
Vol.:(0123456789)

Synthese (2021) 198:2743–2763
https://doi.org/10.1007/s11229-019-02243-4

1 3

Computational enactivism under the free energy principle

Tomasz Korbak1,2 

Received: 3 November 2018 / Accepted: 7 May 2019 / Published online: 16 May 2019 
© The Author(s) 2019

Abstract
In this paper, I argue that enactivism and computationalism—two seemingly incom-
patible research traditions in modern cognitive science—can be fruitfully reconciled 
under the framework of the free energy principle (FEP). FEP holds that cognitive 
systems encode generative models of their niches and cognition can be understood 
in terms of minimizing the free energy of these models. There are two philosophi-
cal interpretations of this picture. A computationalist will argue that as FEP claims 
that Bayesian inference underpins both perception and action, it entails a concept of 
cognition as a computational process. An enactivist, on the other hand, will point 
out that FEP explains cognitive systems as constantly self-organizing to non-equi-
librium steady-state. My claim is that these two interpretations are both true at the 
same time and that they enlighten each other.

Keywords  Active inference · Autopoiesis · Computational theory of mind · 
Enactivism · Predictive processing · Self-organization

1  Introduction

In this paper, I argue that enactivism and computationalism—two seemingly incom-
patible research traditions in modern cognitive science—can be fruitfully recon-
ciled under the framework of the free energy principle (FEP). According to FEP, 
cognitive systems encode generative models of their niches and cognition can be 
explained in terms of minimizing free energy (i.e., the prediction error of these gen-
erative models).

My argument is as follows. According to FEP, cognition boils down to free energy 
minimization. According to computationalism, cognition boils down to informa-
tion processing. According to enactivism, cognition boils down to self-organization 
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under a functional boundary.1 Free energy minimization arguably entails Bayesian 
inference which is supposed to be a computational process. Therefore, FEP entails 
computationalism. On the other hand, those very computational processes postu-
lated by FEP give rise to self-organization under a functional boundary. Therefore, 
FEP is a computational enactive theory of mind.

The rest of the paper is structured as follows. In Sect.  2, I introduce FEP and 
sketch out its two relatively non-controversial interpretations: a biological interpre-
tation (free energy minimization entails being a living system) and a Bayesian one 
(free energy minimization is a solution to the problem of acting in an uncertain envi-
ronment). In Sect. 3 I go on to argue that autopoiesis is a special case of FEP, and 
that FEP fares better than autopoiesis as a conceptual framework for modern enac-
tivism. In Sect.  4 I argue that FEP entails computationalism because free energy 
minimization is a computational process and I address two possible objections to 
this computational interpretation. I conclude by arguing that computational enact-
vism—the view that emerges from my arguments—improves the prospects of both 
computational and enactive approaches to life and cognition.

2 � Mind and life according to the free energy principle

Active inference is a modeling framework in computational neuroscience built upon 
the assumption that cognitive systems encode a hierarchical generative model of the 
world and act to minimize their prediction errors. This assumption is known as the 
free energy principle (henceforth FEP). This approach has received substantial inter-
est in the neuroscience, cognitive science and philosophical communities due to its 
theoretical appeal, explanatory ambitions and philosophical implications. FEP is 
theoretically appealing because it is general enough to integrate (absorb as its spe-
cial case) several well-grounded approaches to cognition and behavior, namely the 
Bayesian brain hypothesis, maximum entropy principle, utility theory and predic-
tive processing (Friston et al. 2015a, b). A number of cognitive, neurophysiological, 
clinical and behavioral phenomena can be accounted for in terms of active inference, 
ranging from EEG rhythms and saccadic eye movement to the emergence of false 
beliefs in schizophrenia (Friston et al. 2017). Finally, active inference puts forth a 
radical new image of perception, learning, and action deeply embodied in biologi-
cal autonomy and intricately coupled while self-organizing around prediction errors 
(Clark 2016).

2.1 � A biological interpretation of FEP

There is also a more general reading of FEP—as the claim that minimizing free 
energy entails being alive. Formally speaking, FEP pertains any random dynamical 

1  Enactivism is not a monolithic camp yet appeal to the concept of self-organization seems to be the uni-
fying trait of most prominent varieties, i.e., sensorimotor, autopoietic (both classical and contemporary) 
and radical enactivism.
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system S with state space partitioned into four types of states (or property instances), 
i.e., internal, external, sensory and action states, in such a way that external and 
internal states influence each other only though action and sensory states. These are 
relatively non-controversial assumptions about the causal structure of any physical 
system. FEP can be then unpacked as the claim that if S manifests certain dynamics 
(adaptivity), it will necessarily satisfy a non-trivial information–theoretic descrip-
tion, which is satisfied by free energy minimization.

More specifically, for a living system to avoid phase transitions and maintain a 
non-equilibrium steady-state, the system must behave adaptively, i.e., preserve its 
physical integrity by maintaining its characteristic variables (determined by the phe-
notype) within bounds. This bound can be cast in terms of placing an upper bound 
on information–theoretic entropy of the distribution over sensory states of the sys-
tem. Entropy (or, the expected or average surprise) is minimized by minimizing 
the free energy. Therefore, free energy minimization is sufficient for adaptivity and 
life can be understood in terms of FEP. (For a similar argument, see (Colombo and 
Wright 2018).)

What is of philosophical interest in this argument is the transition from a biologi-
cal to a physical (thermodynamic) description, and then from physical to informa-
tion–theoretic descriptions. Essentially, we arrive at a cybernetic account of life as a 
self-regulating process (Seth 2015).

2.2 � A Bayesian interpretation of FEP

Apart from this transcendental deduction, there is also a more concrete mathemati-
cal reason to posit free energy minimization. Let us assume that a cognitive sys-
tem encodes a generative model of its environment and continues to update it to 
match sensory evidence. This, however, poses an intractable inference problem 
and demands some approximation technique to be employed. One way around is 
a machine learning framework of variational inference, which reduces a Bayes-
ian inference problem to an optimization problem to be solved by minimizing free 
energy with respect to some parameters defining a proxy distribution approximating 
our desired posterior (Bishop 2006). Mathematically, the free energy to be mini-
mized is a functional (i.e., a higher-order function) of sensory states and internal 
states F(action, internal) and can be shown to impose an upper bound on surprise, 
i.e., the negative log probability of a sensory input given the generative model. Writ-
ten semi-formally, the free energy minimization is minimized with respect to action 
and internal states:

where the free energy can be decomposed as

I restrain myself from providing a more detailed derivation of these equations 
and interpretation of their building blocks; remaining on an intuitive level of 

action, internal = arg min F(action, internal),

F(action, internal) = model complexity − accuracy ≥ surprise.



2746	 Synthese (2021) 198:2743–2763

1 3

understanding is sufficient for our purposes.2 What is crucial here is that FEP can be 
seen as an algorithmic solution to a particular inference problem every living system 
faces: perceiving and acting in an uncertain environment.

This more concrete, Bayesian perspective on FEP can be argued to follow from a 
more general biological perspective: the inference problem to be solved is posed by 
the fact that living systems are adaptive and resist environmental fluctuations. Nev-
ertheless, the fact that there are two readings of FEP is philosophically revealing; 
later I will argue that this is indeed a major strength of FEP.

2.3 � Terminological issues

FEP should be distinguished from active inference itself, predictive coding and pre-
dictive processing. FEP is a normative principle asserting that living systems engage 
in active inference, i.e., free energy minimization, over time. As such, it does not 
generate quantitative predictions or commit itself to a concrete description of how 
free energy minimization is implemented. Predictive coding, on the other hand, is 
a computational model of mammalian visual perception that does commit to some 
architectural constraints, namely functional asymmetry of information flow in the 
visual cortex (with one path transmitting predictions down the hierarchy and the 
other returning precision-weighted prediction errors). A generalization of this model 
into a research program in neuroscience (applicable to auditory perception, inter-
oception, motor control, mental imagery as well as agency and consciousness) is 
known as predictive processing.

While predictive coding/processing and FEP are tightly interrelated, there are 
subtle differences between them. FEP is a principle, while predictive coding is a 
process theory (or a mechanism sketch) that conforms to the free energy principle. 
FEP posits an upper bound on the entropy of the probability distribution over sen-
sory states, while predictive coding achieves this by minimizing precision weighted 
prediction error—where precision weighted prediction error can be regarded as vari-
ational free energy, under some simplifying assumptions. FEP itself is transparent 
about the architecture of computation underlying free energy minimization.

An attempt at going beyond FEP was also recently made by Ramstead et  al. 
(2018), who augment FEP with evolutionary considerations to form a more power-
ful research framework known as variational neuroethology (VNE).

2.4 � The scope of the argument

The arguments mounted in this paper only assume FEP to be true, yet remain 
compatible with the body of work known as predictive processing (PP), and gain 
strength when backed up with PP. Importantly, I am not trying to defend FEP as 

2  For a derivation of these equations, an outline of the mathematical framework under which FEP is for-
mulated and its relations to models of hierarchical message passing in the brain, consult (Buckley et al. 
2017).
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a valid account of life and mind or as a prolific modeling framework in neurosci-
ence; neither do I engage in disputes over the breadth of its explanatory scope (Sims 
2016). What I argue is that even if a claim as weak as FEP is true, some non-trivial 
philosophical conclusions could still be drawn regarding enactive and computational 
approaches to mind and life.

Though FEP has received significant philosophical attention, the views on the 
concept of mind to which it is committed are still evolving. (Hohwy 2013) famously 
argued that it entails a broadly cognitivist account of mind, committing to environ-
mental seclusion over mind extension and intellectualism over the primacy of action. 
Other authors, however, pursue a different reading, emphasizing parallels between 
the circular causality induced by FEP and the concept of self-organization at the 
heart of embodied, enactive approaches in cognitive science. This line of thinking 
about FEP was furthered by Bruineberg and Rietveld (2014), Kirchhoff (2016) and 
Kirchhoff and Robertson (2018), who argue for a radical, non-representational and 
non-computational interpretation of FEP.

A few authors have also argued for the middle ground between cognitivist and 
enactive accounts of FEP. This approach was pioneered by Allen and Friston (2018) 
and later developed by Ramstead et  al. (2018, 2019) and Allen (2018) under the 
name of Bayesian enactivism or enactivism 2.0. While Bayesian enactivists over-
come the skepticism of classical enactivism about information–theoretic accounts 
of mind and try to formalize the concept of enactment in terms of active inference, 
they either remain silent about the computational character of active inference itself 
(as Allen and Ramstead et  al.) or join Kirchoff et  al. in rejecting computational-
ism. The computational enactivism defended in this paper differs in acknowledging 
and emphasizing active inference being a computational process (as opposed to only 
being describable as computing), while at the same time entailing a fully-fledged 
enactive theory of mind.3

3 � FEP and enactivism

3.1 � FEP subsumes autopoiesis

Modern enactive cognitive scientists and philosophers try to tell the story of how 
the mind works in terms of autonomy, sense-making, emergence and embodiment 
and experience rather than information processing, representations and mecha-
nisms (Thompson and Stapleton 2009). A number of authors have pointed out 
similarities between FEP and various flavors of enactive approaches in cognitive 
science, such as autopoietic enactivism (Kirchhoff 2016), sensorimotor theory 

3  One notable attempt at marrying enactivism and computationalism with equal rights was made by Vil-
lalobos and Dewhurst (2018), who argue that a computational system can be autonomous. Assuming a 
more or less classical concept of autopoietic system (as opposed to active inference) as a model of enact-
ment leads to a slightly weaker claim that the view defended here.
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(Seth 2015), ecological psychology (Bruineberg and Rietveld 2014) and the 
extended mind (Clark 2016).

Let us, however, start from the beginning. Historically, enactivism originated 
from a simple conceptual model of what it takes to be alive: autopoiesis (Matu-
rana and Varela 1980). Being a minimal model of a living creature, an autopoietic 
system is an organized system characterized by two properties:

(a)	 It continuously realizes the networks of processes that maintain its existence,
(b)	 It has a concrete spatial boundary (specified by the topological domain of its 

realization as a network).

Arguments that FEP subsumes autopoiesis have been put forth by Allen and Fris-
ton (2018) and Kirchhoff (2016). As for (a), the network of processes constitut-
ing an autopoietic system is usually understood as a particular of topology of the 
flow of matter and/or energy throughout the system, i.e., each process is main-
tained by some other process, or more specifically, the system is self-sufficient 
in the restricted sense that all processes which function to support the system are 
parts of the system. This property is sometimes known as operational closure and 
corresponds to what some others call closure to efficient cause (Rosen 1991) or 
autocatalysis (Kauffman 1993). An active inference agent, described as a directed 
graphical model (i.e., in terms of distributions over internal, external, action and 
sensory states, and dependency relations between them), manifests basically the 
same recursive inter-dependencies.

The same is true for (b): the agent is relatively isolated from its environment 
in the sense that the influence the distribution over external states has on the dis-
tribution over internal states is mediated through sensory and action states. For-
mally, given action and sensory states, internal states are independent of external 
states. This property is known as a Markov blanket (Pearl 2000). The idea that a 
(selectively open) boundary of a cognitive system is to be described as its Markov 
blanket has recently gained popularity among philosophers and neuroscientists 
(Clark 2017; Kirchhoff et al. 2018).

A few words of caution, though: while Varela and Maturana originally defined 
autopoiesis as a first-order property of a dynamical system, the FEP claim is proba-
bilistic, formulated in terms of higher-order statistics of a system. What FEP asserts 
is that for an ensemble of infinitely many copies of a system and empirical distri-
bution over states of these copies, such-and-such information–theoretic relations 
between distributions over internal, external, action and sensory states hold. For 
instance, while originally (b) is a statement about concrete spatial boundary (usu-
ally interpreted as a cell membrane), when recast in terms of FEP, the boundary 
is to be understood in terms of conditional independencies between random vari-
ables with such-and-such distributions. On one hand, this means that the concept of 
Markov blanket is much more general than that of spatial boundary and is applicable 
to a wider class of random dynamical systems. On the other hand, this means that 
whether FEP is satisfied by a given natural phenomenon depends on how we parti-
tion it into states and what distributions over these states we observe or assume.
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Interestingly enough, FEP does not only recast the notion of autopoiesis in terms 
of Bayesian networks. It also tells how to derive constraints (a) and (b) from a more 
general one: that the organism believes (in the Bayesian sense of the term) in its 
own survival, or alternatively, believes certain states are more likely to be occupied 
than others. This prior belief can be seen to be determined by the embodiment of a 
system and is encoded in the body itself, as for a living system with certain bodily 
constraints some external states are more viable than others. (Here, viability is cast 
as sensory surprisal, i.e., the negative log probability of appropriate sensory states). 
Therefore, if the organism believes it should occupy a certain subset of states, it 
will engage in active inference to minimize its surprisal with unexpected states (i.e., 
induce circular interdependencies in (a)). While self-evidencing this belief in its sur-
vival, the organism will try to maintain its statistical integrity against environmental 
fluctuations, equivalent to maintaining a Markov blanket in (b).

3.2 � FEP enhances autopoiesis

Modern enactivists very well recognize the need to go beyond mere autopoiesis. To 
avoid the risk of mounting easy-to-address straw-man arguments, let us borrow a 
large quotation from Froese and Stewart (2010), avowed enactivists themselves, as 
they point out shortcomings of the original autopoietic model (dubbed “MV-A”):

(i) Constructive requirements: MV-A is too static and abstract to distinguish 
the living from the non-living (e.g., Sheets-Johnstone 2000; Fleischaker 1988); 
it is lacking all consideration of material and energetic conditions for self-
organization, emergence, and individuation (e.g., Collier 2004, 2008; Bickhard 
2008), as well as being generally silent on the implications and requirements of 
self-production under far-from-equilibrium conditions (e.g., Ruiz-Mirazo and 
Moreno 2004; Moreno and Etxeberria 2005; Christensen and Hooker 2000).
(ii) Interactive requirements: MV-A is too isolated; it thus ignores possible 
incorporation of environment (e.g., Virgo et al. 2011) and dependence on other 
living systems (e.g., Ruiz-Mirazo et al. 2004; Hoffmeyer 1998); it also lacks 
consideration of functional interaction cycles (e.g., Arnellos et  al. 2010; Di 
Paolo 2009; Barandiaran and Moreno 2008; Moreno and Etxeberria 2005).
(iii) Normative requirements: MV-A cannot account for normative activity 
such as adaptivity and goal-directed action (e.g., Barandiaran et al. 2009; Di 
Paolo 2005; Barandiaran and Moreno 2008; Bickhard 2009), as well as senso-
rimotor action and cognition (e.g., Barandiaran and Moreno 2006; Bourgine 
and Stewart 2004; Christensen and Hooker 2000).
(iv) Historical requirements: MV-A is lacking a capacity for memory, learning, 
and development (e.g., Hoffmeyer 2000), as well as for genetic material (e.g., 
Hoffmeyer 1998; Emmeche 1997; Brier 1995), and is thus unsuitable for open-
ended evolution (e.g., Ruiz-Mirazo et al. 2004).
(v) Phenomenological requirements: MV-A is insufficient for grounding a 
lived perspective of concern (e.g., Di Paolo 2005), desire (e.g., Barbaras 
2002), and thus of lived experience more generally. (pp. 9–10)
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Objections (i) and (ii) express a well-known worry, that in its pursuit for self-
sufficiency autopoiesis abstracts too much from the environment in terms of the 
resources it provides and threats it brings. What needs to be acknowledged is that 
living systems must be energetically, materially and informationally open systems, 
actively exploring their environments. The concept of a (selectively open) Markov 
blanket seems to be better suited to capture this trade-off between operational clo-
sure and being a world-involving system.

One other problem for autopoiesis is the difficulty of accounting for the fine 
structure of living systems as complex adaptive systems composed of multiple func-
tionally differentiated subsystems. Autopoiesis, taking a single cell to be a paradig-
matic model of life, does not straightforwardly scale up to multi-cellular organisms 
and multi-organism ecosystems. On the other hand, an ensemble of Markov blankets 
engaged in active inference can be shown to engage in collective active inference 
(so that no Markov blanket surprises another) and induce a higher-level Markov 
blanket around them. In principle, cellular morphogenesis can thus be accounted 
for in terms of FEP (Friston et al. 2015) and by applying this idea recursively we 
can model the emergence of hierarchical adaptive systems. The concept of nested 
Markov blankets is in line with recent work in evolutionary systems theory (e.g., 
Ramstead et al. 2018) and extended cognition (e.g., Clark 2017).

As for objection (iii), contrary to autopoiesis, FEP is essentially a normative the-
ory of what an organism should do to maintain its integrity in a changing environ-
ment (the answer is, obviously, that it should act to minimize its free energy). Intrin-
sic (organism-level) value can be easily accommodated in this framework in terms 
of generative models (or, probability distribution over sensory states). This approach 
is reasonably standard in utility theory or reinforcement learning, and by expressing 
the utility function as a prior belief, every control-theoretic problem can be formu-
lated in terms of Bayesian inference (Botvinick and Toussaint 2012). Selecting opti-
mal behavior, then, is equivalent to computing a posterior. The notion of value can 
be thus explicated simply as log evidence (or, negative surprise) and the notion of 
goal-oriented behavior serves as evidence for an embodied generative model. (For 
an extended argument, consult Friston, Adams and Montague (2012).)

Objection (iv) is even simpler to address: the optimization of internal states via 
gradient descent on variational free energy is simply equivalent to learning or, on a 
longer time-scale, to development or evolution.

Finally, FEP seems to have conceptual resources to at least pose the problem (v) 
of consciousness and phenomenal aspects of experience in terms of generative mod-
eling. Consciousness arises as the agent engages in inferences involving future or 
possible consequences of the immediate action and can be framed in terms of the 
depth of the generative model of the agent. This straightforwardly entails that living 
systems will vary in temporal thickness or counter-factual depth of their generative 
models, i.e., how (self-)conscious they are. For instance, a sleeping person and a 
bacterium have temporally thin models, as they are capable of only reflexive behav-
iors (Friston 2018). Furthermore, the notion of phenomenal aspects of experience 
can be understood in terms of counter-factual inference (Seth 2015).

Note that while addressing each of these issues we restricted ourselves to a 
broadly understood active inference framework. A framework is not supposed to 
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entail specific answers to empirical questions; it is supposed to provide resources 
for concrete computational models to answer empirical questions. What I argue is 
that active inference does a better job here than the original autopoiesis and is better 
suited for grounding an enactivist account of mind.

4 � FEP and computationalism

4.1 � Free energy minimization as a computational process

In this section, I will argue that FEP entails computationalism, i.e., the claim that 
cognition is a computational process. For the sake of our argument, I assume a 
mechanistic account of computation and computational explanation.4 According 
to this account, to compute is to be an organized, functional mechanism that acts 
on information vehicles according to some model of computation independent of 
the mechanism’s description (Miłkowski 2013, 2016a). The mechanistic account 
of computation embraces transparent computationalism (Chrisley 2000), i.e., does 
not assume a canonical mathematical model for describing the computation or a 
canonical medium. Analog computers, digital computers, as well as exotic comput-
ing systems composed of molecular machines or colliding particles are all classes 
of computational mechanisms. Moreover, it does not presuppose semantic proper-
ties of a computational mechanism; such constraints do not follow from models of 
computation used in computability theory and therefore should not be imposed by 
a scientifically informed account. Specifically, representation is not necessary for 
computation.

The mechanistic account of computation is informed by and closely related to 
modern accounts of computational explanation in cognitive and life sciences. It 
requires that a mechanistic model of computation, apart from an abstract specifica-
tion of a computation, must be complemented with an instantiation blueprint of the 
mechanism at all relevant levels of organization (Miłkowski 2013). As mentioned 
before, FEP itself does not provide a mechanistic computational explanation of cog-
nition but can inform concrete computational models as a functional principle. It 
can also entail that every living system is a computational process while abstracting 
away from its computational architecture. As I will argue, this entailment is valid.

Recall that FEP interpreted in a Bayesian manner mandates an upper bound on 
the entropy of sensory states; all that is required is to minimize free energy with 
respect to action and internal states. Therefore, active inference is just a statisti-
cal inference process and FEP is a high-level algorithm for a particular statistical 
inference procedure. Since statistical inference is an instance of computation, free 
energy minimization must be a computational process. Now, according to FEP, cog-
nition boils down to free energy minimization, and according to computationalism, 

4  The argument should also work under the assumption of a semantic account of computation (e.g., Sha-
grir 2018). I focus on the mechanistic account, because it is dominant in the philosophy of cognitive 
science.
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cognition boils down to information processing. If free energy minimization is a 
computational process, then FEP entails computationalism.

Let us provide some additional evidence that even embodied statistical inference 
in the wild, as in the case of active inference, still counts as computation. To do that, 
let us unpack the equations governing active inference into a piece of pseudocode 
describing a particular, naive implementation:

initialize world, internal_states, action_states, hidden_states, sensory_states 

while (true): 

 action = sample(action_states) 

 predictions = sample(generative_model(internal_states)) 

 sensory_input = world.act_upon(action) 

 surprise = compute_surprise(sensory_input, predictions) 

 free_energy = compute_free_energy(surprise, internal_states, 

action_states, hidden_states, sensory_states) 

 internal_states, action_states = minimize(free_energy, internal_states, 

action_states)

where the actual free energy minimization is delegated to a routine:

function minimize(free_energy, internal_states, action_states): 

 initialize learning_rate 

 d_internal_states = compute_derivative(free_energy, internal_states) 

 d_action_states = compute_derivative(free_energy, action_states) 

 internal_states -= learning_rate * d_internal_states 

 action_states -= learning_rate * d_action_states 

 return internal_states, action_states 

Algorithmically, active inference can be decomposed into four steps. First, we 
sample action states (take an action) and/or sample the generative model encoded 
by internal states (i.e., infer the state of the world). Second, we evaluate the cur-
rent free energy with respect to current sensory, action and internal states.5 Then, 
we compute the gradient of action and internal states with respect to free energy. 
The gradient computed tells us in which direction to adapt in order to be less 
surprised by a given sensory input in the future. Finally, we update action and 
internal states using the computed gradient.

The algorithm depicted above is more or less how actual computational mod-
els of active inference are implemented (e.g., Baltieri and Buckley 2017). The 
particular steps should not be taken too seriously, however; there is no biological 

5  Strictly speaking, one does not need to evaluate free energy in order to minimize free energy. A more 
efficient implementation would just compute the gradients of free energy (with respect to internal and 
action states) and indeed most of the message passing involved in vanilla perception does not actually 
evaluate free energy—only its gradients. The pseudocode above is meant for illustration only. I am grate-
ful to the anonymous reviewer for pointing this out.
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equivalent of a single CPU or of RAM in a biological system. On the contrary, we 
should allow an arbitrary degree of redundancy and concurrency in hypothesized 
biological implementations of active inference. Biologically realistic active infer-
ence is no turn-taking game: the computation underlying action and perception 
is inextricably coupled. Furthermore, each cell of an organism can be seen as 
executing the algorithm on its own, engaging in inference of its own milieu when 
playing its role in a metabolic network; the computations composing the behavior 
of a whole organism are executed asynchronously at various temporal and spatial 
scales. Yet despite these exotic implementation details, the computations still sat-
isfy a familiar description and could, in principle, be performed by hand on paper.

To be more concrete, let us consider how this computation could be imple-
mented in a plant. Following Calvo and Friston (2017) I will analyze salt-avoid-
ance in pea roots. High concentrations of salt in the soil disrupts the metabolic 
processes of peas, so pea roots grow in the direction of minimal salt concentra-
tion. Under the framework of FEP, this preference means that salt is surprising 
according to the generative model of sensory states encoded by the plant’s inter-
nal states, i.e., there is a phenotypic strong prior for saltless soil. This prediction 
determines the action to be taken (the direction of root growth) and subsequent 
stimuli (concentration of salt in a new region); the stimuli are compared against 
the generative model. The model is then updated relative to its prediction errors.

Growing roots in a particular direction is equivalent to proactively sampling 
sensory states that are expected to be predictable (i.e., adaptive). As Calvo and 
Friston remark,

If the reader finds plant examples along these lines a hard pill to swallow, 
just think of animal vision, where saccades bring about the sampling of sen-
sory states. In the same way that evidence can be gathered by visual saccad-
ing to make predictions about visual input (…), a full-fledged active-infer-
ential theory of root nutation states that nutations constitute the sampling of 
sensory states, and that by taking in different parts of the soil structure roots 
may gather evidence for predictions (…). Nothing other is called for. (p. 4)

While there is no known mechanism of how generative models and the flow of pre-
diction error is implemented in a non-neural medium, plants seem to have sufficient 
physiological machinery to implement the message passing needed for active infer-
ence. Electrical events can propagate along the vascular system in the membranes 
of non-neural plant cells. One important difference is that plants did not evolve a 
central nervous system; we could hypothesize the computation to be heavily dis-
tributed across the body of a plant and beyond, involving the rich ecosystem the 
plant is embedded in. Importantly, apart from electric events, information process-
ing can be delegated to physical movements subject to spatial constraints, as in the 
case of vines climbing up a host tree for photosynthetic purposes. Using Friston and 
Calvo’s own phrase, plants can “compute with their bodies in the service of adap-
tive flexible behaviour” (p. 6). Thus, active inference can be largely implemented 
by offloading the computations to primary and secondary growth (as in the case of 
sampling the generative model and action states) and metabolism (as in the case of 
generative model optimization). We can expect active inference to be implanted by a 
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truly heteromorphous computational architecture, simultaneously computing its pos-
teriors by electric, chemical and mechanical means.

The following two conditions are usually deemed necessary for a physical process 
to count as computation: producing usable outputs and producing them reliably. The 
plant example teaches that these conditions are met in the case of free energy mini-
mization. Both partial (the gradients) and final (parameters of the generative model) 
results of sampling the environment are clearly usable for (by definition) minimizing 
the free energy and therefore (by the biological interpretation of FEP) contributing 
to the adaptivity of a system. Similarly, under the biological interpretation of FEP, 
reliability of the process is equivalent to the adaptivity of the organism, which is 
self-evident (should the organism remain maladaptive, it would cease to exist).

A mechanist computationalist imposes an additional set of constraints for a physi-
cal process to be computational: the computation must be bottomed out by a com-
plete causal description of what happens underneath the computational level of 
description. Obviously, there is no mechanism description satisfiable by all cognitive 
processes. FEP, as a functional principle, provides a rough blueprint of mechanism 
involved in free energy minimization to be specified by concrete models of concrete 
phenomena. It imposes, however, some modest constraints on possible mechanism, 
most clearly seen in the graphical model formulation of an active inference agent: 
there must be a Markov blanket, spanned over sensory and action states, that medi-
ates causal interactions between internal and external states. A formal approach 
for brigading this constraint with more informative mechanism descriptions is the 
Hierarchically Mechanistic Mind framework, which boils down to recursively nest-
ing the aforementioned causal network at different spatiotemporal scales (Ramstead 
et al. 2018).

Some disagree with the outlined interpretation of active inference as a compu-
tational process. There are three broad strategies of arguing against the computa-
tional interpretation. First, one can deny that all the necessary conditions for a pro-
cess to be computational are satisfied by all active inference agents. Secondly, one 
can mount a reductio ad absurdum objection, by pointing out that, according to our 
conditions, (almost) all physical systems are computers. Finally, some maintain that 
the computational description of active inference, while technically true, is superflu-
ous and distracting. I will review both of these strategies in the three subsequent 
subsections.

4.2 � The ontological objection against the computational interpretation of FEP

According to the ontological objection, the computational interpretation of FEP 
is simply false, because at least some instances of free energy minimization fail to 
satisfy a property supposedly necessary for a computational process, namely pos-
sessing semantic content. This worry was recently non-directly voiced by Kirch-
hoff and Froese (2017) who defend mind–life continuity, which leads them—pre-
maturely—to reject computationalism on the grounds that computation requires 
semantic content which is not available for basic minds. Obviously, this reasoning 
can be inverted to argue that, assuming mind–life continuity, the computational 
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interpretation of FEP is troublesome because FEP could only apply to minds 
capable of dealing with semantic content.

Let us further unpack this argument:

(1)	 A physical process must have semantic properties to count as computational,
(2)	 Basic minds are contentless,
(3)	 For FEP to be an enactive account of mind and life, it must satisfy the mind–life 

continuity thesis,
(4)	 For FEP to satisfy the mind–life continuity thesis, it must pertain basic minds 

as well as higher-order cognition,
(5)	 Therefore, were active inference necessarily computational, basic minds would 

not engage in active inference, and FEP would not be a true enactive theory of 
life and mind.

The controversial premises here are (1) and (2). Assuming a mechanistic account 
of computation, it is not clear whether semantic properties are really necessary for 
a process to count as computational. Unlike proponents of the semantic account, 
mechanist computationalists individuate computational states non-semantically, 
based on their role in a mechanism rather than supposed content. One may argue, 
however, that requiring usable output of a computation and correctness condi-
tions (i.e., allowing for miscomputation) entails some crude of satisfaction condi-
tions for the computation results. I will remain agnostic on this matter, since it 
turns out that modest content-involving computationalism can still defend itself 
against the ontological objection. This is because premise (2) is false.

Premise (2) assumes the existence of the so-called Hard Problem of Content 
(Hutto and Myin 2012), the problem of giving a non-circular naturalist account 
of how content emerges in early cognition. The hard problem of content is pur-
portedly hopeless and makes a case for antirepresentationalism in cognitive sci-
ence; according to its proponents, all naturalist theories of content fail to explain 
how it emerges in simple cognitive systems unless scaffolded on social learning. 
This argument, however, is highly questionable, as there are a few good theories 
of how complex regulatory systems give rise to semantic information (Korbak 
2015). Basically, the process can be formally understood as a sender–receiver 
game, and the content of a message (semantic information) is determined by how 
the message (information vehicle) affects the distribution over actions taken by 
the receiver (Skyrms 2010).

Notice the Bayesian flavor of this account: the content is understood in terms 
of (a transformation of) the probability distribution over actions the receiver may 
take. Assuming the graphical model formulation of active inference, the content 
of a given sensory stimulus S is determined by the gradient of action and internal 
states in an update step with respect to surprise S brings about. Since content 
depends on previous priors of a generative model (receiver-specificity) and influ-
ences future actions (action guidance), it basically fits the standard teleosemantic 
account (Millikan 2005).
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One additional worry one may have is whether the scope of active inference isn’t 
broader that the class of systems manifesting the outlined sender–receiver dynamics. 
I will proceed to address this problem in the next section.

4.3 � The pancomputationalism objection

As the class of system engaged in active inference is relatively broad, one related 
worry arises. There are physical systems that can be argued to be active inference 
agents, but probably are not living systems, e.g., societies or hurricanes. If that is 
so, doesn’t it entail a weak form of pancomputationalism (the claim that every self-
regulating system is a computer) and thus render computationalism (almost) trivial?

Along these lines, Kirchhoff et al. (2018) formulated a distinction between ‘mere 
active inference’ and ‘adaptive active inference’. A system engages in mere adaptive 
inference when it adaptively responds to its environment, maintaining high mutual 
information (as in the case of two coupled pendulums). A system engages in adap-
tive active inference when it possesses a

generative model with temporal depth, which, in turn, implies that it can 
sample among different options and select the option that has the greatest 
(expected) evidence or least (expected) free energy. The options sampled from 
are intuitively probabilistic and future oriented. Hence, living systems are 
able to ‘free’ themselves from their proximal conditions by making inferences 
about probabilistic future states and acting so as to minimize the expected sur-
prise. (Kirchhoff et al. 2018, p. 7)

While adaptive active inference can be thought to be coextensive with being a living 
system, mere active inference pertains a much broader class of systems. That’s why 
coupled pendulums do not compute each other’s position. First, we probably would 
not ascribe a functional description to parts of a system of pendulums engaging in 
mere active inference. Since such a system (by definition) is not adaptive, i.e., it does 
not support second-order, future-oriented regulation; we cannot define the function 
of any element as contributing to the autonomy of a system. To be fair, we should 
probably restrict our claim to assert only that all adaptive active inference agents are 
computers. It feels like an insignificant correction, though: as far as systems of inter-
est for cognitive science and life sciences are concerned (or, after reaching of certain 
minimal level of complexity of a system under scrutinization), the claim that FEP 
entails computationalism remains true.

4.4 � The epistemological objection against the computational interpretation 
of FEP

Another argument against the computational interpretation of FEP, voiced most 
prominently by (Bruineberg et al. 2016), targets the epistemological claim: that the 
theory-laden language of statistical modelling and Bayesian inference brings a value 
to FEP. Bruineberg et al. argue that the exact constraints that FEP imposes on cog-
nitive systems can be equivalently formulated in much simpler language, purely in 
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terms of (stochastic) differential equations, without any appeal to Bayesian inference 
whatsoever.

This deflationary approach is nicely illustrated by the example of Huygens’ 
clocks. In his influential Horoloqium Oscilatorium, Huygens famously observed that 
two oscillating clocks hanging on a suspension beam will synchronize through tiny 
movements of the beam from which they are suspended. This phenomenon is known 
as generalized synchrony. But should we ascribe “an inferential interpretation of 
the coupling of the two clocks, in which one clock ‘infers’ the state of the other 
clock hidden behind the veil of the connecting beam” (Bruineberg et al. 2016)? And 
if the computational interpretation of FEP is true, should we consider the system 
a computer? According to Bruineberg et  al., the Bayesian and (by extension) the 
computational accounts are unnecessary and distracting. The story of free energy 
minimization is better told in terms of coupled dynamics of an agent-environment 
dynamical system resolving around an unstable equilibrium (or, a dynamic attrac-
tor). It is, according to the dynamical interpretation, a story of an agent trying to 
keep its essential variables within certain bounds by adjusting to environmental 
dynamics and modulating the environmental dynamics.

There are reasons, however, why the computational interpretation of active infer-
ence is warranted and enlightening. The example of Huygens’ clocks is slightly 
misleading here, being too simple to call for a richer vocabulary to describe it; it 
engages in mere active inference as opposed to adaptive active inference. But it 
seems that when a certain threshold of complexity is exceeded, the tools of dynami-
cal systems theory provide less and less insight, and a model builder could use some 
additional constraints to guide their effort. In the case of more complex systems, the 
computational interpretation is not exactly equivalent to the dynamical one, because 
it imposes those constraints. For the purposes of our argument, four types of addi-
tional constraints can be distinguished: (1) normative constraints, (2) complexity 
constraints, (3) energetic constraints and (4) mechanistic constraints.

The (1) normative constraints arise from the fact that the graphical model formu-
lation of active inference agent as Markov blankets and the free energy objectives 
were derived using the laws of probability calculus. While the variational inference 
formulation of the problem of inferring hidden causes is largely about reframing 
it as an optimization problem, there are a number of arbitrary decisions a modeler 
must make on her own, even after employing the active inference framework; for 
instance, how to sample from the generative models and what assumptions about 
its parameterization to make (i.e., assuming mean-field or Laplace approximations). 
Bayesian statistics offers principled guidance on making these decisions. Further, 
once we admit it is (also) an inference problem we are solving, the assumption of 
Bayesian rationality of the agent gives rise to a richer, normative level of descrip-
tion (Oaksford and Chater 2007). This is especially useful when modeling patho-
logical behavior as violations of Bayesian rationality. A great deal of recent work in 
the field of computational psychiatry accounts for psychiatric diseases in terms of 
suboptimal inference (Huys et al. 2016). Usually, this reduces to some suboptimal 
priors over the precision of sensory evidence or prior beliefs.

Computational complexity constraints (2) emerge because, unlike coupled high-
dimensional dynamical systems (which usually requires qualitative analysis of 
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numerical simulations rather than analytic treatment to yield any insights), formal 
models of computation are relatively well-understood mathematically. Specifically, 
it is usually straightforward to determine a computational complexity class of an 
algorithm and computational complexity imposes concrete empirical constraints on 
what living systems compute. Tractability (i.e., being computable in a reasonable, 
usually polynomial, time) is a powerful constraint of this type (van Rooij 2008), 
especially in the context of Bayesian modelling (van Rooij et  al. 2018). The very 
reason for employing the variational formulation of FEP is the intractability of exact 
inference. Moreover, since minimizing the model complexity term (present in cer-
tain formulations of the free energy) entails reducing the computational costs, this 
constraint is implicitly present in FEP.

In a similar vein, every computation comes with a concrete energetic cost. While 
general energetic bounds of computation (such as Landauer’s limit) are probably too 
loose to be empirically interesting for a neuroscientist, there is a significant amount 
of work in physics on the thermodynamic correlates of computations and inferences, 
which may be empirically relevant in the context of origin of life studies (Bennett 
1982; Still et al. 2012). Again, assuming Landauer’s principle the penalty for meta-
bolic costs is inherent in FEP, therefore minimizing the free energy automatically 
produces the most computationally and energetically efficient scheme (for minimiz-
ing the free energy).6

Finally, the algorithm describes a certain (linear, recurrent, or concurrent) struc-
ture of computation that can be mapped onto the causal structure of an implementa-
tion. While FEP, even when interpreted computationally, is indeed quite implemen-
tation-agnostic, the dynamical interpretation does not do any better. At least when 
coupled with predictive processing, FEP entails the existence of two distinct, func-
tionally asymmetric streams of information flow and a hierarchy of message-passing 
mechanisms. The dynamical account of FEP and radical predictive processing, on 
the other hand, do not provide a single sketch of a mechanism.

One may object that constraints (1)–(4), while useful in cognitive science, are 
still better interpreted as model-building heuristics rather than real patterns. Defend-
ing such an antirealist stance seems troublesome: the simplest explanation of why 
these model building constraints hold is that there are corresponding ontological 
constraints in the world. Just as I assert that active inference agents are computers 
(as opposed to just being describable as computing), I assert their computations give 
rise to norms, have certain complexity and energetic costs and are implemented by 
a concrete mechanism (as opposed to just being describable as if they gave rise to 
norms etc.).

Finally, one may point out that constraints (1)–(4) can, in principle, be included in 
a dynamical system model, while dropping the appeal to computation. For instance, 
we can always add a new state variable tracking energetic expenses or modeling 

6  This is at the heart of mathematical formulations of universal computation. Clear examples here 
include Solomonoff induction (Solomonoff 1964), based upon the minimization of Kolmogorov com-
plexity. Indeed, some formulations of variational free energy minimization appeal explicitly to algorith-
mic complexity and the same sort of mathematics that underlies universal computation.
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an action-state value function. Even side-stepping the fact that we arrive at these 
constraints by computational considerations, it would be a Pyrrhic victory. There is 
hardly any value in distancing from complementary approaches rather than includ-
ing them. It is indeed a major power of FEP (and predictive processing) that it is 
able to integrate multiple perspectives on life and cognition and weave models by 
convolving varied constraints.7

5 � Conclusions

I argued that FEP is an account of mind and life that both a computationalist and 
an enactivist could agree upon. This is because the computationalist commitment 
to explaining cognition in terms of information processing is satisfied by the notion 
of Bayesian inference underlying action, learning and perception, and because the 
enactivist commitment to explaining cognition in terms of self-organization under 
a functional boundary is satisfied by the notion of self-evidencing under a Markov 
blanket. A hard-core enactivist might still object that the two approaches are fun-
damentally at odds with each other, for instance by maintaining that the claim that 
cognition is not computational is part of the enactivist agenda. That would certainly 
be a valid argument, but one an explanatory naturalist should not make. It is quite 
a loss to reject the rich Bayesian picture (including all the connections to machine 
learning, information theory, psychiatry and statistical physics) just because it does 
not fit a narrowly understood enactivist agenda.

But our claim is stronger than just asserting that enactivism and computational-
ism are both true under FEP. It is not just that the truth of enactivism and computa-
tionalism happens to coincide, assuming FEP. The computations postulated by FEP 
are there because of the enactivist imperative of self-organization, and, epistemo-
logically, FEP owes its enactivist implications to computations it postulates. Since—
as I argued—FEP does a better job as a conceptual model of self-organization than 
autopoiesis does, solving some of enactivism’s problems, it is the computational 
perspective that provides much-needed insights for enactivist accounts of mind 
and life. On the other hand, the enactive perspective—as argued elsewhere (Clark 
2016)—imposes ecological constraints on the computations and points our attention 
to the variety of forms information processing in living systems may take. Thus, 
computational enactivism is stronger than either computationalism or enactivism on 
their own.
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