
input does not allow us to shave even a few bits off the length of the program that
calculates D using P as its input, then this means that all Q has to say about D is also
said by P.

Notice that if we only had clause (i), it would be possible for Q to be D-dispensable
in favor of P, and for P to be D-dispensable in favor of Q at the same time. In keeping
with the non-redundancy principle discussed above, clause (ii) deems dispensable
whichever of the contending patterns is more complex.

We will say that a pattern is strictly D-indispensable iff it carries information about
D and is not D-dispensable. Strict D-indispensability is, we suggest, the notion that
LadymanandRosswere after in their definitionof a real pattern.Thus abetter definition
is as simple as this:

Real Pattern: A pattern P is real iff there is at least one dataset D such that P is
strictly D-indispensable.
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We offer this definition as a drop-in replacement for RP, only simpler, and without the
defects presented in the previous section.

7 Concluding remarks

We have shown that the theoretical desideratum captured by the non-redundancy prin-
ciple—include in your ontology all and only those patterns that are required for a full
reconstruction of the target dataset—is not successfully enforced by RP. The inter-
play between information-carrying and projection in this definition entails the reality
of any string that is informative about D while being less complex than D.

We have proposed to define real patterns directly in terms of their contribution to
reducing the conditional Kolmogorov complexity of a dataset. This captures the main
insights of RP, while being simpler, and offering a better non-redundancy criterion. A
further question14 is whether it is sensible to tie reality to non-redundancy, as L&R
and we do. This decision is beyond the scope of this paper: we have provided clear
criteria for deeming a string to be a pattern in a dataset (this is tied to compressibility),
and also for deeming it to be a real pattern (this is tied to compressibility and non-
redundancy). Ascertaining which, if either, of these two notions should take priority
in the metaphysics of science is a matter for further research.

Our definition, like L&R’s, relies on the existence of an object (a dataset in our
definition, a “pattern” in theirs) which putative real patterns are more or less able
to explain. It is probably possible to contrive artificial datasets that would make any
desired pattern real, by any definition in the Dennettian tradition. Take any random
string P, create a “dataset” D consisting of two concatenated copies of P, and—hey
presto!—D makes P real. The lesson here is that definitions of real patterns along
Dennettian lines, such as L&R’s or ours, are only interesting if the datasets appealed
to arebonafide, in the sense of coming from theworld—fromactual empirical research.
Amore explicit characterization of what should count as a bona fide dataset is a central
question for any broadlyDennettian account of patterns, but one thatmust be discussed
elsewhere.
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