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Abstract It has been argued recently (Beall in Spandrels of truth, Oxford University
Press, Oxford, 2009; Beall and Murzi J Philos 110:143–165, 2013) that dialetheist
theories are unable to express the concept of naive validity. In this paper, we will show
that LP can be non-trivially expanded with a naive validity predicate. The resulting
theory, LPVal reaches this goal by adopting a weak self-referential procedure. We
show thatLPVal is sound and complete with respect to the three-sided sequent calculus
SLPVal. Moreover, LPVal can be safely expanded with a transparent truth predicate.
We will also present an alternative theory LPVal∗ , which includes a non-deterministic
validity predicate.
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1 Introduction

Dialetheists argue that the acceptance of contradictions is the best way to solve the
paradoxes while achieving a semantically closed language. In recent years, Beall
(2009) and Beall and Murzi (2013) tried to show that dialetheism is unable to express
the concept of naive validity. The inexpressibility result goes as follows.
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Let Val be a naive validity predicate, characterized by the following rules and
meta-rules. Let A and B be formulas variables. 〈A〉 and 〈B〉 are names for A and B,
respectively. The so-called naive validity principles are the following:

A � B
VP � Val(〈A〉, 〈B〉)
VD

A,Val(〈A〉, 〈B)〉 � B

� Val(〈A〉, 〈B〉) � A
MetaVD � B

If the theory achieves self-reference through something like strong diagonalization,
there will be a sentence A definitionally equivalent to Val(〈A〉, 〈⊥〉), usually known
as “the Beall–Murzi sentence.” This sentence will cause major harm, as the following
proof shows.

A,Val(〈A〉, 〈⊥〉 � ⊥
(Def. Eq.)

A, A � ⊥
(Contraction)

A � ⊥ (VP)� Val(〈A〉, 〈⊥〉)
(Def. Eq.)� A (MetaVD)� ⊥

The proof is carried out in a sequent system that has Contraction as a valid meta-
rule.1 The dialetheist, then, should give up some of the principles involved in the proof.
She must abandon VD (the initial sequent is an instance of it), VP,MetaVD, the inter-
sustitutivity of Val(〈A〉, 〈⊥〉) and A or Contraction. Rejecting Contraction seems
not a natural option, at least if the dialetheist supports LP or the non-transitive logic
ST . But the rest of them are still suspects. As the supporters of ST must rejectMetaVD,
andwe are trying to find out if a dialetheist approach is compatible with a naive validity
predicate, wewill focus onwhat a supporter of LP should do in a case like this.Wewill
argue that she can internalize a naive validity predicate. To do that, she must change
theway to achieve self-reference. In particular, shemustmove from (what wewill call)
a strong self-referential procedure to a weak one. Thus, Def. Eq., the principle that
establishes that we can substitute “the Beall–Murzi sentence” for another sentence
identical to it, must be dropped. Self-reference will be obtained instead through a
suitable biconditional, e.g., a conjunction of conditionals. Those constants will be
instances of LP’s material conditional, which does not validates Modus Ponens. In
Goodship (1996), LauraGoodship provides a general remark regarding the alternatives
for this biconditional. If we want the theory to be safe from trivialization due to
semantic paradoxes, there seem to be twomain routes: (1) either the conditional should
invalidate Modus Ponens, or (2) it should invalidate Contraction and Pseudo Modus
Ponens. In this paper, we will explore one possible realization of the first alternative2:
we will consider a theory of naïve validity that invalidates Modus Ponens since it is

1 Notice that, as for any formula B, ⊥ � B, an application of VP will prove � Val(〈⊥〉, 〈B〉). Then, by an
application of MetaVD, � B.
2 Additionally, there are in fact many connections between our project and the one presented in Goodship
(1996) by Laura Goodship, named by Beall (2011) as “the Goodship Project.” Those links will become
explicit when we explain how we get self-referential sentences in our theory of naïve validity, in Sect. 3.
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Fig. 1 Matrices for the logic LP

based on the paraconsistent logic LP. The paper is structured as follows. In Sect. 2 we
present the dialetheist logic LP, the semantic notion of validity that an LP’s supporter
may wish to internalize and show that it is a naive one. In Sect. 3 we demonstrate
how to extend LP with a naive validity predicate. We will call the resulting theory
LPVal.LPVal uses aweak self-referential procedure.Wewill show that it is non-trivial.
Therefore, Beall and Murzi were wrong in claiming that a dialetheist theory cannot
be expanded with a naive validity predicate. We will also give a three-sided sequent
calculus for LPVal, SLPVal, and show that it is sound and complete with respect to
LPVal. In Sect. 4,wewill demonstrate how to add a transparent truth predicate toLPVal.
In Sect. 5, we will present an objection raised against this approach, and developed
an alternative theory with a non-deterministic and naive validity predicate. Finally, in
Sect. 6 we make some concluding remarks. Completeness proofs for both SLPVal and
SLPVal+ can be found in the “Appendix”.

2 Two ways to achieve self-reference in a dialetheist theory of validity

Graham Priest’s LP is a first order logic, with the usual connectives (negation, con-
junction, etc) and a standard three-valued (1, 1

2 , 0) Strong Kleene interpretation.
3 For

the sake of simplicity, we will deal with a propositional version of LP. We show
below the matrices for LP’s connectives. Validity is understood in the usual way, as
the preservation of designated values. LP’s designated values are 1, 1

2 (Fig. 1).
Our goal, then, is to internalize the notion of naive validity. One way to do it is

by adding a naive validity predicate to LP’s language.4 We will need, then, both (i) a
way to name the sentences of the language, and also (ii) a way to build self-referential
sentences. To achieve (i), we will introduce designated names for every sentence.
Thus, for every sentence A, 〈A〉 will be the name of A in every model. Though this

3 For an extensive presentation of LP, see Priest (1979, 2006).
4 Though in principle it is possible to internalize validity either with a validity constant or a validity
predicate, we will choose this last approach, since adding a validity operator has expressive limitations
comparable to the ones of a truth operator.
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can also help us achieve (ii), it is not necessary nor desirable, as we will see soon.
But before that, we need to examine carefully the two main options we have. Either
way, they should let us have in the language potentially problematic or pathological
formulas, like the Beall–Murzi sentence that allegedly causes trouble to dialetheism.

Probably the most popular and common way to build self-referential sentences is
through PA, first-order Peano Arithmetic. In PA, self-reference is usually taken to
be achieved through the weak and/or the strong Diagonal Lemma.5 According to (a
simplified version of) the Weak Diagonal Lemma, for each open formula φ(x), there
is a formulaψ such that the theory proves that φ(〈ψ〉) is equivalent toψ . But one may
want more. In particular, one may search for linguistic items that are identical to other
linguistic items that talk about the first ones. The Strong Diagonal Lemma is usually
interpreted as a way to get precisely that, through names that refer to sentences that
include that same name as one of its terms.

There seem to be two main options to represent self-reference in a theory: either
through a weak or a strong procedure. The former achieves this goal by requiring a
self-referential sentence to be equivalent to a sentence that “talks about” the first one.
The latter involves an essential use of identities.

We will present general versions of both the weak and the strong procedures. These
principles may be understood, on the one hand, as semantic versions of proof-theoretic
self-referential principles, and, on the other hand, as general procedures that are instan-
tiated (inPA) by the (semantic versions of the)Weak and the StrongDiagonal Lemma.6

These options might be instantiated by a plethora of technical tools, varying from
one framework to the other. In this paper, we will discuss some examples thereof.

Definition 2.1 (Weak Self-Referential Procedure) LetTh be a theory that has a name-
forming device 〈·〉. If for every formula A(x), with x as the only free variable in A(x),
there is a (closed) formula B such that the formula B ↔ A(〈B〉) is true in Th, then
we say that Th adopts a weak self-referential procedure.

Definition 2.2 (Strong Self-Referential Procedure)LetTh be a theory that has a name-
forming device 〈·〉. If for every formula A(x), with x as the only free variable, there is
a term t such that t is identical to the name of A(t) in Th, then we say that Th adopts
a strong self-referential procedure.

5 LetL be a first order language that includes the language of first-order Peano Arithmetic, and let Th be a
theory that extends PA. Assume then that there is available a name-coding device 〈·〉 of formulas of L over
ω, and let j abbreviate the sequence of variables j1, . . . , jn by j . Then theWeak Diagonal Lemma will be
proved in Th.

Weak Diagonal Lemma: For every formula A( j, j) ∈ L, there is a formula B(j) ∈ L such that

Th � B(j) ↔ A(〈B(j)〉, j)

To prove the the Strong Diagonal Lemma, the theory must contain terms for each recursive function.

Strong Diagonal Lemma: For every formula A( j, j) ∈ L, there is a term t such that

Th � t = 〈A(t, j)〉
For more about the Diagonal Lemmas, see Burguess et al. (2007).
6 At least when we restrict our attention to formulas with one free variable.
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Remark 2.3 Notice that these procedures can sometimes be already present “in” the
theories in question, e.g. if they are extensions of arithmetical theories that validate
the Weak and/or the Strong Diagonal Lemma. But in some cases, they do not come
with the theories, but are “imposed from the meta-language”, e.g. by restricting the
valuations to the ones that guarantee that the relevant biconditionals take a designated
value.

Moreover, it is possible for a theory to satisfy one procedure, but not the other.
For example, if one works with a language that does not have an identity operator,
or one does not adopt a meta-linguistic function from names to formulas that restrict
the models, then the theory lacks the resources to have a Strong Self-Referential
Procedure. Nevertheless, the theory may include a Weak Self-Referential Procedure.
We will see below an example of such a theory.7

Let’s now return to what was our initial goal: to add a naive validity predicate
Val to LP. Val, then, must satisfy VD, VP and MetaVD. Suppose that a strong self-
referential procedure is added to the expandedLP . There seems to be one big problem
with this way of doing things: the theory becomes trivial. And this is because, as we
are using a strong self-referential procedure, there will be some name 〈B〉 such that
〈B〉 = 〈Val(〈B〉, 〈⊥〉〉). And asVal satisfiesVD,VP andMetaVD, and the consequence
relation is contractive, then we may reason as we do on page 2 and go on to prove ⊥.

Moreover, if the theory allows some strong self-referential procedure like strong
diagonalization, there will be a sentence A definitionally equivalent to Val(〈A〉, 〈⊥〉),
e.g. “the Beall–Murzi sentence.” Now reason as follows.8

Val(〈A〉, 〈⊥〉),Val(〈A〉, 〈⊥〉) � ⊥
(Contraction)

Val(〈A〉, 〈⊥〉) � ⊥
(VP)� Val(〈A〉, 〈⊥〉)

The first step is an instance of VD. Remember that 〈A〉 is a name of Val(〈A〉, 〈⊥〉).
This also explains why the second inferential step is a case of VP.

A similar reasoning will prove another instance of � Val(〈A〉, 〈⊥〉). A further
application ofMetaVDwill prove⊥. And as for any formula B,⊥ � B, an application
ofVPwill prove� Val(〈⊥〉, 〈B〉). Then, an application ofMetaVDwill show that� B.

Our initial goal was to find a way to expand LP with a naive validity predicate. We
will explore another way to achieve this aim. It will involve a radical change in the
self-referential procedure adopted. As we have shown, it cannot be a strong one. We
will use instead a weak self-referential procedure, as we will see in the next section.

7 We will like to thank an anonymous referee for helping us clarify this point. As she points out, although
strong self-reference might be expressed in the meta-language, it is not expressible in the object language
on pain on triviality. We think she is right, if identity is understood classically, e.g., if no identity assertion
takes a non-classical value. We guess (though we do not have a proof to fully justify this claim) that a
non-classical treatment of identities might help us recover the syntactic functions that we lack in the present
framework. We think that such a project is worth exploring. But we will leave the accomplishment of this
task for future work.
8 As there may be some doubts about whether a strong self-referential procedure has the same effect as the
Definitional Equivalence Principle that takes part in the proof described in page 2, we will present a proof
that does not use that principle.
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Fig. 2 Matrix for Val

3 Weak self-reference for LPVal

We will now present a weak self-referential procedure for LP. We will show how this
makes possible to expand LP with a naive validity predicate Val in a way that avoids
triviality. It is important to remark that there may be many other ways to achieve this
goal, and this is just one option. We will now give a formal presentation of the target
theory, LPVal.

LPVal will be the result of expanding (the propositional version of) LP with
infinitely many names for every formula in the language, and a validity predicate
Val. Val will be defined by the following matrix (Fig. 2).

This matrix is a natural one for an LP naive validity predicate.9 It reflects LP’s
consequence relation, as it gets value 1 iff (designated) values 1, 1

2 are preserved from
premises—represented by the first term of the assertion—to conclusion—represented
by the the second term. Moreover, it reflects the fact that there are no validity “gaps”
or “gluts”—e.g. there is no inference that is neither (both) valid nor (and) invalid.10

Despite being a natural matrix for a validity predicate for LP, this is not the only one
that can be suitable for it. The only restriction that has been imposed to those possible
candidates is that they should satisfy VD, VP and MetaVD. And this can be achieved
in multiple ways. For example, one can specify a new validity predicate Val1 such that
v(Val1(〈γ1 ∧ . . . ∧ γn〉, 〈φ〉)) = 1

2 iff either v(γ1 ∧ . . . ∧ γn) = 1
2 or v(φ) = 1

2 , or
if just v(γ1 ∧ . . . , γn) = 1

2 or v(φ) = 1
2 , but not if both get that value. In fact, one

can safely add at once all those predicates associated with different “validity-related”
matrices, as long as a weak self-referential procedure is adopted.11 Thus, we should
turn to that issue now.

9 This matrix was first introduced in the literature of paraconsistent logics by Antonio Sette in Sette (1973).
It is also the one corresponding to the conditional defined in the system MPT, developed in Coniglio and
Cruz (2014). The authors endorse that conditional precisely because it allegedly reflects the consequence
relation of the theory, that is the same as in LP: preservation of values 1, 1

2 .
10 Nevertheless, this does not mean that we straightforward reject validity “gaps” or “gluts”. Moreover,
there are some approaches that support a non-classical view for validity. In particular, Meadows (2014)
support a “gappy” theory of validity, while Pailos and Tajer (2017) defend a “glutty” version of it. Those
approaches are interesting on there own, but we think they are not available for a supporter of LP. LP’s
notion of validity leaves no space neither for “gluts” nor for “gaps”, because it should be understand in
a traditional way, as preservation of designated values—e.g., of “truth”—from premises to conclusions.
Thus, the way a supporter of LP deals with a validity predicate must be very different form the way she
treats, for example, a truth predicate—e.g., a predicate that admits a “glutty” behaviour.
11 Though itmight be strange to explain the behaviour of a predicate through amatrix, like a truth-functional
connective, we hope to have make it clear enough how this predicate works. In fact, if we were working in
a theory with a transparent truth predicate, every self-referential sentence that includes Val can be emulated
with the help of the truth predicate and a suitable conditional that shares Val’s truth table. But without that
kind of resource, it is not possible to made self-referential sentences just with truth functional constants.
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3.1 Technical details

To guarantee non-triviality we will use a weak self-referential procedure. As we are
working in a semantic framework that does not extend PA, we need to find some other
way to validate the Weak Self-Referential Principle. This will require that statements
that fix the self-referential character of the target sentences should be true in our
theory, e.g. they should get a designated value in every relevant valuation. We will
accomplish this task by restricting the set of valuations to the ones that guarantee this
result. Moreover, we will also need to make some other minor adjustments.

First, we need to select an infinite proper subset of propositional variables. We will
mark them—in the metalanguage—with an ∗.12 Let’s consider, then, the sentence-
scheme x∗ ↔ Ax∗ , where Ax∗ is any sentence that has at least one instance
of Val(〈x P 〉, 〈xC 〉) as a subformula, and x∗ is a distinguished propositional letter.
Val(〈x P 〉, 〈xC 〉) will be a validity assertion such that x∗ is a subformula of either x P ,
xC , or of both of them. Finally, for every formula C , 〈C〉 will be a designated name
for C , built with the help of a function symbol Q that will be added to the language,
such that Q(C) = 〈C〉. The instances of Ax∗ in the biconditional statement will give
us every potential self-referential sentence that includes a validity predicate that can
be represented in the language.13

Thus, we will be able to model the pathological sentences that will be around when
predicates like Val(x, y) are added to the language. In particular, we will have in the
language sentences like p∗ ↔ Val(〈p∗〉, 〈r〉) or q∗ ↔ ¬Val(〈(¬s〉, 〈q∗〉). We will
impose a further semantic restriction to this setting. Let y be a metalinguistic variable
that ranges over propositional letters, and let B be also a metalinguistic variable that
ranges over formulas that include at least one instance of Val(〈yP 〉, 〈yC 〉). A formula-
scheme By will be an instantiation of B, e.g., a formula such that every expression
in it (besides parenthesis) is either a propositional letter, or a logical constant, or the
metalinguistic variable y. Therefore, Val(〈p∗〉, 〈r〉) and Val(〈q〉, 〈p∗〉) are different
formula-schemes.

We will select, for each formula-schema By , one and only one biconditional. Each
one of them will have a different distinguished propositional letter as its left term. Let
Z be the set of such biconditionals.

Finally, we will restrict the valuations to the ones that assign a designated value
to each member of Z .14 This makes those biconditionals true in every valuation, and
allows a version of the Weak Self-Referential Principle to hold in the target theory,
LPVal.15 Thus, though every member of Z will be an instance of the Weak Self-

12 This last move is not essential. But putting a mark on the distinguished propositional letters will make
things easier to follow, as those propositional letters will play a key part in the self-referential procedure
we are about to present.
13 Notice that neither x P nor xC belong to the language of the theory. Moreover, for every x∗, there will
be (infinitely) many formulas with the structure Val(〈x P 〉, 〈xC 〉). For example, there will be one such that
x P = x∗, but xC = p, one such that xC = x∗ and x P = q ∧ r , etc.
14 Notice that such valuations exist. Just consider the one that assigns the value 1

2 to every propositional
letter.
15 We would like to highlight that is only a version of that principle holds in our system. As we already
mentioned, we will have, for every formula-schema By , one and just one sentence of the form y∗ ↔ B∗

y in
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Referential Principle, not every instance of the Weak Self-Referential Principle will
be a member of Z . For example, if p∗ ↔ Val(〈p∗〉, 〈r〉) is a member of Z , then,
q∗ ↔ Val(〈q∗〉, 〈r〉), is not.16

It is essential that we use a biconditional to represent self-referential sentences
that receives value 0 only when the antecedent receives value 1 and the consequent
receives value 0, and that receives value 1

2 when the antecedent receives value 1
2 and

the consequent value 0. LP’s material biconditional belongs to that group.
The following fact about LPVal must be highlighted: it is a non-trivial theory.

Theorem 3.1 (Non-triviality) There is at least one valuation that does not give a
designated value to every formula of LPVal.

Proof Take a valuation v that assigns 1
2 to every propositional letter. Let p∗ be the

propositional letter of the Beall–Murzi biconditional forLPVal, p∗ ↔ Val(〈p∗〉, 〈⊥〉).
Thus, v(p∗) = 1

2 . (In fact, that is the only value that p
∗ can receive in any valuation.)

Now consider the validity assertion Val(〈p∗〉, 〈p∗〉). As is easy to check, v will be
such that v(Val(〈p∗〉, 〈p∗〉)) = 1. Therefore, v(¬Val(〈p∗〉, 〈p∗〉)) = 0. Thus, LPVal

is not trivial. The only thing we need to check is if v is an admissible valuation—e.g.
a valuation that gives a designated value to every biconditional in Z . But, as we have
established, every propositional letter q will be such that v(q) = 1

2 , including every
propositional letter distinguished with a ∗. Thus, every biconditional r∗ ↔ Ar∗ that
belongs to Z will receive a designated value in v.17 
�

So far,we have proved thatLP can be expandedwith the predicateVal. Nevertheless,
we still need to prove that Val expresses naive validity.

Theorem 3.2 (Val is a naive validity predicate).

Proof Val satisfies the semantic versions of VP, VD and MetaVD.
In the cases of VP andMetaVD, this means that those rules are validity-preserving:

if the premises are valid, then the conclusion is valid too. In the case of VD, it means
that it is a valid inference. Let’s start with VP. If A � B, then, for every valuation
v, either v(A) = 0 or v(B) ∈ {1, 1

2 }. In either case, v(Val(〈A〉, 〈B〉) = 1. Now we
need to prove the semantic version of VD: A, Val(〈A〉, 〈B)〉 � B. If the premises
are true in a valuation v, then either v(A) = 0 or v(Val(〈A〉, 〈B〉) = 0, or, if v(A),
v(Val(〈A〉, 〈B〉) ∈ {1, 1

2 }, then v(B) ∈ {1, 1
2 }. The only relevant case is the one

Footnote 15 continued
Z . An unrestricted version of the principle makes all instances of such biconditionals true. For our purposes,
the restricted version will be good enough.
16 As we have already explained, those biconditionals can also be read as a way to mimic (some relevant)
instances of the weak diagonal lemma, that are themselves traditionally treated as a way to achieve self-
reference. Therefore, this allow us to have in the language sentences that represent part of the instances of
the (weak) diagonal lemma. Nevertheless, we would not have all of them. For example, we will not have
cycles –e.g. sentences that refer to other sentences that (eventually) refer to them. But it will not be difficult
to expand this procedure to include them all. Still, as our primary interest is not cycles (nor, for example,
a validity version of a Yablo’s chain) this seems to be good enough to achieve our goals. (For more about
the Yablos Paradox, see e.g. Yablo 1993).
17 We would like to thank Dave Ripley for his help with this result.
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where v(A), v(Val(〈A〉, 〈B〉) ∈ {1, 1
2 }. But in that case, by the matrix corresponding

to Val, v(B) ∈ {1, 1
2 }, and so we are done. If MetaVD is a valid (meta)rule, if both

� Val(〈A〉, 〈B〉) and � A, then, once again by Val’s matrix, � B. 
�
Thus, we have proven that LPVal can internalize a naive validity predicate. But it

may be claimed that all we have proven is that it can internalize semantic versions of
the principles that a real naive validity predicate should satisfy. And to prove what
we intended to prove, we need to present a calculus that is sound and complete with
respect to LPVal.

That is what we will do in the next section.

3.2 A sequent calculus for LPVal

We will now present the three-sided disjunctive sequent system SLPVal (for “Sequent
system for LPVal”). We are not claiming that it is impossible to give a traditional, two-
sided sequent calculus, but the three-sided calculus that we will display simplifies
the completeness proof given in the “Appendix”. Moreover, SLPVal has two further
advantages. On the one hand, each truth value will be represented in it, something that
a two-sided sequent system cannot obviously do. On the other hand, SLPVal makes
it easy to realize what is special about pathological sentences like the Beall–Murzi
sentence. Those sentences cannot receive a classical truth value in any valuation.18

We will now specify how disjunctive sequents behave. �,�,� will be sets of
sentences.

Definition 3.3 A disjunctive sequent � | � | � is satisfied by a valuation v iff
v(γ ) = 0 for some γ ∈ �, or v(σ ) = 1

2 for some σ ∈ �, or v(δ) = 1 for some
δ ∈ �. A sequent is valid iff it is satisfied by every valuation. A valuation v is a
counterexample to a sequent if v does not satisfy the sequent.

An inference from � to � will be valid in LPVal if and only if there is no valuation
such that every formula in � receives a value 1, 1

2 and every formula in � receives
value 0. There is a strong relation between valid three-sided sequents and validLPVal’s
inferences:

� |�LPVal � if and only if � | � | � is valid.

This follows from the definition of LPVal validity and the definition of validity for
a three-sided sequent.

The proof system we are about to present includes, as usual, some axioms and
rules. A sequent is provable if and only if it follows from the axioms by some number
(possibly zero) of applications of the rules. As we are working with sets, the effects of

18 Classical values, in this framework, will be associated with the left and the right sides of a three-sided
sequent. But it can be prove that the Beall–Murzi can only receive the intermediate value, because the
sequent that is empty on the left and on the right, and has only the Beall–Murzi sentence in the middle, will
have a proof. That proof is very similar to the one that Ripley in Ripley (2012) gave for the sequent that has
only the Liar sentence in the middle and is empty on the extremes. In fact, the Beall–Murzi sentence can
be used to define a constant for the intermediate value, and, with its help, it is easy to define constants for
the classical values.
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Exchange and Contraction are built in, and Weakening is built into the axioms. LPVal

has three forms of Cut, and also a Derived Cut rule (that can be inferred from the three
basic rules of Cut) that will play a key part in the Completeness Proof. Id, SeudoDL
(short for “Seudo Diagonal Lemma”) and VAL are the axiom-schemes of SLPVal.19

Cut1,Cut2,Cut3 and DerivedCut are structural rules. The rest of them are SLPVal’s
operational rules. To apply the rule SeudoDL, p∗ ↔ Ap∗ must be a member of Z .

Id
A, � | A, � | A, �

SeudoDL
� | p∗ ↔ Ap∗ , � | p∗ ↔ Ap∗ , �

VAL
Val(〈A〉, 〈B〉), � | � | Val(〈A〉, 〈B〉), �

�, A | � | � � | �, A | �
Cut 1

� | � | �

� | � | �, A � | �, A | �
Cut 2

� | � | �

�, A | � | � � | � | �, A
Cut 3

� | � | �

�, A | �, A | � � | �, A | �, A �, A | � | �, A
Derived Cut

� | � | �

� | � | �, A
L¬

�,¬A | � | �

� | �, A | �
M¬

� | �, ¬A | �

�, A | � | �
R¬

� | � | �,¬A

A | B | B
R-Val  |  | Val(〈A〉, 〈B〉)

� | �, A | �, A �, B | � | �
L-Val

�,Val(〈A〉, 〈B〉) | � | �

�, A, B | � | �
L∧

�, A ∧ B | � | �

� | � | �, A � | � | �, B
R∧

� | � | �, A ∧ B

� | �, A | �, A � | �, B | �, B � | �, A, B | �
M∧

� | � A ∧ B | �

As the rest of the constants (∨, → and ↔) can be defined in terms of the former,
we will not specify rules for them.

The following are some important properties of LPVal and SLPVal:

Theorem 3.4 (Soundness) If a sequent � | � | � is provable, then it is valid.

Proof The axioms are valid, and validity is preserved by the rules, as can be checked
without too much trouble. 
�
Theorem 3.5 (Completeness) If a sequent � | � | � is valid, then it is provable.

Proof In the “Appendix”. 
�

19 VAL reflects the semantic behaviour of the validity predicate. What VAL express is that every sentence
of the form Val(〈A〉, 〈B〉) will either receive the value 0 or the value 1 (but never the value 1

2 ) in every
valuation.
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Fig. 3 Matrix for Tr

4 Adding a transparent truth predicate

So far, we have shown how to expand the dialetheist logic LP with a naive validity
predicate that also expresses its own notion of semantic consequence. There are several
validity theories that intend to solve the Validity Paradox in a variety of ways. But a
promising theory of validity that is immune to semantic paradoxes should also interact
safely with a transparent truth predicate.20 This is what we will get with LPVal+.
LPVal+ expands LPVal’s language with a transparent truth predicate Tr (Fig. 3).

One important thing aboutLPVal+ is that itsweak self-referential procedure should
be slightly different from the one we saw for it to allow not only self-referential
sentences involving the validity predicate, but also self-referential sentences involving
the truth predicate or both of them. Thus, we will have new self-referential sentences
as terms of the biconditionals used to express self-reference. Those biconditionals
will have, as theirs right terms, formulas that include instances of Tr. Sentences of the
form x∗ ↔ Ax∗ will now be understood as formulas where Ax∗ refers to a sentence
that with least one instance of Val(〈x P 〉, 〈xC 〉) or at least one instance of Tr(〈x∗〉) as
subformulas.

Now we can model the pathological sentences that are around when predicates
like validity or truth are introduced in the language. Once again, we will select, for
each formula-schema Ax∗ , one and only one biconditional. Each biconditional will
have a different propositional letter as its left term. We will call our new set of such
biconditionals, Z∗.

The valuations will be restricted to the ones that assign a designated value to each
member of Z∗.21 This allows a version of theWeak Self-Referential Principle to hold
in our theory, as those biconditionals will become true in every valuation.

Theorem 4.1 (Non-triviality) There is at least one valuation v such that for some
formula A of LPVal, v(A) = 0.

Proof The same strategy as the one used to prove LPVal’s non-triviality can be used
to prove that LPVal+ is not trivial. 
�

20 For example,Meadows (2014) gives a theory of naive validity that cannot be expandedwith a transparent
truth predicate without becoming trivial.
21 Such valuations also exist in this case. We only need to consider, once again, the one that assigns 1

2 to
every propositional letter.
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LPVal+ will be sound and complete with respect to a new disjunctive three-sided
sequent system, SLPVal+. SLPVal+ expands SLPVal with a transparent truth predicate,
and three new rules for it.

� | � | �, A
RTr

� | � | �, T (〈A〉)
� | �, A | �

MTr
� | �, T (〈A〉) | �

�, A | � | �
LTr

�, T (〈A〉) | � | �

To apply SeudoDL, p∗ ↔ Ap∗ must be a member of Z∗.
The relation between valid sequents of SLPVal+ and valid inferences of LPVal+

will be once more the expected one. Moreover, SLPVal+ is sound and complete with
respect to LPVal+.

Theorem 4.2 (Soundness) If a sequent � | � | � (of SLPVal+) is provable, then it is
valid.

Proof The axioms are valid, and validity is preserved by the rules, as can be easily
checked. 
�
Theorem 4.3 (Completeness) If a sequent � | � | � (where each sentence in the
sequent is a LPVal+’s formula) is valid, then it is provable in SLPVal+.

Proof In the “Appendix”. 
�

5 Validity as an intensional notion

Wewill like tomentionone important objection against this approach raisedbyGraham
Priest. Validity is an intensional notion. It cannot be modeled by a matrix, because
the resulting theory will be deeply unsound: it will make true validity assertions that
are not intuitively valid.22 Take a valuation v such that v(p) = 1 and v(q) = 0. Then
v(Val(〈q〉, 〈p〉)) = 1. But this surely isn’t right, because p and q are independent
contingent formulas.

It is important to understand that this argument doesn’t tell against treating a validity
predicate as a sort of conditional, but against interpreting it as a deterministic, exten-
sional connective, whose meaning is fixed by its truth-table. Every validity predicate
resembles a kind of conditional. One of the main features of a semantically closed
theory is to have a way to express in the theory its consequence relation. And the
linguistic item that fulfills this task will be relating the premises and conclusions in
very much the same way as a suitable conditional → will relate the antecedent and
the consequent. Let γ1, . . . , γn be the formulas in �. The validity predicate and such
a conditional should satisfy both the Deduction Theorem and its converse:

� � φ iff � Val(〈�〉, 〈φ〉)
� � φ iff � (γ1 ∧ . . . ∧ γn) → φ

Thus, the problem seems not to be that wemodel validity with a conditional, but that
we use a deterministic conditional. If the validity predicate is associated with a partic-
ular deterministic matrix, then its truth-value will be fixed by the values of its terms.

22 Or will validate inferences that involve validity assertions that are not intuitively valid.
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But of course, the truth of a validity assertion in a particular valuation v does not imply
that that validity assertion is true in the theory. To be true in the theory, it should be true
in every valuation. And it is not that awkward to say that those assertions are valid, or
true in (or according to) the theory. Thus, even if those valuations make true sentences
like Val(〈q〉, 〈p〉), it is not the case that they will be valid, or true in the theory.23

Moreover, it is not even true that validity is necessarily associated with “necessary
truth-preservation”, or some other related notion. From an inferentialist perspective,
to capture a notion like validity in the language, is to add a symbol to the language,
and, moreover, rules that express its normative use in the inferential practice. Most
probably, an inferentialist will consider VP, VD, and maybeMetaVD, as the rules that
capture the meaning of the validity predicate.24 From the inferentialist’s perspective,
there is nothing essential about validity that a predicate does not capture if it obeys
those rules. Thus, an inferentialist that recognizes VP, VD and MetaVD as the rules
that define a validity predicate will accept Val as a full-blooded validity predicate.

Nevertheless, theremay be inferentislists that think that the anti-extensionalist argu-
mentwepresentedbefore is sound.Thus, if validity cannot bemodelledby a traditional,
deterministic matrix, but nevertheless it should satisfy VP, VD and MetaVD, then it
should be inferred that some naive validity predicates, such as Val, are not real valid-
ity predicates. The mistake, then, is to think that VP, VD and MetaVD are not only
necessary, but also (jointly) sufficient conditions for a naive validity predicate. If this
is true, then, our proposal not only proves (1) that a dialetheist theory is compatible
with a naive validity predicate, but also that (2) that a naive validity predicatemay not
be a real validity predicate after all.

Our originalworry, then, canbe reformulated like this: can anaivevalidity predicate,
that is also a real validity predicate, be added to a dialetheist theory? What we will do
in the rest of the section is to justify a positive answer to that question.

5.1 A non-deterministic approach

Though we realize that a naive validity predicate recovered through a deterministic
matrix will not satisfy an anti-extentionalist about validity, we think that a validity
predicate based on a suitable non-deterministic matrix may do the required job, even
according toPriest’s standards. Thus, letVal∗ be a validity predicatewhose behaviour is
not truth-functional, in the sense that the truth values of the formulas that arementioned
in a validity assertion does not fix the value of the validity assertion. These kind
of predicates can be recovered by non-deterministic matrices. So, the values of the
formulas A and B do not fix the value of formulas like Val∗(〈A〉, 〈B〉).25

23 The awkwardness, in cases like these, seems to be not different from the one generated by a conditional
that is true if its antecedent is false, or its consequent is true, or some other sufficient extensional condition.
24 Though there is some open debate about whether MetaVD, as we already mentioned, should be part of
the list. An inferentialist like David Ripley, for example, rejects MetaVD as an adequate rule for a validity
predicate.
25 For more about non-deterministic semantics, see Avron (2007) and Avron and Zamansky (2008).
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Fig. 4 Matrix for Val∗

We will apply the same strategy that we use in the case of LPVal, with the only
difference that the new language replaces all instances ofValwith occurrences of Val∗.
Call the resulting theory, LPVal∗ . LPVal∗ , as LPVal, will have a weak self-referential
procedure. In particular, LPVal∗ will achieve self-reference in the same way as LPVal

does.
Wewill now introduce thematrix forVal∗. The leftmost column represent the values

of the formula A, and the topmost line represent the values of the formula B (Fig. 4).
This matrix should be understood in this way. For any pair of formulas A, B, and

every valuation v, if v(A) = 1, 1
2 , and v(B) = 0, then v(Val(〈A〉, 〈B〉) = 0. This

seems intuitively right. If there is at least one valuation where the premise (or the
conjunction of the premises) takes a designated value, but the conclusion takes the
undesignated value 0, then that inference will be invalid. And the validity assertion
should reflect this fact by receiving the undesignated value 0. In every other case,
the validity assertion may receive any of three truth values. This will allow LPVal∗ to
handle in the right way the unpleasant results faced byLPVal. InLPVal, if v(p) = 1, 1

2 ,
then v(Val(〈q〉, 〈p〉) = 1. Thus, the inference from p to v(Val(〈q〉, 〈p〉) will be valid.
But in LPVal∗ , even if v(p) = 1, 1

2 , it could still be the case that v(Val∗(〈q〉, 〈p〉) = 0.

Though every LPVal’s valuation will be an LPVal∗ ’s valuation, there will be more
LPVal∗s valuations thanLPVal valuations. Thus,LPVal∗ will be a sub-theory ofLPVal.
Take, for example, two sentences A and B such that for a valuation v, v(A) = 1
and v(B) = 1

2 . In LPVal, for every such v, v(Val(〈A〉, 〈B〉) = 1. But in LPVal∗ ,
Val∗(〈A〉, 〈B〉 can take the value 1, 1

2 or, moreover, 0.
The non-deterministic behaviour of the new validity predicate is compatible with

the anti-extensionalist rejection of the idea that the falsity of the first term, or the truth
of the second term, of a validity assertion,makes it true. But this does not comewithout
costs. Val∗ has two major problems. The first one is that there will be no valid validity
assertion, because for every combination of truth values of A and B, for any formulas
A and B, there will be at least one valuation v such that v(Val∗(〈A〉, 〈B〉) = 0. The
second is that, by itself, Val∗ is not a naive validity predicate, because it will invalidate
VP. Nevertheless, the satisfaction of VP can be imposed by brute force.26 Thus, the
valuations v can be restricted to the ones such that, if A � B, then, for every valuation
v, v(Val∗(〈A〉, 〈B〉) = 1, 1

2 . This simple move solves both problems. Therefore, in
this new scenario, for every new validity assertion Val∗(〈A〉, 〈B〉), � Val∗(〈A〉, 〈B〉).

What remains to be proved is that the semantic versions of VD and MetaVD
hold in LPVal∗ . Let’s start with the former, and assume A, Val∗(〈A〉, 〈B〉) � B.
Thus, for every valuation v, either v(A) = 0 or v(Val∗(〈A〉, 〈B〉) = 0, or, if v(A),
v(Val∗(〈A〉, 〈B〉) = 1, 1

2 , then v(B) = 1, 1
2 . The only relevant case is when v(A),

26 A similar strategy was adopted, for example, by Meadows (2014).
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v(Val∗(〈A〉, 〈B〉) = 1, 1
2 . But then, by the matrix corresponding to Val∗, v(B) = 1, 1

2 ,
and so we are done. ForMetaVD, if both � Val∗(〈A〉, 〈B〉) and � A, then, once again,
� B.

LPVal∗ will also be non-trivial. The proof runs as LPVal’s non-triviality proof.
As all LPVal’s valuations are also LPVal∗ ’s valuations, so is the one that gives a
designated value to every biconditional that express a self-referential formula, and a
non-designated value to at least one sentence. Nevertheless, it seems not easy to build
a proof-system for LPVal∗ , as Val∗’s assertions don’t have a deterministic behaviour.
Giving that our initial goal is already accomplished,wewill leave the taskof developing
a proof-system for LPVal∗ for future work.

5.2 Limits and problems

Regardless the virtues it may have, LPVal∗ still suffer from a different kind of “incom-
pleteness” problem. In particular, some intuitively valid inferences involving validity
assertions wont turn out valid. This is just one example:

Val∗(〈�〉, 〈p〉) � Val∗(〈�〉, 〈p ∨ q〉)

There might be a pretty straightforward way out of this problem.27 In Negri (2005),
Sara Negri explains how to prove, in a sequent calculi, principles and inferences that
involved the necessity operator by adding suitable inferential schemes. For example,
a principle like �(A → B) → (�A → �B) can be recovered through the addition
of the following rule to the standard sequent system LK for classical logic:

A � B
K �A � �B

In a similar vein, one can demand that Val∗ should satisfy the following meta-rule:
A � B

K − Val∗
Val∗(〈�〉, 〈A〉) � Val∗(〈�〉, 〈B〉)

With the restriction that K −Val∗ imposed, a validity assertion like Val∗(〈p〉, 〈p∨
q〉) will be satisfied in every valuation.

A similar manoeuvre may be adopted with other sequent-calculi rule-versions of
modal principles. We may dictate further restrictions on validity versions of those
modal rules to validate intuitive validity principles.28

27 A similar solution is considered in Barrio et al. (2016). In that paper, the authors assess different ways
to add a validity predicate to the non-transitive logic ST .
28 Other rules of this kind that Negri mentioned in Negri (2005) are the following:

A � B
T �A � B

�A � B
S4 �A � �B

The validity-version of T might be the following:
A � B

T − Val
Val∗(〈�〉, 〈A〉) � B
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Nevertheless, there seems to be another important flaw of the non-deterministic
proposal. It can be argued that a validity theory must prove not only every validity
assertion corresponding to a valid inference, but also every negation of a validity
assertion corresponding to an invalid inference. In particular, the non-deterministic
approach does not validate a sentence like ¬Val∗(〈p〉, 〈q〉). Still, the theory can
prove some of these negations. For example, ¬Val∗(〈�〉, 〈⊥〉).

There seems to be no easy answer to this problem. But we will leave the exploration
of possible solutions to future works.

6 Conclusion

We have shown, contrary to what is claimed in Beall (2009) and Beall and Murzi
(2013), that dialetheism can express the concept of naive validity. We have shown that
LP can be non-trivially expanded with a naive validity predicate Val, and, moreover,
that such a predicate can express LP’s own consequence relation. Val can afford to
express and deal with semantic paradoxes involving validity. LPVal achieves non-
triviality by means of a weak self-referential procedure. We have also shown that
LPVal is sound and complete with respect to the three-sided sequent calculus SLPVal.
LPVal can be safely expanded with a transparent truth predicate. Finally, we faced
the objection that a naive validity predicate should be intensional through a theory
that uses a validity predicate whose meaning is given by a non-deterministic matrix.
The new theory, LPVal∗ , also achieves self-reference through a weak self-referential
procedure.

7 Appendix: SLPVal’s and SLPVal+’s Completeness Proof

Wewill use the method of reduction trees,29 that allows to build for any given sequent,
either a proof of that sequent, or a counterexample to it. The method also provides
of a way of building the eventual counterexample. We will introduce the notions of
subsequent and sequent union, that will be used in the proof:

Definition 7.1 A sequent S = � | � | � is a subsequent of a sequent S′ = �′ | �′ |
�′ (written S � S′) if and only if � � �′, � � �′, and � � �′.

Definition 7.2 A sequent S = � | � | � is the sequent union of a set of sequents
[�i | �i | �i ]i∈I (written S = �[�i | �i | �i ]i∈I ) iff � = �i∈I�i , � = �i∈I�i and
� = �i∈I�i .

The construction starts from a root sequent S0 = �0 | �0 | �0, and then builds a
tree in stages, applying at each stage all the operational rules that can be applied, plus

Footnote 28 continued
And here is a the validity-version of S4:

Val∗(〈�〉, 〈A〉) � B
S4 − Val

Val∗(〈�〉, 〈A〉) � Val∗(〈�〉, 〈B〉).
29 For similar proofs, see Ripley (2012) and Paoli (2002).
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DerivedCut “in reverse”, e.g. from the conclusion sequent to the premise(s) sequent(s).
For the proof, we use an enumeration of the formulas and an enumeration of names.
Wewill reduce, at each stage, all the formulas in the sequent, starting from the onewith
the lowest number, then continuing with the formula with the second lowest number,
and moving on in this way until the formula with the highest number in the sequent is
reduced. If case a formula appears in more than one side of the sequent, we will start
by reducing the formula that appears on the left side and then proceed to the middle
and the right side, respectively. The final step, at each stage n of the reduction process,
will be an application of the Derived Cut rule to the n-formula in the enumeration. If
we apply a multi-premise rule, we will generate more branches that will need to be
reduced. If we apply a single-premise rule, we just extend the branch with one more
leave. We will only add formulas at each stage, without erasing any of them. As a
result of the process just described, every branch will be ordered by the subsequent
relation. Any branch that has an axiom as it topmost sequent will be closed. A branch
that is not closed is considered open. This procedure is repeated until every branch
is closed, or until there is an infinite open branch. If every branch is closed, then the
resulting tree itself is a proof of the root sequent. If there is an infinite open branch Y ,
we can use it to build a counterexample to the root sequent.

Stage 0 will just be the root sequent S0. If it is an axiom, the branch is closed. For
any stage n + 1, one of two following things might happen:

(1) For all branches in the tree after stage n, if the tip is an axiom, the branch is closed.
(2) For open branches: For each formula A in a sequent position in each open branch,

if A already occurred in that sequent position in that branch (e.g. A has not been
generated during stage n + 1), and A has not already been reduced during stage
n + 1, then reduce A as is shown below.

• If A is a negation ¬B, then: if A is in the left/ middle/ right position, extend the
branch by copying its current tip and adding B to the right/middle/left position.

• If A is a conjunction B ∧C , then: (i) if A is in the left position, extend the branch
by copying its current tip and adding both B and C to the left position. (ii) If A
is in the middle position, split the branch in three: extend the first by copying the
current tip and adding B to both the middle and right positions; extend the second
by copying the current tip and adding C to the middle and right positions; and
extend the third by copying the current tip and adding both B and C to the middle
position. (iii) If A is in the right position, split the branch in two: extend the first by
copying the current tip and adding B to the right position; and extend the second
by copying the current tip and adding C to the right position.

• If A is a Val assertion Val(〈B〉, 〈C〉), then: (i) If A is in the right position, extend
the branch by copying its current tip and adding B to the left position, and C to
the middle and right positions. (ii) If A is in the left position, then split the branch
in two. Extend the first by copying the current tip and adding B to the middle and
right positions, and extend the second by copying the current tip and adding C to
the left position. (iii) If A is in middle position, then do nothing.

As the disjunctions, conditionals and biconditionals sentences can be defined in
terms of negations and conjunctions, it won’t be necessary to specify special rules for
them. Those cases will be subsumed in the ones already specified.
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Wewill also apply the Derived Cut rule at each step. Consider the nth formula in the
enumeration of formulas and call it A. Now extend each branch using the Derived Cut
rule. For each open branch, if its tip is � | � | �, split it in three and extend the new
branches with the sequents �, A | �, A | �, �, A | � | �, A, and � | �, A | �, A,
respectively.

Now we need to repeat this procedure until every branch is closed, or until there is
an infinite open branch. If the first scenario is the actual one, then the tree itself is a
proof of the root sequent, because each step will be the result of an application of a
structural or operational rule to the previous steps. If the second scenario is the actual
one, we can use the infinite open branch to build a counterexample.

If in fact there is an infinite open branch Y , then the Derived Cut rule will have
been used infinitely many times. Thus, every formula will appear at some point in
the branch for the first time, and will remain there in every step afterwards. Now,
we first collect all sequents of the infinite open branch Y into one single sequent
Sω = �ω | �ω | �ω = � {S | S is a sequent of Y }. Notice that, as Derived Cut has
been applied infinitely many times in the construction of the branch, every formula
will occur in exactly two places in Sω.30 Thus, there will be a valuation such that no
formula in the sequent gets the value associated with the place where it occurs (i.e.
0 if the formula occurs in the left, 1

2 if it occurs in the middle, 1 if it occurs in the
right). Hence, for each formula A in the sequent, v will give A a value different from
the ones corresponding to the sides where A appears in the sequent. But that includes
all the formulas in the initial and finite sequent S0. That valuation, then, will also
be a counterexample to S0. Therefore that valuation will be a counterexample to the
sequent being considered.

Thus, for atomic formulas A (propositional letters and truth assertions), v(A) = 0
or 1

2 or 1, respectively, iff A does not appear in �ω or �ω or �ω, respectively.
The rules for reducing formulas can be used to show by induction that, if none of the

components of complex formulas receive the value associated with any place in which
they appear in Sω, neither will the compound. We will not see, due to limitations of
space, how this method works in detail. For conjunctions and negations, we proceed
exactly as is shown in Ripley (2012). The new cases are that of Val assertions. Thus,
we will just check how that type of assertion can be reduced.

In the cases of validity assertions Val(〈B〉, 〈C〉), where Val(〈B〉, 〈C〉) appears on
the right side of the sequent, the result of reducing it is a sequent with B on the left, and
C on both the middle and the right sides. Notice that neither can C appear also on the
left nor canVal(〈B〉, 〈C〉) appear also on the left. If any of those two things happen, the
relevant formula will appear at some point for the first time in the branch. But if that
happens, then that node of the branch will be an axiom (a case of I d or of V AL), and
so the branch will be closed. So both C and Val(〈B〉, 〈C〉) will appear in the middle
and on the right side. Thus, there seems to be just two possibilities: (i) either B is both
in the left and the middle sides of the sequent, or (ii) it is both in the left and the right
side of the sequent. Let us start with (i). Then, by inductive hypothesis, v(B) = 1 and

30 It cannot occur in the three places, because then there will be some finite stage n where the formula
appears for the first time in the branch in the three sides. But then that sequent will be an axiom, and
therefore the branch will be closed.
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v(C) = 0, but then v(Val(〈B〉, 〈C〉)) = 0. Now consider (ii). By inductive hypothesis,
v(B) = 1

2 and v(C) = 0, but then v(Val(〈B〉, 〈C〉)) = 0. Thus, in neither of these
cases Val(〈B〉, 〈C〉) will receive a value associated with the sides where it appears.

Now we need to evaluate the case where Val(〈B〉, 〈C〉) appears both on the left and
on the middle sides. The result of reducing Val(〈B〉, 〈C〉) on the left will be two new
branches: (i) the one with the addition of B on the middle and on the right, and (ii) the
one with the addition of C on the left. In (i), v(B) = 0, and thus v(Val(〈B〉, 〈C〉) = 1.
In (ii), either (iia) C appears also on the middle, or (iib) C appears also on the right.
In (iia), v(C) = 1, and thus v(Val(〈B〉, 〈C〉)) = 1. In (iib), v(C) = 1

2 , and thus
v(Val(〈B〉, 〈C〉)) = 1. And so we are done.

By completing the induction along these lines, we can show that we can design
a valuation such that no formula receives the value associated with any place where
it appears in Sω. But, as we know, that includes all the formulas in the initial and
finite sequent S0. That valuation, then, will also be a counterexample to S0, which is
what we were looking for. Thus, for any sequent S, either it has a proof or it has a
counterexample.

Finally, SLPVal+’s proof uses the method of reduction trees that we already present
for SLPVal. We need to add are new clauses Tr. Thus, for any stage n+1, if the branch
is open, and A is a truth assertion Tr(〈B〉), then:
• if Tr(〈B〉) is in the left/middle/right position, extend the branch by copying its
current tip and adding B to the left/middle/right position.

If Tr(〈B〉) appears on the left/middle/right side of the sequent, the result of reducing
it is a sequent with an additional B on the left/middle/right side.

In the cases where Tr(〈B〉) appears in an infinite open branch, then v(Tr(〈B〉)) = 0
or 1

2 or 1, respectively, iff B does not appear in �ω or �ω or �ω, respectively. B will
appear in exactly the places where Tr(〈B〉) appears. As any formula in sequent that
corresponds to an infinite open branch, B appears in exactly two places. If Tr(〈B〉))
appears in the only place where B does not appear, then, as Tr(〈B〉) will eventually be
reduced, B will appear in the only place where it does not appear until that moment
in branch. But then that sequent will be an axiom, and thus the branch will be closed.
This is the only possibility that we need to consider. Tr(〈B〉) can not appear in less
places that B: as any formula in a sequent corresponding to an infinite open branch, it
has to appear in exactly two places.
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