
Synthese (2021) 198 (Suppl 23):S5719–S5744
https://doi.org/10.1007/s11229-019-02305-7

S . I . : REL IAB IL ITY

A theory of change for prioritised resilient and evolvable
software systems

Giuseppe Primiero1 · Franco Raimondi2,3 · Taolue Chen4

Received: 11 November 2018 / Accepted: 25 June 2019 / Published online: 28 June 2019
© Springer Nature B.V. 2019

Abstract
The process of completing, correcting and prioritising specifications is an essential
but very complex task for the maintenance and improvement of software systems. The
preservation of functionalities and the ability to accommodate changes aremain objec-
tives of the software development cycle to guarantee system reliability. Logical theories
able to fully model such processes are still insufficient. In this paper we propose a
full formalisation of such operations on software systems inspired by the Alchourrón–
Gärdenfors–Makinson (AGM) paradigm for belief revision of human epistemic states.
We represent specifications as finite sets of formulas equipped with a priority relation
that models functional entrenchment of properties. We propose to handle specification
incompleteness through ordered expansion, inconsistency through ordered safe con-
traction and prioritisation through revision with reordering, and model all three in an
algorithmic fashion. We show how the system satisfies basic properties of the AGM
paradigm, including Levi’s and Harper’s identities. We offer a concrete example and
complexity results for the inference and model checking problems on revision. We
conclude by describing resilience and evolvability of software systems based on such
revision operators.

Keywords Software evolution · Software reliability · Software resilience · Software
evolvability

B Giuseppe Primiero
giuseppe.primiero@unimi.it

Franco Raimondi
f.raimondi@mdx.ac.uk

Taolue Chen
taolue@dcs.bbk.ac.uk

1 Department of Philosophy, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy

2 Department of Computer Science, Middlesex University London, The Borroughs,
London NW4 4BT, UK

3 Dipartimento di Matematica e Fisica, Universitá degli Studi della Campania, Salerno, Italy

4 Department of Computer Science and Information Systems, Birkbeck, University of London,
Malet Street, London WC1E 7HX, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-019-02305-7&domain=pdf
http://orcid.org/0000-0003-3264-7100

S5720 Synthese (2021) 198 (Suppl 23):S5719–S5744

1 Introduction

The process of designing software starts usually froma list of requirements, intended as
properties expressing desires of a stakeholder concerning the software to be developed.
Given a certain domain knowledge, the requirements are meant to be implemented
and satisfied by corresponding specifications, intended as properties of the system.1

The notion of reliability for software systems has been mainly formulated in terms of
continuity of correct service and is an attribute of dependability alongwith availability,
maintainability, safety and security. Software reliability is heavily complicated by
change in the life-cycle of computing systems. The process ofmodifying or re-defining
systems specifications is required by increasing architectural complexity of the actual
implementations, or improving software quality. In either case, “softwaremaintenance
has been regarded as the most expensive phase of the software cycle”.2 A considerable
amount of research has already been dedicated to the understanding, planning and
execution of software evolution, in particular for requirements evolution, see e.g.
Ernst et al. (2009). Typically, this occurs as part of the late life-cycle of the system
and it is dictated by

– Architectural degeneration, i.e. the violation or deviation of the architecture,
increasing with changes being made to the original, see e.g. Eick et al. (2001)
and Lindvall et al. (2002);

– Flexibility requirements, i.e. the system property that defines the extent to which
the system allows for unplanned modifications, see e.g. Port and Liguo (2003);

– Requirements prioritisation, i.e. the design choice which defines the relevance of
corresponding functionalities, and in turn their resilience in view of future changes,
see e.g. Fellows (1998) and Firesmith (2004).

In this context, the persistence of service delivery when facing changes is referred to
as resilience and it is combined with correct evolvability, as the ability to successfully
accommodate changes, see Laprie (2008). They can be taken as building blocks for
defining and proceduralising a notion of reliability for software systems. The laws of
software evolution for computational systems linked to a real environment (Lehman
1980; Lehman et al. 1997) express the importance of an appropriate understanding of
software change. Change classification schemes, assessing the impact and risk asso-
ciated with software evolution, present challenges (Mens et al. 2005) which include
integration in the conventional software development process model. This, in turn,
means that amodel of software change at design and implementation stages is essential
to assess and anticipate errors and to determine system’s reliability in view of threats
to functionalities. Late life-cycle misfunctions, where the system produces negative
side-effects absent in other systems of the same type, require corrective changes after
testing on the actual code (i.e. excluding model-based testing). Disfunctions, where
the system is less reliable or effective than one expects in performing its function are
more likely to be assessed at early stages, where perfective changes result from new
or changed requirements, see Lientz and Swanson (1980) and Sommerville (2004).3

1 For these standard meanings, see Zave and Jackson (1997).
2 Williams and Carver (2010, p. 32).
3 For the definitions of misfunctions and disfunctions in software systems, see Floridi et al. (2014).

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5721

A third classification is that of adaptive changes, where the system or its environment
are evolving.4 The understanding, modelling and development of a theory for software
evolution are thus crucial tasks (Mens et al. 2005).

Let us consider a concrete example, extracted from Zowghi et al. (1996, sec. 2):

Consider the requirements engineering process involved in developing a word-
processor. The initial problem statement only specifies that this wordprocessor
is intended to be used by children. Two assumptions may be made immediately
that are related to the domain knowledge and usability. Firstly, since all word
processors by default have a spell check functionality, we may specify a require-
ment for existence of a spelling check function. Secondly, since it is intended
for use by children, we may add a set of requirements for the ability to change
the colour of screen and text etc. These assumptions are added to the initial
statement to represent our current state of belief about the software we are to
develop and are then presented to the problem owners for validation. They, in
turn, confirm that spell check is indeed a requirement but since they will only
have monochrome terminals available there is no need for colour change. So we
need to revise our set of beliefs to contract those requirements related to colour.

Besides requirements evolution, such a revisionmay also be induced at a lower level
of abstraction. Consider the formulation of a specification satisfying given require-
ments, and an implementation thereof. The specification can be seen as a model of
the physical artefact. When the latter violates some of the properties expressed by
the former, a revision of the examined system in one of the above mentioned ways
becomes necessary. Consider the following variant of the above case:

The initial problem statement only specifies that this wordprocessor is intended
to be used by children. Two assumptions may be made immediately that are
related to the domain knowledge and useability. Firstly, since all word proces-
sors by default have a spell check functionality, we may specify a requirement
for existence of a spelling check function. Secondly, since it is intended for use
by children, wemay add a set of requirements for the ability to change the colour
of screen and text etc. These assumptions are added to the initial statement to
represent our current state of belief about the software we are to develop. The
system is then developed accordingly, but the functionality to change the colour
of the screen is not implemented. We extract the specification of the current
implementation and compare it with the intended one. We notice the two are
not logically equivalent, hence we wish to modify the latter to accommodate
the required change. We consider this a perfective change. In the new imple-
mentation, the developers add the ability to insert graphs and figures. Again, a
specification may be extracted and compared to the intended one: as the product
is intended for children, the new functionality is considered superfluous and we
wish to remove it. We consider this a corrective change. In the next develop-
ment cycle, the functionality to spellcheck is made dependent on the ability to
switch languages: for each language, an appropriate spellcheck is developed.
The comparison with the intended model shows the logical difference, but it

4 Here we explicitly ignore the other classification, namely preventative changes.

123

S5722 Synthese (2021) 198 (Suppl 23):S5719–S5744

also indicates the dependency of a required functionality from a non-required
one. The model is changed to accommodate the latter, in order not to loose the
former. We consider this an adaptive change.

Despite the triviality of the above example, it seems clear that the above operations,
possibly automatically performed, would be a significant aid to the process of soft-
ware evolution. Even more so, if the products under considerations are no longer
word-processor, but safety-critical systems, where the removal operationmight induce
significant effects.5

Oneway to account for corrective, perfective and adaptive changes on an implemen-
tation diverging from the specification is to treat them similarly to change operations
in scientific theories. In particular, in this paper we define formal operations inspired
by the AGM belief change theory, see Alchourrón et al. (1985). This area at the inter-
section of software engineering and theory change has been only very little explored:
the only approach explicitly based on AGM is to be found in Zowghi et al. (1996),
offering a framework to reason about requirements evolution in terms of belief change
operations. In Dam andGhose (2014), belief revision is used to deal with change prop-
agation in model evolution. In Mu et al. (2011) and Booth’s (2001) negotiation-style
for belief revision is used to model change from current to to-be system requirements,
aiming at some form of compromise based on prioritisation. AGM belief revision has
been investigated for logic programming under answer set semantics in Delgrande
et al. (2013a, b). While notoriously a number of methods in software engineering have
focused on developing implementation from specifications (Spivey and Abrial 1992;
Abrial 2005), our analysis concentrates on the modelling of perfective, corrective and
adaptive changes to design new specifications from early (incorrect) implementations
that are the object of change. Here the passage from model to implementation to new
model is crucial.

The case under consideration can be reformulated as follows in the process of
software development. We start with Sm , intended as a specification for a software
system: translated in an abstract formalmodel, this is considered as a logical theory, i.e.
a set of formulas closed under logical consequence, i.e. where all the properties implied
by the formulas should be considered valid. An implementation of Sm will be denoted
by I. This actual artefact will have its own formal model, possibly automatically
extracted, and it will be denoted by Si . This new model cannot be treated as a logical
theory, because it will verify only a finite number of formulas. Therefore, Si needs to
be considered as a base. Assuming a discrepancy is found between the intended model
Sm and Si , some change is performed on the latter to obtain a new specification S ′

m .
6

This dynamics, which can be labelled Specification Evolution, is illustrated in Fig. 1.
To model this process concretely, we start with considering Sm as a software theory,
i.e., the deductive closure of a (finite) set of formulas, each representing a property
of our system. Our aim is to define some operation that allows the construction of

5 For another example of software uninstall operations where dependencies affect system efficiency and
reliability, see Primiero and Boender (2018). Amore realistic and complex example of specification revision
in view of inconsistent implementation is presented below in Sect. 4.
6 Notice that a Software Engineer might be interested only in the evolution of I, while we explicitly address
the specification evolution in terms of the logical change of the system to be reflected in the corresponding
theory.

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5723

Fig. 1 Specification evolution

Fig. 2 System change

a new theory from the previous one by performing some perfective, corrective or
adaptive change. In order to manipulate such a theory in an algorithmic fashion and
define concrete operations, we deal with a finite base Si representing the software
system which offers a syntactic representation of the theory Sm and is not logically
closed. In other words, we assume that the specification of any however large software
and its manipulation should be accounted for in terms of a finite representation. This
concrete formulation of the specification evolution is labelled System Change and it
is illustrated in Fig. 2.

We consider the computational aspect of the operators introduced in this paper, i.e.
the computational complexity of reasoning with the operators. In literature, there are
mainly two questions assuming a finite propositional language as in this paper:

– InferenceGiven a knowledge base Si , a new formulaφi and a queryψ j (represented
as propositional formulas), decide whether ψ j is a logical consequence of Si ∗ φi ,
the revised knowledge base. (Here ∗ is interpreted as a revision operator.) The
complexity of this problem was first studied by Eiter and Gottlob (1992).

– Model checking Given a knowledge base Si , any such knowledge base can be
equivalently represented by the set of its models, denoted as M(Si). A model M
is supported by the knowledge base Si iff M ∈ M(Si), i.e., M |� Si . The model
checking problem is thus to decide whether a model is supported by the revised
base. Formally, given a knowledge base Si , a new formula φi , and a model M
(represented by a valuation of propositional letters), decide whether M ∈ M(Si ∗
φi).

123

S5724 Synthese (2021) 198 (Suppl 23):S5719–S5744

In AI literature, the complexity of various belief revision and update operators has
been extensively studied by Liberatore and Schaerf (2001). We show that for our
revision operator with reordering, the inference problem is in co-NP, whereas the
model checking problem is in the second level of the polynomial hierarchy, i.e., ΣP

2 .
The rest of this paper is structured as follows. In Sect. 2 we introduce our formal

machinery. In Sect. 3 we formulate our definitions of expansion, safe contraction
and revision for system evolution and offer their algorithmic translations. In Sect. 4
we present a notorious example of a broken algorithm and its redesign through the
operators introduced in this paper. In Sect. 5 we present the complexity results. In
Sect. 6 we offer resilience and evolvability properties on our theory. We conclude with
remarks on future research.

2 Preliminaries

The alphabet of a propositional formula is the set of all propositional atoms occurring
in it. A valuation of an alphabet X is a truth assignment to all the propositional letters
in X . An interpretation of a formula is the truth assignment when the valuation to the
atoms of its alphabet is given. A model M of a formula φi is an interpretation that
satisfies φi (written M |� φi). Interpretations and models of propositional formulas
will usually be denoted as sets of atoms (those which are mapped into true). A theory
T is a logically closed set of formulas. An interpretation is a model of a theory if it
is a model of every formula of the theory. Given a theory T and a formula φi we say
that T entails φi , written T |� φi , if φi is satisfied by every model of T .

We consider a software theory as the deductive closure of a finite set of formulas
Sm = Cn(Sm) where Sm = {φ1, . . . , φn}, i.e. Sm := {φi | Sm |� φi }, where each φi

expresses a specific behaviour that the intended software system Sm should display. In
the following we will use respectively theory and system to refer to these two distinct
formal objects. The consequence relation � for Sm is classical with the following
essential properties:7

1. Sm � �.
2. Sm � (φi → φ j) and Sm � φi , implies Sm � φ j .
3. Sm � φi implies Sm � ¬φi .

� intuitively reflects property expressiveness:φi � φ j says that a property specification
φi holding for a system Sm induces property specification φ j in the corresponding
theory Sm .

We call functional entrenchment an ordering φi ≤ φ j which says that φi is at least
as embedded as φ j in view of the functionalities of the system. This means that the
satisfiability of functionality φ j might depend or be less essential than the satisfiability
of functionality φi . Another way to present the intuitive meaning of the entrenchment
relation φi ≤ φ j in the context of software systems is to say that one would prefer to
remove first φ j than φi . Functional entrenchment is defined by two properties:

7 We do not require the theory of interest to be neither complete (in the sense of satisfying ∀φ,Sm � φi
or Sm � ¬φi) nor compact. Completeness is too-strong in view of the system being under-defined with
respect to the alphabet of all possible properties; compactness is trivial in the finite setting of the system.

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5725

1. Transitivity: if φi ≤ φ j and φ j ≤ φk , then φi ≤ φk ;
2. Dominance: if φi � φ j , then φi ≤ φ j ;

An argument about the utility of such an entrenchment is the following: assumewehave
a set {p, q} where the two formulas are unrelated and not ordered by any preference;
assume that for some reason we are required to remove from that set the formula
(p∨q) and its consequences; in this situation we would be forced to obtain the empty
set as a result of the contraction operation, as either formula in the current set implies
(p ∨ q); on the other hand, obviously, it would be enough to remove either one of the
two formulas p or q, if there was some priority order defined over them to allow us
choosing.

We now refer to the system Si = {φ1, . . . , φn} as a knowledge base, i.e. a set of
formulas not closed under logical consequence. Recall that this is due to the need of
representing a model of a physical implementation I in some concrete programming
language of the corresponding theory Sm . We say that Si is consistent if there exists a
model for Si . Let now (Si ,<) denote a finite set of formulas with a partial order. When
referring to the model abstracted from Si we shall use Si in order to denoteCn(Si ,<).
If Si is not a faithful translation of Sm (and hence of its theory Sm), in the sense of
either not satisfying some property included in Sm , or satisfying some contradictory
property or reflecting an undesired functional entrenchment, we then wish to perform
changes.

For our complexity results we assume familiarity with basic concepts of computa-
tional complexity, and we use standard notations of complexity classes. In particular,
the class P denotes the set of problems whose solution can be found in polynomial
time by a deterministic Turing machine, while NP denotes the class of problems that
can be solved in polynomial time by a nondeterministic Turing machine. The class
co-NP denotes the set of decision problems whose complement is in NP. We also use
higher complexity classes defined using oracles. In particular PA (NPA) corresponds
to the class of decision problems that are solved in polynomial time by deterministic
(nondeterministic) Turing machines using an oracle for A in polynomial time.

3 Change operations

A change operation is triggered by some φi satisfying one of the following conditions:

– Incompleteness handling Sm � φi and Si � φi , i.e. the implementation does not
satisfy one of the intended functionalities;

– Inconsistency handling Sm � φi or Sm � ¬φi and Si � φi , i.e. the implementation
satisfies a functionality not intended by the model, or one whose negation was
intended by the model;

– Priority handling Sm � {φi ≤ φ j } and Si � {φ j ≤ φi }, i.e. the implementation
satisfies a different functional entrenchment than the one intended by the model.

Each of these three cases expresses a form of inconsistency between bases. Automatic
techniques for inconsistency checking of systems are available both through theorem
proving and model checking, also within the AGM paradigm, and widely reported in
the literature (Kolyang andWolff 1996; Buccafurri et al. 1999; Sousa andWassermann

123

S5726 Synthese (2021) 198 (Suppl 23):S5719–S5744

2007; Zhang and Ding 2008; Guerra and Wassermann 2010). Formal operations can
be defined on Si so that either the current input in the implementation becomes valid
for the model; or the specification that makes our current input invalid is removed; or
the order of the base is changed, in combination with the other operations.

– In the first case, Si is changed to include φi : we indicate the result of this change as
expansion. This formal operation reflects the implementation of a new functionality
and hence qualifies as a perfective change.

– In the second case, Si is changed to remove φi (under a complete system, which we
do not assume, this implies inclusion of ¬φi in Si): we indicate the result of this
revision as contraction. A contraction operation should aim at removing the least
expressive properties to induce a minimal loss of functionalities; at each stage
of the implementation consistency is preserved. This formal operation reflects
the removal of an undesired functionality (error fixing) and hence qualifies as a
corrective change. Such change operation in software design and system evolution
should be defined in view of resilience, intended as the maximal preservation of
functionalities not related to the removed property.

– We call instead adaptive change the category of modifications that result from a
required novel priority ordering in the system so as to make one property safer
from future corrective changes. This can be defined as a combination of corrective
and re-ordered perfective changes and it is related to system evolution.

In all cases, a new model S ′
m is obtained, from which a new implementation can be

formulated.
We formalize perfective, corrective and adaptive changes respectively in terms of

expansion, safe contraction and revision with a reordering operation: these operations
are formally defined from the next subsection, and they modify existing well-known
operation from the AGM paradigms to be adapted to prioritised bases. Expansion
+ is rather easy to associate to functionality extension. Safe contraction − has had
only little attention in the large literature in epistemic logic using the AGM paradigm,
but it appears essential to the issue of property resilience in system evolution and
it also satisfies the criteria of a minimal contraction operator, hence ensuring that
as little as possible is lost. Finally, we consider an operator � which is defined to
satisfy as much as possible the standard AGM revision ∗ postulates and additionally
makes the property object of the operation safer from future contraction operations.
This recalls operations of preference change, e.g. in Alechina et al. (2015) where
preferences are treated as a special kind of theory, and minimal change contraction
and revision operations are defined. Safe contraction defined over bases exists already
from the literature (Fuhrmann 1991), where it is called minimal contraction and our
postulates for ordered safe contraction match those offered there. An efficient form of
AGM belief contraction (linear time) satisfying all but one of the AGM postulates is
defined in Alechina et al. (2005) for a realistic rule-based agent which can be seen as
a reasoner in a very weak logic (but still over deductively closed sets of beliefs). More
importantly, we use such operations to define property and system resilience and offer
a definition of system evolution.

In view of our application, some of the properties of the AGM paradigm need to be
re-designed, in virtue of the fact that revision operations are not defined on theories

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5727

but rather on finite bases. This has the advantage of being computationally far more
appealing. Moreover, a relevant addition in our model is the use of an entrenchment
relation to define a functional priority relation over the properties of the system and
to dictate both removal and reordering. Notice that functionality prioritisation and
its mapping to sub-characteristics (induced in our model by a relation between the
inference relation and the ordering) is proposed and implemented also in structured
methods for architectural evolvability in industrial setting, see e.g. Breivold et al.
(2008).

3.1 Ordered expansion

The process of designing a piece of software can be seen as moving from an empty
set of functionalities (the trivial system specification, i.e. one that implements no
operations) to one that includes some property specifications. This process is akin
to an expansion of the software model abstracted from the trivial implementation
Si = ∅ with respect to a new functionality φi . This is denoted by (Si)

+
φi
. In general, the

expansion operation is intended in the following as adding a new functionality that
has the least entrenchment with respect to the existing ones. This can be informally
justified by considering the new property as the weakest one, in view of the fact that
its effect on the system is still unknown. This general rule is obliterated only in the
case when the expansion formula validates a formula already in the base, in which
case the functional entrenchment requires to insert it directly before that in the order.
This means we need to compute such set in order to position our expansion formula.

Definition 1 (Ordered expansion) We first define

Ξ = Si ∩ Cn(φi)

where Cn(φi) = {ψ | φi |� ψ}. Our ordered expansion is denoted as

S′
m = (Si)

+
φi

:= (Si ∪ {φi },<′) where
<′=< ∪{(φk, φi), (φi , φ j) | φ j ∈ Ξ,φk ∈ Si\Ξ}

In Fig. 3 we provide an explicit algorithm (in pseudocode) to compute the result of
the safe ordered expansion operator.

Example 1

{p < q}+(q∨r) = (p < q < (q ∨ r)) (1)

Example 2

{p < (q ∨ r)}+q = (p < q < (q ∨ r)) (2)

Let us explain theExample 2 stepby step: given abasewith functionalities expressed
by formulas p andq∨r , where the latter is less entrenched than the former (e.g. because

123

S5728 Synthese (2021) 198 (Suppl 23):S5719–S5744

Fig. 3 Algorithm for ordered expansion

it depends from it), we wish to add a functionality expressed by formula q: then we
simply add it to our specification, but its positioning in the functional entrenchment
requires it comes between p and q ∨ r , because q � q ∨ r .

Software system creation has then a starting point Si � φi , for any φi . Any expan-
sion operation after the first one should preserve consistency in Si . Otherwise, each
expansion by φi needs to be accompanied by the implicit elimination of the contradic-
tory ¬φi from the list of feasible property descriptions according to Si . Hence, each
non-consistent expansion requires a minimal set of contraction operations.

3.2 Ordered safe contraction

Wenow consider contracting Si in view of a system functionality φi .We denote this by
(Si)

−
φi
. In general, the contraction operation is intended in the following as removing

the minimal number of functionalities that have the least entrenchment with respect
to the existing functionalities in order to remove the property φi at hand. This can be
informally justified by considering the contraction as removing the least entrenched
or essential properties. In order to define a procedure for this, we require to compute
both the set of properties that are implied by and that imply the contraction formula.
This does not amount to compute the entire consequence set of Si (i.e. Si), but rather
to perform a membership check for the contraction formula, to identify whether it
implies or is implied by one of the formulas in the base. Then we identify among
these the minimal ones in the entrenchment. The resulting operation is also expressive
about the properties that are safe with respect to the contraction and the output of our
procedure is still taken to be a (contracted) base.

Definition 2 (Ordered contraction) We first define

Ξ = Si ∩ (Cn(φi) ∪ Cn(φi))

where Cn(φi) = {ψ ∈ Si | φi |� ψ} and Cn(φi) = {ψ ∈ Si | ψ |� φi }. We then
have a sequence of subsets of Ξ , i.e., (Ξi)i≥0, inductively defined as follows:

Θ0 = Ξ

Ξi = {ψ | ψ is a minimal element of Θi wrt. <}
Θi+1 = Θi\Ξi

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5729

Fig. 4 Algorithm for ordered safe contraction

Note that as Ξ is finite, we have that there is some n such that Ξ = ⋃n
i=0 Ξi . We

then define

k0 = min

{

k | Si\
k⋃

i=0

Ξi �|� φi

}

and

(Si)
−
φi

:=
(

Si\
k0⋃

i=0

Ξi ,<
′
)

where <′=
(

<�
Si\⋃k0

i=0 Ξi

)

where � indicates a projection function.

This definition expresses the content of the new system as obtained by a function
from the current Si to a new base whose models do not imply φi . In Fig. 4 we provide
an explicit algorithm (in pseudocode) to compute the result of the safe contraction
operator.

Example 3

{p < q < r}−(q∨r) = {p} (3)

123

S5730 Synthese (2021) 198 (Suppl 23):S5719–S5744

Example 4

{p < (q ∨ r) < r}−r = {p} (4)

Example 5

{p < (q ∨ r) < r}−r∧p = {p < (q ∨ r)} (5)

Let us explain theExample 5 stepby step: given abasewith functionalities expressed
by formulas p, q∨r and r , in this functional entrenchment order, wewish to remove the
combination of functionalities p and r , i.e. their logical conjunction: in this case, we
are not required to remove both functionalities, but just one of them (as we do not wish
to eliminate both, but their combination); then we induce a contracted base with the
minimal removal required, hence preserving as much as possible the functionalities.
The result removes r , which is the least entrenched functionality.

Note that by our definition of ordered safe contraction the preference is always
to remove formulas that express less entrenched functionalities. This might appear
counter-intuitive, for example in the case where the less entrenched functionalities
is the result of a combination of several components, and therefore its loss might
potentially result more impactful than the removal of a more entrenched, but less
complex functionality. Note that if to express the case of composed functionalities
of a given degree we use logical conjunction, our ordered safe contraction will only
require the removal of a component, rather than of the whole set of functionalities.
The following is a variant of Example 5 which illustrates this case:

Example 6

{p < (q ∨ r) < (r ∧ s)}−r∧s∧p = {p < q < s} (6)

Note that the choice ofwhich component to preserve in this case is purely contextual
and it might be dictated by applications, as it might affect other functionalities: here
the choice of preserving s means we need to modify also q ∨ r . Different is the case
where a complex functionality is expressed by logical disjunction or implication:

Example 7

{p < (q ∨ r) < (r ∨ s)}−(r∨s)∧p = {p < q} (7)

Example 8

{p < (q ∨ r) < (r → s)}−(r→s)∧p = {p < (q ∨ r)} (8)

Here the contraction operation is costly because we are forced to loose the whole
complex functionality, and in the Example 7 even to weaken the additional function-
ality expressed by q ∨ r . It is only with the more complex operation of revision with
reordering introduced in the next subsection that this problem can be avoided.

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5731

From the definition of safe contraction and properties of the consequence relation
over the contraction formula, the following can be proven about Si (i.e. referring to
the closure of Si):

Lemma 1 [Alchourrón and Makinson (1985)] (Si ∩ Cn(¬φi)) ⊆ (Si)
−
φi
.

Proof Suppose φ j ∈ Si , ¬φi � φ j and φ j /∈ (Si)
−
φi
. Then (¬φi < φ j) and there is

some minimal Si\Ξi � φi . Take Si\Ξ j = Si\Ξi\{φ j } then Si\Ξi = Si\Ξ j ∪ {φ j }
and Si\Ξ j ∪ {φ j } � φi . Since by assumption ¬φi � φ j , then ¬φ j � φi and so
Si\Ξ j ∪ {¬φ j } � φi , but this contradicts the minimality of Ξi . ��

In the context ofSoftwareEngineering, a contractionoperation should aimat remov-
ing the least expressive properties to induce a minimal loss of functionalities. We
capture this formally by the functional entrenchment ordering < on properties, simi-
larly to what is done with epistemic entrenchment (Gärdenfors and Makinson 1988).
Hence, in a contraction process, one starts removing from the last element in the order
to preserve as much as possible the operational properties of the system. Among the
different (although in some ways related, see Alchourrón and Makinson 1986) con-
traction functions, safe contraction is a natural candidate for the contraction on a finite
set of property specifications under this ordering preserving system functionalities:

Definition 3 (Safe contraction) A property φ j is safe with respect to (Si)
−
φi
if and only

if φi � φ j .

AGM revision is usually characterized by Gärdenfors postulates. These are modified
as follows: the closure postulate is missing, provided the output of our procedure is
again constrained to be a base; and the recovery postulate is missing, as the result of
ordered contraction followed by ordered expansion does not necessarily returns the
original order of the base. The resulting postulates match those in Fuhrmann (1991):

1. Inclusion (Si)
−
φi

⊆ Si
2. Vacuity (φi /∈ Cn(Si)) → ((Si)

−
φi

= Si)

3. Success (φi /∈ Cn(∅)) → φi /∈ Cn((Si)
−
φi

)

4. Extensionality (φi ≡ φ j) → (Si)
−
φi

= (Si)
−
φ j

Proposition 1 Safe contraction satisfies (1)–(4).

Proof Similar to the one in Alchourrón and Makinson (1985), except for Success:

1. For Inclusion immediate from the definition of (Si)
−
φi

from Si and Ξ .
2. For Vacuity if φi /∈ Cn(Si), there is no Ξi such that Ξi � φi , hence every φ j ∈ Si

is safe in (Si)
−
φi
.

3. For Success Assume that (φi /∈ Cn(∅)) and (Si)
−
φi

� φi ; then there is

(Si\ ⋃k0
i=0 Ξi ,<

′) � φi and because Ξi is finite and < is non-circular, there
is a minimal element Ξi � φ j for which one of the following holds:

– φ j = φi : then because (Si\ ⋃k0
i=0 Ξi ,<

′) � φ j it must be safe in (S)−φi ; but by
construction φ j cannot be safe in (Si)

−
φi

because Ξi � φi and φ j = φi ;

123

S5732 Synthese (2021) 198 (Suppl 23):S5719–S5744

– φ j < φi : because (Si\⋃k0
i=0 Ξi ,<

′) � φ j it must be safe in (S)−φi , but by
Dominance φ j � φi and so φi should be safe in (Si)

−
φi
, but cannot be;

– φi < φ j : because (Si\⋃k0
i=0 Ξi ,<

′) � φ j it must be safe in (S)−φi , but by
Dominance φi � φ j , and because φi cannot be safe in (Si)

−
φi
, so is not φ j .

4. ForExtensionality ifCn(φi) ≡ Cn(φ j), then (Si\⋃k0
i=0 Ξi ,<

′) ≡ (Si\⋃k0
i=0 Ξ j ,

<′), hence (Si)
−
φi

= (Si)
−
φ j

��
Along the lines of the interpretation of < in terms of security and reliability in

Alchourrón and Makinson (1985), if the consequence relation � for Si is intended
to describe specification expressiveness, then the more it can be logically inferred
from a property, the more expressive that property is. In turn, our safe contraction
module < makes more expressive properties safer, removing first those with the least
inferential impact. This justifies ourDominance axiom;withTransitivity, the following
continuing conditions hold (Alchourrón and Makinson 1985):

Proposition 2 (Continuing down) If φi < φ j , and φk � φ j , then φi ≤ φk , for all
φi, j,k ∈ Si .

This is shown easily by Dominance and Transitivity. It means that if φi is more func-
tionally entrenched than φ j and φk induces φ j , then φi is also at least as functionally
entrenched as φk .

Proposition 3 (Continuing up) If φi � φ j , and φi < φk , then φ j ≤ φk , for all
φi, j,k ∈ Si .

Again shown by Dominance and Transitivity. This says that if a property φi induces
φ j and is also as functionally entrenched as φk , then φ j is also as functionally
entrenched as φk .

3.3 Revision with reordering

In the standard literature on belief revision, revision is understood as the operation
of adding new information to a knowledge base because of new information received
about the world. In the following we analyse a revision induced by a new formula
that requires to be prioritised over the existing ones. Intuitively, this is the case of a
new property that we want to maximally protect from any later contraction. We obtain
this by an operator that satisfies all properties of the AGM revision, and additionally
re-defines the partial order in the base.

Definition 4 (Revision with reordering)

(Si)
�
φi

= (((Si)
−
¬φi

)+φi ,<
′) where <′=< ∪{(φi , φ j) | φ j ∈ ((Si)

−
¬φi

)}.

Below we provide an explicit algorithm (in pseudocode) to compute the result of
the revision operator. As expected, we shall call the expansion and safe contraction
procedures defined in the previous algorithms.

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5733

1 PROCEDURE Revision(Si , <, φi)
2

3 S
′
i := (Safe Contraction(Si , <, ¬φi))

4 DO Expansion(S
′
i ,<, φi))

5

6 RETURN S′
i+1 = {(φi , φ j) | φi < φ j for each φ j ∈ S′

i }).
7

8 ENDPROCEDURE

This procedure defines an AGM revision operator ∗, in that it satisfies the Levi’s
identity, with the additional property that the revised base has acquired a new priority
relation <′. Note that while expansion only performs a reordering if the added func-
tionality implies some functionality present in the older base, by placing the former
before the latter, revision with reordering ensures this happens (because it is defined
in terms of expansion) but additionally prioritise the new functionality over any other
unrelated one. To see this, consider the following three examples, one for each possible
position of the contracted formula relatively to <:

Example 9

{p < q}�¬p = (({p < q}−p)+(¬p))
<′ = {¬p < q} (9)

Example 10

{p < q}�¬q = (({p < q}−q)+(¬q))
<′ = {¬q < p} (10)

Example 11

{p < q < r}�¬q = (({p < q < r}−q)+(¬q))
<′ = {¬q < p < r} (11)

Let us explain the Example 11 step by step: given a base with functionalities
expressed by formulas p, qr and r , in this functional entrenchment order, we wish to
perform ordered revision by ¬q. The following is the ordered series of changes:

{p < q < r}�¬q =
({p < q < r}−q = {p < r}
({p < r})+(¬q) = {p < r < ¬q}
({p < r < ¬q})<′ = {¬q < p < r}

In the first step, we remove q from the base, which is conflicting with the desired
new functionality; in the second step, we add the new desired functionality ¬q; in
the third step we reorder the base, bringing up the new functionality in the order over
any other functionality p, r which has survived the initial removal operation (and
preserving the order among them).

For the case illustrated above in Example 8 of a complex functionality expressed by
logical implication, the operation of revision with reordering gives us the possibility

123

S5734 Synthese (2021) 198 (Suppl 23):S5719–S5744

to remove a higher ordered functionality and to preserve a lower ordered but more
complex one:

Example 12

{p < (q ∨ r) < (r → s)}�¬((r→s)∧p) = {(r → s) < (q ∨ r)} (12)

Ordered revision also satisfies the following:

Proposition 4 (Harper’s identity)

(Si)
−
φi

= Si ∩ (Si)
�
¬φi

This equation identifies the contraction operation with the intersection of the orig-
inal base with the revised one. To show this, we refer to the result of the identities
above using their example number:

Example 13

(6) ∩ {p < q} = {q} = {p < q}−p (13)

Example 14

(7) ∩ {p < q} = {p} = {p < q}−q (14)

Example 15

(8) ∩ {p < q < r} = {p < r} = {p < q < r}−q (15)

An informal way to justify this is as follows: a minimal revision (Si ,<)∗¬φi
should

keep the difference between the revised base and the original base minimal, i.e. keep
as much as possible in common; hence, the contextual overlap among the two will
be as large as it can be while conforming with ¬φ; this makes the intersection (Si ,<
) ∩ (Si ,<)∗¬φi

a plausible candidate for a minimal contraction of Si on φi . In turn,
this confirms that our contraction is indeed a minimal change operator. As � can be
defined in terms of − and +, it preserves the Gärdenfords postulates.

4 Example

It has been recently shown that some implementations of the Mergesort algorithm are
broken, including the Timsort hybrid algorithm (de Gouw et al. 2015). We present
here briefly the specification evolution from the broken implementation to the fixed
specification, with remarks adapted to our analysis. The main loop of Timsort is
presented in Fig. 5.

Consider this system specification as our Sm , whose theory is Sm . This loop will
satisfy an instance with stackSize= 4, which we refer to as our formula φi . We

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5735

Fig. 5 Main loop of Timsort

Fig. 6 Java implementation of Timsort

now consider a Java implementation I of the above theory and the resulting system
Si , which will have a corresponding formulation of φi above, namely of the loop with
stackSize= 4: Si will hence include a disjunctive formula (to mimic the while
loop) where each element is an implication with the antecedent assigning a value size
to the stack and to the length of the run, and the consequent executing the merge:

φi = {(stackSize,runLen == 4 → mergeCollapse())∨
(stackSize,runLen == 3 → mergeCollapse())∨
(stackSize,runLen == 2 → mergeCollapse())∨

(stackSize,runLen = 1 → assert ts.stackSize == 1)}

The implementation is presented in Fig. 6. In this implementation, it is the case that
Si � φi after violation of the invariant ArrayIndexOutOfBoundsException
in pushRun, see de Gouw et al. (2015).

In order not to loose generality, one does not want to just removeφi . Hence onemust
individuate some φ j < φi and proceed to revise the model Si �→ S′

i . We first proceed

123

S5736 Synthese (2021) 198 (Suppl 23):S5719–S5744

Fig. 7 New Java implementation

by contraction S′
i = (Si)

−
φ j

and then formulate some φk and proceed by expansion

S′′
i = (S′

i)
+
φk
. Our φ j is now identified as the mergeAT(n) commands obtained by

the satisfied if clauses. This will match the mergeCollapse() commands on
lines 10 and 17 of the Timsort loop.

φ j = {((stackSize > 0 ∧ stackSize[n] − −2) →
(((runLen[n − 1] <= runLen[n] + runLen[n + 1])∧

(runLen[n − 1] < runLen[n + 1])) →
[n − 2] ∧ mergeAT(n)∨

(runLen[n] <= runLen[n + 1]) →
mergeAT(n)))}

We then proceed with formulating φk as OR clauses in the if else loops;

φk = {((¬((stackSize,runLen > 1) ∨ (runLen[n] <= runLen[n + 1]))∨
((runLen[n − 1] <= runLen[n] + runLen[n + 1]) ∧ mergeCollapse())∨

assert ts.stackSize == 1))}

finally, φ j is again added S′′′
i = (S′

i)
+
φ j
. The resulting new implementation is shown

in Fig. 7. Notice that with respect to φ j , a reordering in the functional entrenchment
is also taking place.

5 Model checking

In this section, we consider the complexity of the model checking and inference
problems for the change operations introduced in Sect. 3, along the line of Liberatore
and Schaerf (2001) and Eiter and Gottlob (1992). We will mainly focus on the revision
with reordering introduced in Sect. 3.3, as this is themost interesting one. Its definition
subsumes the safe contraction, while the expansion is trivial.

We first examine themodel checking problem. Recall that we are given a knowledge
base (Si ,<)where Si is given as a set of propositional formulas and< is the associated

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5737

order over Si , a model M which is given as a valuation, a formula φi which is to be
updated with respect to Si , the model checking problem determines whether M |�
(Si)�φi .
Proposition 5 The model checking problem is in co-NP.

Proof We first check whether M |� φi , which can be in done in polynomial time.
(As a matter of fact, it is in ALOGTIME, which is a uniform version of NC1, so
probably much lower than P.) If the answer is negative, we conclude that the model
is not supported by the revision. Otherwise we proceed to check whether M |�
Safe Contraction(Si ,¬φi). To this aim, we first compute Θ = {ψi ∈ Si | M |� ψi }.

Recall that for the safe contraction, we order the formulas in Si in the way such that

– Si = ⊎i
k=1 Sk , i.e., a disjoint union of Sk’s for k = 1, . . . , i , and

– for all 1 ≤ j ≤ k, S j is the set of minimal elements of Si\ ⋃
1≤k≤ j−1 Sk .

As a more succinct notation, we usually write S1 < S2 < · · · < Sm . The partition can
be obtained by standard topological sorting in polynomial time. Let

K = min

⎧
⎨

⎩
� |

⋃

�≤k≤m

Sk ⊆ Θ

⎫
⎬

⎭
.

If K = 1, then clearly M |� Safe Contraction(Si ,¬φi) and we are done. We then
assume that K > 1. In this case we claim that

M |� Safe Contraction(Si ,¬φi) iff
⋃

K−1≤k≤m

Sk |� ¬φi .

Tosee this, supposeM |� Safe Contraction(Si ,¬φi), i.e. Safe Contraction(Si ,¬φi) ⊆
Θ . Note that, according to the definition of K ,

⋃
K−1≤k≤m Sk � Θ . It follows that

Safe Contraction(Si ,¬φi) �

⋃

K−1≤k≤m

Sk,

and thus

Safe Contraction(Si ,¬φi) =
⋃

j≤k≤m

Sk for some j ≥ k.

According to the definition of safe contraction, we have that

⋃

K−1≤k≤m

Sk |� ¬φi .

For the other direction, suppose that
⋃

K−1≤k≤m Sk |� ¬φi .According to the definition
of K , it must be the case that

Safe Contraction(Si ,¬φi) ⊆
⋃

K≤k≤m

Sk ⊆ Θ

123

S5738 Synthese (2021) 198 (Suppl 23):S5719–S5744

Fig. 8 Model checking
algorithm

which implies that M |� Safe Contraction(Si ,¬φi). We observe that checking⋃
K−1≤k≤m Sk |� ¬φi amounts to checking the validity of the formula

∧

ξ∈⋃
K−1≤k≤m Sk

ξ �⇒ ¬φi ,

which can be done in co-NP. This gives a co-NP algorithm for checking M |�
Safe Contraction(Si ,¬φi). Overall, we have a co-NP algorithm for checking M |�
(S)�φi . This completes the proof. ��

Below we give an example to show that the order associated with the knowledge
base has to be considered during model checking, because with different orders the
results vary.

Example 1 (Order matters) Given Si = {p, q}, φi = ¬(p ∧ q) and M(p) =
1, M(q) = 0. Obviously M |� φi . If we have p < q, then the revision would be
{q, φi }. If p and q are unordered, then the revision would be {φi }. In the former case,
M �|� {q, φi } while in the latter case, M |� {φi }. ��

A decision algorithm for the model checking problem is presented in Fig. 8.
We now turn to the inference problem. Again we focus on the revision with reorder-

ing. Formally, we are given a knowledge base (Si ,<), two formulas φi and φ j where
φi is to be updated wrt Si , the inference problem determines whether (Si)�φ |� φ j .

Proposition 6 The complexity of satisfiability checking is in Σ
p
2 , i.e., NP

NP.

Proof As in the proof of Proposition 5, we first compute Θ = {ψi ∈ Si | M |� ψi }.
Recall that for the safe contraction, we order the formulas in Si in the way such that

– Si = ⊎i
k=1 Sk , i.e., a disjoint union of Sk’s for k = 1, . . . , i , and

– for all 1 ≤ j ≤ k, S j is the set of minimal elements of Si\ ⋃
1≤k≤ j−1 Sk .

We observe that (Si)�φi |� φ j iff there exists some d such that

(i)
⋃

d≤k≤m Sk ∪ {φi } |� φ j , and
(ii)

⋃
d≤k≤m Sk �|� ¬φi .

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5739

Fig. 9 Inference algorithm

The “only if” direction is trivial, as according to the definition of safe contraction,

Safe Contraction(Si ,¬φi) =
⋃

K−1≤k≤m

Sk

such that Safe Contraction(Si ,¬φi) �|� ¬φi and Safe Contraction(Si ,¬φi) ∪ {φi } |�
φ j .

For the “if” direction, assume such d exists, then it must be the case that

⋃

d≤k≤m

Sk ∪ {φi } ⊆ Safe Contraction(Si ,¬φi)

because of (ii), and we must have that

Safe Contraction(Si ,¬φi) ∪ {φi } |� φ j

because of (i). Now note that both (i) and (ii) can be checked in co-NP and NP
respectively, we can easily obtain an NPNP algorithm, which completes the proof. ��

A decision algorithm for the inference checking problem is presented in Fig. 9.

6 Remarks on resilience and evolvability

In the introduction we have suggested that the concept of reliability for software
systems can be defined in terms of notions of resilience and evolvability.

Resilience for a computational system reflects its (graded) ability to preserve a
working implementation under changed specifications. The above analysis of software
theory change allows us to provide a precise definition of resilience in the presence
of removal or failure of certain components. In the literature on software change, this
process corresponds to preservation of behavioural safety by specification approxi-
mation, see e.g. the taxonomy offered in Buckley et al. (2005). Various attempts have
been made to formalise perseverance of validity under change. The most common one
encountered in this research area is that of system robustness (Bloem et al. 2010a, b).
One (older) interpretation is given in terms of the inability of the system to distinguish

123

S5740 Synthese (2021) 198 (Suppl 23):S5719–S5744

between behaviours that are essentially the same, see Peled (1997). More recently, the
term resilience has been used to refer to the ability of a system to retain functional and
non-functional identity with the ability to perceive environmental changes; to under-
stand their implications and to plan and enact adjustments intended to improve the
system-environment fit (De Florio 2013).

Evolvability is the ability to successfully accommodate changes, the capacity to gen-
erate adaptive variability in tandem with continued persistence (Cook et al. 2005) and
more generally the system’s ability to survive changes in its environment, requirements
and implementation technologies (Ciraci and van den Broek 2006). The crucial need
to accommodate changes in requirements and corresponding intended functionalities
with the least possible cost while maintaining architectural integrity has been stressed
since Rowe et al. (1998). Our analysis of resilience and evolvability has focused on
functional entrenchment and the change in view of prioritised functionalities.

In view of the operation of ordered contraction, resilience of functionalities in a
software system can be defined by functional entrenchment via logical consequence:

Definition 5 (Property resilience) Consider property specifications φi , φ j ∈ Sm and
a relevant implementation Si . Then φi is resilient in (Si)

−
φ j

iff φ j � φi .

This holds immediately by Definition 3. Generalising, one can say that a software
system specification Si is resilientwith respect to a property specificationφi if the latter
is safe in any contracted subsystem that preservesminimal functionalities of Si . System
resilience as the resistance to change of property specifications (as in Definition 5) can
be essential to determine system antifragility (De Florio 2014). Software antifragility
has been characterized as self-healing (automatic run-time bug fixing) and adaptive
fault-tolerance (tested e.g. by fault-injection in production) (Monperrus 2017). An
inferential notion of resilience helps characterizing a certain degree of fault-tolerance;
the latter is considered strictly intertwined with self-healing properties: while not all
fault-tolerant systems are self-healing, one can argue that self-healing techniques are
ultimately dependable computing techniques (Koopman 2003). Our resilient core,
intended as the persistence of service delivery (Laprie 2008) in view of functionalities
contraction, allows to determine the adaptation required by changes in terms of valid
and invalid properties of its contractions and can anticipate results of its expansions. In
particular, given the non-resilient part of the system, it is possible to establish which
properties will still be instantiated in any subsystem. In this sense, resilience is a
function of dependability between functionalities, expressed as an inferential relation.

Proposition 7 (Accountability) For any φ j ∈ Ξi as per Definition 2 such that φ j is
minimal w.r.t φi < φ j , then (Si)

−
φi

� φ j . For any φ j ∈ Ξi as per Definition 2 such

that φ j is not minimal w.r.t φ j < φi , then (Si)
−
φi

� φ j .

This holds immediately byDefinition 2, Dominance andDefinition 3. Furthermore, we
have qualified our ordered revision operator as a function of evolvable software sys-
tems. In the context of prioritised functionalities, we have more precisely formulated
evolvability as the property of a software to be updated to fulfill a newly prioritised
set of functionalities. This allows to deal explicitly with one of the main problem of
architecture design (Breivold and Crnkovic 2010). The advantage of our analysis is

123

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5741

again based on the relation between the priority order and the inferential relation, as
expressed by the Dominance property. This can be useful to guarantee a prevision
property on formulas affected negatively by a revision operation:

Proposition 8 (Prevision) For any properties φi , φ j ∈ Si such φi < φ j , there is
always a S′

i = (Si)�φk such that φi becomes an element w.r.t. < exposed to a further
contraction.

This holds by Dominance and Definition 4. In other words, revision with reordering
(i.e. a novel prioritisation of evolvable sub-characteristics for a system) always implies
the possibility of building a systemwith a module including a previously safe property
which is no longer safe to future contractions.

In view of such prevision property, one can re-factor the impact of evolvability on
sub-characteristics, in order to know how much a novel prioritisation will make the
system exposed. To do so, it is sufficient to consider:

1. The cardinality of the consequence set of each property | Cn(φi) |;
2. An order on their sizes, denoted by ≺;
3. And a preference weighting on selected revisions, denoted by �.

Definition 6 (Preference on revision) Consider a system Si := {φi < φ j < φk <

· · · < φn}, such that φi � φ j and φ j � φk . Then (Si)�¬φ j
� (Si)�¬φk

iff | Cn(φ j) |≺|
Cn(φk) |.
In other words, if a reorder revision should be selected between two options which do
not have a logical relation, the impact of the removed properties in the system should
be taken into account in terms of the respective consequences on the models. Note
that preference on revision requires to move our analysis from the specification base
Si to the model Sm .

Software tools based on either theorem proving or model checking techniques can
implement this theory to several aims. In view of Property Resilience fromDefinition 5
and Proposition 7, it is possible to express direct and indirect dependency relations
between software packages in the presence of uninstall operations. A similar task is
performed proof-theoretically by a natural deduction calculus with an explicit notion
of trust in Primiero and Boender (2018). More importantly, it will be possible to
provide information as to the resulting state of the system after uninstall operation have
been performed, anticipating possible resulting unstable conditions and the eventual
impossibility of the system to perform critical operations. The utility of Proposition 8
in combination with Definition 6 is again in view of assessing the state of the system in
the presence of uninstall operations, by anticipating which functionalities may result
threatened and establishing removal options of minimal impact on the system among
possible ones. Although the present work does not aim at the development of any such
tool, we believe that a solid theoretical basis to this aim is a valuable contribution.

Different authors have quantified software maintenance between 40% and > 90%
of build costs, depending on the software project considered, project development
methodology used and best practices applied. A checklist used to explore the realism
and accuracy of maintenance requirements (see for example Hunt et al. 2008) should
include, among others, the following questions:

123

S5742 Synthese (2021) 198 (Suppl 23):S5719–S5744

1. Which parts of the system will be preserved and allow incremental maintenance?
2. Are healthy chunks of the original code being rewritten or changed?
3. Which pieces of software will need (non-incremental) maintenance?
4. Can you assess which (non-incremental) maintenance operations are the least

invasive on the current system?

We believe our formal model can be used to provide answers to such questions, and
thus be of further help to the constraints of software maintenance costs.

7 Conclusion

We have presented a theory of software change inspired by techniques used in belief
revision theory. We have highlighted how operators on contraction, expansion and
revision with reordering over a base with functional entrenchment allow to identify
resilience and evolvability properties for software systems. We have moreover iden-
tified the complexity of such operations and gave a real case scenario on a recent
example of a broken algorithm. Future research will focus on enhancements of this
model that can be of further interest to the software engineering community, e.g. by
operations of multiple contraction and selective revision. From the conceptual point of
view, the interest is in the modelling of anti-fragility properties for software systems
in the light of revision and update operations.

Acknowledgements Giuseppe Primiero is partially supported by the Project PROGRAMme ANR-17-
CE38-0003-01. He moreover wishes to thank Hykel Hosni for useful discussions held during the early
stages of this research. Franco Raimondi was supported by a Visiting Professorship grant from Diparti-
mento di Matematica e Fisica, Università degli studi della Campania “Luigi Vanvitelli”, Caserta, Italy.
Taolue Chen is partially supported by UK EPSRC Grant (EP/P00430X/1), Birkbeck BEI School Project
(ARTEFACT), NSFC Grant (No. 61662035), and Guangdong Science and Technology Department Grant
(No. 2018B010107004).

References

Abrial, J.-R. (2005). The B-book: Assigning programs to meanings. Cambridge: Cambridge University
Press.

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.

Alchourrón, C. E., & Makinson, D. (1985). On the logic of theory change: Safe contraction. Studia Logica,
44(4), 405–422.

Alchourrón, C. E., & Makinson, D. (1986). Maps between some different kinds of contraction function:
The finite case. Studia Logica, 45(2), 187–198.

Alechina, N., Jago, M., & Logan, B. (2005). Resource-bounded belief revision and contraction. InDeclara-
tive Agent Languages and Technologies III, Third International Workshop (pp. 141–154), DALT 2005,
Utrecht, The Netherlands, July 25, 2005, Selected and Revised Papers.

Alechina, N., Liu, F., & Logan, B. (2015). Efficient minimal preference change. Journal of Logic and
Computation, 28, 1715–1733. https://doi.org/10.1093/logcom/exv027.

Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T. A., & Jobstmann, B. (2010a). Robustness in the
presence of liveness. In T. Touili, B. Cook, & P. Jackson (Eds.), Computer aided verification (Vol.
6174, pp. 410–424), Lecture notes in computer science. Berlin: Springer.

Bloem, R., Greimel, K., Henzinger, T. A., & Jobstmann, B. (2010b). Synthesizing robust systems. Acta
Informatica, 51(3–4), 193–220.

123

https://doi.org/10.1093/logcom/exv027

Synthese (2021) 198 (Suppl 23):S5719–S5744 S5743

Booth, R. (2001). A negotiation-style framework for non-prioritised revision. In Proceedings of the 8th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK2001) (pp. 137–150), Siena,
Italy, July 8–10, 2001.

Breivold, H. P., &Crnkovic, I. (2010). An extended quantitative analysis approach for architecting evolvable
software systems. InComputing Professionals ConferenceWorkshop on Industrial Software Evolution
and Maintenance Processes (WISEMP-10), IEEE.

Breivold, H. P, Crnkovic, I., Land, R.,&Larsson,M. (2008). Analyzing software evolvability of an industrial
automation control system: A case study. In ICSEA 2008 (pp. 205–213).

Buccafurri, F., Eiter, T., Gottlob, G., & Leone, N. (1999). Enhancing model checking in verification by AI
techniques. Artificial Intelligence, 112(1–2), 57–104.

Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. (2005). Towards a taxonomy of software
change. Journal of Software Maintenance and Evolution: Research and Practice, 17(5), 309–332.

Ciraci, S., & van den Broek, P. (2006). Evolvability as a quality attribute of software architectures. In
International ERCIM Workshop on Software Evolution 2006 (pp. 29–31), 6–7 April 2006, Universite
des Sciences et Technologies de Lille, France.

Cook, S., Harrison, R., &Wernick, P. (2005). A simulation model of self-organising evolvability in software
systems. InProceedings of the 2005 IEEE InternationalWorkshop on Software Evolvability (Software-
Evolvability’05), IEEE Computer Society.

Dam, H. K., & Ghose, A. (2014). Towards rational and minimal change propagation in model evolution.
CoRR. arXiv:1402.6046).

De Florio, V. (2013). On the constituent attributes of software and organisational resilience. Interdisciplinary
Science Reviews, 38(2), 122–148. Maney Publishing.

De Florio, V. (2014). Antifragility = elasticity + resilience + machine learning models and algorithms for
open system fidelity. Procedia Computer Science, 32, 834–841. Elsevier.

de Gouw, S., Rot, J., de Boer, F. S., Bubel, R., & Hähnle, R. (2015). OpenJDK’s java.utils.Collection.sort()
is broken: The good, the bad and the worst case? In D. Kroening & C. Pasareanu (Eds.), Computer
aided verification (Vol. 9206, pp. 273–289), CAV 2015. Lecture notes in computer science. Cham:
Springer.

Delgrande, J., Peppas, P., &Woltran, S. (2013a). AGM-style belief revision of logic programs under answer
set semantics. Logic Programming and Nonmonotonic Reasoning, 8148(2013), 264–276. LNCS.

Delgrande, J., Schaub, T., Tompits, H., &Woltran, S. (2013b). A model-theoretic approach to belief change
in answer set programming. ACM Transactions on Computational Logic, 14(2), 264–276.

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001). Does code decay? Assessing the
evidence from change management data. IEEE Transactions on Software Engineering, 27(1), 1–12.

Eiter, T., & Gottlob, G. (1992). On the complexity of propositional knowledge base revision, updates, and
counterfactuals. Artificial Intelligence, 57(2–3), 227–270.

Ernst, N. A., Mylopoulos, J., & Wang, Y. (2009). Requirements evolution and what (research) to do about
it. In K. Lyytinen et al. (Eds.), Design requirements workshop (Vol. 14, pp. 186–214), LNBIP.

Fellows, L. (1998). A case for priority classifying requirements. In Eighth Annual International Symposium
on Systems Engineering.

Firesmith, D. (2004). Prioritizing requirements. Journal of Object Technology, 3(8), 35–47.
Floridi, L., Fresco, N., & Primiero, G. (2014). On malfunctioning software. Synthese, 192(4), 1199–1220.

https://doi.org/10.1007/s11229-014-0610-3.
Fuhrmann, A. (1991). Theory contraction through base contraction. Journal of Philosophical Logic, 20(2),

175–203.
Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In

Second Conference on Theoretical Aspects of Reasoning about Knowledge (pp. 83–95).
Guerra, P. T., & Wassermann, R. (2010). Revision of CTL models. In A. Kuri-Morales & G. R. Simari

(Eds.), Advances in artificial intelligence? (Vol. 6433), IBERAMIA 2010. Lecture notes in computer
science. Berlin: Springer.

Hunt, B., Turner, B., & McRitchie, K. (2008). Software maintenance implications on cost and schedule.
In 2008 IEEE Aerospace Conference (pp. 1–6), Big Sky, MT. https://doi.org/10.1109/AERO.2008.
4526688.

Kolyang, S. T., & Wolff, B. (1996). A structure preserving encoding of Z in Isabelle/HOL. In G. Goos, J.
Hartmanis, J. van Leeuwen, J. vonWright, J. Grundy, & J. Harrison (Eds.), Theorem proving in higher
order logics (Vol. 1125), TPHOLs 1996. Lecture notes in computer science. Berlin: Springer.

123

http://arxiv.org/abs/1402.6046
https://doi.org/10.1007/s11229-014-0610-3
https://doi.org/10.1109/AERO.2008.4526688
https://doi.org/10.1109/AERO.2008.4526688

S5744 Synthese (2021) 198 (Suppl 23):S5719–S5744

Koopman, P. (2003). Elements of the self-healing system problem space. In Workshop on Architect-
ing Dependable Systems/WADS03, May 2003. http://users.ece.cmu.edu/~koopman/roses/wads03/
wads03.pdf. Accessed May 2019.

Laprie, J.-C. (2008). From dependability to resilience. In Proceedings of IEEE International Conference
on Dependable Systems and Networks (Vol. Supplemental, pp. G8–G9).

Lehman, M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the IEEE, 68(9),
101–103.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997). Metrics and laws of soft-
ware evolution—The nineties view. In Proceedings of 4th International Software Metrics Symposium
(METRICS ’97) (pp. 20–32). https://doi.org/10.1109/METRIC.1997.63715.

Liberatore, P., & Schaerf, M. (2001). Belief revision and update: Complexity of model checking. Journal
of Computer and System Sciences, 62(1), 43–72.

Lientz, B., & Swanson, B. (1980). Software maintenance management. Boston: Addison-Wesley.
Lindvall, M., Tesoriero, R., & Costa, P. (2002). Avoiding architectural degeneration: An evaluation process

for software architecture. In Proceedings of the 8th IEEE Symposium on SoftwareMetrics (pp. 77–86).
Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M. (2005). Challenges

in software evolution. In Proceedings of the 2005 Eighth International Workshop on Principles of
Software Evolution.

Monperrus,M. (2017). Principles of antifragile software. In J. B. Sartor, T. D’Hondt &W.DeMeuter (Eds.),
Companion to the First International Conference on the Art, Science and Engineering of Programming
(Programming ’17). ACM,NewYork,NY,USA,Article 32, 4 pages. https://doi.org/10.1145/3079368.
3079412.

Mu, K.-D., Liu, W., Jin, Z., Hong, J., & Bell, D. (2011). Managing software requirements changes based
on negotiation-style revision. Journal of Computer Science and Technology, 26(5), 890–907.

Peled, D. (1997). Verification for robust specification. In E. Gunter & A. Felty (Eds.), Theorem proving in
higher order logics (Vol. 1275, pp. 231–241), Lecture notes in computer science. Berlin: Springer.

Port, D., & Liguo, H. (2003). Strategic architectural flexibility. In Proceedings of the International Confer-
ence on Software Maintenance (pp. 389–396).

Primiero, G., & Boender, J. (2018). Negative trust for conflict resolution in software management. Web
Intelligence, 16(4), 251–271.

Rowe, D., Leaney, J., & Lowe, D. (1998). Defining systems evolvability—A taxonomy of change. In
International Conference and Workshop: Engineering of Computer-Based Systems (page 45+). Maale
Hachamisha, Israel, IEEE Computer Society.

Sommerville, I. (2004). Software engineering (7th ed.). Boston: Addison-Wesley.
Sousa, T. C., & Wassermann, R. (2007). Handling inconsistencies in CTL model-checking using belief

revision. In Proceedings of the Brazilian Symposium on Formal Methods.
Spivey, J. M., & Abrial, J. R. (1992). The Z notation. Hemel Hempstead: Prentice Hall.
Williams, B. J., & Carver, J. C. (2010). Characterizing software architecture changes: A systematic review.

Information and Software Technology, 52, 31–51.
Zave, P., & Jackson, M. (1997). Four dark corners of requirements engineering. ACM Transactions on

Software Engineering and Methodology (TOSEM), 6(1), 1–30.
Zhang, Y., &Ding, Y. (2008). CTLmodel update for systemmodifications. Journal of Artificial Intelligence

Research, 31(1), 113–155.
Zowghi, D., Ghose, A., & Peppas, P. (1996). A framework for reasoning about requirements evolution.

PRICAI’96: Topics in artificial intelligence (Vol. 1114, pp. 157–168), Lecture notes in computer
science. Berlin: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://users.ece.cmu.edu/~koopman/roses/wads03/wads03.pdf
http://users.ece.cmu.edu/~koopman/roses/wads03/wads03.pdf
https://doi.org/10.1109/METRIC.1997.63715
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412

	A theory of change for prioritised resilient and evolvable software systems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Change operations
	3.1 Ordered expansion
	3.2 Ordered safe contraction
	3.3 Revision with reordering

	4 Example
	5 Model checking
	6 Remarks on resilience and evolvability
	7 Conclusion
	Acknowledgements
	References

