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Abstract In this essay, I first consider a popular view of models and modeling, the
similarity view. Second, I contend that arguments for it fail and it suffers from what I
call “Hughes’ worry.” Third, I offer a deflationary approach to models and modeling
that avoids Hughes’ worry and shows how scientific representations are of apiece with
other types of representations. Finally, I consider an objection that the similarity view
can deal with approximations better than the deflationary view and show that this is
not so.
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“Few terms are used in popular and scientific discourse more promiscuously than ‘model”’ (Goodman
1976, 171)

1 Introduction

In this essay, I first discuss a popular position about models developed by Hesse
(1966), Giere (1988, 1999), and Weisberg (2012). Secondly, I consider an objection
to the view due to Hughes (1997) which shows that its notion of similarity between

I thank Steve Downes, Catherine Elgin, Melissa Vergara Fernández, Jim Griesemer, Andoni Ibarra, Iñaki
San Pedro, and Chris Pinnock for their help with this essay. Additionally, I thank two anonymous referees
for the very helpful feedback.

B Jay Odenbaugh
jay@lclark.edu

1 Department of Philosophy, Lewis and Clark College, Portland, OR, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-017-1665-8&domain=pdf
http://orcid.org/0000-0001-6536-8031


S5062 Synthese (2021) 198 (Suppl 21):S5061–S5076

model and world is deeply problematic. Thirdly, I sketch what I call a “deflationary”
view of models and modeling (c.f. Callender and Cohen 2006; Downes 1992; Suárez
2010, 2015). It avoids the above problem and thus is prima facie more plausible
than the alternative. It also has the added beneficial consequence that models and
modeling derive from familiar types of representation and can be studied by cognitive
science.

2 The similarity view

A very common approach to understanding what models are and how they work is
the similarity view. Stated most simply, the similarity view says that models are more
or less similar to the world and it is in virtue of their similarity that they successfully
represent the world. I will first trace this important theory through three figures: Mary
Hesse, Ronald Giere, and Michael Weisberg. Their motivations for developing their
accounts differ, but they have all articulated likeminded views. Tracing this history is
important because the objections I raise later in the essay are not specific to any one
version of the position. Rather, the objections I raise are a problem for all of them
since they form a family.

2.1 Mary Hesse

Hesse (1966) provided an analysis of models as analogies. Consider molecules in a
gas, which we are trying to understand. We might “model” the molecules using some
other group of objects—in this case, billiard balls. On her view, we have a positive,
negative, and neutral analogy. That is, there are properties shared between both systems
which is the positive analogy; there are the properties not shared which is the negative
analogy; there is the neutral analogy which are those properties which we simply do
not whether they are positive or negative. Amodel1 is “the imperfect copy (the billiard
balls minus the negative analogy...” (Hesse 1966, 9). She also writes,

Since I shall also want to talk about the second object or copy that includes the
negative analogy, let us agree as a shorthand expression to call this ‘model2’
(Hesse 1966, 10)

Hesse’s models use analogy and hence similarity. Similarity is here understood as the
sharing of properties. Things are similar insofar as they share properties and dissimilar
insofar as they do not.1 We explain or understand something unfamiliar by virtue of its

1 Notoriously, Nelson Goodman argued that this proposal was “useless” (Goodman 1972). For any two
objects, there is at least one set of which they are both members. Hence, the claim that similarity can be
understood in terms of shared properties is universal and thus useless. The same is true if we say that a and
b are more similar than c and d if, and only if, the former have more properties in common than the latter.
For any two things, they will have exactly the same number properties in common. If the number of objects
is n, then the number of shared properties is 2n−2 and if the number of objects is infinite, the number of
properties shared is infinite. But, Goodman assumes properties simply are sets. Many would argue this is
false because there are sets for which there is no property (or as Lewis puts it, no “natural” property for
every set) (Lewis 1983).
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similarity to something previously understood. Thus, for Hesse, models as analogies
are required for interpreting theory and explaining phenomena. Suppose we are trying
to understand the force exerted by a molecule x on another y at a time. We recognize
that this force is equal in magnitude and opposite in direction to that exerted by y on x
at that time. Thus, we can use a model (e.g. billiard balls) to understand the behavior
of molecules in a gas. We “make sense” of the former is in terms of the latter. Hesse’s
approach is particularly illuminating when we consider material or scale models, but
can include some more theoretical models (e.g. water and sound waves).

2.2 Ronald Giere

A second source of the similarity view is Ronald Giere (1988). He articulated his
view of models, and of theories, in response to the received view of theories. On
this view, theories are axiomatic systems (Hempel 1966). However, after criticisms
from a variety of philosophers, the semantic view of theories was born. Models on
the semantic view are those structures which satisfy the sentences of a theory (van
Fraassen 1980; Suppe 1989). Giere argued that even this semantic viewwas too distant
from scientific practice and thus developed his own naturalized account (Giere 1988,
Chap. 3).

On Giere’s view, a model is an idealized, abstract structure and the relationship
between model and world is that of similarity. He writes,

My preferred suggestion, then, is that we understand a theory as comprising two
elements: (1) a population of models, and (2) various hypotheses linking those
models with systems in the real world. (Giere 1988, 85)

Thus, there is a theoretical definition and a theoretical hypothesis. The theoretical
definition describes a structure often thought of as a phase portrait in a state space
which satisfy some differential equations. For example, we might interpret the Lotka–
Volterra predator–prey equations

dV

dt
= r V − aV P

d P

dt
= baV P − q P

such that they are made true by the phrase portrait in the state space visually depicted
by this graph.
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Fig. 1 Graphical depiction of the Lotka–Volterra state space

The theoretical hypothesis is one of similarity. A model is similar to some system in
some respects and to certain degrees. Giere writes,

The positions and velocities of the Earth and moon in the Earth-moon system
are very close to those of a two-particle Newtonian model with an inverse square
central force. (Giere 1988, 81)

Thus, the abstract structure, in this case a phase portrait in a state space, makes the
equations true. The target system, some predator–prey populations are then more or
less similar with regard to certain properties of this abstract structure.

2.3 Michael Weisberg

Recently Weisberg (2012) has offered his own rich account of modeling and models.
On his view, models are interpreted structures, which can be mathematical, com-
putational, or material. For example, the Lotka–Volterra model is mathematical, the
Schelling model of segregation is computational because it consists in simulations,
and the physical model of the San Francisco Bay is, well, material. An interpretation
involves a construal which includes an assignment, an intended scope, and fidelity
criteria. Returning to our Lotka–Volterra model as an example, we assign parameters
like a, b, r, q and variables like V and P to properties of the system such as ‘r ’ denotes
the property intrinsic rate of increase of prey and ‘V ’ denotes the prey population.
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An intended scope specifies over what range of the respective parameter and variable
values the model applies. Finally, the fidelity criteria are those criteria by which the
model is accurate. It is important to note that for Weisberg, model descriptions and
models are distinct. He writes,

When we talk about models, write about them, or show a picture or diagram, we
are employing a model description. These descriptions must be distinguished
from the models themselves. (Weisberg 2012, 33)

Equations or other kinds of statements specify mathematical objects and these
objects satisfy their descriptions. However, unlike in the case of concretemodels,
mathematical models can be studied andmanipulated only via their descriptions.
While the Lotka–Volterra model itself is not a set of equations, it can be studied
only through proxies such as these equations. This is probably the main reason
that scientists often informally refer to equations as models; their attention is
focused on these equations. (Weisberg 2012, 37)

What the Lotka–Volterra equation describes is not predator–prey populations, but
a mathematical structure that is more or less like predator–prey populations. This
distinguishes theorizing which is direct versus theorizing which is indirect. Modeling,
according to Weisberg (and Giere) is indirect.

Weisberg also offers a weighted-feature account of similarity. The similarity
between model and target S(m, t) is,

|Ma ∩ Ta | + |Mm ∩ Tm |
|Ma ∩ Ta | + |Mm ∩ Tm | + |Ma − Ta | + |Mm − Tm | + |Ta − Ma | + |Tm − Mm |

where Ma are model properties, Ta are target properties, Mm are model mechanisms,
and Tm are targetmechanisms. Terms of the form, |Mi ∩Ti | denote the the intersections
of properties between model m and target t , terms of the form |Mi − Ti | and |Ti − Mi |
denote properties had by m and not t and t and not m respectively.2 If no attributes
or mechanisms are shared, then his measure S(m, t) = 0 since the numerator |Ma ∩
Ta | + |Mm ∩ Tm | = 0 and the relevant terms in the denominator |Ma − Ta | + |Ta −
Tm | + |Tm − Ta | �= 0. It is extremely interesting to note that Weisberg’s approach is
continuous with Giere’s but also with Hesse’s.3

2.4 Arguments for the similarity view

A variety of arguments have been offered for the similarity view. I will just consider
three very prominent ones. Let’s say that the traditional view of scientific theorizing

2 Weisberg includes weights given to terms in the equation, but I ignore those for simplicity; i.e. including
them would not make a difference to the arguments presented below.
3 I am not making a historical claim of influence (though I think there is such a chain of influence). Rather,
the type of view articulated by Hesse, Giere, andWeisberg are all developing similar thoughts on the matter.
By emphasizing similarity, we are locating the model-world relation as one of analogy with positive (the
intersections), negative (the differences), and neutral analogies. Additionally, scientists select the respects
in which a model and target are thought to be similar.
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supposes theories are sentential. They consist in the conjunction of a set of sentences
closed under entailment. Some have argued scientific theorizing goes beyond this since
theories consist in a small set of laws. However, in many sciences, there are no laws.
Hence, theorizing in those sciences cannot consist in theories as small sets of laws.
However, the similarity view does not presuppose there are laws and hence is superior
(c.f. Beatty 1980, 1982; Giere 1999; Hausman 1992; Rosenberg 1994; Thompson
1989). However, there are two responses. First, with regard to biology where laws are
often denied to exist, there may be no laws for species, but there are laws for kinds
of species such as host and parasitoid, predator and prey, r -selected and K -selected
species, etc. Second, if models are actually and possibly similar to empirical systems,
how can there not be laws? That is, similarity between the two across possibilities
presumably covers what systems would do in non-actual circumstances. This just
takes us back to laws.

A second argument offered for the similarity view is this. Modelers devise models
independently of application (Weisberg 2012). The similarity view can distinguish
theoretical models from theoretical hypotheses, but the traditional view cannot since
theories must already must have their application encoded. Modeling is indirect con-
trary to the traditional view which claims it is direct. There is a response here too.
Traditional theories do provide empirical interpretations but they need not provide
empirical applications. They tell us, according to the theory, what would happen
if the relevant set of conditions is met. However, they are silent whether in fact
those conditions are met. Thus, the traditional view is indirect if the similiarity view
is.

Third argument for the similarity view (or more specifically for the semantic view),
is given by Bas van Fraassen. He writes,

Perhaps the worst consequence of the syntactic approach was the way it
focused attention on philosophically irrelevant technical questions. It is hard
not to conclude that those discussions of axiomatizability in restricted vocab-
ularies, ‘theoretical terms’, Craig’s theorem, ‘reduction sentences’, ‘empirical
languages’, Ramsey and Carnap sentences, were one and all off the mark –
solutions to purely self-generated problems, and philosophically irrelevant. (van
Fraassen 1980, 56)

I agree that the received view was extremely distant from scientific practice and this
introduce irrelevant pseudo-problems. Additionally, I think the similarity view is an
improvement. But, this argument hinges on their being no better account of models
which fits scientific practice. This assumption I challenge below with my defense of
General Griceanism.

3 Hughes’ worry

There are many objections to understanding representation or representational accu-
racy in terms of similarity (c.f. Goodman 1972; Cummins 1989). In this paper, I raise
and focus on what I believe is the most serious objection to the similarity view which
comes from thinking about scientific models. Consider a model of an ideal pendulum,
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m

(
d2x

dt2

)
= −(mg/ l)x

For a pendulum with very little friction, with very small angles of swing, and very
short time intervals, this model can accurately represent a pendulum’s oscillations.

Fig. 2 Idealized pendulum

Here is a worry raised by R. I. G. Hughes, He writes,

...[W]e may model an actual pendulum, a weight hanging by a cord, as an ideal
pendulum.Wemay even be tempted to say that in both cases the relation between
the pendulum’s length and periodic time is approximately the same, and that they
are in that respect similar to each other. But the ideal pendulum has no length,
and there is no time in which it completes an oscillation. It is an abstract object,
similar to material pendulums in no obvious sense. (Hughes 1997, 330)4

We can state the argument explicitly in this way. An object can have the properties
periodic time and length only if it is spatiotemporal. Mathematical objects are not
spatiotemporal. Hence, they cannot have the properties periodic time and length. Two
objects are similar only if they share properties. Mathematical objects and pendulums
cannot share the properties periodic time and length since the former can’t have them.
Therefore, they cannot be similar with respect to periodic time and length. There can
be no similarities between mathematical models and world for Giere and Weisberg
since they do not share the relevant spatiotemporal properties. Weisberg’s weighted-
feature measure of similarity will be equal to zero since the intersection terms in
the numerator will be zero and the complement terms in the denominator will be
non-zero. Hesse’s approach avoids Hughes’ worry only if all models are material
and not mathematical. There is no problem with molecules and billiard balls sharing
spatiotemporal properties. But, there is no good reason to think that all models are
like this.5

There are three responses to Hughes’ worry as far as I can tell. First, one might
argue mathematical objects are concrete and not abstract; i.e. the truthmakers of math-
ematical claims are concrete (c.f. Kitcher 1984; Field 2016). But, there are not enough

4 Chakravartty (2001) provides similar worries to the ones Hughes provided.
5 As we will see, my own view is that concrete objects like inscriptions and utterances do represent the
world. However, they don’t do so, or least don’t generally do so, by being similar to it. My name represents
me but doesn’t do so by being similar to me.
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concrete truthmakers to make mathematical claims true (e.g. the set of real numbers
is larger than the set of natural numbers).6 Second, one might deny that mathematical
objects like state spaces exist. But, if two things are similar, then both exist. Existing
and non-existing objects do not share properties. One might propose an alternative
account of similarity that does not involve sharing properties but it is not clear what
this would be (c.f. Goodman 1972; Quine 1969). Third, one might claim mathematics
(Balaguer 2001), and models that use it (Frigg 2010; Toon 2012), involves “make-
believe.” Maybe we should be fictionalists, but Giere (2009) and Weisberg (2012,
Chap. 4) are not fictionalists about models. And, I worry that fictionalists about mod-
els have an “exportation” problem in any event. How can we learn about how the
world works from what occurs in a fiction? We cannot infer simply from Sir Arthur
Conan Doyle’s novels truths about London. Why would scientific models construed
fictionally be any different?

Weisberg (2015) has responded to Hughes’ worry as I have presented it (Oden-
baugh 2015). I want to consider his thoughtful responses. First, Weisberg is largely
concerned to understand the “epistemic level” of theorizing and not to determine the
ultimate ontology of those practices he analyzes. Moreover, he takes his view to be
consistentwithwhatever ontology ofmathematics is correct. This is of course perfectly
reasonable only if his account is consistent with a wide swath of these ontologies. I
have argued that claiming there are relevant similarities between mathematical struc-
tures and concrete objects requires that they share properties.7 This requires both exist
and thus his account is committed to a mathematical realism. However, I have also
argued that they cannot share the relevant properties of interest like periodic time
and intrinsic rate of growth. Thus, his mathematical realism embroils him in a debate
over the ontology of mathematics and thus means he cannot stick to the “epistemic
level.” His views force him to take sides in the philosophy of mathematics. Second, he
writes,

Mathematical objects as understood by scientists don’t have properties that
would make them similar to real-world targets, and they have many properties
that no physical system can have. This is an important objection when directed
at those who see mathematical models as strictly mathematical objects, such as
some structural realists and traditional defenders of the semantic view of theo-
ries. But I think that mathematical models are interpreted mathematical objects.
A harmonic oscillator model can be said to have a period because modelers
interpret part of its mathematical structure as denoting a period. These relations
of denotation are such that it makes sense to say that the model, but not the
mathematical structure itself, has properties like a period.

6 This is true even if we restrict our mathematics to that utilized in scientific theories insofar as they employ
the real numbers. Hartry Field proposes a very large number of spacetime points and their relations as
truthmakers for Newtonian classical mechanics. But these seem as recondite as pure mathematical objects.
Likewise, Kitcher understands mathematical claims as made true by idealized constructors who group and
permute. These constructors are also as recondite as the objects they replace.
7 Of course, if mathematical realism is correct, one might correctly claim there are “Cambridge properties”
they share; I am thinking about π and a beer right now. Both share the property being thought of by Jay.
But those are not relevant to our purposes.
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Here I remain unpersuaded. Consider the following mathematical claim, T = 2π
√

l
g ,

where l and g are positive real numbers. This is as stated is just mathematics. However,
suppose I interpret the positive real numbers l and g as length and gravitational constant
respectively. Likewise, I interpret the real number T as periodic time. I then claim
that there are similarities between this interpreted structure and an actual pendulum.
My denoting parts of a mathematical structure with terms associated with physical
magnitudes does not mean the mathematical structures share properties like periodic
time with the actual pendulum. Interpreting a mathematical structure leaves us with
another problem. How can an abstract object come to represent a concrete one? I am
reminded of the question supposedly asked ofAbrahamLincoln, “Howmany legs does
a dog have if you call his tail a leg? Four. Saying that a tail is a leg doesn’tmake it a leg.”
And, if we use a term associated with spatiotemporal things and name a mathematical
structure with it, we do not thereby make the thing so named spatiotemporal or similar
to things which are. From here, I will assume Hughes’ worry provides a good reason
to reject the similarity view.8

4 A deflationary view

In this section, I want to sketch a deflationary approach to models and modeling (c.f.
Callender and Cohen 2006; Downes 1992; Suárez 2010, 2015). Many philosophers of
science writing on models have provided an account of representation specifically for
models. The thought is that scientific models are a really special sui generis form of
representation. For example, after examining Galileo’s proof of a kinematical claim
using geometry, Hughes (1997) provides a DDI account of how models represent the
world. The DDI account supposes we denote physical magnitudes with mathematical
ones, we demonstrate physical claims through mathematical analysis, and interpret
those claims in terms of physical objects and events. Giere (1988) offers his own
account of scientific representation as well. On Giere’s account an interpretation is
the assignment of general terms to sets of abstract objects, and identification is the
assignment of terms or names to specific abstract objects. It is in virtue of the activity
of interpretation and identification that the model comes to represent the world. It is a
separate issue as to whether it is an accurate representation; that is settled by intended
similarities between model and world. Likewise, van Fraassen (2010) offers his own
account. He argues that there are several features that make a scientific representation

8 Incidentally, I am inclined to think thatWeisberg could reformulate his view to avoidHughes’ worry. First,
Weisberg’s models and target systems can be construed as relational structures. Second, we can formulate
whatever morphismwe like between an abstract object and a concrete one construed as relational structures.
For example, sets A and B have the same cardinality, if there is a bijection from A to B. Two sets having the
same cardinality is a property they can share regardless of the ontology of their members of the respective
sets. This presumes that the model and target system have both been construed as mathematical objects.
But now we have a problem of how a mathematical object can denote a concrete one. Bas van Fraassen
(2010) has argued that we model phenomena of the world with data models or what he calls appearances.
We then determine the fit of our theory to the appearances. That is, we evaluate how one model fits another
another model. But you ask, how does something abstract like a mathematical structure represent something
concrete? van Fraassen suggests we ignore this question since it engages in metaphysics. As a naturalist, I
do not think we can reasonably avoid this question.
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a representation. First, the fact that x represents y must be established intentionally.
Some agentmust intend that x represents y. Second, theremust be a coding convention
in place for the consumer. Imagine a novice picks up a textbook on epidemiology and
examines the SIR model of of the spread of disease,

d S

dt
= −β I S

N
d I

dt
= β I S

N
− γ I

d R

dt
= γ I

The text utilizes all sorts of mathematical apparatus for representing the world but the
novice does not understand the model. For the vehicle to represent some phenomena,
there must be a convention for how the represented is “coded” in the representation
and the novice must be capable of understanding the convention. For example, after
reading the text, they learn that S represents the susceptible population, I represents
the infected population, R represents the recovered or immune population, β is the
rate of contact, γ is the rate of recovery, and N = S + I + R. Third, some aspects
of the represented must be selected for representation. When a map represents it
does so in certain respects but not in others. Maps do not usually represent the color
of an area but do often represent relative distances. Fourth, there is a “fitting” or
accuracy relation between the representation and the represented,which is contextually
determined. Usually, it concerns only those aspects that are selected to be represented
or some subset of them.OnvanFraassen’s account, all representations are intentionally
established, have a coding convention, have selected aspects, and have an accuracy
relation.

As such, there is nothing wrong with these sorts of approaches. The worry is that
they are “reinventing the wheel.” Following Callender and Cohen (2006), I am a
proponent of General Griceanism (Grice 1991). There are fundamental and derived
representations and the latter are explained in terms of the former. This is distinct from
Specific Griceanism which claims that sentence or utterance meaning is to understood
in terms of speaker meaning, speaker meaning is understood in terms of commu-
nicative intentions, and this is explicated in terms of a naturalistic account of mental
content. General Griceans think that we do not need a special account of scientific
representation for models. We simply deploy those general accounts of representa-
tions that we find in cognitive science, cognitive psychology, linguistics, and other
related fields (Cummins 1989; Sterelny 1990). This does not imply that there are
not different types of representation—there most assuredly are. For example, pictures
and words represent in different ways (Goodman 1968). But these different ways
are orthogonal to a science/non-science distinction. The similarity view departs from
General Griceanism in two ways. First, it supposes that models are special sui generis
form of indirect representation. Second, the representations are not true of or satis-
fied by objects but are aspectually similar to the represented. Here I deny we need to
make either supposition. The arguments for the similarity view are unconvincing and
Hughes’ worry shows there are extra costs to accepting this view.
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Why accept General Griceanism? First, scientific representations are built from
ordinary representational tools like language, diagrams, etc. That is, scientific rep-
resentations are derived from those other representational resources. It would be
extremely odd to think that scientific representations are sui generis given they are
constructed from these elements. Second, the things thatmake scientific representation
seem distinct from other forms of representation are actually found in them as well.
Models are representations that involve abstraction and idealization (c.f. McMullin
1985; Cartwright 1994; Morrison 2015). A representation abstracts when there are
properties of the system which it does not represent. A representation idealizes prop-
erties it represents by distorting them. But these so-called special features are found in
other types of representation. For example, a black and white drawing of a friend does
not represent their colors. In language, we presuppose sharp boundaries where there
are none between things (e.g. “x is bald”). Third, Hughes, Giere, and van Fraassen
already employ a Gricean framework for thinking about representation (e.g. they cite
the importance of intentions and interpretation). However, they don’t engage the cog-
nitive sciences and their treatment of representation.9

We can distinguish between representational vehicles and representational contents
(Dretske 1997). Representational vehicles are the objects, events, or properties that
do the representing. Representational contents are how the vehicles represent objects
as being so-and-so. Scientists use various vehicles to represent the world including
concrete objects, equations, graphs, pictures, etc (Perini 2005a, b). These representa-
tional vehicles and the content they express are the models. We might say models are
nothing over and above their mode of presentation. When we “write down a model”
we are doing just that. The similarity view assumes that models are the objects which
are represented by the vehicles with their content and those objects represent empirical
systems. For example, the Lotka–Volterra predator–prey equations represent an state
space which represents via similarity an actual predator–prey population. However,
I reject this view—the models are the vehicles with their representational content
and not the objects so represented (if any object is so represented). On my view, the
Lotka–Volterra predator–prey equations are the model and they represent predator–
prey populations. This avoids Hughes’ worry sincemodels are just model descriptions.
We can also make good sense of how models relate to the world—they do so just like
other representations. They are true or false of it. This avoids confusing properties of
vehicles and contents. Weisberg wrote that in modeling we interpret part of a mathe-
matical structure as denoting periodic time. Incidentally, I largely agree if we mean
by that we use part of a mathematical equation, a part of our language, to denote a
property like period length. Suppose I utter the following in a population biology class,

Let ‘N ’ stand for population abundance, ‘r ’ stand for the rate of increase indepen-
dent of other species, and ‘K ’ represent the number or organisms the environment
permits. The growth of the population is d N

dt = r N
(
1 − N

K

)
.

9 Giere (1999, Chap. 6) utilizes psychological work on categorization involving prototypes and exemplars
to understand how models form families with great insight. However, I would argue that the similarity view
per se is not driven by findings in cognitive science.
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I have used mathematical language to denote biological species and their properties.
And, I can apply various tools devised in calculus to study those groups of organisms.10

5 Approximate truth: an objection

Suppose you often think of models as representational vehicles with some content
in a natural language and not as some mathematical object. The similarity view has
a easy time explaining how models approximate targets. There are similar in certain
respects and to certain degrees. But, the General Gricean view has to deal with that
old problem of “approximate truth.” This seems hopeless and I myself have worried
that it was indeed so (Odenbaugh 2011). In this section, I want to show how this defla-
tionary approach can use resources of cognitive science to deal with approximation
independent of the similarity view. That is, the General Gricean can use resources
from philosophy and the sciences to make headway on the problem just as they would
recommend.

Here is a statement of the problem of approximate truth from Ronald Giere.

Yet the failure of philosophers to explicate a viable notion of approximate truth
must not be taken as grounds for concluding that approximation is not central to
the practice of science. Perhaps the source of the difficulty is the philosophers’
insistence on understanding approximation in terms of a notion of approximate
truth... My suggestion, of course, is that the notion of similarity between models
and real systems provides a much needed resource for understanding approxi-
mation in science. For one thing, it eliminates the need for a bastard semantical
relationship – approximate truth. For another, it immediately reveals – what talk
about approximate truth conceals - that approximation has at least two dimen-
sions: approximation in respects, and approximation in degrees. Armed with
just these distinctions, we can begin to attack other recent objections to realism.
(Giere 1988, 107)

In response, I will first sketch a deflationary approach to approximate truth articulated
by Peter Smith (1998). Second, I will employ the work of linguist Peter Lasersohn
(1999) on “pragmatic halos” to fill in details at to how approximationworks in ordinary
contexts. Third, I will argue that pragmatic halos, or something very much like it, are
provided by statistics in the sciences. This also has the implication that we need not
invent measures of similarity out of whole cloth since we already have them on the
books.

10 To be fair, one might ask what my own view of mathematics is. If pressed, I am inclined to adopt a
structuralist philosophy of mathematics (Resnik 1997; Shapiro 1997). Mathematics describes patterns with
positions. For example, the natural number system is the pattern shared by any system of objects that has a
specific initial object and a successor relation that satisfies the induction principle. However, I am inclined to
accept in rem rather than ante rem structuralism. Ante rem structuralists claim that mathematical structures
exist independently of their exemplifications whereas the in re structuralist thinks that the structures exist
in virtue of their exemplifications. A different way of putting the view is that there are no mathematical
objects but only mathematical properties.
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Peter Smith has provided a deflationary or minimalist approach to approximate
truth that I sketch here (Smith 1998). According to Smith, this approach starts with
two claims,

[A] “P” is approximately true if and only if approximately P .
[Exp] The order of explanation goes from right to left across the biconditional
A.

Thus, approximate truth reduces to understanding how themodifier ‘approximately’ is
applied to various propositions. Let’s take one such example, “The human population
grows logistically.” This is of course strictly speaking false. But, even when we utter
such a claim, we really mean that it is “true enough” (c.f. Elgin 2004, 2017; Teller
2012). So, what we really mean is, “The human population grows logistically” is
approximately true. Conjoined with [A], it follows that, “Approximately, the human
population grows logistically.” So, how do we understand the meaning of this claim?
Here we turn to ordinary contexts studied by linguists.

Consider the following question and answer.

“What time did Amy arrive?”
“She arrived at 3pm.”

It is extremely unlikely that Amy arrived exactly at 3pm because both she probably
arrived before or after 3pm and arrivals do not occur at instants. That is, “Amy arrived
at 3pm” is approximately true because approximately Amy arrived at 3pm. Consider
the following question and answer.

“How tall is Jay?”
“He is 5′8′′.”

Again, this is extremely unlikely because our height varies over time. “He is 5′8′′” is
approximately true because approximately he is 5′8′′. In both cases, the answers are
true because of pragmatic features associated with the respective utterances even if
false in terms of their semantic content alone. The approximation is conveyed prag-
matically. Linguist Lasersohn (1999) has termed these pragmatic features pragmatic
halos. Here is one of his examples.

15. This ball is perfectly spherical.
17. The surface was etched with perfectly spherical grooves.

He writes,

I suggest that when we describe an object as spherical even though its shape
deviates slightly from that of a true sphere, we are employing pragmatic slack
- saying something which is literally false, but close enough to the truth for
practical purposes. The purpose of perfectly, in examples like 15 and 17, is to
take up some of this slack, to reduce the acceptable level of deviance from the
truth allowed by the pragmatics. (1999, 524)

Lasersohn defines a pragmatic halo as follows.
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Given an expressionα denoting some object x , I like to think of the set the context
associates with x as around x in a sort of circular cluster, so I will call this set,
together with its ordering relation, the pragmatic halo of x , or, extending the
terminology, as the pragmatic halo of α. (Lasersohn 1999, 527)

Thus, a pragmatic halo of an expression α denoting some object x , is the set of values
the context associates with x as arrayed around x . I am suggesting that approximate
truth is to understood in terms of approximation and this is convey pragmatically by
pragmatic halos or something very much like it.

In modeling, pragmatic halos are provided for target systems described by models
enriched by statistics. For example, to keep it very simple, our logistic equation might
be approximately true of the human population provided we estimate appropriate
confidence intervals on our parameters r and K and given estimates of population size
are inexact.

d N

dt
= (r ± x1)N

(
1 − N

K ± x2

)

To bring Lasersohn’s suggestion and modeling closer together suppose we define a
model as set-theoretical predicate following Suppes (1957). As an example, consider
our logistic model; here is the predicate.

x is a logistic population if, and only if,
1. x =< T, N , r, K >,
2. T is an interval of times,
3. N is a population abundance,
4. r and K are the intrinsic rate of growth and carrying capacity respectively,

and
5. For all t ∈ T , then d N/dt = r N

(
1 − N

K

)
.

We can using biostatistics and empirical data to define a pragmatic halo around this
predicate. Thus, strictly speaking, “The human population grows logistically” is false,
it is approximately true with a pragmatic halo. This is because approximately the
human population grows logistically. This can be made explicit of course or conveyed
pragmatically with pragmatic slack. Though we may wonder whether any population
is a logistic population, a pragmatic halo around this predicate extends its extension.11

One way my deflationary approach departs from Hesse, Giere, and Weisberg is that I
claim we already have the relevant measures of similarity available. We find them in
statistics andmodel fitting; they provide our pragmatic halos.We don’t need ameasure
of similarity de novo because statisticians have already developed them. Thus, we are
concerned, insofar as we are, withmodels being imprecisely and approximately true.12

Smith’s (1998) approach can be used by the similarity view; specifically with what
he calls a geometric modeling theory—a GM-theory for short. A GM-theory has

11 The logistic model assumes a constant carrying capacity, linear density-dependence, no time lags, no
migration, no genetic variation, or age structure in the population.
12 My view is not that all successful models are approximately true. Rather, it is that models which are
accurate representations are approximately true. Models can be successful and not approximately true
provided that satisfy other scientifically relevant aims (Odenbaugh 2005).
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two components: an abstract geometrical structure described by equations M , and an
application of the geometric structure which is described by sentence A which is a
claim that the model replicates the geometric structure that is “read-off” some real-
world system. This is in essence Giere’s distinction between theoretical models and
theoretical hypotheses. On Smith’s account, by [A]we have, “M&A” is approximately
true if and only if approximately (M&A). Since M is a theoretical definition, it is
trivially true. Thus, by [Exp], we have M and approximately A. On the similarity
view, A is proposition that some data model is similar to some concrete phenomena.
For example, the theoretical and data model maintain some minimal distance from
one another. However, this reproduces the problem of how a mathematical object
can represent some concrete phenomena. On the General Gricean view, this problem
becomes howa vehicle, evenwhenmathematical, can represent some concrete content.
And, we have sketched a solution.

6 Conclusion

First, I have sketched how we arrived a popular view of models and modeling, the
similarity view. Second, the arguments for the view fail and the ontological costs
it bears are heavy. Hughes’ worry is a genuine worry. Third, I offered sketch of an
deflationary alternative. Models are representations like any others. We don’t need
some special measure of similarity since we already have statistics. Last, we don’t
need some fancy theory of approximate truth—we have what we need in the cognitive
sciences and statistics. These sciences gives us tools for understanding how models
are “true enough” which is about as much as I can claim for my own deflationary view.
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