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Abstract
The article proceeds upon the assumption that the beliefs and degrees of belief of ratio-
nal agents satisfy a number of constraints, including: (1) consistency and deductive
closure for belief sets, (2) conformity to the axioms of probability for degrees of belief,
and (3) the Lockean Thesis concerning the relationship between belief and degree of
belief. Assuming that the beliefs and degrees of belief of both individuals and col-
lectives satisfy the preceding three constraints, I discuss what further constraints may
be imposed on the aggregation of beliefs and degrees of belief. Some possibility and
impossibility results are presented. The possibility results suggest that the three pro-
posed rationality constraints are compatible with reasonable aggregation procedures
for belief and degree of belief.

Keywords Belief aggregation · Opinion pooling · Discursive dilemma · Full and
partial belief · The Lockean thesis

1 Introduction

There are two sorts of doxastic states that have received considerable attention from
epistemologists. The first sort of doxastic state is belief. Belief is an all or nothing
affair: For every proposition, ϕ, one either believes it or one does not. If one does
not believe ϕ, one may either disbelieve ϕ (which is equivalent to believing not ϕ) or
remain uncommitted (neither believing nor disbelieving). A second sort of doxastic
state is degree of belief. The latter sort of state reflects the fact that beliefs may be
held with varied degrees of conviction. Degrees of belief also correspond to personal
(or subjective) probabilities, which are of considerable importance to decision theory.
In order to cement the link between degree of belief and rational action, it is typically
assumed that rational degrees of belief satisfy the axioms of probability.
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The two sorts of doxastic state give rise to two distinct aggregation problems.
The first is the problem of aggregating beliefs: Given a group of agents, the problem
is to pool individual beliefs regarding a domain of propositions, in order to form
a collective belief set.1 The second problem concerns the aggregation of degrees of
belief: Given a group of agents, the problem is to pool their individual degrees of belief
regarding a domain of propositions, in order to form collective degrees of belief.2 The
determination of what principles are appropriate in forming a collective doxastic state
may vary by context, and depend on the relative importance of respecting procedural
concerns (e.g., for the ‘fairness’ with which individual doxastic states have a bearing
on the collective) versus veritistic concerns (e.g., for the tendency of the aggregation
procedure to yield an accurate collective doxastic state). As a rough guide to forming
intuitions about the relative importance of procedural and veritistic concerns, I will
proceed upon the assumption that collective doxastic states will serve the purpose of
guiding collective decision making (cf. Wagner 2010, p. 336).

Regardless of the importance one attaches to procedural and veritistic concerns,
it is clear that both sorts of aggregation (i.e., of beliefs and of degrees of belief)
have their place. In some cases, our goal is to form collective beliefs, on the basis
of individual beliefs. Jury trials provide one sort of example. In more interesting
cases, the members of a group need to aggregate their individual beliefs regarding a
range of interrelated propositions. Such cases arise when a committee is charged with
issuing yes/no verdicts regarding each element of a collection of related propositions.
One example would be of a hiring committee that is charged with evaluating which
qualifications a candidate meets (Pigozzi 2015). It is easy to imagine cases where it
would be desirable for the members of a group to aggregate their degrees of belief.
In fact, since degrees of belief are more fine-grained than beliefs (seeming to encode
more information about an agent’s doxastic state), it might appear that it would always
be preferable to aggregate degrees of belief, rather than beliefs. Nevertheless, it is clear
that there are many circumstances where we want to form collective judgments, but
we only have access to the beliefs of the members of a group, and not to their degrees
of belief. In such cases, we will have to settle for aggregating beliefs.3

In addition to the problem of aggregating belief sets, and the problem of aggregating
degrees of belief, there is the further problem of simultaneously aggregating beliefs
and degrees of belief: Given a group of agents, the problem is to pool the individual
belief sets in order to form a collective belief set, while at the same time pooling the
individual degrees of belief in order to form collective degrees of belief.4Assumingwe
accede to some prior constraints on the manner in which rational beliefs and rational

1 For an excellent survey of the topic, see Pigozzi (2015).
2 For excellent surveys of the topic, see Genest and Zidek (1986), and Dietrich and List (2016).
3 It may be that we could integrate individual beliefs in order to form collective degrees of belief. I will not
explore that possibility here.
4 The project of the present paper is similar to a project that was briefly outlined by Cariani (2016,
pp. 402––403). Cariani considers two alternate approaches to belief aggregation, namely, (1) a Bayesian
model that updates a prior probability function by conditionalization on expert testimony in order to form
a posterior probability function to which an acceptance rule is then applied, and (2) a more standard aggre-
gation model applied to the testimony/beliefs of the experts. Cariani considers the issue of whether the two
approaches would agree in their results, which parallels the problem that is the focus of the present paper.
The project envisioned by Cariani differs from the one pursued here, since (among other differences) the
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degrees of belief are related, the ‘joint problem’ of aggregating beliefs and degrees of
belief is more than the sum of the two component problems. Assume, for example,
that we endorse the rather modest constraint that it is only rational for an agent (or
a collective) to believe a proposition, if the agent’s (or the collective’s) degree of
belief for the proposition is greater than 0.5. If rational degree of belief constrains
rational belief in this way, and we require that our aggregation procedures respect this
constraint, then care must be taken in deciding how we aggregate beliefs and degrees
of belief. If care is not taken, the result of aggregation may fail to satisfy the constraint.

One might dismiss the joint problem of aggregating beliefs and degrees of belief,
appealing to the claim that degrees of belief are more fine-grained than beliefs. In
particular, one might maintain that it is possible to provide necessary and sufficient
conditions for rational belief specified wholly in terms of rational degree of belief.
If belief were ‘reducible’ to degree of belief in the preceding sense, then one could
dispense with (coarse-grained) belief, in favor of (fine-grained) degree of belief, in all
cases where one had access to all of the facts about a relevant agent’s (or a relevant
collective’s) degrees of belief. The suggestion is that, in the face of the joint problem
of aggregating beliefs and degrees of belief, it would be sufficient to concern oneself
with aggregating the relevant degrees of belief.

There are, of course, arguments against the claim that belief is reducible to degree
of belief. One line of argument maintains that belief is sensitive to pragmatic and/or
contextual considerations to which degree of belief is insensitive (Fantl and McGrath
2002; Hawthorne 2004; Weatherson 2005; Ganson 2008; Hawthorne 2009; Buchak
2014; Leitgeb 2014; Staffel 2016; Thorn 2017). Regardless of whether rational belief
is reducible to rational degree of belief, it would be of value to know how to aggregate
beliefs in a way that respects the relationship between rational belief and rational
degree of belief. The value of such knowledge is analogous to the value of knowing
the laws of chemistry even if those laws are reducible to the laws of fundamental
physics. For example, knowledge of the laws of chemistry would be needed (up and
above the laws of physics) in reasoning about a system for which we possess an
adequate chemical description, but not a description in the language of fundamental
physics. By analogy, knowledge of the appropriate principles of belief aggregation
would be needed (up and above the appropriate principles for aggregating degrees of
belief) in reasoning about the collective beliefs of a group, in cases where we do not
have access to the degrees of belief of the members of the group.

The present article investigates the joint problem of aggregating beliefs and degrees
of belief. My starting assumptions will consist of a number of rationality constraints
on the inputs and outputs to the joint aggregation process. To begin with, I assume
(1) that the belief sets that are the inputs and outputs to the aggregation process are
consistent and closed under deductive consequences. I also assume (2) that the degrees
of belief that are the inputs and outputs to the aggregation process satisfy the axioms of
probability. Finally, I assume (3) that the inputs and outputs to the aggregation process
satisfy a ‘context dependent’ version of the LockeanThesis (Foley 1993, 2009; Leitgeb
2013, 2014):

Footnote 4 continued
Bayesian approach considered by Cariani differs markedly from the approach to probability aggregation
considered here.
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The Lockean Thesis For each individual/collective, there is some r (0.5< r <1) such
that for the individual/collective, and each proposition, ϕ, it is rational for the individ-
ual/collective to believe ϕ if and only if the individual’s/collective’s rational degree
of belief for ϕ is at least r.

The preceding version of the Lockean Thesis differs importantly from the ‘con-
text independent’ version of the thesis, which requires some particular bound r that
applies to every individual/collective. Indeed, as illustrated by the Lottery Paradox, the
context independent version of the Lockean Thesis leads to inconsistency when com-
bined with the claim that rational belief sets are consistent and closed under deductive
consequences, and the claim that rational degrees of belief satisfy the axioms of prob-
ability (Kyburg 1961, p. 197). A key innovation of Leitgeb (2013, 2014) was to show
how to consistently maintain the (context dependent) Lockean Thesis, while at the
same time holding that rational belief sets are consistent and closed under deductive
consequences, and that rational degrees of belief satisfy the axioms of probability.

The goal of the present article is to press forward with the insights of Leitgeb,
and evaluate whether (1), (2), and (3) are compatible with reasonable constraints on
the aggregation of beliefs and degrees of belief. The article will proceed as follows.
Section 2 presents a formal framework for representing the aggregation of belief
sets. Along with presenting a formal framework, I present three principles that any
satisfactory belief aggregation procedure should satisfy. Section 3 parallels Sect. 2, and
presents a framework for aggregating degrees of belief, along with three principles
that any satisfactory procedure for aggregating degrees of belief should satisfy. In
Sect. 4, it is shown that the core principles proposed in Sects. 2 and 3 are compatible
with assumptions (1), (2), and (3). Further possibilities and impossibilities are also
described. Section 5 summarizes the principal results of the paper.

Before proceeding, I should mention that several previous articles have observed
various formal similarities between the problem of relating beliefs to degrees of belief
and the problem of aggregating beliefs (Levi 2004; Douven and Romeijn 2007; Chan-
dler 2013; Briggs et al. 2014; Cariani 2016; Dietrich and List 2018). Some papers
have imported insights concerning the former problem in order to illuminate the lat-
ter problem (e.g., Douven and Romeijn 2007), while others have imported insights
concerning the latter problem in order to illuminate the former problem (e.g., Dietrich
and List 2018). Of particular interest, the paper of Dietrich and List (2018) introduced
a means of ‘translating’ the problem of relating beliefs to degrees of belief into the
problem of aggregating beliefs, which enables them to derive impossibility results for
the former problem from impossibility results for the latter problem.

While the work presented here is obviously constrained by the impossibility results
of Dietrich and List, those results will not feature explicitly in the discussion that
follows. Indeed, given the three rationality assumptions that form the basis of my
approach ((1), (2), and (3)), my options are very constrained regarding the relationship
between rational belief and rational degree of belief, forcing me to reject a principle
that Dietrich and List call “Propositionwise Independence”, which states that whether
one believes a proposition should only depend upon one’s degree of belief in that
proposition and not on one’s degree of belief in other propositions (Dietrich and List
2018, p. 228). In fact, a result of Leitgeb’s (2014), which is described in Sect. 4
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(below), implies that the acceptance of (1), (2), and (3) comes at the cost of a strong
form of context sensitivity for belief, such that whether it is rational for one to believe
a proposition depends, not just upon one’s degree of belief in that proposition, but
upon one’s degrees of belief in other propositions and upon the very possibilities that
are individuated by one’s degree of belief function. As acknowledged by Leitgeb, the
preceding form of context sensitivity is a significant cost (cf. Thorn 2017; Schurz
2017). In the present article, I assume that we have accepted this cost, and investigate
what further costs (if any) are incurred as a result of accepting (1), (2), and (3).

2 Belief aggregation

I here consider the belief sets of agents whose belief contents are the elements of an
algebra of propositions. Where W is the set of possible worlds, consider the algebra
of propositions generated by a partition � of W: ��{w1, …, wk}. The finiteness
of � is taken as a simplifying assumption, with all results of the paper generalizing
to the case where � is infinite, except where noted. Any proposition, ϕ, expressible
within �, is identified with a subset S of �, namely: ϕ�∪S. Since our concern is
exclusively with agents whose beliefs sets are closed under deductive consequences,
the belief set of an agent may be identified with the strongest proposition believed by
the agent. Formally, I characterize the belief set of an agent i using a k-tuple of 0 s and
1 s, namely: bi � 〈ni1,…,nik〉. Within such tuples, 0 s are associated with propositions
in � that are disbelieved, and 1 s are associated with propositions in � that are not
disbelieved. Since the value “1” signifies non-disbelief, ni j �1 does not imply that
agent i believes wj. Rather the strongest proposition believed by agent i is defined as
ϕbi �∪{wj: ni j �1}. This definition makes intuitive sense, for the following reasons:
Whenever nij �0, wj is disbelieved by i, and its compliment, ¬wj, is believed by i.
Further, since the intersection of all ¬wj such that nij �0 is the strongest proposition
believed by i, the compliment of the union of all wj such that nij �0 is the strongest
proposition believed by i, and the latter set is the union of all wj such that nij �1.

In addition to being a tuple, bi will serve as a belief function, defined as follows:
bi(ϕ)�1 (agent i believes ϕ), if ϕbi ⊆ϕ; and bi(ϕ)�0, otherwise. Note that if bi(ϕ)�
0, then the agent i either disbelieves or suspends judgment regarding ϕ (with bi(ϕ)�
bi(ϕc)�0 implying suspension of judgment). Given the preceding, the belief set cor-
responding to a belief function bi is simply {ϕ: bi(ϕ)�1}. Notice that belief sets,
so defined, are closed under deductive consequences, relative to the algebra gen-
erated by �. Next, notice that the belief set of an individual i is consistent if and
only if bi � 〈ni1, . . . , nik〉 contains at least one “1”. For simplicity’s sake, I assume
that our concern is only with consistent belief sets, thereby requiring that each tuple
ni1, . . . , nik contains at least one “1”.

The problem with which we are faced is that of aggregating an ordered set, B, of n
belief functions: B�〈b1, …, bn〉 (where each bi is defined over a k-sized partition of
W). For the purpose of regimenting belief aggregation, it is convenient to regard the
input to the aggregation process as an n by k matrix:
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⎡
⎢⎣
n11 · · · n1k
...

. . .
...

nn1 · · · nnk

⎤
⎥⎦

Notice that the rows of the matrix are the elements of B (representing the belief sets
of the individual agents), while the columns correspond to the elements of � (the
cells of the partition of W). The output of the aggregation process is the k-tuple bB �
〈n1,…,nk〉, which represents the strongest proposition believed by the collective. This
(strongest believed) proposition is defined as ϕB �∪{wj: nj �1}. As with individuals,
the fact that the collective believes a proposition ϕ is expressed as follows: bB(ϕ)�
1, if ϕB ⊆ϕ; and bB(ϕ)�0, otherwise. So, in addition to being a k-tuple, bB is a
belief function. The belief set of the collective is {ϕ : bB(ϕ)�1} (which is closed
under deductive consequences). I also assume that bB �〈n1, . . . , nk〉 corresponds
to a consistent belief set, and thus contains at least one “1”. In effect, the rational
requirements of consistency and deductive closure are built into the present framework.

I assume that belief aggregation is determined by a function Fbel (i.e., Fbel(B)�
bB �〈n1, . . . , nk〉), and espouse three highly plausible principles regarding Fbel. To
begin with, I assume that the domain of Fbel is unrestricted:

Universality (Ub): All ordered sets of belief functions, B, are in the domain of Fbel.5

Next I assume that the order of the elements of B makes no difference to the output
of Fbel:

Anonymity (Ab): For all B and g: if g: {1, …, n}→{1, …, n} is a permutation, and
B′ � 〈bg(1), …, bg(n)〉, then bB′ �bB.

Similarly, I assume that the order of the elements of � makes no difference to the
output of Fbel:

Neutrality (Nb): For all B and f : if f : {1, …, k}→{1, …, k} is a permutation, B′ �
〈b′

1, …, b′
n〉, and for all i: b′

i �〈ni f (1), …, ni f (k)〉, then bB′ � 〈n f (1), …, n f (k)〉.
As an illustration of how Nb places constraints on Fbel, consider the following

ordered set of belief functions:

In this case, Nb implies n1 �n3 (i.e., the collective attitude regarding w1 and w3
is identical). Indeed, where B′ is specified by f (1)�3, f (2)�2, and f (3)�1, we have
B′ �B, and thus bB′ � 〈n3, n2, n1〉 (given Nb), which implies that n1 �n3.

As an illustration of how Nb functions in conjunction with Ab, consider the fol-
lowing ordered set of belief functions:

5 I assume that the domain of Fbel includes ordered sets of belief functions of different size (n ≥1) over
different size partitions of W (k ≥1).
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In this case, the conjunction of Ab and Nb imply n1 �n3 (assuming Ub). To see
why, consider the following ordered set of belief functions:

Since B′ results from switching the first and third rows of B, Ab tells us that
Fbel(B′)�Fbel(B)�〈n1, n2, n3〉. Further, where B′′ is specified by f (1)�3, f (2)�2,
and f (3)�1, relative to B′, we have B′′ �B, and thus bB′ ′ � 〈n3, n2, n1〉 (given Nb),
which implies that n1 �n3. By similar reasoning, it follows that n1 �n2, and so by
the consistency requirement on bB, we have bB �〈1, 1, 1〉.

Taken in conjunction,Ub,Ab, andNb imply the negation of a condition that Douven
and Romeijn (2007) call “Non-Unanimity at Disparity” (cf. Douven and Williamson
2006). Within the framework of this article, a ‘disparate’ set of belief functions, B,
is one where |B|� |�| (where |B| is the number of belief functions in B, and |�|
is the number of propositions in �), and each element of B is a tuple ni1, . . . , nik
that contains exactly one 0, and none of the tuples are identical. Non-Unanimity at
Disparity demands that there be at least one disparate set of belief functions, B, and
some proposition, ϕ, such that (i) bB(ϕ)�1, and (ii) there is some bi ∈ B, such that
bi(ϕ)�0. Douven and Romeijn assert that any aggregation procedure that does not
satisfy Non-Unanimity at Disparity is “awkward”. Contrary to Douven and Romeijn,
it is plausible to think (given the apparent plausibility of Ub, Ab, and Nb) that there is
a class of possible sets of belief sets (i.e., disparate ones) where the individual belief
sets pull in opposite directions with perfect symmetry, with the result that there is no
non-arbitrary way of forming a collective belief set that includes any contingent claim.

It may now be observed that Nb is similar to a principle that was proposed by List
and Pettit (2002), namely:

Systematicity (S): There is a function, h, such that for all B and ϕ: bB(ϕ)�h(b1(ϕ),…,
bn(ϕ)).6

Notice that S is stronger than Nb, that is:

Fact 1. S implies Nb, but Nb does not imply S.7

List and Pettit show that S conflicts with the conjunction of Ub and Ab, if one
requires completeness among the outputs of aggregation, that is, if one requires that

6 I here follow the definition of Pauly and Van Hees (2006, p. 573).
7 This fact is widely known, and follows from the fact that S is equivalent to the conjunction of Nb and
another principle known as “Independence”, as mentioned by, for example, Pauly and Van Hees (2006),
and Douven and Romeijn (2007).
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for all ϕ and B: bB(ϕ)�1 or bB(ϕc)�1. Completeness entails that all aggregate belief
sets contain an element of the partition, �, over which the aggregate belief set is
defined. Given Ub, completeness applies in cases where � is the finest partition of
the space of possible worlds that our conceptual resources will admit, and demands
collective belief in exactly one element of such ultra-fine partitions (irrespective of the
beliefs of the individuals whose belief sets are the inputs to the aggregation process).
Completeness is, thus, an extremely strong requirement, and it is apparent that correct
norms of belief formation demand its rejection. I adhere to those demands and reject
completeness. Since I do not require completeness, I could consistently accept S,
along with the other principles that I favor. Nevertheless, there are further reasons for
denying that S is a plausible constraint on belief aggregation. In particular, S in the
presence of Ub and Ab implies a highly ‘incredulous’ belief aggregation function, as
expressed by the following fact:

Fact 2. If Ub, Ab, and S, then for all B, ϕ: bB(ϕ)�1 if and only if for all bi in B:
bi(ϕ)�1.8

Assuming Ub, Ab, and S, Fact 2 tells us that a collective will only believe a propo-
sition if every member of the collective believes that proposition. Fact 2 shows that S
induces a highly incredulous belief aggregation function (in the presence of Ub and
Ab), and I believe that this counts as a decisive reason for rejecting S. Nevertheless, in
what follows, I will remain neutral on the question of whether Fbel should satisfy S or
merely Nb. As we shall see, it is possible to leave one’s options open in this respect,
since the possibility results that are presented in Sect. 4 allow one to uphold S, if
one desires. In fact, the possibility results presented in Sect. 4 show that the Lockean
Thesis is compatible with an extremely broad range of belief aggregation functions,
in the presence of reasonable constraints on degree of belief aggregation.

3 Degree of belief aggregation

Once again,whereW is the set of possibleworlds, I consider the algebra of propositions
generated by a partition ��{w1, …, wk} of W. As above, propositions are identified
with subsets of �, according to the condition: ϕ�∪S, where S⊆�. Formally, I
identify the degree of belief function, pi, of an agent i as a k-tuple of real numbers:
ri1, . . . , rik . I require that any such pi be a probability function on �, that is: ri j ∈ [0,
1] (for all i and j) and

∑
j ri j �1 (for all i). More generally, i’s degrees of belief are

specified by the schema: pi(ϕ)�∑
j ri j , for j ∈ {j : wj ⊆ϕ}.

Similar to belief aggregation, the problem with which we are faced is that of aggre-
gating an ordered set of n probability functions P�〈p1, …, pn〉 (where each pi is
defined over a k-sized partition of W). The input to the aggregation process may be
represented by an n by k matrix (where the rows of the matrix are the elements of P,
and the columns correspond to the elements of �):

8 A proof of this fact, along with other theorems, is given in “Appendix B”.
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⎡
⎢⎣
r11 · · · r1k
...

. . .
...

rn1 · · · rnk

⎤
⎥⎦

The output of the aggregation process is then a k-tuple pP �〈r1, . . . , rk〉. As with
individual degrees of belief, it is assumed that pP is a probability function, that is: r j
∈ [0, 1] (for all j), and

∑
j r j �1. Similarly, pP(ϕ)�∑

j r j , for j ∈ {j : wj ⊆ϕ}.
As usual, it is assumed that probability function aggregation is determined by a

function Fprob (i.e., Fprob(P)�pP �〈r1, . . . , rk〉). I also endorse three standard princi-
ples regarding Fprob, which parallel the ones that I proposed for Fbel:

Universality (Up): All ordered sets of probability functions, P, are in the domain of
Fprob.9

Anonymity (Ap): For all P and g: if g: {1, …, n}→{1, …, n} is a permutation, and
P′ � 〈pg(1), …, pg(n)〉, then pP′ �pP.

Neutrality (Np): For all P and f : if f : {1, …, k}→{1, …, k} is a permutation, P′ �
〈p′

1, …, p′
n〉, and for all i: p′

i �〈ri f (1), …, ri f (k)〉, then pP′ � 〈r f (1), …, r f (k)〉.
A principle stronger than Np was introduced by Lehrer and Wagner (1981, 1983),

and is similar to List and Pettit’s S:

Irrelevance of Alternatives (IA): There is a function, h, such that for all P, wi: pP(wi)�
h(p1(wi),…, pn(wi)).

Although similar to S, IA does not lead to incredulity in the manner of S – recall
Fact 2. Nevertheless, the problems that arise for S provide a reason for treating IA
with caution. IA is also extremely restrictive, as illustrated by its interaction with the
following highly plausible principle10:

Zero Unanimity (Zp): For all P: if for all pi in P: ri j �0, then r j �0.

Taken together, IA and Z are equivalent to linear weighting, in cases where |�| >2
(Lehrer and Wagner 1983):

Linear Weighting (LW): There is a set of constants 〈c1,…, cn〉, such that (i) for all i: ci
≥0, (ii) c1 +…+cn �1, and (iii) for all P and j: pP(wj)�p1(wj)·c1 +…+pn(wj)·cn.

While LW appears to be reasonable, we will see below that the principle is incom-
patible with some plausible means of adhering to the Lockean Thesis. Assuming
non-dictatorial weights (i.e., for all i: ci ��1), LW is also known to be incompatible
with other widely endorsed principles, including:

9 I assume that the domain of Fprob includes ordered sets of probability functions of different size (n ≥1)
over different size partitions of W (k ≥1).
10 But see Genest and Wagner (1984), who introduce grounds for doubting Zp.

123



5398 Synthese (2020) 197:5389–5409

Independence Preservation (IP): For all P, ϕ, ψ: if for all pi in P: pi(ϕ∩ψ)�
pi(ϕ)pi(ψ), then pP(ϕ∩ψ)�pP(ϕ)pP(ψ).11

Commutativity with Learning (CL): For all P, ϕ, ψ: if for all pi in P: pi(ϕ)>0, then
pP(ψ|ϕ)�pP′(ψ), where P′ � 〈p1(ψ|ϕ), …, pn(ψ|ϕ)〉.12

Some have cited the incompatibility of LW and IP as grounds for rejecting LW
(e.g., Laddaga 1977), and it is clear that there are some cases where we should require
independence preservation, contrary to the prescriptions of LW (such as in the case
described by Elkin and Wheeler 2018). Nevertheless, it is plausible to deny that IP
holds generally, since the principle is implausible in the case where the probability
functions to be aggregated mirror frequencies for disjoint and equinumerous samples
(a case where LW is plausible). IP is also known to be highly restrictive, excluding
many plausible aggregation functions (Genest and Wagner 1987).

CL tells us that we should reach the same collective degrees of belief, regardless
of whether we (i) aggregate individual degrees of belief to form collective degrees
of belief, and then update the collective degrees of belief by conditionalization upon
given information ϕ, or (ii) update individual degrees of belief by conditionalization
upon ϕ, and then aggregate individual degrees of belief to form collective degrees of
belief. CL is an attractive principle, since it prohibits certain order effects that could
make an aggregation process subject to manipulation according to when information
is disclosed.13 While the principle is attractive, it is also highly restrictive, as observed
by Genest (1984b), with further impossibility results concerning CL introduced by
Russell, Hawthorne, and Buchak (2015). Because CL is so restrictive, the principle
should probably be regarded as negotiable—nice to have but not a deal breaker if we
have to give it up. Thus, we are left with several principles, including CL, IP, and
LW, that are of interest, but should probably not be regarded as obligatory, due to
their restrictiveness. Given the plausibility of Z, IA also seems overly restrictive, and
should also be regarded as negotiable.

11 For a proof, see Lehrer and Wagner (1983).
12 For a proof, see Genest (1984a). See also Brössel and Eder (2014), who outline conditions under which
CL is compatible with LW.
13 As observed by Russell, Hawthorne, and Buchak (2015), violations of CL can also lead a group to
accept a diachronic Dutch book, assuming (among other things) that the group re-aggregates their degrees
of belief each time they are faced with making a collective decision. I do not believe that the observation
of Russell, Hawthorne, and Buchak provides a decisive reason in favor of CL. In the kind of example
presented by Russell, Hawthorne, and Buchak, a group accepts a diachronic Dutch book, in a case where
each agent updates her degrees of belief by conditionalizing on the same proposition. This possibility would
be blocked, if the group’s aggregation procedure had satisfied CL. However, cases where each agent in
a group updates her degrees of belief by conditionalizing on the same proposition are not typical, and it
is clear that conformity to CL will not prevent a group from accepting a diachronic Dutch book in cases
where members of the group update on different propositions. I doubt that there is any plausible aggregation
principle that will protect a group from accepting a diachronic Dutch book, in situations where the group
members update on different propositions, suggesting that we must look beyond aggregation principles,
such as CL, as a means of preventing collectives from accepting diachronic Dutch books.
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4 Belief and degree of belief aggregation together

I nowconsider somepossibilities for the coordinated aggregation of beliefs anddegrees
of belief. My basic assumption is that rational beliefs and rational degrees of belief
are related to each other according to the Lockean Thesis.14 In particular, I assume
a context dependent version of the Lockean Thesis that says that for every individ-
ual/collective there is a bound r such that for each proposition, ϕ, it is rational for the
individual/collective to believe ϕ if and only if the individual’s/collective’s rational
degree of belief in ϕ is at least r. As shown by Leitgeb (2014), the satisfaction of the
Lockean Thesis is closely related to the notion of p-stability:

Definition A proposition ϕ is p-stable with respect to a probability function, p, if and
only if for all S: if ϕ∩S ��∅ and p(S)>0, then p(ϕ|S)>0.5.

Leitgeb (2014) has shown that if we embrace (1) consistency and deductive closure
for belief sets, (2) probabilistic coherence for degrees of belief, and (3) the Lockean
Thesis, then the strongest proposition believed by any given agent must be p-stable,
where p is the degree of belief function for the respective agent. Furthermore, an agent
will satisfy the LockeanThesiswith the bound r if and only if the strongest proposition,
ϕ, believed by the agent is p-stable with probability at least r, and all other propositions
that are p-stable are deductive consequences ofϕ, or have probability less than r. Given
the preceding fact, I adopt the following criterion for the aptness of a belief function,
b, for a probability function, p, relative to a bound r:

Definition 〈b, p〉 is Lockean at r if and only if (i) p(ϕb)≥ r, (ii) ϕb is p-stable, and (iii)
for all ψ: if ψ is p-stable, then ϕb ⊆ψ or P(ψ)< r.

The goal of the present article is to canvass the possibility of instituting constraints
on belief and degree of belief aggregation that are compatible with the Lockean Thesis.
To simplifymatters, I will limitmy interest to pairs of aggregation functions that ensure
the preservation of the satisfaction of the Lockean Thesis, under selected ‘appropriate
conditions’, in the following sense: If the Lockean Thesis is satisfied by (the doxastic
state of) each member of a group, and other appropriate conditions obtain, then the
Lockean Thesis is satisfied by (the doxastic state of) the collective. A straightforward
principle of the preceding sort omits any demand that appropriate conditions obtain,
and simply demands that if the Lockean Thesis is satisfied by eachmember of a group,
then the Lockean Thesis is satisfied by the collective. In other words:

Strict Preservation of the Locke an Thesis (SL) For all B and P: if for all i: there exists
an r: 〈bi, pi〉 is Lockean at r, then there exists an r: 〈bB, pP〉 is Lockean at r.

Notice that the antecedent of SL is very ‘flexible’ concerning which belief sets are
compatible with which degrees of belief. Consider, for example, p�〈0.993, 0.004,
0.002, 0.001〉, along with b1 �〈1, 0, 0, 0〉, b2 �〈1, 1, 0, 0〉, b3 �〈1, 1, 1, 0〉, and b4
�〈1, 1, 1, 1〉. Notice that 〈b1, p〉 is Lockean at r �0.993, 〈b2, p〉 is Lockean at r �
14 As a point of comparison, “Appendix A” considers Lin and Kelly’s (2012) symmetric camera shutter
rule. The contents of “Appendix A” show that, for the most part, the symmetric camera shutter rule does
not offer the opportunity of escaping impossibility results that arise for the Lockean Thesis.
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0.997, 〈b3, p〉 is Lockean at r �0.999, and 〈b4, p〉 is Lockean at r �1. The flexibility
of the relation between belief and degree of belief tolerated by SL allows agents
with identical degrees of belief to adopt different beliefs and thereby exert differential
impact on the beliefs of the collective. This is a good reason to canvas alternatives
to SL. The flexibility of SL also yields the demand for a very incredulous belief
set aggregation function, typically demanding that the collective suspend judgment
regarding all contingent propositions.

An attractive alternative to SL is motivated by the idea that for every context, there
is a single Lockean threshold, r, that applies to all individuals in that context. For any
such context, it is plausible to demand that if each individual in the group satisfies the
Lockean Thesis with the appropriate threshold r, then the collective should also satisfy
the Lockean Thesis with the threshold r.Wemay express the present requirementmore
precisely, as a collection of aggregation principles for respective values of r:

Preservation of the Lockean Thesis at Level r (Lr ) For all B and P: if for all i: 〈bi, pi〉
is Lockean at r, then 〈bB, pP〉 is Lockean at r.

While the preceding constraints are appealing, they are incompatible with reason-
able aggregation functions for belief and degree of belief, as illustrated by the following
impossibility result:

Theorem 1 For all r: if 0.5< r <1, then {Ub,Ab,Nb,Up,Ap,Np, Lr} is inconsistent.

Theorem1shows that itwouldbe toomuch todemand the satisfactionof instances of
Lr. As an alternative, I will consider another principle that places different demands on
when and how a collective should satisfy the Lockean Thesis. As a preliminary, I adopt
a particular reductive thesis concerning the relationship between belief and degree of
belief. According to this reductive thesis, an agent, i, counts as believing a proposition,
ϕ, just in case ϕ is a logical consequence of the strongest proposition, ϕbi, that is pi-
stable, where pi is i’s degree of belief function. Any agent who conforms to the present
reductive thesis is credulous in the sense that she believes as many propositions as
she can, while still adhering to the Lockean Thesis. The present conception of belief,
which is endorsed by Arló-Costa and Pedersen (2012, p. 302), and entertained by
Leitgeb (2013, pp. 1369–1370), is very attractive, assuming one wants to maintain
the Lockean Thesis along with a reductive account of belief to degree of belief (cf.
Cariani 2016, p. 402). This reductive thesis also provides us with the opportunity of
combining the Lockean Thesis with reasonable principles of belief and degree of belief
aggregation. In order to apply the reductive thesis, I introduce the following definition,
which applies to a pair consisting of a belief function and a degree of belief function:

Definition 〈b, p〉 is credulous Lockean (abbreviated CL(b, p)) if and only if (1) ϕb is
p-stable, and (2) for all S: if S is a subset of � and ∪S is p-stable, then ϕb ⊆∪S.

Since there is a strongest p-stable proposition for each probability function p (Leit-
geb 2014), it follows that for every p there is a unique belief function, b, such that
〈b, p〉 is credulous Lockean. Regarding the joint aggregation of beliefs and degrees of
belief, I now propose the following principle:
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Preservation of Lockean Credulity (PLC): For all B, P: if for all i: CL(bi, pi), then
CL(bB, pP).

It is demonstrable that PLC is consistent with the core principles of belief and
degree of belief aggregation that were introduced in Sects. 2 and 3:

Theorem 2 {Ub, Ab, Nb, Up, Ap, Np, PLC} is consistent.

Theorem 2 follows directly from the following (far more general) result:

Theorem 3 For all F: if {F �Fbel,Ub,Ab,Nb} is consistent, then {F �Fbel,Up,Ap,
Np, PLC} is consistent.15

In consideringTheorem3, note that a statement of the form“F �Fbel” expresses that
the particular function F is the ‘correct’ belief aggregation function Fbel. So Theorem 3
tells us that the conjunction Up, Ap, Np, and PLC is compatible with any choice of
belief aggregation function, so long as that function satisfies Ub, Ab, and Nb. In other
words, Theorem 3 shows that our options are completely open regarding what further
constraints we may adopt regarding Fbel, given our commitment to the conjunction
Up, Ap, Np, and PLC. On the other hand, our options are far more constrained when
it comes to Fprob. For example, PLC (in conjunction with other reasonable principles)
is incompatible with linear weighting, LW, and Irrelevance of Alternatives, IA:

Theorem 4 {Ub, Ab, Nb, Up, LW, PLC} is inconsistent.

Corollary {Ub, Ab, Nb, Up, IA, Zp, PLC} is inconsistent.16

The failure of PLC to cohere with IA and LW is inconvenient, but tolerable to
the degree that IA and LW are dubitable.17 Despite the failure of PLC to cohere
with IA and LW, it is demonstrable that PLC does cohere with other, less dubitable,
principles. In fact, if we wish to maintain the claim that PLC is compatible with
reasonable aggregation functions, it is essential to go beyond Theorem 3, since the
‘substantive’ principles cited by Theorem 3, namely,Ab,Nb,Ap, andNp, only require
that acceptable aggregation functions be indifferent to the way that individuals and the
elements of � are ordered. Reasonable aggregation functions would also incorporate
requirements to the effect that the ‘direction’ of the attitudes of the individuals in a
collective exert the right sort of impact on the attitudes of the collective. The following
four principles encapsulate some important ‘directionality’ requirements:

15 In the case where� is countably infinite, we must modify the antecedent of Theorem 3 (and Theorem 6)
to require that {F �Fbel, Ub, Ab, Nb, Zb} is consistent, where Zb requires that for all B: if for all bi in B:
nij �0, then nj �0.
16 The corollary is a straightforward consequence of Theorem 4, given the result of Lehrer and Wagner
(1983) mentioned in the preceding section.
17 If we consider the least restriction of the domain of Fprob that is consistent with geometric and multi-
plicative opinion pooling (requiring at least one j, such that, for all i, rij >0), then these two sorts of pooling
are also inconsistent with the conjunction of Ub, Ab, Nb, and PLC. The preceding is demonstrable by the
example of B�〈〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉〉 and P�〈〈0, 0.1, 0.9〉, 〈0.1, 0.9, 0〉, 〈0.9, 0, 0.1〉〉. It is an
open question whether some natural restriction on the domain of Fprob (e.g., for all i and j, rij >0) would
be sufficient to make some form of geometric or multiplicative opinion pooling consistent with Ub, Ab,
Nb, and PLC. See Dietrich (2010) and Dietrich and List (2016) for excellent discussions of geometric and
multiplicative opinion pooling.
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Unanimity (UNb): For all B, j: if for all i: ni j �0, then n j �0, and if for all i: ni j �
1, then n j �1.

Weak Dominance (WDb): For all B, j, k: if for all i: ni j ≥nik , then n j ≥nk .

Unanimity (UNp): For all P, j: if for all i: ri j �0, then r j �0, and if for all i: ri j �1,
then r j �1.18

Weak Dominance (WDp): For all P, j, k: if for all i: ri j ≥rik , then r j ≥rk .

The compatibility of PLC with the preceding principles is encapsulated by the
following theorems:

Theorem 5 For all F: if {F �Fbel, Ub, Ab, Nb, UNb} is consistent, then {F �Fbel,
Up, Ap, Np, UNp, PLC} is consistent.

Theorem 6 For all F: if {F �Fbel, Ub, Ab, Nb, WDb} is consistent, then {F �Fbel,
Up, Ap, Np,WDp, PLC} is consistent.

Theorem 7 For all F: if {F �Fbel, Ub, Ab, Nb, UNb,WDb} is consistent, then {F �
Fbel, Up, Ap, Np, UNp, WDp, PLC} is consistent.19

Although Theorems 5–7 are reassuring, it is demonstrable that both Independence
Preservation (IP) and Commutativity with Learning (CL) are inconsistent with PLC,
in the presence of other reasonable principles, as expressed by the following theorems
(where Zb consists of the first conjunct of UNb):

Theorem 8 {Ub, Ab, Nb, Zb, Up, PLC, CL} is inconsistent.

Theorem 9 {Ub, Ab, Nb, Zb, Up, Ap, Np, PLC, IP} is inconsistent.

If one doubts that Zb is plausible, then one might dismiss the preceding theorems.
Note, however, that maintaining either {Ub, Ab, Nb, Up, PLC, CL} or {Ub, Ab,
Nb, Up, Ap, Np, PLC, IP} (whose consistency is easily demonstrable20) will require
frequent violations of Zb. Accepting such violations of Zb, in the presence of Ab
and Nb, will lead to a very incredulous belief set aggregation function (i.e., a belief
set aggregation function that typically demands that the collective suspend judgment
regarding all contingent propositions).

5 Conclusion

The present paper began by introducing the ‘joint problem’ of aggregating beliefs
and degrees of belief. The joint problem is significant, because it is a potential source
of constraints upon both belief aggregation and degree of belief aggregation. Indeed,

18 The more general unanimity condition that applies for all values in [0, 1] (rather than merely in {0, 1})
does not cohere with PLC, in the presence of other reasonable principles.
19 The proof of Theorem 7 proceeds via elements of the proofs of Theorems 3, 5, and 6.
20 For all i: simply let pP(wi)�1/|�| and bB(wi)�1.

123



Synthese (2020) 197:5389–5409 5403

if rational degree of belief and rational belief are subject to mutual constraints, then
care must be taken in how we aggregate beliefs and degrees of belief, lest the result
of joint aggregation be collective beliefs and degrees of belief that fail to satisfy the
constraints.

In exploring the joint problem, themain goal of the paper was to investigate whether
the Lockean Thesis is compatible with reasonable belief and degree of belief aggre-
gation functions. While the Lockean Thesis is dubitable (see, e.g., Buchak 2014), it is
typically regarded as highly attractive, because, among other reasons, it forbids cases
where the rational degree of belief in one proposition, ϕ, is greater than the rational
degree of belief in another proposition, ψ, and yet it is rational to believe ψ and it
is not rational to believe ϕ. As shown by Leitgeb (2014), the Lockean Thesis is also
very demanding: Assuming (1) consistency and deductive closure for belief sets, and
(2) probabilistic coherence for degrees of belief, the Thesis implies that the determi-
nation of whether it is rational for an agent (or a collective) to believe a respective
proposition is dependent, not just upon the agent’s degree of belief in the proposition,
but also upon the agent’s degrees of belief in other propositions and upon the very
possibilities that are individuated by the agent’s degree of belief function. Given the
demandingness of the Lockean Thesis, it would have been reasonable to expect the
Thesis to place significant constraints upon belief aggregation and/or degree of belief
aggregation. The results of the preceding section bear out this expectation.

In evaluating the tenability of the LockeanThesis in the context of the joint problem,
I considered three ‘preservationist’ principles concerning when and how acceptable
aggregation functions should yield collective beliefs and degrees of belief that satisfy
the Lockean Thesis. Two of the principles proved to be unsatisfactory. One principle,
SL, is unappealing, because it permits individuals within a group to have different
beliefs, while having identical degree of belief functions. A second principle, Lr (for
any setting of r in (0.5, 1)), is just too demanding, as it would require that we aban-
don at least one non-negotiable aggregation principle (as illustrated by Theorem 1).
In the end, my investigation focused on a principle called Preservation of Lockean
Credulity (PLC), though it is possible that I have overlooked other principles that
warrant exploration.

As encapsulated by PLC, Theorem 7 shows that the Lockean Thesis is compati-
ble with an ensemble of principles that may plausibly be regarded as specifying the
non-negotiable core of belief and degree of belief aggregation, namely: universality
of inputs (Ub and Up), anonymity (Ab and Ap), neutrality (Nb and Np), unanimity
(UNb and UNp), and weak dominance (WDb and WDp). Theorem 7 also shows that
our options are very open regarding the sort of belief aggregation function we may
adopt, assuming a commitment to PLC. On the other hand, PLC closes off some
other significant principles concerning degree of belief aggregation: Theorem 4 and
its corollary show that Irrelevance of Alternatives (IA) and Linear Weighting (LW)
are problematic, while Theorems 8 and 9 show that Independence Preservation (IP)
and Commutativity with Learning (CL) are problematic. The impossibility results
presented in Sect. 4 (i.e., Theorems 4, 8, and 9) bear out the claim that acceptance of
the Lockean Thesis would place significant constraints on what degree of belief aggre-
gation function one may adopt. On the other hand, the possibility results presented
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in Sect. 4 (i.e., Theorems 3, 5, 6, and 7) show that the cost of accepting the Lockean
Thesis might well be tolerable.
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Appendix A: Lin and Kelly’s Symmetric Camera Shutter Rule

Motivated by the fact that there is no consistent context independent version of the
Lockean Thesis with a threshold r <1, Lin and Kelly (2012) proposed what they call
the symmetric camera shutter rule. Like the Lockean Thesis the rule of Lin and Kelly
includes a parameter r (0< r <1) that reflects an agent’s degree of credulity. Given a
particular value r, the symmetric camera shutter rule demands the following relation
between belief an degree of belief, where σ(wi)�p(wi)/maxj p(wj):

b(wi ) � 0 i f and only i f σ(wi ) ≤ 1 − r .

In line with this condition, we can say that 〈b, p〉 is shutter fit at r (abbreviated
SFr(b, p)) just in case for all i: b(wi)�0 if and only if σ(wi)≤1 − r.

It is straightforward to define analogues of Lockean Credulity and PLC that apply
to the symmetric camera shutter rule:

Definition 〈b, p〉 is credulous shutter fit (abbreviated CSF(b, p)) if and only if (1)
there exists an r (0< r <1): 〈b, p〉 is shutter fit at r, and (2) for all b′: if ϕb′ ⊂ϕb, then
for all s (0< s <1): 〈b′, p〉 is not shutter fit at s.
Preservation of Shutter Fit Credulity (PSFC): For all B, P: if for all i: CSF(bi, pi), then
CSF(bB, pP).

It is, then, straightforward to demonstrate the analogue of Theorem 3 (and similarly
for Theorems 5, 6, and 7):

Theorem 10 For all F: if {F �Fbel, Ub, Ab, Nb} is consistent, then {F �Fbel, Up,
Ap, Np, PSFC} is consistent.21

Beyond the preceding, it turns out that the symmetric camera shutter rule is ‘more
stable’ than the Lockean Thesis, as demonstrated by the behavior of the following
analogues of the instances of Lr:

Preservation of Shutter Fit at Level r (SFr ): For all B and P: if for all i: 〈bi, pi〉 is shutter
fit at r, then 〈bB, pP〉 is shutter fit at r.
21 The proof of Theorem 3 is annotated to indicate the modifications required to prove Theorems 10 and
11. Analogues of Theorems 5, 6, and 7, for PSFC in place of PLC are also straightforward.
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Unlike instances of Lr (for all r in (0.5, 1)), instances of SFr are consistent with
{Ub, Ab, Nb, Up, Ap, Np}, and more generally:

Theorem 11 For all F, r in (0, 1): if {F �Fbel, Ub, Ab, Nb} is consistent, then {F �
Fbel, Up, Ap, Np, SFr} is consistent.

However, both PSFC, along with all instances of SFr, are still incompatible with
LW (in the presence of other plausible principles):

Theorem 12 {Ub, Ab, Nb, Up, Ab, Nb, LW, PSFC} is inconsistent.22

Theorem 13 For all r in (0, 1): {Ub, Ab, Nb, Up, LW, SFr} is inconsistent.

Proof For all r in (0, 1), we show that {Ub, Ab, Nb, Up, LW, SFr} is inconsistent.
Consider an arbitrary r in (0, 1). Take the least n such that ((1− (3

√
(n)/n))/(n −

1))/(3
√
(n)/n)≤1− r. Let |�|�n. Let B�〈b1, …, bn〉, where, for all i, bi has the

value 1 in the ith position, and the value 0 in all other positions. Let P�〈p1, …, pn〉,
where p1 has the value v in the first position, and the value (1−v)/(n −1) in all other
positions, where v � 3√(n)/n. For all i >1: let pi have the value 1 in the ith position
and the value 0 in all other positions. Notice that Ab and Nb imply that bB is a series
of 1 s, and so bB(w1)�1. Next notice that for all i: 〈bi, pi〉 is shutter-fit at r. (In
particular, for all i >1: σp1(wi)� (1− (3

√
(n)/n))/(n −1))/(3

√
(n)/n)≤1− r.) So SFr

implies that 〈bB, pB〉 is shutter-fit at r. For reasons that follow, this implies that c1
>1/n. Assume c1 ≤1/n, then pP(w1)≤ (3

√
(n)/n)(1/n), and there exists an i such that

pP(wi)≥ (1− (3
√
(n)/n))/(n −1))(1/n)+1/n, so that σP(w1)≤ (3

√
(n)/n)(1/n)/((1−

(3
√
(n)/n))/(n −1))(1/n)+1/n). But for all n >1: (3

√
(n)/n)(1/n)/((1− (3

√
(n)/n))/(n

−1))(1/n)+1/n)≤ ((1− (3
√
(n)/n))/(n −1))/(3

√
(n)/n). Assume not. Then for some n

>1: 3√(n2)((n −2)/n)+ 3√(n)((n +1)/n)−n >0, which is absurd. So σP(w1)≤1−
r. The latter implies that bB(w1)�0, which contradicts bB(w1)�1. So c1 >1/n. By
similar reasoning concerning permutations of B and P, it follows that for all i: ci >1/n,
which contradicts LW. �
PSFC, along with all instances of SFr, are also incompatible with CL and IP (in the
presence of reasonable principles):

Theorem 14 {Ub, Ab, Nb, Zb, Up, PSFC, CL} is inconsistent.

Theorem 15 For all r in (0, 1): {Ub, Ab, Nb, Zb, Up, SFr, CL} is inconsistent.

Theorem 16 {Ub, Ab, Nb, Zb, Up, Ap, Np, PSFC, IP} is inconsistent.

Theorem 17 For all r in (0, 1): {Ub,Ab,Nb,Zb,Up,Ap,Np, SFr, IP} is inconsistent.

The proofs of Theorems 8 and 9 are annotated to indicate themodifications required
to prove Theorems 14, 15, 16, and 17.

22 The proof of Theorem 4 is annotated to indicate the modifications required to prove Theorem 12.
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Appendix B: Proofs

Fact 2. If Ub, Ab, and S, then for all B, ϕ: bB(ϕ)�1 if and only if for all bi in B:
bi(ϕ)�1.

Proof The right to left direction of the consequent follows from the consistency
requirement on bB. To establish the left to right direction, it is sufficient to show
that for all n, m: if 0≤m <n, then there exists some sets of belief functions B, such
that n1 j +…+nnj �n −m, and n j �1. If there are such sets of belief functions, then
we have, for all m, such that 0≤m <n, a proposition ¬wj, that is believed by m of n
agents, but not by the collective. It is straightforward to show that all of the needed
B exist. By Ub, we have for all n and m, such that 0≤m <n, some B such that the
columns of B are the set of permutations ofm 0 s and n −m 1 s. For each such B, ni �
1, for all ni in bB, given Ab and Nb. The preceding holds, since, for each such B, each
ni must take the same value, given Ab and Nb, which must be 1, by the consistency
requirement on bB. �
Theorem 1 For all r: if 0.5< r <1, then {Ub,A b,Nb,Up,Ap,Np,Lr} is inconsistent.

Proof Notice that for all r: if 0.5< r <1, then there exists n and ε: 0< ε<1/n and r � ((n
−1)/n)+ ε. In light of the preceding, consider the instances of the following schema,
for all n and ε: 0< ε<1/n. Let ��{w1, …, wn}. Let Bn �〈b1, …, bn〉, where bi has
the value 0 in the ith position, and the value 1 in all other positions. Let Pn �〈p1, …,
pn〉, where pi has the value (1/n)− ε in the ith position, and the value (1/n)+ (ε/(n −
1)) in all other positions. In this case, Ab and Nb imply that bBn has the value 1 in
every position, and Ap and Np imply pPn has the value 1/n in every position. Notice
that for all i: 〈bi, pi〉 is Lockean at ((n −1)/n)+ ε, but 〈bBn, pPn〉 is not Lockean at ((n
−1)/n)+ ε. �
Theorem 3 For all F: if {F �Fbel,Ub,Ab,Nb} is consistent, then {F �Fbel,Up,Ap,
Np, PLC} is consistent.

Proof To demonstrate the result, we show how to define a function Fprob that satisfies
Up, Ap, Np, and PLC, given any aggregation function Fbel that satisfies Ab and Nb.
Given any P, we define B*�〈b*1,…, b*n〉 to be the (unique) set of belief functions,
such that for all i: CL(b*i, pi) [or such that CSF(b*i, pi) or SFr(b*i, pi) for the proofs
of Theorems 12 and 13, respectively]. We then define Fprob by r j �1/(n∗

1 +···+ n∗
k ), if

n∗
j �1, and r j �0, if n∗

j �0 (where n∗
1 through n

∗
k are determined via Fbel, given Ub).

[Notice that, in the preceding step, we require that |{ n∗
j | n

∗
j �1}| is finite, which holds

if � is finite, but also assuming Zb, since all p-stable sets are finite (Leitgeb 2013,
p. 1366).] It follows immediately from the definition of Fprob that the combination of
Fbel and Fprob satisfy PLC [or PSFC or SFr, respectively]. The inputs to Fprob are
not restricted; so Up is also satisfied. Ap requires that for all P and g: if g: {1, …,
n}→{1, …, n} is a permutation, and P′ � 〈pg(1), …, pg(n)〉, then pP′ �pP. We assume
for arbitrary P and g, that g: {1, …, n}→{1, …, n} is a permutation, and P′ � 〈pg(1),
…, pg(n)〉. We show that pP′ �pP. To begin with, notice that P determines B*, and P′
determines B′*, so that b′*i �b*g(i). But Ab, so B

′*�B*, and thus pP′ �pP, given the
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definition of Fprob. So Ap is satisfied. Np requires that for all P: if f : {1, …, k}→{1,
…, k} is a permutation, P′ � 〈p′

1, …, p′
n〉, and for all i: p′

i �〈ri f (1), …, ri f (k)〉, then
pP′ � 〈r f (1), …, r f (k)〉. We assume for arbitrary P and f , that f : {1,…, k}→{1,…, k}
is a permutation, P′ � 〈p′

1, …, p′
n〉, and for all i: p′

i �〈ri f (1), …, ri f (k)〉. We show that
pP′ � 〈r f (1), …, r f (k)〉. To begin with, notice that P determines B*, and P′ determines
B′*, so that b′*i �b*g(i). But Ab, so B

′*�B*, and thus pP′ �pP, given the definition
of Fprob. So Ap is satisfied. Np requires that for all P: if f : {1, …, k} → {1, …, k}
is a permutation, P′ � 〈p′

1, …, p′
n〉, and for all i: p′

i �〈ri f (1), …, ri f (k)〉, then pP′ �
〈r f (1), …, r f (k)〉. We assume for arbitrary P and f , that f : {1, …, k} → {1, …, k} is
a permutation, P′ � 〈p′

1, …, p′
n〉, and for all i: p′

i �〈ri f (1), …, ri f (k)〉. We show that
pP′ � 〈r f (1), …, r f (k)〉. To begin with, notice that P determines B*, and P′ determines
B′*, such that b*i �〈ni1, …, nik〉 and b′*i �〈ni f (1), …, ni f (k)〉. But Nb, so pB′* �
〈n f (1), …, n f (k)〉. So pP′ � 〈r f (1), …, r f (k)〉, given Fprob. So Np is satisfied. �
Theorem 4 {Ub, Ab, Nb, Up, LW, PLC} is inconsistent.

Proof Let��{w1, w2}. Consider B1 �〈〈1, 0〉, 〈0, 1〉〉, and P1 �〈〈0.51, 0.49〉, 〈0.01,
0.99〉〉. Next consider B2 �〈〈1, 0〉, 〈0, 1〉〉, and P2 �〈〈0.99, 0.01〉, 〈0.49, 0.51〉〉. Notice
that Ab and Nb imply that bB1 �bB2 �〈1, 1〉. Notice that PLC (and similarly PSFC)
imply that pP1 �〈0.5, 0.5〉, which, according LW, holds only if 0.51·c1 +0.01·c2 �
0.5, and so where c1 �0.98 and c2 �0.02. But PLC (and similarly PSFC) also imply
that pP2 �〈0.5, 0.5〉, which, according LW, holds only if 0.01·c1 +0.51·c2 �0.5, and
so where c1 �0.02 and c2 �0.98, which is a contradiction. �
Theorem 5 For all F: if {F �Fbel, Ub, Ab, Nb, UNb} is consistent, then {F �Fbel,
Up, Ap, Np, UNp, PLC} is consistent.

Proof The proof proceeds as the proof of Theorem 5, save that we make the further
assumption that UNb, and show that Fprob satisfies UNp. Assume not. Then there is
a case where (i) r j ��0 and for all i: ri j �0, or a case where (ii) r j ��1 and for all i:
ri j �1. In case (i), we have for all i: n∗

i j �0, given for all i: ri j �0 (by the definition
of B*). So n∗

j �0, given UNb. And so r j �0, by the definition of Fprob. In case (ii),
we have for all i: n∗

i j �1 and for all i, k �� j: n∗
ik �0, given for all i: ri j �1 (by the

definition of B*). So n∗
j �1, and for all k �� j: n∗

k �0, given Ub and UNb. So r j �1,
by the definition of Fprob. �
Theorem 6 For all F: if {F �Fbel, Ub, Ab, Nb, WDb} is consistent, then {F �Fbel,
Up, Ap, Np,WDp, PLC} is consistent.

Proof The proof proceeds as the proof of Theorem 5, save that we make the further
assumption that WDb, and show that Fprob satisfiesWDp. Let P, j, and k be arbitrary,
with for all i: ri j ≥rik . In that case, for all i: n∗

i j≥ n∗
ik , by the definition of Fprob. So

n∗
j≥ n∗

k , given WDb. So r j ≥rk , by the definition of Fprob. �
Theorem 8 {Ub, Ab, Nb, Zb, Up, PLC, CL} is inconsistent.

Proof Let ��{w1, w2, w3}. Consider B�〈〈1, 0, 0〉, 〈0, 0, 1〉〉, and P�〈〈0.9, 0.09,
0.01〉, 〈0.01, 0.09, 0.9〉〉. Notice that Ab,Nb, and Zb imply that bB �〈1, 0, 1〉. Without
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loss of generality, assume that pp �〈a, b, c〉. Then PLC implies that a >b, since CL(〈1,
0, 0〉, 〈0.9, 0.09, 0.01〉) and CL(〈0, 0, 1〉, 〈0.01, 0.09, 0.99〉) [and similarly CSF(〈1,
0, 0〉, 〈0.9, 0.09, 0.01〉) and CSF(〈0, 0, 1〉, 〈0.01, 0.09, 0.99〉)23]. Now consider P′ �
〈〈90/99, 9/99, 0〉, 〈1/10, 9/10, 0〉〉, and B′ � 〈〈1, 0, 0〉, 〈0, 1, 0〉〉. Notice thatAb,Nb, and
Zb imply that bB′ � 〈1, 1, 0〉. Now notice that CL implies that pp′ � 〈a/(a +b), b/(a +
b), 0〉. Finally, notice that CL(〈1, 0, 0〉, 〈90/99, 9/99, 0〉) and CL(〈0, 1, 0〉, 〈1/10, 9/10,
0〉) imply that CL(〈1, 1, 0〉, 〈a/(a +b), b/(a +b), 0〉), which is absurd, since CL(〈1, 0,
0〉, 〈a/(a +b), b/(a +b), 0〉), given a >b [and similarly with CSF in place of CL]. �
Theorem 9 {Ub, Ab, Nb, Zb, Up, Ap, Np, PLC, IP} is inconsistent.

Proof Let ��{w1, w2, w3, w4}. Consider B�〈〈0, 0, 0, 1〉, 〈1, 0, 0, 0〉〉, and
P�〈〈0.01, 0.09, 0.09, 0.81〉, 〈0.81, 0.09, 0.09, 0.01〉〉.24 Notice that Ab, Nb, and
Zb imply that bB �〈1, 0, 0, 1〉. Now notice that Ap and Np imply that pP(w1)�
pP(w4) and pP(w2)�pP(w3), and this implies that pP(w1∪w2)�pP(w1∪w3)�1/2.
Now notice that CL(〈0, 0, 0, 1〉, 〈0.01, 0.09, 0.09, 0.81〉) and CL(〈〈1, 0, 0, 0〉,
〈0.81, 0.09, 0.9, 01〉) [and similarly CSF(〈0, 0, 0, 1〉, 〈0.01, 0.09, 0.09, 0.81〉) and
CSF(〈1, 0, 0, 0〉, 〈0.81, 0.09, 0.09, 0.01〉)]. So PLC implies that CL(〈1, 0, 0, 1〉, PP)
[and similarly CSF(〈1, 0, 0, 1〉, PP)], which implies that pP(w1)>pP(w2), and thus
pP(w1)>1/4. Finally, notice that p1((w1∪w2)∩(w1∪w3))�p1(w1∪w2)p1(w1∪w3)
and p2((w1∪w2)∩(w1∪w3))�p2(w1∪w2)p1(w1∪w3). So IP implies that
pP((w1∪w2)∩(w1∪w3))�pP(w1∪w2)pP(w1∪w3). But pP((w1∪w2)∩(w1∪w3))�
pP(w1), and, since pP(w1∪w2)�pP(w1∪w3), pP(w1)�1/4, which is absurd. �
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