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Abstract
In times of crisis, when current theories are revealed as inadequate to task, and new
physics is thought to be required—physics turns to re-evaluate its principles, and to
seek new ones. This paper explores the various types, and roles of principles that
feature in the problem of quantum gravity as a current crisis in physics. I illustrate
the diversity of the principles being appealed to, and show that principles serve in
a variety of roles in all stages of the crisis, including in motivating the need for a
new theory, and defining what this theory should be like. In particular, I consider: the
generalised correspondence principle,UV-completion, background independence, and
the holographic principle. I also explore how the current crisis fits with Friedman’s
view on the roles of principles in revolutionary theory-change, finding that while many
key aspects of this view are not represented in quantum gravity (at the current stage),
the view could potentially offer a useful diagnostic, and prescriptive strategy. This
paper is intended to be relatively non-technical, and to bring some of the philosophical
issues from the search for quantum gravity to a more general philosophical audience
interested in the roles of principles in scientific theory-change.

Keywords Constitutive principles · Scientific revolution · Theory change ·
Friedman · Holographic principle · Spacetime

1 Introduction

In times of crisis—when current theories are revealed as inadequate to task, and new
physics is thought to be required—physics turns to re-evaluate its principles, and to
seek new ones. This was recognised by both Poincaré and Einstein in their work
leading up to, and during, the crises in physics at the turn of the 20th century that
resulted, eventually, in the development of relativity and quantum mechanics (among
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numerous other innovations). Fast forward to today, and physics is again—or, perhaps,
still—in strife. The crisis it faces now is that of quantum gravity, and, in a way, it is
a continuation of the older crises.1 The problem of quantum gravity is the quest for
a theory (QG) needed to describe the domains in which both general relativistic and
quantum field theoretic effects are supposed to play a nontrivial role. These domains
include, for instance, those where curvatures and energy densities approach the Planck
scale, (10−35 m), e.g., near black hole singularities, and cosmological singularities
(such as the “big bang”). Part of the difficulty with finding a theory is the extreme
nature of these regimes, which preclude direct experimental testing (although tests
in accessible regimes are not ruled out), and currently there are no unequivocal data
that QG is definitely required to explain. This empirical disconnect means that more
weight has fallen on other guides to theory construction and evaluation, including
principles. Another great difficulty, not unrelated to the first, is that it is unclear what
an acceptable theory of QG would look like. Apart from the minimal characterisation
offered above, there is little agreement as to the criteria of theory success. Accordingly,
there are many different approaches to QG (i.e., different research programs), which
are distinguished, in part, by the differing sets of principles that they adopt.2

In 1984, John Wheeler wrote that, “[n]o question about quantum gravity is more
difficult than the question, ‘What is the question?”’ (Wheeler 1984, p. 224)—and,
while much progress has been made in the decades since, the most difficult question
remains. In order to answer this question, we need to consider the various principles
that motivate the search for the new theory, as well those that serve to define it.
Developing and evaluating these principles is particularly important, given the long-
standing theoretical stalemate.3 The aim of this paper is to explore the variety of
different types of principles that feature in the search for the new theory, as well as their
different roles and statuses. I workwith only aminimal characterisation of “principle”,
as being any conceptual or formal feature of physical theorising that is taken to play
a key role in the definition, construction and/or justification of new theories.4 This
general definition is based on how the term is used in physics itself, and is necessary
in order to accommodate the variety of putative principles that currently feature in the
search for the new theory.

Notably, this definition admits many more instances than the specific notions stan-
dardly discussed in the philosophy literature do—for instance, it includes items like
unification, mathematical consistency, and the generalised correspondence principle,
which are apparently difficult candidates for first principles, conventional definitions,

1 Almost as soon as GR was completed, Einstein was aware of the need for a quantum theory of gravity;
Einstein (1916, p. 202) writes of a possible conflict between GR and the principles of quantum theory. See
also the papers in Blum and Rickles (Forthcoming).
2 Note that, although each of these approaches is incomplete, and faces its own set of problems in addition
to these general difficulties, it is still possible—and indeed, worthwhile—to engage with the philosophy of
QG, as well as to consider what QG might tell us about other philosophical questions (See, e.g., Butterfield
and Isham 2001; Callender and Huggett 2001; Rickles 2008a).
3 See also, Crowther and Rickles (2014), Crowther and Linnemann (2017), Smolin (2017).
4 When I refer to “current principles”, I mean those that feature within, or led to the development of,
existing theories (typically the current best theories of physics). This is in contrast with new principles that
are being appealed to (e.g., the holographic principle), which have not yet led to, or featured within, any
successful, accepted scientific theories.

123



Synthese (2021) 198 (Suppl 14):S3489–S3516 S3491

or constitutive principles, but instead seem more like meta-principles, or virtues.5

However, at this stage of theory development, I maintain that it is important to con-
sider all such putative principles initially—and, after examining them, we will be in a
better position to evaluate whether or not they accord with any particular philosophical
interpretation or view of scientific principles. It is only once we are clear on what, and
how, principles are being used in this context that we will be able to engage in both
the descriptive and prescriptive tasks, and do so from both directions—exploring what
we can learn about, and for, particular philosophical positions given the current “live”
case-study in physics, and what we can learn about, and for, the future development
of physics, given particular philosophical views. In this paper, I can only make a start
on this much larger project. Thus, here I begin the task of exploring some of the key
principles that have been appealed to in the search for QG, and I do so in a neutral way,
without being tied to any particular philosophical view or interpretation of principles
in science.

Additionally, though, I also begin to consider how the current crisis in physics fits
with Michael Friedman’s view of physical theories (as in, e.g., Friedman 2001)—
not only because this is a very influential recent account of the roles of principles in
theory-change, but because this view potentially offers an interesting perspective on
the problem of QG, as being the incoherency of physics’ current framework, taken as
a whole (in Friedman’s sense of “framework”, defined below, Sect. 2.2). I find that
some aspects of what Friedman calls communicative rationality—which is a particular
process of argument (engaged in by the scientists) that facilitates theory-change—
do feature clearly in the context of QG research. However, many other aspects of
Friedman’s views are not currently reflected in the present crisis, in spite of suggestions
that it will necessitate revolutionary paradigm change (as explained in Sect. 3). I
consider the utility, too, of translating Friedman’s thesis into a prescriptive strategy
for use in the search for a new physical framework.

The paper begins (Sect. 2) with an exploration of the various different types, and
roles, of principles in physical theorising—particularly in theory construction and
justification. A subsection (Sect. 2.1) also mentions Einstein’s distinction between
principle theories versus constructive theories, as well as Poincaré’s views on physical
principles as conventions, and his 1904 lecture describing the then-present crisis of
physics—I will later (Sect. 3) contrast these views with the current crisis in physics,
and approaches to theory-development. A following subsection (Sect. 2.2), briefly
outlines the relevant aspects of Friedman’s views that I consider in the rest of the
paper. I then (Sect. 3) present the problem of QG, explaining the various roles played
by different principles in motivating, and defining, the new theory, and how these
serve (in part) to characterise the different approaches to QG. Following this (Sect.
4) I discuss some of the key principles involved in QG: the correspondence principle
(Sect. 4.1), UV-completion (Sect. 4.2), background independence (Sect. 4.3), and the
holographic principle (Sect. 4.4). As I explain, each of these is of different origin and
status. The utility and consequences of any particular principle depends on the way it

5 As I discuss, the generalised correspondence principle does feature as a sort of meta-principle in what
Friedman (2001) calls “communicative rationality”.
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is employed in the search for the new theory, as well as the other principles that are
adopted with it.

2 Principles in physical theorising

In physics, there are some putative principles that are understood as applying only
within a restricted domain: perhaps as features of effective theories6 or frameworks,
as “effective principles” (such as the principle of least action), or being the result
of particular boundary conditions (such as the second law of thermodynamics).
There are others that are embodied only within specific theories, and are difficult
to imagine featuring in other theories, or being in any way “prior” to theory (such as
Pauli’s exclusion principle). And, still, there are some principles that are thought
to be fundamental—and thus (strictly speaking) to hold in all domains—yet are
not useful in all domains, nor even practically applicable in most (e.g., Heisen-
berg’s uncertainty principle, or fundamental symmetries that are broken, via, e.g.,
the Higgs mechanism). While these are still principles according to the definition
given above (i.e., they are conceptual or formal features of physical theorising that
play key roles in theory definition, construction and justification)—typically when I
refer to “principles”, I mean overarching statements that transcend particular theo-
ries, and are of broad practical applicability. These principles, such as the principle
of relativity, and the correspondence principle, boast a degree of generality and a
privileged status that means that we do not expect any decent theory of physics to
be in contradiction with them. Rather, they are used to help arrive at viable physical
theories.

The ways in which principles are used in the development of a theory are various,
and may serve to confer, or reflect, their different statuses—notwithstanding the fact
that a principle may be used in different ways in different research programs, and at
different stages of theory-development within a given program. There are at least four
different roles of principles in theory development and evaluation:

1. A guiding principle is one used primarily as a heuristic: it can aid in the discovery
of the theory by leading to new insights, but may or may not actually be retained
in the resulting theory (e.g., Mach’s principle in the development of GR);

2. A postulate is explicitly, and from the outset, taken to be a pillar of the theory (e.g.,
the speed of light in special relativity);

3. A criterion of theory acceptance (also referred to as criterion of theory success,
or a constraint): the new theory should not be accepted if it is incompatible with
the principle (unless there is strong evidence in favour of the theory, and/or the
principle is shown to be violated under the relevant conditions). Such constraints
may be taken either,

6 An effective theory in physics is one that is valid only at a given range of energy (length) scales, and is
thus not considered fundamental.
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i. as part of the definition of the theory (some popular candidates in different
approaches to QG include, e.g., UV-completeness;7 general covariance; unifi-
cation), or,

ii. as “external” constraints (perhaps coming from current successful theories,
in their known domains of success; e.g., a theory of QG should not violate
Lorentz invariance in any detectable way);

4. A principle may also be appealed to as ameans of confirmation: compatibility with
the principle serving to increase credence in the theory in a way broadly similar
to empirical data. This compatibility may be,

i. expected, e.g., if the principle also features in any of the other roles 1–3 (e.g.,
general covariance in loop quantum gravity; compatibility with Lorentz sym-
metry in causal set theory), or,

ii. unexpected, as a sort of “bonus”, or something like a “prediction” of the
new theory (e.g., if a theory of QG were to automatically recover, or
explain, particular principles of current physics, e.g., the equivalence princi-
ple; Lorentz symmetry; the quantum-mechanical uncertainty relations; etc.;
but, importantly, this role is not restricted to current principles, as dis-
cussed below—unexpected compatibility with new principles can also serve
to increase credence in the theory).

As should be clear, the roles listed are certainly not exclusive, nor the distinctions
between them sharp. This will bemore apparent in the discussion of the three examples
below (Sect. 4).

A little further discussion of role 4. is required. The idea is that principles can serve
as means of non-empirical confirmation. However, the role 4. is not the same as the
means of, and arguments for, non-empirical confirmation presented by Dawid (2013).
There is a similarity, nevertheless, between role 4.ii. and Dawid’s (2013) unexpected
explanatory coherence argument (UEA), in that the unexpected recovery, or explana-
tion of a particular known principle (i.e., one from current successful theories) would
satisfy both Dawid’s UEA as well as my role 4.ii. The main differences between these
ideas, though, are that, firstly, Dawid’s UEA is more specifically about the new theory
drawing explanatory connections between features of current theories, rather than just
recovering, or being compatible with, particular principles of current physics.8 Sec-
ondly, unlike Dawid’s UEA, my role 4.ii. can be served also by new principles—not
just those recognised in current physics. I discuss the idea of new principles more
below. But first, I briefly explain Dawid’s (2013) meta-inductive argument (MIA).

The MIA holds that credence in a new theory is increased by the theory’s employ-
ment of particular features of our current best theories—we know that these current
theories are successful, and so we have reason to believe that a new theory that also

7 Although UV-completion (the idea that a theory be formally predictive up to all possible high energy
scales) is often presented as part of the definition of QG, Crowther and Linnemann (2017) argue against
taking it as a criterion of acceptance in QG. Nevertheless, it plays a role in motivating the search for QG,
and may usefully act as a guiding principle.
8 Note, too, that Dawid (2013) presents the UEA in conjunction with two other arguments, in order to
establish limits on the underdetermination of the new theory, and together paint a picture that is much more
nuanced than what I present here.
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uses these known features and techniques, is itself likely to be successful. Thus, a new
theory employing a known principle from successful current physics would have its
credence increased according to both the MIA and my role 4.i. Though, again, these
two ideas are not the same (in particular, role 4.i. can be fulfilled by new principles).
Dawid (2013) shows how the MIA plays a role in the non-empirical confirmation
of string theory.9 The standard model of particle physics is an extremely successful
model of quantum field theory (QFT), and string theory can be viewed as an extension
of this research program. Empirical support for the standard model, Dawid (2013)
argues, can be viewed as support for string theory, because string theory is (in a sense)
a continuation of the QFT framework, and employs the principles of this framework.
(This is important for my arguments in Sect. 3).

Returning to the list above: we might wonder whether a given principle that is
appealed to as a means of confirmation (4.) must not also already be taken as a
constraint (3.)—for otherwise, if it is not a principle that the theory must satisfy, how
could it be presented as evidence for the theory? Dawid’s (2013) MIA shows one way
that this can be the case: past success of a principle, used in the context of a different
theory, can increase credence in a new theory that also features this principle. But
past success alone is not enough for us to adopt a principle as a constraint (3.) on
the new theory—especially in the case of QG, given the extreme domains where the
theory is supposed to apply, as well as the general belief (induced by various heuristic
arguments, and supported by the challenging results of many attempts to construct
a theory) that QG will represent a revolutionary transition. We cannot assume—or,
indeed, require—that the new theory conform to current principles10 (except to say
that the new theory not conflict with these principles in a detectable way where the
current principles are known to be successful). We need well-motivated, independent
reasons for adopting a particular principle in role 3.

Nevertheless, a new theory featuring a known principle from successful theories
would increase our credence in that theory, and make us more likely to accept it (4.i.).
An example of this is perhaps unification—it is not part of the definition of QG that
it be a unified theory of everything (as mentioned above, Sect. 1, and below, Sect. 3,
the defining constraint is just that the theory cover the domains of necessity of GR
and quantum theory), yet if a theory turned out to also do this, then we would judge
it favourably—partly because of the belief that unification featured in past successful
theories (as well as other, independent arguments for approving of more unified the-
ories). Thus, although it may seem a sensible condition on a principle that if it is to
feature in role 4. it must already feature in role 3., this may be too restrictive, in that it
excludes unforeseen principles that may turn out to be desirable and serve to increase
our credence in the theory.

Thus, we might be prompted to include an additional role:

5. A fallible constraint is a non-necessary (i.e., not featuring in role 3.) desideratum;
able to be appealed to as a general aspiration (or a guiding principle, role 1.), as

9 But see Footnote 8.
10 Dawid (2013), and string theorists, of course, would challenge this statement, asserting string theory’s
success in doing exactly this. However, string theory is currently not at a stage where such assertions
represent compelling arguments.
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well as a means of confirmation (4.); it represents a positive feature that we would
be happy if our theory possessed, and thus serves to increase our credence in the
theory, yet it is not a feature that is required of the theory, nor necessarily even a
known principle.

2.1 Poincaré and Einstein on principles

In this subsection, I briefly describe the views of Poincaré and Einstein in regards to
the roles of physical principles in times of crisis. Later (Sect. 3), I consider how these
ideas might apply in the context of the current crisis in physics.

In September 1904, Poincaré delivered an address to the International Congress
of Arts and Science (World’s Fair) in St. Louis, Missouri, in which he described two
crises in physics.11 The first crisis—already passed—had led theoretical physicists
to turn away from studying the detailed structure of the objects, forces, and mecha-
nisms responsible for the phenomena, and instead to consider the general principles
of physics, since these, Poincaré says, are capable of yielding truths about the phe-
nomena without requiring knowledge of such details. As a result of this crisis, a new
physics had thus emerged: “the physics of the principles”. Poincaré (1905a, p. 5) lists
the six general principles that formed the basis of this new physics, and states that their
application to different phenomena is sufficient for us to learn of the phenomena “all
that we could reasonably hope to know of them”. In modern terms, these principles
are: conservation of energy, the second law of thermodynamics, Newton’s third law,
relativity, conservation of mass, and the principle of least action.

For Poincaré, these principles possess a generality, certainty and permanence
because they are conventions: adopted freely (though not arbitrarily) as definitions.
Although such principles initially come from laws constructed to describe the results
of experiments or observations, once they are adopted as conventions, they are placed
beyond the realm of confirmation and disconfirmation—no experiment can ever con-
tradict them.12 And yet, in 1904, Poincaré recognises that this new physics is itself
in peril—this is the second crisis he describes, and it seems to threaten each of the
principles, save the sixth. He considers each of the principles in turn, and explains
how they are apparently being challenged by recent observations of various phenom-
ena, as well as the results of particular experiments.13 As Poincaré (1905a) notes, the
principles being (even apparently) threatened by experiment seems to contradict his
view of their status as conventions. Poincaré’s response to an anticipated criticism on
this point has a few different lines—the main one being a re-emphasis of his view
that a principle can always be shielded from refutation through the addition of ad hoc
auxiliarly assumptions. But, Poincaré insists that such measures to save a principle
are unacceptable in science because they render the principle useless—and, Poincaré
(1905a, p. 22) states that, “if a principle ceases to be fecund, experiment without con-
tradicting it directly will nevertheless have condemned it”. While this response may

11 English translation, Poincaré (1905a); also appears as Chapters VII–IX of Poincaré (1907).
12 See, e.g., Poincaré (1905b), Ch. VI, Poincaré (1907), Ch. X. 4.
13 IncludingBrownianmotion, radioactivity, theMichelson-Morley experiment, and experiments involving
electrons accelerated to very high velocities.
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not actually answer the criticism posed, it demonstrates that there are limitations to
Poincaré’s views on the status of conventions: if a principle is so insulated from the
empirical realm that it cannot lead to any knowledge, then it is worthless. Conventions,
then, should only be retained so long as they are useful. If our principles are indeed
broken, then we must not seek to mend them in this way; instead, Poincaré (1905a)
says, it would be necessary to begin anew.

Einstein (1919) distinguishes between two types of physical theories. Most the-
ories, he says, are constructive theories, which build up a description of complex
phenomena from basic results (constituents). Such theories produce an understanding
of the phenomena, and are comprehensive, adaptable and clear. Principle theories,
on the other hand, are are not built from constituents, but by appeal to empirically
observed general properties of phenomena; the merits of these theories are their log-
ical perfection, and the security of their foundation. Relativity (both the special, and
general theories) is an example of a principle theory. Although Einstein (1919) does
not view principles as conventions, his statements here are in line with some of the
ideas expressed by Poincaré—in particular, the idea that principles are elevated from
empirical observations, such that we believe no experiment could contradict them,
and the idea that principles may be appealed to when the details are obscure. While
it is certainly the case in QG that the constituents are unknown and inaccessible,
remarkably—as Smolin (2017) notes—most attempts at QG are constructive theories.
Approaches such as string theory, loop quantum gravity (LQG), non-commutative
geometry, causal set theory (and other “discrete approaches”), for instance, all can be
seen as aiming to “build up” gravitational phenomena from hypothetical constituents.
Nevertheless, principles are still being used in the various roles listed above. Perhaps,
then, one of the challenges of QG is to advance a principle theory—one that begins
with the postulation of novel principles, in the way that special relativity and GR did.
One way of understanding this may be for the theory to postulate a novel constitutive
principle, as suggested by Friedman (in, e.g., Friedman 2001).

2.2 Friedman’s thesis

A more recent view on principles in science, that has been popular and influential, is
that of Friedman,who develops aNeo-Kantian view of constitutive principles, inspired
by Poincaré and Reichenbach. According to this view, scientific knowledge has three
levels (Friedman 2001, pp. 45, 46). At the base level are the empirical parts of physical
theories—the concepts, principles, and laws that are directly applied and tested. The
second level are the constitutive principles. These are special, Friedman says, in that
they define a space of conceptual possibilities, and so determine the framework of
investigation that enables us to devise and express the empirical parts of the theories.
The constitutive principles come in two varieties: mathematical principles,14 which
define the mathematical framework that allows certain kinds of physical theories to
be constructed, and coordinating principles,15 which mediate between the abstract
mathematical structures and the concrete physical phenomena to which the theories

14 Cf. Samaroo (2015).
15 An idea attributed to Reichenbach and Schlick, see Friedman (2001, pp. 76–79).
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are supposed to apply. The framework defined by the constitutive principles is what
Kuhn (1962) calls a paradigm: the “at least relatively stable sets of rules of the game, as
it were, that define or make possible the problem solving activities of normal science
including, in particular, the rigorous formulation and testing of properly empirical
laws” (Friedman 2001, p. 45).

A scientific revolution that comes as a result of crisis will correspond, Friedman
says, to a change in the constitutive principles. This is effected by the work that occurs
at the next level of science: the third level, which comprises “philosophical meta-
paradigms” that motivate and sustain the transition from one framework to another.
Thus, Samaroo (2015) refers to Friedman’s thesis as the claim that revolutionary
theory change proceeds by deliberate philosophical reflection on constitutive princi-
ples. Friedman develops the example of GR: at the empirical level are the Einstein
field equations, which are possible thanks to the mathematical constitutive principle
of Riemannian manifolds, plus the coordinating constitutive principle, which Fried-
man argues is the equivalence principle (i.e., that it serves to bridge the Einstein field
equations with the empirical realm). Constitutive principles are of the same origins
as Poincaré’s conventions: elevated from laws based on empirical observations. As
such, any new constitutive principle—to define a new framework and make possible a
revolution—has its origins in the current (i.e., predecessor) framework. The adoption
of the new principle, and the corresponding transition from the old to new frameworks
is a gradual process that is implemented by the exercise of communicative rationality.
This is a means of argument that aims at achieving agreement, and proceeds by appeal-
ing to patterns of reasoning that are acceptable to all parties in the dispute (Friedman
2001, pp. 54, 55).

Communicative rationality is employed in two directions: facilitating and legiti-
mating the move to the new paradigm, as well as looking back and showing that the
old paradigm (and the theories within it) was also rational (the idea being to demon-
strate that the progress of science is, on the whole, a rational process). Prospective
communicative rationality may be achieved by appealing to the fact that the new
constitutive principle is rooted in a known (i.e., generally accepted) empirical result
(Friedman 2001, pp. 101–103). Additionally, part of prospective communicative ratio-
nality involves framing the new paradigm as a “natural continuation” of the (concepts
and principles of the) preceding one. Part of the activity that occurs at Friedman’s
third level of science during a revolutionary transition is the philosophical reflection
on what this idea of “natural continuation” means (Friedman 2001, pp. 105–107). As
I discuss below (Sect. 3), this is indeed occurring in the case of QG—however, it
is happening in such a fractured way that it is perhaps not properly classed as com-
municative rationality at all. Retrospective communicative rationality is achieved by
demonstrating that the old paradigm (or, really, theories within it) is contained within
the new one, as an approximate special case; as (Friedman 2001, p. 96) says, “[i]ndeed,
with respect to the purely mathematical part of our constitutive frameworks, we have
the stronger result that the later principles contain the earlier principles quite exactly,
in that the space of possibilities in mathematics continuously (and, as it were, mono-
tonically) increases.” This relates to the generalised correspondence principle (Sect.
4.1), which is being used in QG research in many different ways—and yet, it is not
being appealed to in order to demonstrate the rationality of the theories that QG is

123



S3498 Synthese (2021) 198 (Suppl 14):S3489–S3516

seeking to replace. Thus, QG is not—at least currently—engaging in retrospective
communicative rationality, and, indeed, it would seem strange if it were.

In fact, as I show, this idea of the new theory (i.e., the theory-in-development) “con-
taining” the older one(s) is being used instead in roles 1.–4. above, in the construction
and justification of the new theory—i.e., it features heavily as part of prospective com-
municative rationality. Some other aspects of Friedman’s thesis also do not fit so well
with the current situation in physics. For instance, most of the principles being used in
the search are not constitutive—although some could plausibly become constitutive
principles, or lead the way to new constitutive principles. These latter possibilities,
however, also conflict with Friedman’s (2001) view on the origin of constitutive prin-
ciples, which are supposed to be observations or laws elevated from the empirical
realm—a possibility that is currently dim in the case of QG. Additionally, the most
likely candidate for a new constitutive principle—the holographic principle (Sect.
4.4)—does not have any empirical support. Interestingly, too, the most prominent
approach towards QG—string theory (Sect. 3)—arguably does not utilise any new
constitutive principle, and thus may not represent a new framework (and hence nor a
revolutionary transition) in Friedman’s sense (although it is plausibly a new framework
in the more familiar sense in physics).

3 Quantum gravity

Unlike Poincaré’s “second crisis”, the present search for a new physical theory is not
driven by unusual observations or inexplicable experimental results given our current
physics. Indeed, both GR and QFT are incredibly well-confirmed experimentally—no
test has ever conflicted with either of them. Because of this, the reasons for seeking
a new theory stem rather from conceptual discontent than (practical) physical neces-
sity.16 These motivations include, for instance, the desire for unification—for physics
to provide a consistent picture of the world at the fundamental level.17 There is also
the pull of intellectual curiosity, and the ambition to understand ever more of the
universe—even if this means theoretically probing regions that will forever remain
inaccessible to us physically. As stated above, there are domains that both GR and
QFT are expected to be necessary in order to describe, and so we need a new theory
that adequately captures the relevant insights of both. Additionally, within each of
these frameworks are suggestions that neither is the final word—including, e.g., the
quantum-mechanical measurement problem, (particular) GR singularities, and some
conceptual dissatisfaction with the framework of QFT related to mathematical incon-
sistency and the necessity (in some theories) of renormalisation. A very quick (and
crude) explanation of this last point: perturbative QFT is infamously plagued by infini-
ties, which are dealt with by the procedures of regularisation and renormalisation. The
modern interpretation of QFT understands these theories as effective field theories,
valid only at relatively large distance scales, and the infinities as a result of our igno-

16 See, e.g., Crowther (2016, §1); Rickles (2008a, §3).
17 Although, as Crowther and Linnemann (2017) point out, QG need not be a fundamental theory, it would
represent progress in this direction.
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rance of the physics at small-length scales beyond. To many physicists’ minds, QG, if
it provides a minimal length scale (i.e., a finite cut-off for length), could provide some
concrete physical justification of these procedures.

The need for a new theory in order to satiate our intellectual curiosity, however, is
not itself the crisis. And neither do any of the perceived deficiencies of current theories
amount to a crisis. Instead, the crisis emerges from the attempt to construct the new
theory, which reveals the apparent necessity of a scientific revolution. The indications
for this come from the sheer difficulty of constructing a satisfactory theory, the failure
of all familiar methods to do so, and the strange results that come from such attempts—
all of which can be seen as symptoms of a fundamental conflict of principles between
GR and QFT. The results most often cited as suggestive of the need for a radically new
framework are the heuristic arguments for a minimal length (Hossenfelder 2013).

One of the arguments for a minimal length comes from combining the character-
istic constants of the two theories. A particle of mass m has its Compton wavelength,
lC = �/mc, equal to its Schwarzschild radius, lS = Gm/c2, at the Planck mass,
m Pl = √

�c/G, where G is Newton’s gravitational constant, � is the reduced Planck’s
constant, and c is the speed of light. A particle’s Compton wavelength is a predic-
tion of QFT, which states that localising m to within lC uses enough energy to create
another (identical) particle of mass m, which results in an indeterminacy in the num-
ber of particles present. The Schwarzschild radius is a prediction of GR: it states
that compressing m to within the distance lS will result in the formation of a black
hole.Thus, probing the Planck scale, m Pl , is expected to lead to an indeterminate num-
ber of microscopic black holes. In addition, these micro black holes are expected to
be rapidly-evaporating, based on Hawking’s (1974) calculations using QFT in curved
spacetime (another means of combining aspects of GR and QFT in order to approxi-
mate the predictions of QG).

Considering a quantum description of the gravitational field, Wheeler spoke of a
“quantum foam” at the Planck scale, where quantum fluctuations of spacetime (or
fluctuations affecting spacetime) would become significant—geometry at this scale is
thought to be ill defined, or “fuzzy” (Wheeler and Ford 1998). The idea that spacetime
could cease to be a meaningful concept beyond some scale is a profound one, that
departs radically from the current pictures presented by both GR and QFT (as well as
manifest experience), and conflicts with almost every principle that features in these
frameworks (insofar as they rely on spacetime, space, and/or time).

But, the two frameworks themselves present contrary accounts of spacetime.18 In
GR, spacetime geometry is obtained by solving the Einstein field equations for the
metric. Because themetric is a dynamical variable that is also responsible for spacetime
geometry (i.e., the kinematic structure against which physical processes are defined),
it follows that geometry itself is dynamical: we have to solve the dynamics in order to
get to the kinematics. This is related to the theory’s alleged background independence
(Sect. 4.3). On the other hand, QFT appears to be necessarily background dependent
in a more substantive way than GR, relying on a fixed spacetime geometry, in the
sense that it is the same for all models of the theory (i.e., it does not vary from solution
to solution depending on how the matter-energy content of the universe looks). These

18 For more detail see, Butterfield and Isham (1999, 2001), Rickles (2008a).
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conflicting accounts of spacetime have traditionally been thought to lead to a number
of deep puzzles that appear to crop up in many contexts within QG research, under
monikers such as the problem of time and the problem of change.19 (Note, however,
several aspects of these problems arise even at the classical level in GR, and here they
may in fact be exposed as nonissues.20)

There are other deep conflicts between the principles of the two frameworks21,
for instance the principle of unitarity, which is central to quantum theory, is not
meaningful in GR on the standard way of understanding the theory. This principle
has two aspects: that every initial quantum state evolves to a unique final state (i.e.,
unitary evolution takes pure states to pure states), and (the consequence) that the sum
of probabilities of all possible outcomes of any quantum event equals unity at any
given time, i.e., a fixed time in a preferred slicing of spacetime. In GR, however, there
are no preferred foliations (ways of slicing spacetime). So, the concept of unitarity
can only be introduced by specifying a foliation, using the Hamiltonian formulation
of the theory: if the initial value problem is well defined in this formulation, then the
spacetime is said to be globally hyperbolic, and the theory is, in a sense, unitary. If it
is not, then, the theory is non-unitary.

The principle of unitarity is frequently cast as a gladiator in the ring by various
paradoxes resulting from (apparently reasonable) combinations of GR and QFT—for
instance, the information loss paradox22 (one form of which turns on a violation of
global hyperbolicity coming from the specific means of combining GR and QFT), and
the firewall paradox.23 In the latter, unitarity is pitted against the equivalence principle
of GR. Because the gladiators are each favoured by different sections of the crowd,
the victor, it is thought, will only be decided by QG—the emperor who is yet to be
identified. Yet, I suggest that the way of finding QG could potentially be through the
selection of gladiators, which may be achieved by careful analysis of the motivations
for favouring each one, and the consequences of keeping them alive.

Meanwhile, there are some principles that have been thought to be put in peril by
the combination of GR and QFT, on account of their differing (or being thought to
differ) in the two frameworks—and yet may not actually be threatened in this way.
These include, for instance, causality and locality. In QFT, causality is axiomatic
(spacelike separated bosonic fields must commute, and spacelike separated fermionic
fields must anti-commute), while in GR, it is determined by the matter distribution.
Combining these theories suggests that light cones (determining the causal structure of
spacetime) will fluctuate with spacetime. On the other hand, however, it seems prima
facie possible that, on another way of combining these frameworks, the fixed causal
structure of QFT could provide an upper bound on the dynamical causal structure of
GR.24

19 See, e.g., Anderson (2012), Huggett et al. (2013), Rickles (2006a).
20 See, e.g., Pitts (2014, 2017), Pons et al. (2010), Thbault (2012).
21 I take some of these examples from (Rickles 2008a, §3.6.1), see also, Butterfield and Isham (2001).
22 SeeMathur (2009) for a technical review; and Belot et al. (1999), Wallace (2018) for introductions more
accessible to philosophers.
23 Almheiri et al. (2013).
24 Thanks to a referee for pointing this out.
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In regards to locality: in QFT, observables are localised in spacetime,25 while it is
often thought (i.e., on some standard, but not universal, ways of interpreting gauge)
that observables in GR are non-local, due to the theory’s diffeomorphism invariance.
Put very basically, (one aspect of) the idea is that diffeomorphism invariance prevents
one from localising observables to particular points in spacetime (and other field val-
ues in the vicinity), because there are equivalent ways of doing so, to different points
of spacetime—i.e., location is apparently not a gauge-invariant quantity, and to con-
struct gauge-invariant observables in GR, one has to take into consideration the whole
spacetime.While several authors have variously argued that this is problematic, others
have apparently diagnosed the source of the confusions, and (claim to) have shown
(in different ways) how local observables in GR may be defined.26 Thus, it seems this
particular issue may not carry-over to QG, and locality is not necessarily threatened
by a conflict of principles [although the problem of defining local observables in QG
also arises, in a different manner, if the theory does not feature spacetime (Huggett
and Wüthrich 2013)].

The disparities of principles (whether actual or merely apparent) are all part of
the crisis of QG—which itself can be seen as the problem of finding the correct set
of principles that the new theory is to satisfy. Thus, we can view the crisis from
the relatively immediate perspective of the researchers involved—as Poincaré did at
the start of the 20th century—where framing the problem is primarily about settling
the constraints (role 3.) on the new theory (a process that starts by reflecting upon
each of the current principles that is caught in the fray). Actually finding a theory,
though—being the ultimate solution to the crisis—involves also choosing the right
postulates (2.) and guiding principles (1.). And for the new theory to be accepted,
we additionally need principles serving in roles 4. and 5. (although these are likely
to be various, and unable to be identified prior to their use). As should be clear, the
principles whose conflicts are taken to signal the presence of the crisis are not just
constitutive principles [arguably, this was also the case for the crises described by
Poincaré (1905a)]. And, as I show below (Sect. 4), many of the principles being used
in the search for the new theory (in roles 1.–5.) are not constitutive, either—however,
they could plausibly become, or lead the way to, constitutive principles.

Nevertheless, it is also interesting to consider the current situation in physics from
the perspective of Friedman’s view—where the crisis can be understood as an inco-
herent framework (in Friedman’s sense) of modern physics when taken as a whole,
i.e., the frameworks underlying GR, QFT, and perhaps also statistical physics, are not
consistent with one another. This is a problem that can usually be ignored, since (the
theorieswithin each of) these frameworks each cover different domains of phenomena,
and mostly we work within one domain at a time. But the crisis of QG is provoked
by exactly seeking to describe physics in the domains where all three frameworks
are (apparently) required. The consequences of the inconsistency, manifest in these
domains, are then interpreted as suggesting the necessity of a revolution—an entirely
new framework.

25 However, physically relevant QFTs also contain non-observable fields, some of which are non-local.
26 Highlighting the problems are, e.g., Belot andEarman (2001), Earman (2006), Pooley (2015) andRickles
(2006b, 2008b, 2012). Arguments for local observables are in, e.g., Bergmann and Komar (1960), Pitts
(2014, 2017), Pons et al. (2010), Pons (2005) and Rovelli (1991, 2002).
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And yet, such a revolution may not actually be necessary. There are a number of
possible ways of constructing a theory of QG that do not require an entirely new frame-
work (in Friedman’s sense), and are thus non-revolutionary. Oneway that is frequently
discussed is to develop a semiclassical theory: a hybrid combination of quantummatter
and classical gravity. Such a pairing may not be elegant, but—arguably—may not be
be impossibly inconsistent, either.27 Another approach to QG that would not represent
a new framework is the asymptotic safety scenario, which shows howGR treated in the
framework of QFT may yield a viable (i.e., predictive) theory that describes physics
at the Planck scale.28 Additionally, a theory of QG that builds heavily upon one or
the other of the two existing frameworks may not necessarily end up representing (or
requiring) a revolution. Such a theory deals with the inconsistency and conflicts of
principles in the current framework by simply rejecting some current principles, rather
than positing new ones.

Arguably, string theory is an example of this. As mentioned above (Sect. 2), string
theorists take a key selling-point of their theory to be its status as a natural extension
of QFT—the framework that produced the incredibly successful standard model of
particle physics. The program aims to avoid the problems (e.g., the infinitiesmentioned
above) inherent to QFT, related (in part) to the locality of the theory, by positing 1-
dimensional extended fundamental objects, “strings”, rather than pointlike interactions
on a background spacetime (i.e., one fixed in the same sense as in QFT, as described
above). This spacetime differs from that described by GR, not just by being fixed,
however, but by also having many more dimensions. String theory is about the paths
that strings sweep out as they move through spacetime. These paths are 2-dimensional
surfaces, called world sheets. So, the novel insight that characterises string theory
(and could thus potentially represent its constitutive principle) is the move from 1-
dimensional world lines in QFT, to 2-dimensional world sheets in string theory.

In fact, we can easily switch between the QFT and string theory descriptions of the
physics. To see this, consider that mathematically, a world sheet is a 2-dimensional
surface embedded in some N -dimensional spacetime. The physical position of each
point on the world sheet is given by N numbers specifying the coordinates of the point,
and these N quantities form N fields on the world sheet. Now, instead of thinking of
a string as a 2-dimensional object moving in an N -dimensional spacetime, we can
think of it as N fields on the 2-dimensional world sheet—a system that is described
by QFT. In other words, string theory in an N -dimensional spacetime can be viewed
equivalently as a QFT of N interacting fields on a 2-dimensional spacetime.29

Note that this alternative formulation should not obscure the fact that string theory
is still significantly conceptually novel compared to QFT. Arguably, however, the
theory does not depart radically enough to represent a new framework in Friedman’s

27 See, e.g., Huggett and Callender (2001), Mattingly (2005, 2006, 2009) and Wüthrich (2005).
28 GR treated in the framework of QFT is apparently perturbatively non-renormalisable, breaking down
at energies approaching the Planck scale, and so cannot represent a theory of QG, if QG is required to
describe physics at this scale. The idea of asymptotic safety is that this apparent problem with GR treated
as a QFT may be an artifact of the misapplication of perturbation theory, and that the theory is in fact
non-perturbatively renormalisable. Reviews: Niedermaier and Reuter (2006), Percacci (2009).
29 Actually, string theory is usually considered to possess an additional symmetry, conformal symmetry,
making it a 2-dimensional conformal field theory.
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sense: its constitutive basis is the same as that of QFT. The failure of string theory to
properly take into account the insights of GR at this stage—in particular, the idea of
background independence—is one of the main criticisms levelled at the program from
those in opposing approaches, for instance, LQG. Yet, there are some ways in which
string theory can be seen as moving towards a background independent approach
(as discussed below, Sect. 4.3). If this process eventually results in the formation
of a new paradigm, then it would align with Friedman’s views.30 Actually, there is
perhaps a stronger case to be made, that very few of the current approaches to QG
would count as a new framework in Friedman’s sense. But, we might instead think to
propose Friedman’s thesis as a prescriptive strategy in the case of QG—encouraging
the development of new constitutive principles (e.g., the holographic principle, Sect.
4.4), rather than just the sacrifice of old ones, and promoting communicative rationality
between the different approaches.

As it stands, there are some aspects of communicative rationality in play—for
instance, most approaches to QG do claim to proceed conservatively, and present their
theory as a natural extension of current ones (recall that this is also central to Dawid’s
MIA). Nevertheless, radical results, especially those that accord with the existing
(theoretical and heuristic) indications of physics changing dramatically at the Planck
scale, tend to be promoted as “predictions”, or means of justifying the theory (i.e.,
role 4.ii., even if these results are not empirically testable).31 But this is not actually
communicative rationality, because it does not appeal to methods acceptable to all
parties involved—instead, string theory, for instance, sells itself as a natural extension
of QFT, while LQG is promoted32 as starting from GR and taking familiar steps to
produce a quantum theory. In order to move forward, we need, as Friedman would
say, to shift the discussions to the third level of science, and attempt to come to an
understanding of what counts as a “natural extension” (I argue that this is part of
seeking a more precise definition of the generalised correspondence principle, which
features heavily in all roles of theory construction and justification in QG, Sect. 4.1).

In order to evaluate any of the potential theories of QG as potential theories of QG
we need to knowwhat would count as a potential theory of QG.We need to knowwhat
QG is supposed to do, and what it is supposed to look like—i.e., what constraints it
is supposed to satisfy. We need a more precise, generally accepted definition of QG,
beyond the minimal characterisation offered above. Settling the constraints (role 3.) is,
to my mind, an essential missing element of communicative rationality (although it is
unclear whether such a definition would come as a result of communicative rationality,
or whether it is a precursor to the activity—also, it is unclear whether these constraints
must specifically be constitutive principles, but I suggest they need not be). As it stands,
there are almost as many different conceptions of QG as there are approaches.33

30 Friedman (e.g., 2001, Lecture II, and Chapter 4).
31 Examples include the “prediction” of aminimal length inLQG(Rovelli 2004), and dimensional reduction
in causal dynamical triangulations and HořavaLifshitz gravity, see Carlip (2017), ’t Hooft (1993).
32 E.g., Rovelli (2004).
33 For general reviews outlining the main approaches to QG, see Carlip (2001), Kiefer (2006), Rickles
(2008a). It is also worthwhile to consult Butterfield and Isham (2001).
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4 Examples

As explained above, there are many different principles that play a role in the search
for QG. Here, I present only a small selection, and do so very briefly. Nevertheless, my
choice of principles here is suggestive of the sheer diversity of things being used as
principles in QG—some of these are more precise than others, and some have origins
closer to the empirical realm than others. Key principles such as Lorentz invariance,
and unitarity, for example, are on the less-vague, closer-to-directly-observable sides of
these two scales. Yet, as I illustrate with the examples, many of the central principles
are vague, and they are often elevated not from experimental observations (or, if so,
only via an indirect path), but from theoretical, or even heuristic results.

4.1 The (generalised) correspondence principle

What is it? The requirement that any new theory “recover” or “reduce to” the (suc-
cessful parts of the) incumbent theory in the domains where the latter is known to
be successful.34 Typically, this is supposed to be achieved via an appropriate limit-
ing relation involving the characteristic constants of the new theory—but, while this
may be sufficient, it is not necessary. In fact, correspondence relations between two
theories are usually many and various, and may go in both directions.35 So, in its
broadest form, “correspondence” refers to any relationships that link two theories in
the domains where both apply (i.e., provide successful descriptions), that establish
(or are taken to establish, or are intended to establish) the compatibility of the two
theories within these domains—i.e., that both theories approximately (i.e., including
a small degree of error) have the same results in these domains. “Results” may include
theoretical propositions as well as observational ones, and even “larger structures”
such as derivations and explanations.

Where does it come from?The principle is usually attributed to Bohr, whose use of
“the correspondence principle” was central to the development of old quantum theory,
althoughwhat we now think of as the correspondence principle is not what Bohrmeant
by it.36 Nevertheless, historically, the principle has featured heavily in the development
of and acceptance of all new physical theories (i.e., it serves in all roles, 1.–5.). Its
ubiquity is no doubt due to the perception of it as an “obvious requirement”—and
if it is seen simply as the statement that the new theory should not conflict with the
successful results of the old one, then it is. However, the way in which this agreement
should be demonstrated is very much not obvious—for instance, how much of the
older theory needs to be recovered, and what relationships are sufficient.

How is it used in QG? The priciple is used heavily in all roles in theory construc-
tion and justification in QG; most conspicuously, it is a definitional constraint (3.i.),
whose claim regards the application of 3.ii (i.e., it specifies particular external con-
straints), and whose satisfaction forms one of the few generally-agreed upon means
of confirmation (4.i.) of the theory. Usually, the principle is explicitly presented as the

34 The idea is essentially what Nickles (1973) calls “reduction2”.
35 See, e.g., Hartmann (2002), Radder (1991), Post (1971).
36 See, Bokulich (2014).
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justificatory requirement that QG recover GR in the classical limit— Carlip (2001, p.
927), for instance, refers to this as the “zeroth test” of QG. But, a fully satisfactory
demonstration of the recovery of GR from QG requires us to bridge both the quan-
tum/classical transition, by which we recover the classical appearance of spacetime
(e.g., by decoherence, and a solution to the measurement problem), as well as the
micro/macro transition, by which we return to familiar energy scales (e.g., via coarse
graining, or a continuum limit, etc.).37

For approaches such as causal set theory, the central goal is to find a discrete, back-
ground independent theory that naturally reproduces GR spacetime in the appropriate
domain, and thus the principle serves in roles (1.–4.).38 Notable examples where cor-
respondences with current theories have been presented as means of confirmation (4.)
include the demonstration of the background spacetime of string theory satisfying the
Einstein field equations in an appropriate limit, and the recovery, in causal set theory,
of the correct spacetime dimension in accordance with GR. And, it is not just corre-
spondence with the results of current theories as they stand, that serves to increase
credence in QG, but also the recovery of theoretical results of combinations of current
theories—e.g., the automatic appearance of the graviton (i.e., a massless spin-2 field)
in the string spectrum is promoted in role 4.ii. by string theory (in spite of it being
merely a hypothetical particle, unrecognised by either current framework), and the
derivation of the Bekenstein-Hawking entropy in string theory and LQG features in
role 4.i. (discussed below, Sect. 4.4).

Correspondence also serves important heuristic roles, as a guiding principle (1.);
this form of correspondence works “bottom-up” (in energy scale), starting with the
established theories, and attempting to infer parts of the new theory. InQG, an example
is the number of approaches that takeGRas a starting point, including all quantised-GR
approaches (such as LQG), causal set theory, and causal dynamical triangulations. As
stated, approaches that proceed this way should have the benefit of a solid foundation
(agreed upon by all parties), and are able to appeal to this as means of justifying their
theories—this is part of prospective communicative rationality. Thus, the generalised
correspondence principle appears on the third level of Friedman’s view of science. Yet,
as I have attempted to demonstrate, its role is not, at this stage, part of retrospective
communicative rationality—such a function is post hoc, able to be initiated only once
the new theory is known, and would preclude the use of the principle in roles 1.–4.,
in the construction and justification of the theory-in-development.

4.2 UV-completion

What is it? A theory is said to be UV-complete if it is formally predictive to all
possible high energy scales (or, equivalently, all short distance scales). In other words,
the theory can be used to generate results that are potentially physically meaningful
at all possible short distance scales—it does not guarantee that all of these results are

37 See, Butterfield and Isham (1999, 2001), Wüthrich (2017).
38 Causal set theory sees the desideratum of “being quantum” in the same way that string theory views
the principle of “being background indpendent”, i.e., an ultimate aspiration, but one that need not be
implemented at the initial stages.
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(even approximately) correct, however (Newtonian mechanics is UV complete, for
instance, since it does not formally ‘break down’ at any short distance scale, and yet
we know that it is not the correct theory to use at all short distance scales).

The most familiar notion of a UV-complete theory is a QFT that is non-
perturbatively (i.e., fixed-point) renormalisable, such as quantum chromodynamics.39

Yet, the idea of UV-completion is not restricted to QFT, and there are other ways
in which a theory may be UV-complete, apart from being renormalisable: i.e., UV-
completion by cutoff, classicalisation, or UV/IR-correspondence.40

Where does it come from? (a.) In the heyday of QFT, UV-completion was use-
fully employed as a criterion of theory success: i.e., a means of selecting theories
that were not only viable, but physical. While this changed with the development of
the renormalisation group and the framework of effective field theory, together with
the acceptance of its associated philosophy—that UV-incomplete theories can also
be physical, though they apply only within a restricted domain—the general percep-
tion of UV-incomplete theories as being faulty, or mathematically inconsistent, still
lingers.41 (b.) UV-completion appears to be a necessary condition for a theory to be
fundamental, though note that QG need not be a fundamental theory (Crowther and
Linnemann 2017). (c.) A theory of QG may be UV-complete if it describes a minimal
length scale, supposedly representing the shortest possible scale that can be probed
in principle. There are various arguments for such a minimal length (Hossenfelder
2013). (d.) Tied up with these motivations is the fact that one natural way of com-
bining GR and QFT (treating GR in the framework of perturbative QFT, henceforth
“perturbative quantum GR”) produces a theory that is non-renormalisable—and thus
UV-incomplete—breaking down at the Planck scale. This leads to the theory being
widely (though mistakenly) viewed as inconsistent, and drives the search for a UV-
complete theory ofQG(when all that is actually required in this respect is a “UV-better”
theory, predictive at the Planck scale).42

How is it used in QG? UV-completion is used as a central guiding principle in
the search for QG, and has been (mis)interpreted as principle defining what would
count as a successful theory, as researchers seek to overcome the problem of the
non-renormalisability of perturbative quantum GR—although, as stated above, a UV-
complete theory is not in fact necessary to solve this problem. The desire to obtain
a UV-complete theory is actually the primary motivation driving a number of the
approaches to QG, including asymptotic safety (Niedermaier and Reuter 2006), and
higher-derivative approaches (Kiefer 2007; Stelle 1977). Additionally, in several of the
approaches where UV-completion appears to have been obtained (or where it appears
it could be obtained), this is presented as evidence in favour of these approaches by
their proponents. This is the case, for example, in LQG, where UV-completion is
not taken as a guiding principle, but is nevertheless automatically obtained through
quantisation and a minimal length (Rovelli 2004). UV-completion is also obtained and

39 Perturbative renormalisability is insufficient to establish UV-completion, since a theory may be pertur-
batively renormalisable may still face a Landau Pole, as is the case in quantum electrodynamics.
40 Butterfield and Bouatta (2015), Crowther and Linnemann (2017), Dvali et al. (2011), Zee (2010).
41 Cf. Cao and Schweber (1993), Shankar (1999), Weinberg (1979, 1999).
42 Cf. Crowther and Linnemann (2017).
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presented as a means of confirmation (role 4) in alternative theories of gravity (where,
again, it is not used necessarily as a central motivation), for instance Brans-Dicke and
Hořava-Lifshitz gravity.43

String theory is supposed to be a “theory of everything”, rather than just QG—as
such, it must be UV-complete. The extendedness of the theory’s basic entities is very
likely to ensure that it is UV-complete, although no proof has yet been found that it
is (see Hagar 2014, §7.2; Dawid 2013, chapter 1). Textbooks on string theory often
present an analogy between the perturbative non-renormalisability of quantum GR
and that of 4-Fermi theory, which is a non-renormalisable theory that was revealed
to be the low-energy limit of the renormalisable theory of electroweak interactions.
Similiarly, proponents of string theory claim that string theory is the renormalisable
theory underlying perturbative quantum GR. Thus, the alleged UV-completeness of
string theory is presented as one of its selling points (i.e., as a criterion of justification).

Note that, in some approaches to QG, UV-completion may conflict with other
principles that are desirable and otherwise apparently viable. For instance, if UV-
completion is obtained by cutoff, it may pose problems for Lorentz invariance, and, in
the higher-derivative approaches UV-completion apparently conflicts with the princi-
ple of unitarity. Crowther and Linnemann (2017) also argues that UV-completion may
conflict with the goal of unification.

4.3 Background independence

What is it? The general idea is (a.) that QG should not feature a fixed (background)
spacetime, but there are several meanings, corresponding to different notions of “fix-
ity” (Butterfield and Isham 1999, §4.1), as well as the different (layers of) structures
that could be identified as “spacetime” (e.g., metric, manifold, affine structure, etc.).
There are (at least) four proposals that attempt to formally capture the idea of back-
ground independence. I list these definitions concisely (and without the necessary
elaboration), but note that each is a separate proposal: (i) A theory is background
independent if it features no absolute objects (i.e., structures that are the same in all
models of the theory); (ii) A theory is background independent if it has no formula-
tion which features fixed fields (i.e., there is no formulation of the theory that is not
diffeomorphism invariant); (iii) A theory is background independent if its solution
space is determined by a generally-covariant action (all of whose dependent variables
are subject to Hamilton’s principle, and represent physical fields) (iv) A theory is
background independent if all of its physical degrees of freedom correspond to geo-
metrical degrees of freedom.44 Each of these attempted characterisations has its own
difficulties, however—and, arguably, none are adequate to do the job.45

Two other common interpretations of the principle are (b.) that the theory be gener-
ally covariant, and (c.) that it be non-perturbative (a perturbative treatment of gravity

43 For Brans-Dicke gravity, see, Haba (2002) contra Deser and Nieuwenhuizen (1974) and ’t Hooft and
Veltman (1974); for Hořava-Lifshitz gravity, see Orlando and Reffert (2009).
44 For details on (i–iii) see Pooley (2017), and for (iv), see Belot (2011).
45 Further details: Giulini (2007); Pitts (2006); Pooley (2017); Read (2016).
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involves approximating a dynamical spacetime by splitting the metric into a fixed
background part, plus a small disturbance on it).

Where does it come from? (a.) The broad desire for background independence
is driven by a number of familiar sentiments in the philosophy of space and time,
including, e.g., the dissatisfaction with structures that need to be specified in our
theories, rather than determined by them (e.g., such structures apparently stand in need
of explanation), the suspicion of absolute structures (e.g., recalling absolute space in
Newtonian mechanics as something that acts but cannot be acted upon), and the idea
that physics progresses by seeking ever more relational theories (Smolin 2006).

(b.) General covariance was taken as a strong constraint and guiding principle (roles
3. and 1.) by Einstein in developing GR. This form of the principle may be thought
of as the result of pushing to the extreme the idea that physics be independent of
the coordinate system used to describe it (i.e., no preferred reference frame). Yet, in
1917, Kretschmann showed that the very idea of general covariance may be trivial, by
claiming that any theory can bemade covariant, through the addition of non-dynamical
auxiliary fields. Thus, Friedman (1983, p. 55) claims that “the principle of general
covariance has no physical content whatever: it specifies no particular physical theory;
rather it merely expresses our commitment to a certain style of formulating physical
theories.” Einstein, however,maintained that general covariance could still be used as a
principle of theory-selection, if it is paired with a conception of “formal simplicity”—
while any theory may be made generally-covariant, only those expressions which
are formally simple after having been written in a generally-covariant form should
be considered as candidates for physical laws. Still, as Giulini (2007) points out, a
generally covariant form of Newtonian gravity (given by Cartan and Friederichs) is
still not outrageously complicated (though perhaps somewhat unnatural).

While it is not impossible that general covariance be used in defining “what is spe-
cial” about GR,46 and thus feature in a principle of theory selection, general covariance
can not by itself be the principle of background independence. Most of the recent liter-
ature has, though, instead moved on in to proposals (a.) in their attempts to salvage the
general intuition that GR is special by virtue of possessing some particular conception
of background independence. In this context, the proposal (i) above, fails for GR (and
any theory with massive fields),47 and while proposal (ii) arguably works for GR, it
is difficult to implement as a guiding principle in the search for a new theory (Read
2016). Nevertheless, the success of GR as a theory of spacetime, together with the sig-
nificant heuristic role of the principle in its discovery, mean, however, that background
independence [in some sense, which may, arguably, be any of (ii–iv)] continues to be
viewed as a desirable principle in QG, in all roles.48 And note that even the principle
of general covariance, and (i) can plausibly serve heuristic roles.

46 Cf. Norton (2003), also Brown (2005, §5.3.1).
47 See references in Fn. 45.
48 However, given the above discussion, one might wonder whether the principle should be viewed as
being so significant—a thought that gains further weight with the recognition that particle physicists in
the 1930s–70s managed to derive Einstein’s equations of GR from entirely unrelated principles, including
universal coupling and avoidance of ghosts (e.g., Desser 1970; Nieuwenhuizen 1973). (Thanks to a referee
for offering this food for thought).
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Finally, the distinct notion, (c): The desire that a theory be non-perturbative is a
natural one, given that perturbation theory is a set of techniques used to construct
approximations when the exact theory is unknown or unsolvable. These techniques
are of limited applicability, and can easily lead to problems when misapplied.

How is it used in QG? Currently, string theory is considered a background depen-
dent approach: it is based on perturbative methods, and describes strings moving on
a background spacetime—and thus, it apparently fails on all (a.–c.). This is widely
recognised as a deficiency of the approach. But, as Read (2016, §6) demonstrates
[building on a claim made by Huggett and Vistarini (2015)], there are in fact several
senses in which string theory (considered both at the level of spacetime fields, and at
the level of worldsheet fields) may be considered background independent, on some
of the definitions (ii–iv) above, given that the background fields in the theory are
required to be dynamically coupled together in the same dynamical equations of GR
(the Einstein field equations, plus higher order corrections), and thus are not “fixed”
after all, but possess background independence in ways similar to GR.

Additionally, there are attempts to construct a non-perturbative version of string
theory; the most celebrated development being the AdS/CFT duality [also known as
the Maldacena conjecture, after Maldacena (1998)]. This is a relationship—an exact
equivalence49—between a string theory featuring gravity, describing closed strings
propagating on a spacetime [anti-de Sitter space (AdS)], known as the “bulk”, and a
gauge theorywithout gravity [a conformal field theory (CFT)], defined on the boundary
that contains the bulk spacetime. In the regime where the string theory is strongly
coupled, necessitating the use of perturbative methods—the CFT is weakly coupled,
meaning that it can be defined non-perturbatively. Since the theories are supposed to
be equivalent, the non-perturbative regime of the CFT can be used to shed light on the
perturbative regime of the string theory.50 (This is closely related to the holographic
principle, Sect. 4.4).

While string theorists hope to ultimately arrive at a theory that is background inde-
pendent, they started out with a background dependent approach. So, the principle
features as a fallible constraint (5.)—a general desideratum, such that, credence in
the approach increases by its being shown to be background independent (role 4.)
Eventually, it may also feature as a criterion of acceptance (2.).

Other approaches to QG, including, e.g., causal set theory, LQG, and causal dynam-
ical triangulations, use the principle in all roles (1.–4., and role 5. is not required). These
approaches strive for a fully background independent theory, and sell themselves as
upholding what they see as a central insight of Einstein gravity (and of any acceptable
theory). LQG, in particular, is promoted as continuing the tradition of increasing rela-
tionalism in spacetime theories (see, e.g., Smolin 2006;Rovelli 2004). Rather than give
examples of all these roles of background independence, I just mention the interesting
case of its featuring as an unexpectedmeans of confirmation (4.ii.) in the early develop-
ment of LQG. As Rovelli (2004, pp. 11–12) describes, attempts to formulate a theory
with loop states (the fundamental kinematic states described by LQG) on a continuous

49 The meaning of this is explored by, e.g., Butterfield (Forthcoming), Dawid (2017), de Haro (2017), Read
and Møller-Nielsen (2018), Rickles (2011), Teh (2013).
50 See, e.g., Polchinski (2017).
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background (as a QFT) were unsuccessful: because an infinitesimal displacement of
a loop state against the background produced a new, distinct, loop state, the theory
yielded a continuum of loop states. The resulting space spanned by these states was
thus “too big” to provide the basis of a separable Hilbert space. This problem was
solved, however, by moving to a background indpendent theory—defining the posi-
tion of a loop relationally (i.e., with respect to other loops), dramatically reduces the
number of distinct loop states (an implementation of diffeomorphism invariance), and
the theory becomes viable. The unexpected “success” of background independence is
thus taken as a signal that the approach is on the right track (4.ii.).

4.4 The holographic principle

What is it? The most common understanding of the principle is based on the idea that
the description of a volume—“bulk”—of space canbe equivalently definedon a surface
bounding the volume of space (the boundary has a lower dimension than the bulk it
contains). In other words, a physical theory defined only on the (N-1)-dimensional
boundary of the region it encloses completely describes the N-dimensional physics of
the bulk. The principle is then the claim that the full theory of QG can be reformulated
as a theory all of whose degrees of freedom are defined on the boundary—a concrete
example is the AdS/CFT duality (outlined above, Sect. 4.3).

This is closely related to the idea of an entropy bound—inessence, the statement that
there is a limit to the amount of entropy (typically, though not necessarily, understood
as information) that can exist within a given region of spacetime, and that this limit
depends on the area of the surface bounding the region, rather than the volume of
the region. Various entropy bounds have been proposed, for instance, the spherical
entropy bound, which states that the entropy S of a matter system is, S ≤ A/4, where
A is a suitably defined area enclosing the matter system (Susskind 1995). The first
proposed was the Bekenstein bound (Bekenstein 1981), and the current most general
form is the covariant entropy bound, (CEB), which is framed in terms of constructions
called light sheets (Bousso 2002). But Smolin (2001) argues that only a different form,
the weak holographic principle, is capable of surviving in a full quantum theory of
gravity (specifically, Smolin argues that this is the only form that is compatible with
the other principles that should feature in QG, including background independence).

Where does it come from? The principle originates in black hole thermodynamics
(BHT), which is the proposal that black holes are thermodynamical objects, possess-
ing entropy proportional to their (event horizon) area, and satisfying a set of laws
analogous to those of ordinary (i.e., matter) thermodynamics. This proposal itself was
motivated by the worry that black holes may otherwise violate the second law of ther-
modynamics, and gained widespread acceptance after Hawking’s (1975) calculation
showing that black holes radiate as thermodynamic objects. Hawking’s calculation set
the proportionality constant in Bekenstein’s entropy equation, so that the Bekenstein-
Hawking entropy of a black hole is accepted as, SB H = kc3AB H/4�G, where AB H

is the are of the black hole’s horizon, and k is Boltzmann’s constant. Yet, the whole
enterprise of black hole thermodynamics is entirely theoretical—based on a strong
network of semiclassical results rather than any empirical observations or experimen-

123



Synthese (2021) 198 (Suppl 14):S3489–S3516 S3511

tal tests.51 Historically, the idea of the holographic principle was tied, in part, to the
debate over the information loss paradox (See, e.g., Bigatti and Susskind 2000). But,
authors such as Bousso (2002) emphasise that, although this may be the historical
route that led to the discovery of the entropy bound, the holographic principle itself
does not depend on the correctness of BHT, and nor does BHT explain the existence
of the entropy bound.

How is it used in QG? We should distinguish, firstly, between BHT—including
the Bekenstein-Hawking entropy result—and, secondly, the holographic principle that
it inspired. First: entropy is linked to the number of micro states of a system, and
its connection with black holes (purely gravitational objects) prompts the search for
analogous micro states underlying GR; additionally, it provides a measure of the
number of such micro states, which QG is expected to recover and explain. Thus, the
Bekenstein-Hawking result is generally treated as a guiding principle (1.), a criterion
of acceptance (3.), and a means of confirmation (4.). Both string theory and LQG
have (in their own ways) managed to reproduce the value of the Bekenstein-Hawking
entropy under certain conditions and for particular types of black holes (neither have
achieved a general result).

Second: the holographic principle (along with the existence of an entropy bound)
is treated as a striking result inexplicable according to current theories (where we
generally expect entropy to scale with volume rather than area), and is thus taken
as indication of the deficiency in current physics, i.e., it is a principle that motivates
the search for QG.52 The entropy bound itself, however, has been even more elusive.
Rideout and Zohren (2006) show how the spherical entropy bound can be obtained
using causal set theory (demonstrating its use in roles 1., 3. and 4. in that approach).
In string theory, the holographic principle has been proposed as a guiding principle:
Bousso (2002, §IX.A.) suggests that, since the covariant entropy bound is valid in
highly dynamical spacetimes, and string theory has had difficulty in describing such
geometries, that (this form of) the holographic principle could aid further development
of the theory. Bousso also presents the holographic principle as an unexpected means
of confirmation (4.ii.) of string theory. The holographic principle is only expected to
be fully manifest in a non-perturbative formulation of the theory, and, in the years
following the proposal of the holographic principle, non-perturbative descriptions of
string theory have been found for two special cases—one of which is the AdS/CFT
duality. As mentioned above, this is a concrete manifestation of the principle, which
thus serves to increase credence in string theory.

The principle may also be taken as a postulate (2.); Smolin (2017) suggests using a
form of the holographic principle in the attempt to build QG as a principle theory, in
Einstein’s sense. Also, the holographic principle could potentially function as a consti-
tutive principle—indeed, it seems themost likely candidate for a coordinating principle

51 Many philosophers have thus recommended caution in interpreting these results as physically meaning-
ful, but cf. Wallace (2017a, b), which take a firmer stance.
52 Some work has been done in investigating the area scaling law. Oppenheim (2003), for example, uses
an analogue model of a black hole with long-range interactions and shows how the entropy goes from
scaling with volume to scaling with area as the strength of the interactions increases. Chandran et al. (2016)
recounts the applicability of the area law for entanglement entropy, showing under what conditions it scales
differently.
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defining a new physical framework. For instance, Bousso (2002, p. 861) suggests that
the holographic principle may not only aid the search for a non-perturbative version
of string theory, but “could also contribute to a background-independent formulation
that would illuminate the conceptual foundation of string theory”. Smolin (2001, p.
210) also presents his weak holographic as playing something like a coordinating role,
for instance, he states that,

[T]he weak holographic principle enters a background independent quantum
theory of cosmology as a framework for that theory’s interpretation and mea-
surement theory. Its role is to constrain the quantumcausal structure of a quantum
spacetime in a way that connects the geometry of the surfaces onwhichmeasure-
ments may be made with a measure of the information that those measurements
may produce. In this context the entropy bound becomes a definition, by which
the notion of geometry is reduced to more fundamental notions coming from the
quantum theory of cosmology.

5 Conclusion

In this paper, I aimed to illustrate the sheer diversity of principles featuring in the
search for QG—many of which may not be recognised as principles on particular
philosophical understandings of the term, but which nevertheless play key roles in
motivating the need for the new theory, as well as defining it. In particular, I distin-
guished five different roles that principles play in theory construction and justification
in QG, accompanied by numerous examples, including four whose form, origins and
roles, were outlined in some detail. These are the generalised correspondence prin-
ciple, UV-completion, background independence, and the holographic principle—the
last of which is currently the most promising candidate for a new “constitutive princi-
ple” (i.e., a coordinative definition) that could provide the basis for a new framework
of physics, yet it comes not from the empirical realm, but from striking theoretical
results.

I presented the principles neutrally, but also suggested two other useful perspec-
tives from which to view the crisis. Firstly, through the immediate perspective of the
researchers involved—in a way analogous to that of Poincaré and Einstein during
the crises at the turn of the 20th century—where the problem involves assessing the
damage on current principles, and settling the constraints on the new theory, as well
as choosing the appropriate guiding principles and postulates to lead you to the theory
that satisfies these constraints. I also suggested viewing the crisis through Friedman’s
picture of scientific theories; here, I argued that the crisis is a clash of principles that
apparently suggest the criticality of a revolution. This conflict is the result of current
physics, as a whole, being based on an incoherent framework in Friedman’s sense.

Yet, I argued that a revolution in Friedman’s sense may not be necessary, and that
several of the current approaches to QG, including the most prominent contender, are
at present non-revolutionary—they are not based on new constitutive principles, and
do not represent a new framework in Friedman’s sense. Instead, they deal with the
conflict through the neglect of particular principles, and build their approaches on
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parts of the current framework at the expense of others. This, I argued, means that
communicative rationality is fractured. Thus, although the situation in QG research
currently does not reflect Friedman’s views, thesemay be used to suggest newways for
QG tomove forward—for instance, bymending communicative rationality (through, I
argue, the development of the generalised correspondence principle as a more precise
constraint on the theory); and by seeking new constitutive principles. Additionally,
if we translate Friedman’s thesis into a prescriptive strategy, it also points us to look
for the new constitutive principles in a direction that has so far been neglected—to
established, mundane empirical facts, rather than novel and striking theoretical results.

Acknowledgements Thanks to Niels Linnemann, Ashton Green, Christian Wüthrich, James Read, and
three anonymous reviewers for comments and suggestions.
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