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Abstract
If one is interested in reasoning counterfactually within a physical theory, one cannot
adequately use the standard possible world semantics. As developed by Lewis and
others, this semantics depends on entertaining possible worlds with miracles, worlds
in which laws of nature, as described by physical theory, are violated. Van Fraassen
suggested instead to use the models of a theory as worlds, but gave up on determining
the needed comparative similarity relation for the semantics objectively. I present
a third way, in which this similarity relation is determined from properties of the
models contextually relevant to the truth of the counterfactual under evaluation. After
illustrating thiswith a simple example from thermodynamics, I draw some implications
for future work, including a renewed possibility for a viable deflationary account of
laws of nature.

Keywords Counterfactual conditionals · Similarity · Relevance · Models · Laws of
nature

1 Introduction: the importance of counterfactual reasoning

Reasoning with physical theories is replete with modal and, especially, counterfactal
conditionals and inferences therewith. For example, Newtonian gravitation seems to
warrant the claim that “if two bodies have different masses, and if they were brought
near a third body in turn, they would exhibit different acceleration” (van Fraassen
1980, p. 60). Competent users of the theory endorse this conditional even if no masses
were so brought. Moreover, they also ground claims for intervention and control:
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Suppose the actual length of the pendulum on my grandfather clock is L. The
model permits us to calculate the period, T. It also permits us to calculate a
slightly greater period T’ corresponding to a slightly greater length L’. Suppose
the clock is running slightly fast. I claim that turning the adjusting screw one
turn counterclockwise would increase the length of the pendulum to L’, and this
would increase the period to T’, so that the clock would run slightly slower.
(Giere 1999, p. 96)

Although the example is simple, it exemplifies a pattern of reasoning that underlies
most, if not all, successful applications of classical physics to applied problems and
engineering tasks.

Such reasoning extends to modern physics as well, illuminating, for example, the
role that the global phase of a quantum state plays in how (non-relativistic) quantum
theory specifies its observables:

If in one possible world, an isolated system is in state ψ and in another it is in
state [−ψ], no amount of empirical information actually available can tell the
observer which of these two worlds he is in. But …if the system had interacted
with another one in such and such a way, the results would have been different
in the two cases. (van Fraassen 1980, p. 62)

According to the standard von Neumann-Dirac formulation of quantum theory, one
represents a measurement on a system with a binary (“yes”/“no”) outcome as a pro-
jection operator P on the quantum state space, so that the probability of a positive
outcome is given by |Pψ |2—this is the so-called Born rule. Different global phases
(such the factor of+1 or−1 described above) yield the same probability. But they also
yield different patterns of constructive and destructive interference when the system
interacts with another, or even with itself! Indeed, this latter case is the basis of the
famously astounding double-slit inference experiments. Thus for both classical and
modern physical theories, counterfactual claims underlie the observable, not merely
observed, predictions of the theory.

Philosophers of science, meanwhile, have often taken patterns of counterfactual
reasoning using a scientific theory as central to a proper understanding of how scientific
theories explain (Woodward 2017), leading possibly through the definition of natural
laws (Carroll 2016) and causation (Menzies 2017) to the application of induction and
the confirmation of theories (Goodman 1983, Ch. 3) and definition of determinism
(Earman 1986). The standard semantics for counterfactuals, known as variably strict
conditionals, can be given in terms of a comparative similarity relation among possible
worlds, and was developed (in various essentially equivalent versions) by Stalnaker
(1968), Lewis (1973, 1981), and Kratzer (1981), But these semantics pose, however,
at least two interconnected problems for their application to physical phenomena.

First, there is the issue of the scope of the worlds themselves. Although there is
debate about how to understand the nature of possible worlds (Menzel 2017), the real
problem here is that, whatever their nature, metaphysically possible worlds generally
outstrip those nomically allowed by a physical theory. If there are possibilia incom-
patible with those that a physical theory of interest permits, yet those possibilia are
the ones used to provide a semantics for counterfactual reasoning using the theory, in
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what sense is one really using the theory for reasoning? How does the theory constrain
that reasoning at all?

In the same works quoted above, van Fraassen and Giere proposed a solution strat-
egy to this problem: replace the use of possible worlds in the semantics with models
of the theory being used. For instance, van Fraassen (1980, p. 199) advises that “If
language use is guided by an accepted scientific theory, then we must look to that
theory in order to construct models of the language in use,” enjoining us to try to
“characterize (fragments of) scientific language by means of the concepts of formal
semantics but in such a way that the model structures derive in an obvious way from
the models of scientific theories.” For example, “if I say that it is impossible to observe
a muon directly, or to melt gold at room temperature, this is because no counterpart
to such events can be found in any model of the science I accept” (van Fraassen 1980,
p. 218). Put another way, the original goal of the semantics for counterfactuals was to
model their meaning in natural language, which may not be sufficiently regimented
in comparison with scientific reasoning that uses them. By restricting attention to this
more limited goal—i.e., implicitly prefacing reasoning with, “According to physical
theory T ,”—one can properly solve this first problem.1

Modal and counterfactual reasoning using these models then warrants conclusions
about theworld in virtue of themodels’ successful representational features. This is one
of the basic features of representational modeling, to facilitate surrogative reasoning.
Indeed, van Fraassen (1989, p. 214) writes that “reference or denotation is gained
indirectly because certain parts of the model may correspond to elements of reality.
The exploration of modal discourse may then draw largely on structure in the models,
which outstrips their representation of reality.” For him, successful representation
is a matter of isomorphism between the empirical (sub-)structure of a theory and
appearances (van Fraassen 1980, p. 64), while Giere (1999, p. 95) states that “here
‘successful representation’ does not imply an exact fit, but at most a fit within the limits
of what can be detected using existing experimental techniques.” Now, van Fraassen
and Giere disagree about whether such reasoning warrants evidence in the reality
of the possibilia (beyond their observable features) that a class of scientific models
represents, but for present purposes, one can hold the realism debate in abeyance.

There is still a second problem that the standard semantics for counterfactual rea-
soning faces, one concerning the comparative similarity relation. Formally, this is a
three-place relation j ≤i k among worlds i, j, k that are accessible from i , interpreted
as “ j is at least as similar to world i as world k.” One requires that it satisfy the
following properties:2

Quasi-Reflexive For all j , if there is some k such that either j ≤i k or k ≤i j ,
then j ≤i j .
Transitive For all j, k, l, if j ≤i k and k ≤i l, then j ≤i l.

1 This prefacing also allows one to separate the question of counterfactual reasoning within a theory from
the question of its acceptance, and what that entails, contrary to what the above quotation from van Fraassen
suggests. Moreover, it is neutral between the indicative and subjunctive readings because the semantics I
propose is independent of the empirical (or metaphysical) adequacy of the theories whose models are
employed. See also my discussion of Boyle in Sect. 6.
2 Here I use requirements equivalent to those of Lewis (1981); previously, Lewis (1973) has required ≤i
to be a total preorder on all worlds.
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Quasi-reflexivity requires that any world deemed comparatively similar to another
is always at least as similar as itself is to that other. Transitivity just requires that
comparative similarity orders its elements in the expected way.

These formal properties are not nearly stringent enough to determine a unique com-
parative similarity relation, which is needed to evaluate the truth of counterfactuals.
So how is one to determine this? Lewis (1986a, pp. 47–48) famously suggested the
following ranked desiderata:

1. It is of first importance to avoid big, widespread, diverse violations of law.
2. It is of second importance to maximize the spatio-temporal region throughout

which perfect match of particular fact prevails.
3. It is of third importance to avoid even small, localized simple violations of law.
4. It is of little or no importance to secure approximate similarity of particular fact,

even in matters that concern us greatly.

These desiderata have at least four undesirable features for present purposes. First,
they are unhelpfully vague. Perhaps this vagueness is appropriate for a semantics con-
cerned with reasoning in natural language, but one wonders whether one can achieve
something more precise with regimented scientific reasoning, if only because it is a
narrowed and more regimented domain of discourse. Second, the desiderata depend
on an account of natural law—Lewis has in mind his own “systems” account—but
debates about laws abound (Carroll 2016). A sophisticated and scientifically sensitive
account of natural law may be apt here, but consensus on what this could be seems
distant. Third, even provided such an account, the ranking depends on the counte-
nance of possible worlds containing “miracles”—violations of scientific law—which
recapitulates the first problem for the application of the standard semantics. Stated in
the present terms, this was the seeming incompatibility of reasoning within a scien-
tific theory while countenancing states of affairs that the theory forbids. If one solves
this by restricting attention to models of the theory under consideration as proposed,
however, the first and third desiderata are moot. Fourth, the second desideratum refer-
ences spatio-temporal regions, but not all physical theories have models that represent
spatio-temporal features—for example, models of thermodynamic systems at equilib-
rium.

This is where the present essay aims to contribute. Instead of trying to amend these
problematic features, I abandon Lewis’s suggestion for a new way of determining a
comparative similarity relation on a set of models representing a physical theory. In
particular, I propose in Sects. 4 and 5 to encode the similarity of models through the
similarity of their contextually relevant properties, which provides a structured model
of the logic VWU (or VCU, as described there). In particular, I give an account of
contextual relevance for a given counterfactual and how the properties (through the
formal device of semi-pseudometrics) so relevant determine the comparative similarity
of models. This overcomes the problems with Lewis’s account while making essen-
tially no substantive assumptions about scientific realism or the metaphysics of laws
of nature. Indeed, no assumptions about the existence of laws is needed.3 This shows

3 Noassumptions about themetaphysical possibility of the states of affairs represented by the counterfactual
antecedent are needed, either. Such a counterfactual will not be vacuous if its antecedent is true in some
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that, contrary to widespread belief, an account of physical law is not indispensable for
counterfactual reasoning in physics.

Part of what makes this possible is an important difference in goals from those
mentioned working on natural laws: instead of formally reconstructing the grounds
for or “saving the phenomena” of intuitive judgments of the truth of counterfactual
statements in physics and the validity of patterns of reasoning using them, I aim to
reform and make precise those informal judgments more systematically.4 The goal is
to facilitate precise counterfactual reasoning with theories for which our intuitions are
indefinite or muddled, rather than show how we could have the intuitive judgments
that we do. In other words, it is Carnapian explication rather than non-transformative
conceptual analysis.

To further motivate my account, I consider and criticize beforehand (in Sect. 2)
a different proposal to understand counterfactuals in science as simpler strict condi-
tionals (Muller 2005) before introducing the variably strict ones (in Sect. 3).5 Then,
to illustrate, I compare my account (in Sect. 6) with one due to Maudlin (2007) that
is at first glance unrelated, showing how mine in fact encompasses and extends it.
Then I apply this semantics to a few simple examples from elementary equilibrium
thermodynamics in Sect. 7. My goal is to provide evidence that my proposal not only
makes contact with science, but is ineffectual without and inextricable from it. Finally,
I outline in the concluding Sect. 8 some suggestions and challenges for extending the
present ideas to other (non-physical) scientific theories and models, and to probabilis-
tic models, as well as directions for further research regarding the logic described and
its implications for the status of laws of nature within the metaphysics of science.

2 The poverty of strict conditionals

The idea to develop a formal semantics using models of theories as substitutes for
possible worlds is not entirely new. In order to further develop the concept of observ-
ability for constructive empiricism in response to criticism byLadyman (2000),Muller
(2005, p. 70) states that, among others, his own

major aim is to provide a rigorous account of modal language in science, notably
including subjunctive conditionals, without relying on Modal Realism, without
evenmentioning fictional worlds, and stayingwithin the confines of the semantic
view on scientific theories.

Muller proposes to use the standard relational semantics formodal languages, provided
by a frame (W , R), where W is a set (of “nodes,” often—but not necessarily—

Footnote 3 continued
model. So, the present approach is viable for those who take some aspects of scientific reasoning to involve
(metaphysical) counterpossibilities (Jenny 2018; Tan 2018).
4 Indeed, data from Ciardelli et al. (2018) indicate that at least the general populace does not make
counterfactual judgments in accordance with any version of ordering semantics at all. They tended to use
simple everyday language counterfactuals, however, so there is still room for the present reforming project
when it comes to counterfactuals in physics.
5 Actually,Muller (2005) slightlymodifies the strict conditional to changehow it rules in cases of impossible
antecedents, but this makes no difference to the point at issue.
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Fig. 1 The models accessible from i are depicted as the interior of the circle S. Those models in which φ

and ψ are true are depicted by the interiors of the regions with the respectively labeled curved boundaries.
The gray region indicates all those models in which φ is true which are also accessible from i . Because
this region lies entirely within the set of models accessible from i in which ψ is true, the strict conditional
�(φ → ψ) is true at i . [This figure is after Figure 1C of Lewis (1973, p. 6)]

interpreted as possible worlds,) and R is a binary relation (of “accessibility”) on W .
The elements of the set in this case are simply the models of a theory, or a subclass
thereof, and the definitions of the logical connectives and the modal operators is stan-
dard; regarding the latter, for any sentence φ of the theory, with Boolean valuation
vφ : W → {�,⊥}, ♦φ is true at i ∈ W just when there is some j ∈ W such that i R j
and vφ( j) = �. In other words, ♦φ is true at i just when φ is true at some j ∈ W
accessible from i ; in fact, this gives an interpretation of the accessibility relation in
terms of relative possibility. This is the “possibility” operator: “♦φ” is interpreted as
“it is possible that φ (in the models W ).” Muller (2005, p. 92) then defines

Necessity �φ ↔ ¬♦¬φ,
Subj. Conditional (φ� ψ) ↔ (�(φ → ψ) ∧ ♦φ).

The definition of the modal necessity operator is standard; the second conjunct in the
definition of the subjunctive conditional, ♦φ, makes counterfactual conditionals with
impossible antecedents false rather than, as they would be without it, true, but what’s
important for present purposes is the first conjunct,�(φ → ψ). This sentence, known
as a strict conditional, is true at i just when the material conditional φ → ψ is true at
all j accessible from i . See, for example, Fig. 1 for a diagrammatic illustration.

What about the accessibility relation that the semantics requires? Here, Muller
(2005, p. 94) writes that,

Generally speaking, we should and we can pick and choose a relevant accessi-
bility relation at the level of the theory (all models), at the level of a sub-theory
(a subset of models of T), or at the level of a single model. Not anything is pos-
sible, however, because the language of scientists in use puts constraints on what
we can sensibly define. That use of language should be our guide in defining
accessibility relations sensibly when we want to make sense of science.

So, different collections of models may have different accessibility relations, but those
relations should be fixed once and for all so as to fit best what scientists seem to assert.

There are at least two problems for this proposal for present purposes. First, the
interpretation of the accessibility relation as a notion of relative possibility seems to
make its determination entirely dependent on the interpretation of and assent to given
particular sentences from scientists. While that can be a noble goal in itself, it is not
the present one, as I described in Sect. 1, which is to provide a formal framework that
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can be used to facilitate counterfactual reasoning—its title ought not be “Saving the
Linguistic Phenomena” (Muller 2005, p. 94) but rather “Rational Reconstruction” to
build a formal apparatus that, as a tool for reasoning, allows one to reason in complex
situations where language proficiency is no guarantee of correctness.

The second, more general problem arises from the insistence on using the strict
conditional in the definition of the subjunctive (hence, counterfactual) conditional, one
that is in fact already well known. The nub is that the strict conditional satisfies the law
of implicativeweakening, i.e., whenever�(φ → ψ) is true at i , so is�((φ∧φ′) → ψ)

for any φ′. (This is also known at the law of antecedent strengthening.) This is just
because the set of models for which φ ∧ φ′ holds is a subset of those for which φ

holds, so the former models that are accessible from i are a subset of the latter models
that are accessible from i .

While this a welcome feature in, e.g., the material conditional, it will not do for the
subjunctive. Consider, as a toy example, a radioactive atom surrounded by sensitive
radiation detectors, for which we would like to affirm that radiation would be detected
if the atom were to decay, but not so if the atom were also in a lead box. No frame
makes both of these statements true at any model. To see this, consider the following
symbolization key:

φ: The atom decays.
φ′: The atom is in a lead box.
ψ : Radiation is detected.

One would like to exhibit a frame that makes �(φ → ψ) and �((φ ∧ φ′) → ¬ψ)

true. However, because the strict conditional satisfies the law of weakening, whenever
�(φ → ψ) is made true at a model, the sentence �((φ ∧ φ′) → ψ) is made true
at that model, too. Since the truth of this sentence just means that all the accessible
φ ∧ φ′ models are also ψ models, none of them are ¬ψ models. Thus, any frame that
makes�(φ → ψ) true at a model makes�((φ∧φ′) → ¬ψ) false at that model.6 The
fact that Muller allows for different accessibility relations when restricting attention to
different sets of models does not help, for the set of models being considered—some
crude caricature of the early radiation theory, say—is fixed in the vignette.

3 The viability of variably strict conditionals

The most important problem for strict conditionals—their general satisfaction of the
law of implicative weakening, as discussed at the end of Sect. 2—is well known.
Indeed, van Fraassen (1980, pp. 114–117) himself has been skeptical of an analysis
of counterfactuals using the strict conditional for the same reasons.7 He also endorses
the solution by Lewis and others adumbrated in Sect. 1.

6 See also Lewis (1973, Sect. 1.2) for further discussion of the problems that strict conditionals face as an
explication of natural language counterfactual conditionals.
7 See also van Fraassen (1989, pp. 33–35).
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Fig. 2 In this diagram, points represent models of W for which an accessibility relation R and a comparative
similarity relation ≤i are assumed, the latter supposed, for simplicity of illustration, to be total on the
models accessible from i . The accessible models at least as similar to i as j and j ′ are, respectively,
S = {k ∈ W : k ≤i j} and S′ = {k ∈ W : k ≤i j ′}. Those models in which φ, φ′, and ψ are true are
depicted by the interiors of the respectively labeled regions with curved boundaries. The gray region in S
indicates the subset of its models in which φ is true. Since these are all models at which ψ is true, φ� ψ

is true. The other gray region indicates the subset of the models of S′ in which φ ∧ φ′ is true. Since these
are all models at which ψ is false, (φ ∧ φ′)� ¬ψ is true. [This figure is after Figure 2 of Lewis (1973,
p. 11), with some modifications]

In a bit more detail:8 Given a comparative similarity relation ≤i on models W , as
described in Sect. 1,

φ � ψ is true at i ∈ W (relative to ≤i ) if and only if for every φ-model h
comparable to i by ≤i , there is some model j such that both

1. j ≤i h and
2. every φ-model k such that k ≤i j is also a ψ-model.

In other words, for every accessible model h in which the antecedent holds, there is
another model, j , at least as similar to i as h, such that all models k at least as similar
to i as j are also models in which the consequent holds. Informally, one could gloss
this as the condition that the counterfactual conditional is true at a model when in all
sufficiently similar models in which the antecedent holds, the consequent holds, too.

These semantics are called “variably strict” because they are similar to those of
the strict conditional, except the scope of the models considered is not fixed solely
by the accessibility relation; rather, this scope varies by the nature of the antecedent,
expanding or contracting according to the comparative similarity relation so as to
find (or fail to find) the model j as described in the above definition. This variable
scope precludes the variably strict conditional from satisfying the law of implicative
weakening in general. For, it is no longer the case that scope of the models in which
φ holds is a superset of those in which φ ∧ φ′ hold, when these are considered as
antecedents to the conditional evaluated at i : the scope for the latter expands from just
those sufficiently similar φ-models to i to the sufficiently similar (φ ∧ φ′)-models to
i . Indeed, it is simple to illustrate—see Fig. 2—how this works for the case described
in Sect. 2 to make both φ� ψ and (φ ∧ φ′)� ¬ψ true at a model.

8 Here I follow Lewis (1981), who gives a modified semantics compared with Lewis (1973, p. 49), allowing
the comparative similarity relation to bemerely partial. Swanson (2011) thenpresents a further sophistication
based on the concept of a cutset, but I’ve suppressed this innovation since it doesn’t make a significant
difference for present purposes.
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Despite this success, van Fraassen (1980, p. 118) went on to conclude that it showed
that “science does not imply the truth of any counterfactual” (except in special trivial
cases). First, he noted the contextuality of the comparative similarity relation: depend-
ing on the context of assertion, certain properties are held fixed and others are let to be
variable. Which are so held fixed in general makes a difference to the truth value of a
counterfactual conditional. Second, he observed that “Science does not imply that the
context is one way or another” (van Fraassen 1980, p. 118) so “scientific propositions
are not context-dependent in any essential way” (van Fraassen 1980, p. 118). Together
these imply the aforementioned conclusion, hence the non-objectivity of modal claims
(van Fraassen 1989, p. 35–36). This is just a version of the second major problem for
counterfactual reasoning in science described in Sect. 1, for which Lewis’s proposal
described there will not do.

But Muller (2005, p. 90) has already responded that this conclusion follows only
because van Fraassen has taken

context-independence as a necessary condition for objectivity …. We shall
demonstrate that ‘context’ can be replaced with a model or a subset of mod-
els of an accepted theory, or with an accepted theory, which has little if anything
to do with a loss of objectivity—on the contrary.

Recall from Sect. 1 that Muller sought to interpret counterfactual conditionals as strict
conditionals (more or less), with the models and accessibility relations for the rela-
tional frames used in the conditionals’ semantics determined by the theory or theory
fragment chosen. If successful, this would have blocked the argument against objec-
tivity,9 and given scientific theories a claim to imply the truth of some counterfactual
conditionals, all by denying van Fraassen’s second premise that science does not deter-
mine context—in particular, without adopting any assumptions about laws of nature.
But, as I argued there, Muller’s proposal founders on the usual formal problems that
the strict conditional faces, such as its undesirable satisfaction of the law of implica-
tive weakening. This problem motivated interpreting counterfactuals as variably strict
conditionals instead, but I shall argue that one can still implement Muller’s general
strategy of determining the context for variably strict conditionals without adding
anything to the scientific theory used. This shall be the goal of the next Section.

4 Similar Models through Similar Properties

Since instead of possible worlds I have already resolved to relativize the nodes of the
formal semantics to be the models of a particular physical theory, what remains of
the “context” of evaluation of a counterfactual conditional, construed as a variably
strict conditional, is the comparative similarity relation on the models. In this Section,
I describe the formal apparatus regarding properties of models that constructs this
relation, then, in Sect. 5 how that apparatus is determined from a set of those properties
minimally relevant to the truth value of a counterfactual under consideration.

9 Because context-independence is here taken only as a necessary condition for objectivity, blocking the
argument by itself does not entail that counterfactual conditionals are objective.
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Recall that the models W of a theory represent different states of affairs within the
descriptive scope of the theory. In particular, each ascribes some definite properties
to what they represent, and each such property can be represented by a valuation
function. Given a property P , the valuation vP : W → V assigns to each model a
value in the valuation space V ; for qualitative properties this is simply {�,⊥} while
for quantitative properties this may be the real line or some other structure. In any
case, this valuation space is often equipped with additional structure. Of particular
interest here is when that structure includes a semi-pseudometric:

Definition A semi-pseudometric on a space X is a function d : X × X → [0,∞)

satisfying the following conditions for all x, y ∈ X :

1. d(x, x) = 0, and
2. d(x, y) = d(y, x).

A semi-pseudometric is like a typical distance (“metric”) function, but more general in
two ways. The first condition above states that the distance between a point and itself
is always the minimum: zero. This is more general than a typical distance function
(and what garners the “pseudo” moniker) because it allows non-identical points to be
assigned zero by the function. The second condition, the same as a distance function,
states that it is a symmetric function. What’s missing (and what garners the “semi”
moniker) is the requirement that it satisfy the well-known triangle inequality, that
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . Of course, many semi-pseudometrics
of interest are pseudometrics, semi-metrics, or metrics, but for present purposes these
properties need not be assumed.

Here are three simple examples of semi-pseudometics for properties of models:

Qualitative Property Consider a generic qualitative property Q, so that vQ :
W → {�,⊥}. A natural metric, hence semi-pseudometric, on its valuation space
is the identity function:

dQ(x, y) =
{
0 if x = y,

1 if x �= y.
(1)

Percentage Composition Suppose that the models are of boxes of gas of vari-
ous compositions, and that A is the ratio of argon by volume to that of the pure
component which has the highest proportion by volume. Then vA has a valuation
space consisting of ratios of dimensional quantities, and one natural pseudometric,
hence semi-pseudometric, on it is

dA(x, y) = |[x] − [y]|, (2)

where the square brackets indicate taking the dimensionless part. This satisfies the
triangle inequality but different samples of gas with the same ratio of argon by
volume to that of different pure components which have the highest proportion by
volume in the box would be assigned a distance of zero, so it is a pseudometric.
Lorentzian Distance Suppose that the models are of Minkowski spacetime
(M, η), eachwith a distinguished point p ∈ M , and that D is the geodesic distance
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between those points. Then the valuation function for the distinguished point is
vD : W → M , and one natural semi-pseudometric on its valuation space M is

dD(x, y) = D(x, y). (3)

If the distinguished points are null-related, the distance between them is zero, even
if they are distinct. Since distinct timelike-related points in Minkowski spacetime
are each null-related to a common point, the triangle inequality fails in general,
and dD is only a semi-pseudometric.

Consider now any property P of models in W with valuation vP whose valuation
space V is equipped with a semi-pseudometric dV

P : V × V → [0,∞). dV
P induces

another semi-pseudometric dW
P on W as follows:

dW
P (x, y) = dV

P (vP (x), vP (y)). (4)

Thus a collection of properties P of models in W with corresponding set of valuations
VP induces a set of semi-pseudometrics DW

P on W . Such a set in turn determines a
three-place relation j ≤i k for i, j, k ∈ W as follows:

j ≤i k ↔ ∀dW
P ∈ DW

P , dW
P (i, j) ≤ dW

P (i, k). (5)

The relation thus defined satisfies the constrains of a comparative similarity relation,
described in Sect. 1, when the accessibility relation on models is taken to be the
universal relation—i.e., all models are accessible from all others. According to it, j is
at least as similar to i as k if and only if the differences between the relevant property
valuations vW

P of i and j are each no larger than those between i and k.
Because any comparative similarity relation is a model for Lewis’s basic variably

strict logic of counterfactual conditionals V, this demonstrates that natural or widely
agreed-upon distances (from semi-pseudometrics) on the valuations spaces for a col-
lection of properties of a set ofmodels determine the truth conditions for counterfactual
conditionals using those models as nodes. (In fact, the more general similarity struc-
ture on models, which is related formally to topological structure, determines these
truth conditions (Fletcher 2019, §6.1), but that level of generality is not needed for
present purposes.)

A bit more can be said, however. Stating the main semantic result of this section
requires one more definition:

Definition A collection of semi-pseudometrics D on a set X is said to be separating
when, for each x, y ∈ X , there is some d ∈ D such that d(x, y) = 0 implies x = y.

Furthermore, we may say that a collection of properties on models of W whose valua-
tions have valuation spaces equipped with semi-pseudometrics is separating when its
induced collection of semi-pseudometrics on W is separating. Separating collections
of properties on a set of models are just those that allow one to distinguish one model
from another solely from their distances according to at least one semi-pseudometric
induced from a property.
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Gathering the previous facts proves the following:

Theorem Each space equipped by a (separating) collection of semi-pseudometrics
induces a comparative similarity relation on that space that makes it a model for the
logic VWU (VCU).

For, among the V-logics:

• The U-logics are exactly those with universal accessibility relations.
• The W-logics are exactly those whose models have their comparative similarity
relation satisfying i ≤i j for all nodes i, j ∈ W .

• The C-logics are exactly those whose models have their comparative similarity
relation such that, for all nodes i, j ∈ W , if j ≤i i then i = j .

These are said to satisfy uniformity,weak centering, and centering, respectively (Lewis
1973, p. 120). Thus the above theorem follows immediately from the definition of
the semi-pseudometrics and their induced comparative similarity relation on a space.
Notably, both VWU and VCU are among the four logics that Lewis (1973, p. 130)
primarily endorses for counterfactual conditionals (although he ranks VC highest
among them).

Although I have been focusing on semantic structures for logics for counterfactual
reasoning, it may help to recall the syntactic characterization of the logics VWU
(VCU). Let φ,ψ, and χ (possibly with subscripts) denote sentences formed by the
usual recursive compounding of sentence letters, sentential constants� and⊥, logical
connectives, and the modal operators�,�, and ♦. Then the logics in question have
the following inference rules (Lewis 1973, p. 132):

1. Modus Ponens;
2. “Deduction within Conditionals”: for any n ≥ 1,

� (χ1 ∧ · · · ∧ χn) → ψ

� ((φ� χ1) ∧ · · · ∧ (φ� χn)) → (φ� ψ)
;

3. and Interchange of Logical Equivalents.

They also have the following axioms (or really, axiom schemata), to be explained
presently (Lewis 1973, pp. 22, 132):

1. Truth-functional tautologies
2. �φ ↔ (¬φ� φ), ♦φ ↔ ¬�¬φ

3. φ� φ

4. �φ → (ψ � φ)

5. (φ� ¬ψ) ∨ (((φ ∧ ψ)� χ) ↔ (φ� (ψ → χ)))

6. (φ� ψ) → (φ → ψ)

U1. ♦φ → �♦φ

U2. �φ → ��φ

C. (φ ∧ ψ) → (φ� ψ)

The first and third are self-explanatory; the second effectively defines the usual modal-
ities of necessity and possibility through the counterfactual conditional. The fourth
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is version of the truth of conditional with tautologous consequents, but expanded to
include necessary antecedents. The fifth Lewis (1973, p. 133) apologetically deni-
grates as “long and obscure,” but it has a natural interpretation as a version of the
equivalence of exportation, with the proviso that the exported sentence ψ is not made
false at the closestφ nodes. The sixth ensures that the counterfactual conditional is also
in general a subjunctive conditional: when the conditional and the antecedent are true
at a node, the consequent is also true at that node. The two U axioms are the syntactic
expression of a universal accessibility relation: what’s possible and necessary doesn’t
differ from node to node. These in total form the axioms for VWU. The C axiom,
when added to these, yields VCU; it states that when any two propositions hold at a
node, the counterfactual conditional linking them does, too, which would not be true
in general if for one node, another is at least to similar to it as it is to itself.

5 Minimally relevant properties

In the previous Section, I showed how a set of properties whose corresponding valu-
ation spaces are each equipped with a semi-pseudometric gives rise to a comparative
similarity relation on themodels to which they pertain. But how is this set of properties
to be determined? Much can be said, but I shall suggest, roughly, that it is the prop-
erties which are relevant to the truth of the counterfactual being evaluated. How shall
I understand relevance? Here I can only give a partial sketch instead of a complete
answer. Not only do I expect that the details may vary significantly from theory to
theory, but the analysis of relevant properties in each case may be subtle enough to
merit its own treatment. But, vary as they may, these details are all grounded in the
details of the theories from which they arise, not from subjective criteria outside of
the theory’s scope. Thus my goal is to provide some plausibility for the idea that, even
without a fully detailed account of relevance, any such account, once made precise and
good, will be apt for providing a contextual semantics for counterfactual conditionals
whose context is definite and does not depend on whim or fancy. Indeed, the sketch I
give will bear on the examples in Sect. 7.

To set the stage for the issues involved it may be helpful to review briefly how
the present goal differs from related goals in neighboring provinces of philosophical
inquiry. In a word, most of these have focused, at least in part, on syntactic criteria for
relevance, while the notion of relevance to be at hand should be semantic, a feature
of the models of a theory, not depending on any special features of a language in
which the theory is formulated. For instance, the long tradition of relevance logic
(Mares 2014) has focused on describing a concept of relevant implication or entailment
more circumspect than its well-known classical cousin, but its restriction is typically
formulated in terms of the structure of the related sentences.

There is another tradition aimed at understanding the structure of relevance from the
vantage of philosophy of language and metaphysics.10 Some of the programs within
this tradition are also substantially syntactic, needfully so because of their goal to cap-

10 For a brief history of this tradition, see Osorio-Kupferblum (2016, Sect. 1); for a wealth of references
and a slightly more technical presentation of some representative examples from a particular point of view,
see Hawke (2018).
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ture aspects of purported hyperintension in natural language. They aim to capture how
even intensionally equivalent sentences of a language could be understood as being
“about” different subject matters. Following Hawke (2018), we can distinguish at least
three such: the atom-based, subject-predicate, and ways-based programs. According
to the atom-based program, “the subject matter of [a formal sentence] φ can be identi-
fied, in some sense, with the set of atomic claims from which φ is composed” (Hawke
2018, p. 698), which requires distinguishing the atoms of the language used. By con-
trast, according to the subject-predicate program, “the subject matter of φ is the set of
objects of which something is said by stating φ” (Hawke 2018, p. 698). Although the
archetypal version by Perry (1989) has syntactical elements in its formulation, they
are mostly superficial. But the sort of relevance of present concern isn’t merely having
the same subject matter, in the sense of making predications of the same objects: the
properties predicated should be relevant because they potentially make a difference to
the truth value of the counterfactual under examination.

So: how to make sense of the idea that some property’s values potentially make
a difference for another’s? Lewis (1986b) famously suggested a difference-making
principle in his account of causation, the schema for which has been expanded to
truth-making (Lewis 2001), explanation (Strevens 2004, 2008), epistemology (Come-
saña and Sartorio 2014), and mechanisms (Glennan 2017). But these principles have
themselves typically (though not universally) contained counterfactual conditionals—
e.g., “We think of a cause as something that makes a difference, and the difference it
makesmust be a difference fromwhat would have happened without it” (Lewis 1986b,
pp. 160–161)—invoking which would only obscure the identification of difference-
making properties.11 But Lewis (1988a, b) also initiated the ways-based program for
understanding the structure of relevance, according to which a subject matter is a
just a distinction among different ways the world could be, and relevance is con-
strued (more or less) as overlapping subject matter. Lewis’s goal is different from the
present one, however, pulling his development away from what is needed for proposi-
tional difference-making. Nevertheless, it is the closest to my present goals among the
available options, so I shall adapt some of its semantic insights, along with some mod-
ifications very loosely inspired from the sophistications in the ways-based program of
Yablo (2014).12

First, it will help to introduce some terminology. Any property P applicable to the
models W of a theory comes with a valuation vP : W → V for some valuation space
V . For any θ ∈ V , one can define the level set of vP at θ as L(vP , θ) = {w ∈ W :
vP (w) = θ}. The level sets of a valuation vP partition the models W into classes each

11 This is because of the circularity involved in giving an account of the semantics of counterfactual
conditions that invokes the truth of some other counterfactual conditional. Perhaps one could show that this
still yielded an implicit definition of the semantics, but I am skeptical of this strategy’s prospects because
one conditional appears in the object language and another in the metalanguage. Of course, this sort of
circularity would not be a problem if one had other resources to which one could appeal. Indeed, if one
were engaged in the project of saving the phenomena of scientific (or everyday) language use, as Muller
(2005) [and Lewis (1973), respectively,] is, then one could use basic judgments of competent language
users to determine these counterfactuals.
12 The connection is loose because Yablo (2014) introduces syntactic elements (in particular, literals) to
avoid problems that arise when one uses Lewis’s formalism as an account of sentential “aboutness” (Hawke
2018, §4.3.2), conflicting with the present goal to give a semantic theory.
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of whose elements shares a common value in V . Given two properties, P and P ′, with
valuations vP : W → V and vP ′ : W → V ′, their values θ ∈ V and θ ′ ∈ V ′ are
orthogonal in W when L(vP , θ) ∩ L(vP ′ , θ ′) �= ∅.

A set of properties P is minimally relevant to a property P for models in W when
it satisfies the following two conditions.

Connection For each P ′ ∈ P, there is some value θ ′ ∈ vP ′ [W ] and some value
θ ∈ vP [W ] that are not orthogonal in W .
Quasi-Independence For any P ′, P ′′ ∈ P, if vP ′(w) = θ ′ entails that vP ′′(w) =
θ ′′ for all w ∈ W , then vP ′′(w) = θ ′′ entails that vP ′(w) = θ ′ for all w ∈ W and
{P ′} and {P ′′} induce the same comparative similarity relation on W .

The connection condition ensures that some value of each P ′ ∈ P entails the negation
of some value of P . If it entails many such, it can entail some unique value of P .
Because of the symmetry of the definition, this provides that relevant properties P
are ones whose values are necessary or sufficient for some value of P . The quasi-
independence condition ensures a sort of minimality: any property valuations which
are not logically independent are equivalent with respect to the comparative similarity
relation they induce.13

For any given property P , in general there will be many sets of properties P min-
imally relevant to it. Some sets will not contain enough properties, while others too
much. Say that such a set P is quasi-maximal if and only if whenever P ⊂ P′ and P′
is minimally relevant to P , P and P′ induce the same comparative similarity relation
on W . So, whenever a property can be added to a quasi-maximal set P of properties
while preserving its minimal relevance for P , that addition does not make a difference
for the induced comparative similarity relation.

Finally, we can state the contextual rule for the set of properties needed for deter-
mining the comparative similarity relation:

Context When evaluating the counterfactual conditional φ� ψ within a theory
with models W , use the comparative similarity relation induced on W by any
quasi-maximal set of properties minimally relevant for ψ in v−1

φ [�] = {w ∈ W :
vφ(w) = �}.

Any quasi-maximal set of properties forψ in v−1
φ [�]—the set of models in which φ is

true—determines the same comparative similarity relation on W by definition. These
are the properties of models that are relevant for the truth of ψ among the φ-models.

There is of course a sense in which each of the properties in the quasi-maximal
set for the consequent make a difference for the truth of the counterfactual, but this
does not mean that each minimally relevant property is “equally weighted” in any
straightforward arithmetic way. (That is, the comparative similarity relation induced
on W may not arise from a single semi-pseudometric on W that is an arithmetic sum
of those induced from the aforementioned properties.) Nevertheless, there is also a
definite sense in which a quasi-maximal set may contain “weighted” properties. For
instance, consider two real-valued properties P1 and P2—viz., vP1 : W → R and vP2 :
13 Orthogonality and connection are concepts from Lewis (1988a), while quasi-independence is inspired
from the definitions of minimal truthmakers and falsemakers from Yablo (2014).
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W → R.14 Then one can define a new property Q with valuation vQ = avP1 + bvP2 ,
for a, b ∈ R. If a �= b, then Q represents a property that is an “unequally weighted”
combination of properties P1 and P2, and may well appear in a quasi-maximal set.

Regardless of whether the quasi-maximal set for the consequent contains such
weighted properties, the contextual rule here is non-trivially so: it varies in general
from counterfactual consequent to consequent. Contra van Fraassen (1980, p. 118),
this context is determined by these semantics given the models of a particular theory.
Just as physical theories don’t affirm much unconditionally—only what’s the case in
all their models—but bestow their insight conditioned on “boundary conditions, ini-
tial conditions, parameter-values, auxiliary assumptions and what not” (Muller 2005,
p. 95), they don’t affirm much about relevant similarity unless provided the context
that a particular counterfactual conditional offers. This is the essential point: even if
the technical details I have provided of how the relevant properties should be con-
textually determined require revision or adaptation to specific cases, the particular
counterfactual conditional considered provides that determination with the resources
a physical theory already provides.

6 Comparing variably strict conditionals with Maudlin’s modest
proposal

Before illustrating the above account with a few examples, I pause for a comparative
excursus. Maudlin (2007) has proposed an account of how to evaluate counterfactuals
using physical theories that has some resemblances and some differences with mine
and with that of Lewis (1973), which he discusses explicitly. After sketching his
position I shall briefly compare it with my own, highlighting some of my account’s
potential advantages: greater generality and formal precision.15

Maudlin takes as his starting point not models of theories, but laws, due to their
commonly accepted role in scientific explanation: “scientific and commonsense expla-
nations demand the postulation of [(fundamental) laws of temporal evolution] and their
adjunct principles” (Maudlin 2007, p. 13) such as boundary conditions, the specifi-
cation of particular forces, etc. Which temporally extended regularities are laws is
not determined by anything else; they are ontologically primitive, but they themselves
determine what’s possible or necessary, to the extent that they do, according to which
states of affairs they permit or require, respectively. Indeed, “The content of the laws
can be expressed without modal notions, and suffices to determine a class of models.
The models can then be treated as ‘possible worlds’ in the usual way, and so provide
truth conditions for claims about nomic possibility and necessity” (Maudlin 2007,
p. 21).

They also provide truth conditions for counterfactual conditionals φ � ψ at a
spacetimeworldw through a three-step evaluation process (Maudlin 2007, pp. 22–23).

14 This of course can be greatly generalized; they need only be valued, for example, in some module, in
order to define the weighted sum.
15 Maudlin does develop his account for probabilistic theories, whereas I do not in this essay. The points
of comparison thus treat non-probabilistic theories.
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1. Choose a Cauchy surface C for w—a three-dimensional surface in the spacetime
through which each maximal timelike worldine passes completely.

2. Construct a Cauchy surface C ′ satisfying φ that is otherwise the same as C , inas-
much as this is possible according to the laws.

3. Apply the laws to C ′ to develop a new model spacetime w′, and evaluate whether
ψ is true at w′.

The antecedent φ ideally should pick out both C and C ′ uniquely, and if the laws
are deterministic with respect to their initial-value problem, the resulting w′ will be
unique aswell. If not, then vagueness or non-determinismwill yield through this recipe
a collection of spacetime worlds w′. In any case, φ � ψ is true at w if for all such
w′, ψ is true at w′.16

How, on Maudlin’s account, does one understand the ceteris paribus clause of step
two? “In each case different cetera are paria, and which change is appropriate is
decided, if at all, by context and background assumptions.” (Maudlin 2007, p. 24).
But in contrast with Lewis (1973, 1986a), “our recipe makes no reference to an
overall similarity between worlds, the nearest thing being a ceteris paribus condition
that determines what counts as the appropriate carrying out of a command” (Maudlin
2007, p. 33). This contrast should not be overstated, however. After all, when there
are many way of constructing some C ′ that makes φ true that require some other
modifications to w, which does one select? Maudlin does not make precise how this
should be done. Regardless of whether this is a problem for Maudlin’s goals,17 it
will not suffice for the present ones, which include articulating how the semantics
for counterfactuals can be provided internally to a scientific theory. By contrast, the
previous Section has outlined how the comparative similarity relation among models
is determined from the properties of the models minimally relevant to the evaluation
of a given counterfactual.

Another difference is the comparatively restricted scope of Maudlin’s account,
which applies only to explicitly spatiotemporal theories (needed for the definition of
a Cauchy surface) with a well-defined initial-value problem (needed in order to apply
laws to the Cauchy surface to generate amodel) and counterfactual conditionals whose
antecedents specify a Cauchy surface (at least vaguely). Maudlin (2007, p. 13) does
stress that “Some so-called laws of co-existence, such as the ideal gas law PV = n RT ,
are better construed as consequences of laws of temporal evolution” rather than laws.
But this seems to be dependent on our evidence for an inter-theoretic reduction with
kinetic theory, not a consequence of the theory itself; indeed, why should it have been
impossible for Boyle to reason counterfactually with his law (that for a fixed amount

16 On Maudlin’s account, this is a material conditional, not a material biconditional, for he adds that
φ� ψ is false atw if for all suchw′,ψ is false atw′. Ifψ is true at somew′ and false at others, φ� ψ is
indeterminate. Thus, Maudlin’s proposal is actually for a three-valued logic. One oddity of this proposal is
that it makes φ� ¬ψ and ¬(φ� ψ) logically equivalent. For convenience, I will set these differences
aside in the remainder.
17 Maudlin (2007, p. 33) stresses that “the principal test of a semantic theory is how it accords with
our intuitions” not just in evaluation, but in its justification: “the psychological question of how people
evaluate counterfactuals, what processes underlie their intuitions” (Maudlin 2007, p. 33). Readers may
decide for themselves whether the three-step process Maudlin presents resembles their cognitive processes
in evaluating counterfactuals, as Maudlin asserts it does; in any case, what is important is that Maudlin’s
goals are distinct from the present ones in this essay.
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of gas at a constant temperature PV = const.) 75 years before the development of
kinetic theory? Of course, Maudlin is ultimately interested in the metaphysics of laws
of nature, whereas I am presently interested in theory-based reasoning regardless of
the theory’s metaphysical interpretation or viability. The metaphysical (im)possibility
of the situations described by the models makes no difference in my account.

Setting these differences in goals aside, there are some special conditions for my
own account under which Maudlin’s falls as a special case. Under the conditions
outlined in the previous paragraph, suppose as well that the theory under consideration
is deterministic, in the sense that the model w′ constructed in stage three of Maudlin’s
procedure is unique. For a counterfactual conditional under all these conditions, his
account and mine will always agree on the counterfactual’s truth value at a model,
regardless of the comparative similarity relation (modulo the remarks of footnote 16).
This is because if there is a unique model at which one needs to evaluate whether
the conditional’s consequent holds, then the application of the whole apparatus of
comparative similarity becomes trivial—it doesn’t matter which models are more
comparatively similar to which, since there is only one model to check.

Under slightly more general conditions, suppose that there is not necessarily such
a unique model, but that the consequent receives the same truth value in each of the
models generated. In this case, too, Maudlin’s account and mine will always agree on
the counterfactual’s truth value at a model, regardless of the comparative similarity
relation (again modulo the remarks of footnote 16). In this case, which includes the
previous one as a special case, the comparative similarity relation doesn’t matter
because no matter how that relation selects among the antecedent-satisfying models,
the semantic evaluation of the conditional will always be the same. (Here there is also
agreement with the strict conditional described in Sect. 2.)

Thus the advantage of introducing this comparative similarity structure, and show-
ing how it is determined from the theory and the counterfactual under evaluation,
arises in more complicated cases. These include cases falling under the auspices of
Maudlin’s account, but for which comparative similarity is needed for the “ceteris
paribus” part of his recipe. It also includes cases involving theories that do not fit the
strictures of Maudlin’s account: being spatiotemporal, having Cauchy surfaces and
a well-defined initial-value problem, etc. These will both be illustrated with a few
examples in the sequel, Sect. 7.

7 Application: elementary equilibrium thermodynamics

Elementary equilibrium thermodynamics is a statical theory: it does not concern in
general the detailed changes of thermodynamical quantities over time, only their bal-
ance for various equilibrium states. Thus there is no such thing as an “initial-value
problem” in the theory. (The conceit of the quasi-static process is that the thermo-
dynamical system undergoing it proceeds, in some way or other, along a sequence
of equilibrium states; the exact dynamics of this process are beyond the scope of the
theory.) And because thermodynamical quantities are not generally spatiotemporal,
the theory does not permit any adjudications of more or less spatially or temporally
“widespread” variability among states of thermodynamic affairs. For these reasons
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neither Maudlin’s nor Lewis’s account of the truth conditions for counterfactual con-
ditions readily applies.

But it is simple for the approach am I advancing. Consider systems of enclosed gases
in a piston-cylinder device with pressure P , volume V , and absolute temperature T ,
each positive real numbers, models of which will be those described by the combined
gas law: for any particular such gas, PV /T = const. This constant sets which models
are accessible from which others. (In particular, they will divide into equivalence
classes based on the value of this constant.) The device will fail (break) whenever the
pressure, volume, or temperature of the gas rises to at least the thresholds P̄ , V̄ , or
T̄ , respectively. Consider a particular sample of gas whose pressure is P̄/2, volume
is V̄ /2, and temperature is T̄ /4: for this sample, the device is not failing.

Consider further the following counterfactual conditionals:

1. If the gas were twice as hot, the device would not fail.
2. If the gas were twice as hot and the piston were fixed, the device would fail.

I interpret the antecedent as (colloquially) referring to the absolute temperature. In
both cases, the property relevant to the consequent of the conditional is the maximum
among the values of the pressure, volume, and temperature. The device fails in a
model (which we can represent as property F) according to the following valuation
on models parameterized by (P, V , T ):

vF (P, V , T ) =
{

� if max{P/P̄, V /V̄ , T /T̄ } ≥ 1,

⊥ if max{P/P̄, V /V̄ , T /T̄ } < 1.
(6)

Since this is a qualitative property, its valuation space acquires the same semi-
pseudometric as described in Eq. 1. This yields a relatively simple comparative
similarity relation: models are at least as similar as each other at any model just
in case they have the same verdict regarding whether the device fails.

To evaluate the first counterfactual at the model (P̄/2, V̄ /2, T̄ /4), one must con-
sider the set of models with temperature T = T̄ /2 (that also satisfy the combined gas
law). Note that for any model (P, V , T̄ /2), (P̄/

√
2, V̄ /

√
2, T̄ /2) ≤(P̄/

√
2,V̄ /

√
2,T̄ /2)

(P, V , T̄ /2), since (P̄/
√
2, V̄ /

√
2, T̄ /2) is at least as similar to itself as any other

model regarding the non-failure of the device. Thus (P̄/
√
2, V̄ /

√
2, T̄ /2) satisfies

the first condition of the truth conditions described at the beginning of Sect. 3.
It also satisfies the second, since by definition if (P, V , T̄ /2) ≤(P̄/

√
2,V̄ /

√
2,T̄ /2)

(P̄/
√
2, V̄ /

√
2, T̄ /2), then vF (P, V , T̄ /2) = ⊥. Thus the sentence is true. Intu-

itively, the models for which T = T̄ /2 that also satisfy the combined gas law are
never more similar regarding the non-failure of the device as (P̄/

√
2, V̄ /

√
2, T̄ /2),

and those equally similar are also ones in which the device does not fail.
To evaluate the second counterfactual at the model (P̄/2, V̄ /2, T̄ /4), one must

consider the set of models with volume V = V̄ /2 and temperature T = T̄ /2 (that
also satisfy the combined gas law). It turns out that there is only one such model:
(P̄, V̄ /2, T̄ /4), and vF (P̄, V̄ /2, T̄ /4) = �. So it then becomes trivial that the second
counterfactual is true, since the only model accessible at which the antecedent is true
is one in which the consequent is also true.
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Although these two examples are very simple, they are essentially of the same
form as the pair of counterfactual conditionals that (as described in Sect. 2) the strict
conditional could never make true at once.18 This shows the semantics I have provided
do not ultimately reduce to those of the strict conditional.

8 Implications: models, logics, and laws

Accounts of the formal semantics of counterfactual conditionals concerning physical
phenomena have typically followed one of two paths. The first, most standard one, is
to ground the conditionals’ truth conditions in an account of physical laws of nature.
This is Lewis’s approach, with its sophisticated formal machinery of comparative
similarity relations on possible worlds but also its essential reliance on miracles in the
determination of comparative similarity amongworlds. The second path is to deny that
physical theories ground the conditionals’ truth conditions at all. This is van Fraassen’s
approach, which, while avoiding the problems with Lewis’s, is a Pyrrhic victory for
understanding how scientific theories can ground counterfactual reasoning. I have in
this essay marked the trailhead, first imagined by Muller (2005), for a third path,
that advances a semantics of comparative similarity among models of a theory whose
contextuality is determined by the theory. In the remainder, I’d like to draw out the
implications of following this path for the philosophy of other particular sciences, the
logics of counterfactuals and relevance, and laws of nature.

First, although I have been using examples from physics to illustrate a path to
formalized counterfactual reasoning, nothing on this path essentially demands that
this reasoning concern physical phenomena described by a physical theory. In the first
place, the only role of theory in the account is to provide a class of models of possible
ways the phenomena they represent could be. There is no loss if the models do not
arise from a theory, but instead from some endogenous modeling practices. Moreover,
that themodels are of physical phenomena is not essential. Any sufficiently formalized
models, of whatever sort of phenomena they represent—physical, biological, social,
etc.—can be the basis for counterfactual reasoning. Rather, the brambles to be cleared
are those obscuring how to extend the approach from non-probabilistic to probabilistic
models.

Second, certain aspects of the presented logic for counterfactual conditionals
deserve further development. At a broad level, its advancement comes through the
application of relevance concepts to these conditionals. The mixture of these two is
not new: it is not always appreciated that C. I. Lewis devised the strict conditional not
as a theory of counterfactuals but to advance a relevance logic for conditionals (Garson
2016, §5), and others have developed more sophisticated theories of counterfactual
conditionals as relevant conditionals (Mares and Fuhrmann 1995; Mares 2004). What
is the connection between these latter systems and the present one?

18 As Jaramillo and Lam (2018) document, for more complex theories such as general relativity, evaluating
counterfactual conditionals is computationally intensive, even without spacetime curvature’s interaction
with matter. Despite their claims to the contrary, however, these problems are entirely practical; in principle
the same approach developed here applies to general relativity, too.
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At a narrower level, there is a slightly subtle tension between Lewis’s semantics for
VWU (or VCU) and my own. These V-logics assume a single comparative similarity
relation on the nodes, while my own contextual semantics allows that structure to
change depending on the propositions linked by the counterfactual connective. So, if
these propositions do not themselves contain a counterfactual conditional, then only
one similarity structure is used to evaluate the conditional at a node, hence my seman-
tics matches with Lewis’s. The converse will hold when any nested counterfactuals
are trivial, or induce the same comparative similarity relation, but otherwise this is
not guaranteed. How this affects the proof theory of the logic, and its consequent
differences with VWU (and VCU), are yet to be explored.

Third, one of the central objections to antirealism about laws of nature is that
these laws seem to be central to scientific practices of reasoning counterfactually
and causally. By contrast, the account of counterfactual reasoning presented notably
contains no reference to laws of nature, obviating the first version of this objection. The
development of a suitable counterfactual account of causality therefrom would then
obviate the second. To accommodate laws’ common invocation in scientific reasoning,
I would prefer a deflationary account of them rather than an error theory. On such an
account, I would agree with van Fraassen (1989, p. 224) that “Apparent laws which
frequently appear are often partial descriptions of special subclasses of models,” and
that the particular axiomatizations of theories through these apparent laws summarize
“important features by which models may be described and classified. The distinction
between these features and others that characterize the model equally well is in the
eye of the theoretician; it does not, to my mind, correspond to any division in nature”
(van Fraassen 1989, p. 223). Or, rather, it need not so correspond—see further the
discussion in Fletcher (2019, §6.2). Further development of this deflationary account
of laws of nature, and its concomitant elaboration of causality, deserving as they are,
must await another occasion.
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