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Abstract In psychology, measurement instruments are constructed from scales,
which are obtained on the grounds of exploratory and confirmatory factor analysis.
Looking at the literature, one can find various recommendations regarding how these
techniques should be used during the scale construction process. Some authors suggest
to use exploratory factor analysis on the entire data set while others advice to perform
an internal cross-validation by randomly splitting the data set in two and then either
perform exploratory factor analysis on both parts or exploratory factor analysis on the
first part and confirmatory factor analysis on the other. In spite of all these divergent
recommendations, there is no consensus on whichmethod yields the best result. In this
paper, we analyze this issue in light of the prediction versus accommodation debate
and argue that the answer to this question depends on one’s conception of the criteria
that should be used to achieve the goals of the scientific enterprise.

Keywords Exploratory factor analysis · Confirmatory factor analysis · Latent
variables · Goodness-of-fit · Akaike information criterion (AIC) · Measurement
model

1 Conundrum at the office

This is the story of three social scientists,Annie, Penny andRosie,whoworked together
in a psychology department. They wanted to capture empirically some hypothesized
latent constructs. Seeing the importance of their enterprise, they decided to get together
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and collaborate. The objective of their task was to obtain a measurement model. They
began by formulating the items meant to be indicators of the hypothesized latent con-
structs. When all the items were properly developed, they turned to the data gathering
process. However, when they reconvened afterwards, they got into an argument. None
could agree as to how they should analyze the data to provide an adequate measure-
ment model. Seeing their disagreement, they went their separate way, each one of
them following a different guideline proposed in the literature. While Annie applied
exploratory factor analysis to the entire data set, Penny randomly divided the data set
in two parts and applied exploratory factor analysis to the first part but confirmatory
factor analysis to the second. Rosie, who liked the idea of randomly splitting the data
set to perform two parallel analyses, had read somewhere that exploratory factor anal-
ysis should rather be applied to both parts. When their analyses were done, they met
again in order to examine what they had. To their surprise, they all obtained a different
measurement model, with comparable but different factorial structures. But which one
should they use for the paper they were supposed to write? They had to collaborate:
It was their data. So they went to see Sara, the supervisor of their section, hoping she
would be able to resolve the situation. After explaining their situation to Sara, they
asked: But which measurement model should we use? Which one is the best? Sara
did not know what to answer. She knew that each strategy was a plausible alternative
discussed within the literature, but she did not know which one, if any, was best. So
she asked for some time to think about the situation. She went home that night and
discussed that problem with her friend, Piper the philosopher. Here is what Piper had
to say.

2 Measurement models

One aim of psychological research is to identify latent constructs that can be used
to explain psychological phenomena (cf. Velicer and Jackson 1990b). These latent
constructs are identified through various measurement instruments. Measurement
instruments in psychology are constructed from scales, which in turn are built from
items. Latent constructs are identified indirectly via subjects’ responses on these
items. Items can take many forms (cf. Mellenbergh 1994). For instance, items can be
dichotomous (e.g. yes or no), Likert scales (e.g. 1 = strongly disagree, 2 = disagree,
3 = neither agree nor disagree, 4 = agree and 5 = strongly agree) or points on a
continuous line. There are four types of scales used in psychological measurement,
which can be divided in two categories: Scales that produce categorical data and scales
that produce continuous data (cf. Stevens 1946). Among the scales that yield categor-
ical data are nominal scales (i.e. assigning numbers to individuals or concepts) and
ordinal scales (which preserve order, e.g. a Likert scale). Continuous data is produced
by interval (where 0 is a convention) and ratio scales.

The rationale behind scale construction is the conception that latent constructs
can be used to causally explain the between-subjects variation on the items.1 For

1 This paper is primarily concerned with the issue of model selection during scale construction in psychol-
ogy. With that being said, our analysis should not be considered as restricted only to that field. Our analysis
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simplicity, consider an example with only one factor. Assume that a researcher thinks
that there is some latent construct, say, emotional exhaustion, that canbeused to explain
some psychological phenomenon (e.g. Maslach and Jackson 1981). How would this
researcher capture such latent construct? The researcher might postulate that if one
is experiencing emotional exhaustion, then one is likely to score high on items such
as “I feel emotionally drained from my work” and “I feel used up at the end of the
workday”. The researcher will thus develop many items that are meant to be indicators
of the latent construct and then gather some data using these items. Using exploratory
and/or confirmatory factor analysis techniques, the researcher will identify a subset
of items that are good indicators of the factor. The scale used to identify emotional
exhaustionwill consist of the resulting subset of items. From this, the researcher obtains
a measurement model. In this case, exploratory and/or confirmatory factor analysis is
used to determine whether or not the between-subjects variation on the items can be
modeled by a single factor, which is interpreted as emotional exhaustion. As a result,
the researcher obtains a measurement model where the latent factor is taken as a causal
explanation of the between-subjects variation on the items (see also Spirtes et al. 1991,
2000; Glymour 2001). In the aforementioned example, it is hypothesized that if one is
experiencing (resp. not experiencing) emotional exhaustion, then one will score high
(resp. low) on the items.2 Hence, emotional exhaustion causally explains why some
will score high while others will score low on the items. In this measurement model,
one considers that there is a between-subjects variation on the items because some are
experiencing emotional exhaustion while others are not.3 This type of measurement
model is known as a reflective measurement model (cf. Edwards and Bagozzi 2000).

It is important to emphasize that these measurement models are not meant to
causally explain the within-subject variation on the items (cf. Borsboom et al. 2003;
Borsboom 2008). They are not meant to indicate where an individual stands on a latent
variable. Returning to the aforementioned example, the scale is not meant to measure
to which extent one is experiencing emotional exhaustion. Measuring the variation on
a latent variable would require a longitudinal design in which one observes the correla-
tion between ‘emotional exhaustion’ at time 1 and at time 2, for example. Longitudinal
designs are necessary to examine the variation on the latent variable. However, the
reflective measurement model is obtained on the grounds of a cross-sectional study
(with data gathered at only one point in time). In this respect, despite the terminology,
measurement models are meant to identify latent variables rather than measure them
per se. Insteadofmeasuring towhich extent one is emotionally exhausted (whichwould
require a longitudinal research design), researchers identify this construct through its
plausible empirical effects (i.e. the between-subjects variation on the items).4

Footnote 1 continued
can be extended to other disciplines that use factor analytic methods for the development of measurement
instruments (e.g. sociology, education), although some idiosyncratic differences might occur.
2 Some items might be reversed score items.
3 See Hood (2013) for an analysis of the issue of realism with respect to measurement models.
4 In such a measurement model, the items are not used to predict the latent factors. As we will see, a
factorial structure is a space where the items are the points.
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3 Scale construction

In the psychology literature, there are various recommendations regarding how one
should proceed to construct a scale. To exemplify these recommendations, let us bor-
row and extend an example from Hitchcock and Sober (2004, p. 8). Consider three
researchers, namely Annie, Penny and Rosie. Let D be a data set that can randomly
be divided in two parts D1 and D2 (with D = D1 ∪ D2). Annie uses an iteration
of exploratory factor analysis (EFA) on D to identify the measurement model. This
is the general procedure that is recommended for scale construction (e.g. Costello
and Osborne 2005). In contrast, Penny uses an iteration of EFA on D1 and then uses
confirmatory factor analysis (CFA) on D2 to confirm the measurement model (e.g.
Comrey 1988; Hinkin 1998; Fabrigar et al. 1999). Finally, Rosie uses an iteration of
EFA on D1 and then tries to replicate the results on D2 using EFA (e.g. Thompson
1994, 2004).5 The iterative use of EFA is meant to identify a measurement model in
which subsets of items are taken as good indicators of the factors. There is thus an
issue of model selection. As a result of the analysis, one will choose a measurement
model that may not use all the items that were initially present in the data set (cf.
Sect. 5).

4 Prediction, accommodation and overfitting

The prediction versus accommodation debate is an old one, which has received the
attention of many philosophers (see Maher 1988; White 2003 for an overview and
references). In its initial formulation, the predictivist thesis amounted to the position
that novel (predicted) data provide better support in favor of a hypothesis than pre-
viously existing (thus accommodated) data (cf. Maher 1988, p. 273). Hitchcock and
Sober (2004) provided an interesting analysis of the prediction versus accommoda-
tion debate.6 Starting from the premise that science should aim at predictive accuracy
(on this point, see also Forster and Sober 1994; Forster 2002; Sober 2004), they argue
that accommodation risks overfitting, which undermines predictive accuracy. Amodel
overfits the data when it incorporates idiosyncratic properties of the sample. Hence,
if science aims (among other things) at predictive accuracy, then researchers should
insure that overfitting does not happen.

The elegance of Hitchcock and Sober’s proposal and its relevance to model selec-
tion during scale construction consist in the fact that it relies on clear conceptual
clarifications regarding the key concepts involved. Among the concepts central to
the debate between prediction and accommodation is the notion of novel data. Fol-
lowing Musgrave (1974), Hitchcock and Sober (2004, pp. 4–5) distinguish between

5 Note that Penny’s and Rosie’s partitions of D can be different.
6 Hitchcock and Sober’s analysis takes place within the context of an instrumentalist perspective and, as
such, they consider that science should aim at predictive accuracy (see Hitchcock and Sober 2004, pp. 2–3).
It should be noted, however, that our analysis is independent of the realism/instrumentalism debate. As we
will see, our analysis only relies on the assumption that empirical adequacy is, among others, one goal of
the scientific enterprise, and that predictive accuracy is, among others, an indicator of the overall empirical
adequacy of a theory.
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temporal, heuristic and theoretical novelty. Temporal novelty refers to data that was
not available at the time the theory (model, hypothesis) was formulated; theoretical
novelty concerns data that was not predicted by the theory’s (model’s, hypothesis’s)
rivals and heuristic novelty simply regards data not used for the construction of the
theory (model, hypothesis).7 Hitchcock and Sober adopt heuristic novelty, also known
as use-novelty (cf. Worrall 2002). Heuristic novelty is particularly relevant to model
selection given that it allows considering data that was not used in previous analyses
(cf. Schurz 2014). On these grounds, the predictivist thesis can be formulated more
broadly without reference to the time at which the data was obtained. It thus amounts
to the assumption that data provide stronger support in favor of a hypothesis if it
was predicted rather than accommodated. From this conception, predicted data can be
already available data, as long as it is not used for the formulation of the hypothesis
(model, theory).

Heuristic novelty is relevant for factor analysis given that it allows one to con-
sider mathematical regressions as predictions in the context of the prediction versus
accommodation debate. Considering that time is taken out of the equation, one can
legitimately call the independent variable a predictor in a regression analysis insofar
as the predictor does not necessarily need to be measured at a time prior than the
criterion (dependent variable).

In addition, Hitchcock and Sober (2004, p. 3) distinguish between global and local
predictivism. While global predictivism implies that prediction is always better than
accommodation, local predictivism only stipulates that in some contexts it is. Further,
they distinguish between strong and weak predictivism. Advocates of strong predic-
tivism defend that prediction is better than accommodation per se, whereas weak
predictivism asserts that the superiority of one concept over the other depends on
external epistemically relevant characteristics (Hitchcock and Sober 2004, p. 4). The
same conceptualization applies to global/local and strong/weak accommodationism.
Hitchcock and Sober’s position can therefore be described as local weak predictivism
and local weak accommodationism. In some contexts prediction is better, in other con-
texts accommodation is better, and what makes one better than the other is external:
It depends on the extent to which it safeguards against overfitting.

The key concept central to their analysis is overfitting. Prediction can be better
than accommodation insofar as it protects against overfitting and it can be used to
show that overfitting has not occurred. Nonetheless, accommodation can be better
than prediction when one makes sure that overfitting does not happen (Hitchcock
and Sober 2004, p. 3). In order to make explicit the relationships between prediction
and accommodation, Hitchcock and Sober provide a fictional example to guide their
analysis:

Consider two scientists, PennyPredictor andAnnieAccommodator. In the course
of their investigations, they acquire identical sets of data. Let us call this data
D. Both researchers advance theories on the basis of this data, but there is a
difference. Penny formulates her theory after acquiring the initial data fragment
D1, and then uses her theory to make predictions about the remaining data. Her

7 See also Gardner (1982) for a discussion of novelty.
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theory predicts the remaining data D2 (where D = D1 ∪ D2) to a high degree of
accuracy. By contrast, Annie formulates her theory only after she has acquired
all of the data in D, constructing her theory deliberately so as to accommodate
this data (Hitchcock and Sober 2004, p. 8).

In light of this example, the question they ask is thus:

Does Penny’s theory, by virtue of accurately predicting data D2, enjoy a privi-
leged epistemic status that Annie’s does not? [. . .] Suppose that Penny constructs
a theory Tp that successfully predicts data D2, whereas Annie constructs a (pos-
sibly different) theory Ta , by accommodating the entire data set D. Does the fact
that Tp predicted D2 whereas Ta was designed to accommodate this data give
us reason to believe that Tp is the better theory (Hitchcock and Sober 2004, p.
8)?

To answer this question, they distinguish between four strategies that can be used by
Penny and Annie (Hitchcock and Sober 2004, pp. 31–32):

I Accommodation of D by maximizing fit to the data;
II Accommodation of D1 by maximizing fit to the data and prediction of D2;
III Accommodation of D using AIC;
IV Accommodation of D1 using AIC and prediction of D2.

Even though Hitchcock and Sober’s presentation uses the Akaike Information Cri-
terion (AIC; Akaike 1987) as a criterion for model selection, it should be emphasized
that their argument does not rely on AIC per se but rather relies on any criterion that
enables to balance goodness-of-fit and simplicity in order to avoid overfitting (e.g.
the Bayesian Information Criterion BIC; cf. Hitchcock and Sober 2004, p. 14). The
relevance of a criterion such as AIC for model selection comes from the fact that it
shows the relationship between goodness-of-fit and complexity (see Sect. 5 below).
This relationship can be understood in light of the curve fitting problem. In a nutshell,
the curve fitting problem consists in the fact that simplicity usually comes at the price
of goodness-of-fit (Forster and Sober 1994, p. 2). More complex models will tend to
have better fit given that there is always a model that can fit exactly all the points in a
data set (Hitchcock and Sober 2004, p. 11). As such, the more complex the model is,
the higher fit it will tend to have. However, the more complex the model is, the more
likely it will overfit the data. Overfitting happens with complexmodels insofar as when
there are more adjustable parameters, it is more likely that the model will fit to the
noise in the data (Forster and Sober 1994, p. 8). Hence, a model that overfits the data
will not be predictively accurate, though it will have a good fit. Basically, AIC insures
that there is a balance between the complexity of the model and its goodness-of-fit,
thus safeguarding against overfitting (Forster and Sober 1994, p. 11). The advantage
of using AIC as a rule to select the best model is that it indicates whether or not it is
worth selecting a more complex model (see also Forster 2002).

As a result of their analysis, Hitchcock and Sober argue that, in general, III is
better than IV, which in turn is better than II, which is better than I. The ranking of
III over I follows from the fact that, given the use of AIC, the model “will have the
highest estimated predictive accuracy, relative to the entire data set D” and, further,
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that it “balances simplicity against goodness-of-fit as to avoid overfitting (Hitchcock
and Sober 2004, p. 31).” The same justification is used to rank IV over II. As to the
ranking of III over IV, it follows from the principle of total evidence, which states that
the best model should be obtained by “considering all the data available (Hitchcock
and Sober 2004, p. 31)”. The ranking of II over I is justified by the fact that prediction
can be seen as a safeguard to overfitting. That is, an accurate prediction is an indicator
that overfitting did not happen (cf. Hitchcock and Sober 2004, p. 18).

From these considerations, they conclude that prediction is better than accommo-
dation when one cannot accommodate using a criterion that balances simplicity and
goodness-of-fit (i.e. that safeguards against overfitting, such as AIC), whereas accom-
modation is better than prediction when one can use such a criterion, in which case
this should be accomplished on as much data as possible.

5 Model selection

Although there are slight differences between the notions of accommodation and
prediction as they are used inEFA/CFA and within Hitchcock and Sober’s framework,
their analysis provides us with a good starting point to determine which strategy is
best during scale construction. Indeed, if Annie and Penny, as introduced in Sect. 3,
can be compared to Annie and Penny in Hitchcock and Sober’s case, then we might be
able to apply their analysis to obtain a partial answer to Sara’s problem. To determine
if this is the case, however, we must first examine in what precisely consist EFA and
CFA.

5.1 Exploratory factor analysis

EFA is comparable to (and is sometimes confused with) a similar but different statis-
tical technique known as principal component analysis (see Jolliffe 2002). Principal
component analysis is a data reduction technique that represents principal components
as linear combinations of variables. As such, principal component analysis provides a
formativemeasurement model (cf. Edwards and Bagozzi 2000). Principal component
analysis, as a tool of descriptive statistics, is an accommodative technique that pro-
duces a unique solution. When all the principal components are retained, an analysis
by principal components produces a model that perfectly fits the data. In this respect,
principal component analysis is, by definition, prone to overfitting. One important
aspect of using statistics in psychology, however, is to be able to take into consid-
eration error and uncertainty (cf. Suppes 2007). Consequently, principal component
analysis is not a suitable statistical tool to use during scale construction.

By comparison to principal component analysis,EFAmodels the variables as linear
combinations of latent factors but includes error terms that account for possible error
in measurement (cf. Jolliffe and Morgan 1992; Finch andWest 1997; Park et al. 2002;
Abdi andWilliams2010;Tabachnick andFidell 2013; Johnson2016). The terminology
‘principal components’ is used in the case of principal component analysis, whereas
‘factor’ is reserved for factor analysis. In factor analysis, factors refer to the axes of a n-
dimensional space. A factorial structure with n factors is a n-dimensional space where
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the items are the points. While the principal components describe all the variance in
the data set, the factors only explain a portion of the variance, the rest of the variance
being accounted for by the error terms.8

EFA, as a method of inferential statistics, is an accommodative procedure that is
constrained by methodological decisions. The first step of an EFA is factor extraction:
One has to determine the number of factors that will be used to model the data. Various
criteria can be used to accomplish this (cf. Velicer and Jackson 1990a; Finch andWest
1997), including parallel analysis. Parallel analysis, which was initially developed for
principal component analysis (cf. Horn 1965), has been adapted for EFA. It retains
factors that are statistically significant, the null hypothesis being that the factors come
froma randomlygenerated data set (cf.O’Connor 2000). Parallel analysis is considered
as one of the most objective criteria for factor selection. In addition to the choice of the
number of factors to retain, the second step of anEFA is the choice of a factor extraction
method. The most widely used extraction technique is perhaps maximum likelihood
extraction (cf. Tabachnick and Fidell 2013), which relies on the assumption that the
variables are continuous9 and normally distributed10 (Byrne 2012).11 After extraction,
the factorial structure is rotated to a simple structure (cf. Thurstone 1947, 1954). There
are various rotation methods that can be used to accomplish this, including orthogonal
and oblique rotations. Orthogonal rotations constraint factors to be uncorrelated while
oblique rotations allow for correlation between factors.

During scale construction, EFA is used as an iterative procedure (cf. Mulaik 1991).
The iterative use of EFA aims at obtaining a factorial structure where subsets of
variables are highly correlated with only one factor (i.e. a simple structure). Factor
loadings greater than .3 are considered to be significant (cf. Field 2009, p. 644). As it is
usually recommended (e.g. Hinkin 1998), researchers start with a large pool of items
and then use EFA to reduce these items to smaller subsets that are good indicators of
the factors. After performing EFA on the data set, researchers eliminate items with
double loadings (i.e., which between-subjects variation can be explained via more
than one factor). This process is repeated until a proper factorial structure is obtained.
Hence, there is an issue of model selection.

The choice of a measurement model in the context of scale construction can be
justified through various criteria that are meant to achieve the goal(s) of the scientific
enterprise (cf. Kuhn 1983). Though realists might argue that the ultimate goal of
science is truth, everyone should agree with the weaker claim that, perhaps among

8 Conceptually, part of the unexplained variance might be due to something different than error.
9 Even though the hypothesis of continuity is often violated, it has been shown that, under the assumption
of normality, violation of the assumption of continuity is likely negligible (cf. Byrne 2012).
10 There are other extraction techniques that can be used in cases where the assumption of normality
is violated (cf. Flora et al. 2012). Consequently, despite their importance, these two conditions are not
necessary for the use of factor analysis during scale construction.
11 It has been argued by Michell (1997) that, given the violation of the assumption of continuity, mea-
surement of psychological attributes is not possible (see also Michell 2003, 2004). His argument revolves
around the assumption that only continuous quantities can be measured and, since the hypothesis that psy-
chological attributes are continuous is not tested, it follows that one is not justified to believe that it is
possible to measure psychological attributes. Borsboom and Mellenbergh (2004) answered this objection
and showed that this hypothesis is actually tested, though not in isolation.
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others, one goal of science is empirical adequacy (e.g. van Fraassen 1980). The choice
of a measurement model can thus be justified via specific criteria that are meant to
insure that psychological research is empirically adequate.

Maximizing goodness-of-fit can be seen as a criterion meant to achieve empirical
adequacy. By maximizing the goodness-of-fit, one is maximizing the extent to which
a measurement model fits the points in the data set. There are limits, however, to
the idea that maximizing goodness-of-fit can be used to reach empirical adequacy,
for maximizing goodness-of-fit will tend to provide a model that overfits the data.
Maximizing goodness-of-fit should therefore not be seen as a criterion that, alone, is
sufficient to reach empirical adequacy.

In the context of factor analysis with maximum likelihood factor extraction,
AIC serves as a badness-of-fit index (Akaike 1987, p. 318). It is given by
(− 2)max log likelihood + 2k, with k the number of parameters. If maximum like-
lihood extraction has not been used, then the log likelihood can be used instead of the
maximum log likelihood (Akaike 1987, p. 322). The use of AIC for selecting models
in EFA regards the problem of factor retention (Akaike 1987; Preacher et al. 2013).
In an EFA model, the factors are the adjustable parameters. Accordingly, choosing
the model with the lowest AIC score insures that goodness-of-fit does not come at the
price of complexity and, therefore, it can be seen as a safeguard to overfitting.

For example, assume that a researcher starts with i items. Different EFA models
with 1, . . . , n factors can be used to model this data. Using AIC as a criterion for
model selection in this context amounts to choose the EFA model with the lowest
AIC score. The choice of the number of factors to retain, however, should not only be
a matter of AIC. In addition to theoretical considerations, the researcher should also
verify with parallel analysis whether or not the factors are statistically significant (cf.
O’Connor 2000). After choosing the proper number of factors, the researcher will look
at the covariation matrix to see whether some items are poor indicators of the factors
(e.g. items with multiple loadings). The researcher will exclude these items and repeat
the process until she obtains adequate subsets of indicators. To some degree, Annie,
Penny and Rosie all use this strategy, the main difference being that Annie applies this
strategy to the entire data set while Penny and Rosie only use it with respect to D1.

As a result of an EFA, a researcher gets a measurement model indicating which
factors can be seen as potential causal explanations of the between-subjects varia-
tion on subsets of items.12 Formally, this measurement model takes the form of a
covariation matrix, representing items as linear combinations of factors together with
an error term. As such, an EFA produces a covariation matrix that specifies which
items are indicators of which factors. Under the assumption of (i) a specific number
of factors to extract, (ii) a factor extraction technique and (iii) a rotation method, EFA
is an accommodative procedure that yields a unique solution. Put differently, given a
specific number of factors to retain, a factor extraction method and the choice of an

12 It should be mentioned that some authors argued that an algorithm that searches for pure measurement
models should be used rather than factor analysis techniques to obtain a measurement model (e.g. Silva
et al. 2006; Kummerfeld et al. 2014; see also Murray-Watters and Glymour 2015). The analysis of these
alternative techniques is beyond the scope of this paper. We will concentrate on factor analysis given its
place with regard to scale construction in the psychology literature.
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appropriate rotation, EFA tells researchers which items load on which factor(s) and
yields the best measurement model that fits the data. EFA can be performed without
prior hypothesis regarding the factorial structure that will obtain (Huck 2012). Even if
one can have an a priori hypothesis regarding the factorial structure, this hypothesis
bears no consequences on the result of the analysis. EFA is an accommodative proce-
dure that tells how the data behave, modulo the number of factors and some noise that
might be in the data set. So Annie is an accommodator. She uses all the data at her
disposal to formulate a measurement model. In contrast to Penny and Rosie, however,
the validation of that measurement model is not included in the procedure.

5.2 Confirmatory factor analysis

In contrast, CFA is a statistical technique where researchers specify a priori the mea-
surement model and then determine to which extent the covariation matrix of the
proposed measurement model fits the covariation matrix of the data. Put differently,
researchers specify beforehand which items are supposed to load on which factor(s)
and then determine using CFA whether the hypothesized factorial structure can be
used to explain the variance in the data. In contradistinction to EFA (where prior
hypotheses regarding the factorial structure are unnecessary), the hypothesis guiding
the CFA is a necessary condition for the analysis to be performed.

CFA is a special case of structural equation modeling (cf. Schreiber et al. 2006;
Ullman 2013). Basically, CFA can be seen as a combination of factor analysis and
multiple regression analysis that allows a complete and simultaneous examination of
all the postulated relationships between the variables (latent or not) (Ullman 2013,
pp. 681, 684). A model in structural equation modeling can be divided in two parts
(cf. Ullman 2013, p. 683). While the measurement model specifies the relationships
between the observed variables (the items) and the latent variables (the factors), the
structuralmodel specifies relationships between factors. During scale construction and
scale validation,CFA is used to determine an appropriate measurement model only.13

When compared toEFA,CFA is generally presented as a hypothesis testing process.
The rationale behind that conception is quite simple: CFA requires the specification
of a measurement model prior to the analysis (cf. Hurley et al. 1997). If there is no
hypothesis regarding the structure of the measurement model, then there is no point in
trying to run a CFA. In this respect,CFA is not a data accommodation process. It does
not tell what is happening in the data. Rather, researchers predict that the data will
behave according to a specific factorial structure and test this hypothesis throughCFA.
The procedure generates an estimated population covariation matrix on the grounds
of a specific hypothesized measurement model, and then evaluate how this estimated
covariation matrix relates to the actual covariation matrix of the data (cf. Ullman 2013,
p. 685). Formally, CFA determines using multiple regression analysis whether the
hypothesized factorial structure can predict the between-subjects variation on the items

13 Once a scale has been properly validated, researchers can use different measurement models and study
the relationships between the latent factors through structural equation modeling. We will leave the analysis
of model selection with respect to structural models for future research.
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(cf. Brown 2015). That is, the specified factors are used to predict (mathematically,
via regressions) the variance on items. Although understanding predictions through
heuristic novelty allows us to disregard the time at which the data was obtained, it is
noteworthy that, given that factors are taken as explanations of the variation on items,
they can conceptually be considered temporally prior. Accordingly, CFA determines
whether the hypothesized measurement model can be used to predict the variance in
the data set. So Penny is a predictor.

The choice between different CFA models is justified via two sets of criteria. First,
it is justified on the grounds of a chi-square difference test (Ullman 2013, p. 685).
This allows to balance the complexity of the model against goodness-of-fit insofar
as it determines whether the difference between chi-square values is sufficient (i.e.
statistically significant) to justify a reduction of degrees of freedom (i.e. a more com-
plex model). Second, the evaluation of a measurement model is accomplished through
various goodness-of-fit criteria (e.g. Browne and Cudeck 1992; Hu and Bentler 1998;
Bentler 2007; see also Kline 2005; Byrne 2012; Ullman 2013). Depending on the fit
of the model that is tested during a CFA, the data will be taken to either confirm or
refute the measurement model.

From these considerations, one can see why CFA is not used on the entire data set
during the first step of scale construction (though, as we will see, it may be used on an
entire data set during a cross-validation). When constructing a scale, researchers start
with many items that are taken to be plausible indicators of specific latent constructs.
The development of these items may (or may not) be theory driven. However, there
is no guarantee that these items are indeed indicators of said constructs and, if they
are, there is no guarantee that they are good indicators. As such, EFA is first used
as an iterative procedure to clean up the (large) pool of items. The first step of scale
construction cannot be accomplished through CFA insofar as this method does not
allow to accomplish this. Although CFA can tell that there is something problematic
regarding an item, it cannot tell exactly what is wrong. For example, it may be that
the item does not load on any factor or that it has multiple loadings. Moreover, the
issue of model selection would not make sense within this context. Indeed, model
comparison must be accomplished with respect to the same data set. Otherwise, one
is comparing apples and oranges. During scale construction, researchers use EFA to
reduce the complexity of the initial data set and exclude some items. The issue of
model selection regards the choice of the number of factors to retain with respect to
the same data set. Once amodel is selected, some items are discarded and the process is
repeated. Incidentally, one can see that D2 will actually be a fragment of D2 composed
only of the items retained from the iterative use of EFA on D1. If CFA were used to
accomplish this, however, researchers would need to compare measurement models
applied to different data sets (seeing that different hypothesized measurement models
that do not use the same items are models for different data sets).

6 Cross-validation

Various guidelines exist to orient researchers during scale construction. In general,
EFA and CFA are presented as techniques that should be applied to the entire data
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set (e.g. Costello and Osborne 2005; Tabachnick and Fidell 2013). Annie’s strategy
fits this case. Nonetheless, when the data set is large enough, researchers are often
encouraged to randomly split the data set in two parts in order to perform a cross-
validation. Penny’s and Rosie’s strategies fit this profile.

Looking at the psychology literature, the expression cross-validation can be under-
stood in three different ways: (i) as a criterion for model selection, (ii) when the model
obtained on the grounds of a data set is used to predict the behavior of another data
set, and (iii) replicability across samples.

First, in a narrower sense, cross-validation is a technique that can be used as a
criterion for model selection (cf. Stone 1974, 1977). There are different ways to cross-
validate a model, depending on the proportion used to divide the data set D. Usually,
researchers will randomly split the data set D in two equal parts D1 and D2, though
different proportions could be used. Basically, the idea behind cross-validation is to
randomly split a data set in two and then determine whether or not the model obtained
via the accommodation of D1 can predict D2. This yields a correlation coefficient.
The procedure is accomplished many times using different random partitions and a
cross-validation score is computed from the average of the correlation coefficients.
This is the type of cross-validation that is discussed by Hitchcock and Sober (2004, p.
13). The relevance of Stone’s work with respect to Hitchcock and Sober’s argument is
the asymptotic equivalence between a cross-validation score and AIC. Though there
are differences with cross-validation and Penny’s strategy, they use the relationship
between her strategy and cross-validation, on the one hand, and cross-validation and
AIC, on the other, to argue in favor of II over I: Penny’s strategy is comparable to
cross-validation, cross-validation is asymptotically equivalent with AIC andAIC safe-
guards against overfitting. Thus, to some extent, Penny’s strategy safeguards against
overfitting. The relevance of cross-validation with respect to model selection in the
cases of EFA and CFA has been analyzed by Cudeck and Browne (1983), who also
noted the parallel with AIC and BIC.

There are differences between Penny’s strategy and cross-validation in Stone’s
sense. The main difference noted by Hitchcock and Sober (2004, p. 13) regards the
fact that the cross-validation procedure is only accomplished one time in Penny’s
case, in contrast with cross-validation as proposed by Stone (1974, 1977) or Cudeck
and Browne (1983). Nonetheless, Penny’s strategy can still be understood as a form
of cross-validation, though in this case the expression cross-validation gets another
meaning.

A secondway to understand cross-validation in psychological research is that results
can be cross-validatedwhen themodel obtained on the grounds of D1 is used to predict
D2 (cf. Howell 2010, pp. 549–550). This type of cross-validation is similar to cross-
validation in the aforementioned sense but differs in that it is accomplished only one
time. When performing CFA on D2, Penny cross-validates her results in this sense,
although there is a slight difference. Penny uses the model obtained on the grounds
of accommodation of D1 to predict the variance on the items of D2 (rather than to
predict D2 per se).
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Rosie, however, does not cross-validate her results in this sense.14 As we men-
tioned earlier, even though a researcher might have some prior hypothesis regarding
the factorial structure, this hypothesis bears no consequences on the result of the EFA.
The measurement model obtained via accommodation of D1 is not used to predict
the variance in D2. Rather, EFA, constrained by assumptions regarding the number
of factors to extract, the factor extraction technique and the rotation method, accom-
modates D2. Although Rosie predicts that the factorial structure can be replicated, the
test she performs to examine this hypothesis is not a (multiple) regression.

7 Replicability

There is third, broader sense in which cross-validation can be understood in psy-
chology. From a methodological perspective, cross-validation can be understood as
replicability across samples (cf. Comrey 1988; Hurley et al. 1997; Hinkin 1998; Huck
2012). In this context, there is a distinction between internal and external replicabil-
ity (cf. Thompson 1994, 2004). External replicability amounts to replicate the model
obtained by accommodating D on another data set D′ that is assumed to come from
the same population. Thus understood, external replicability is a form of constructive
replication (by opposition to direct or exact replication), where there might be differ-
ences in the research designs or in the data (cf. Brandt et al. 2014; Makel et al. 2012).
In that sense, (external) replication means providing further similar evidence in favor
of the same model. In contrast, internal replicability consists in randomly dividing a
data set D in two parts D1 and D2, to obtain a model by accommodating D1 and then
to try to replicate this model via the same technique on D2.15 Rosie’s strategy fits this
profile. So Rosie is a replicator.

Rosie, like Penny, usesEFA iteratively on D1 to obtain an appropriatemeasurement
model. Using this procedure, she eliminates items with double loadings to identify a
well-defined factorial structure.When she performsEFA on D2, however, she does not
follow the same guidelines. Indeed, she starts with the measurement model obtained
via accommodation of D1. As such, she does not use all the items that were present at
the beginning of her analysis on D1 but only uses specific subsets of items, resulting
from her iterative use of EFA on D1, that are supposed to be good indicators of the
factors. Recall that EFA tells what is happening within the data, modulo a specific
number of factor to extract and some noise in the data set. Using EFA on D2, her
aim is to determine whether the same factorial structure can be found within the data.
Accordingly, Rosie tries to (constructively) replicate the measurement model obtained
via accommodation of D1 on D2.

In light of these considerations, let us revisit the accommodation strategies presented
in Sect. 4. Let M stand for a measurement model (the subscripts E and C refer to
exploratory and confirmatory). Given that Hitchcock and Sober already argued in

14 To some extent, trying to replicate results from previous studies can be understood as a prediction that
the results can be generalized.
15 Thus understood, replication amounts to the reproduction of a result using the same technique.
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favor of the weak dominance of using AIC in favor of maximizing goodness-of-fit for
model selection, let us concentrate only on strategies III and IV.

IIIE M is obtained by accommodation from D through EFA using AIC.
IVEE M is obtained by accommodation from D1 through EFA using AIC and M is

replicated on D2 via EFA.
IVEC M is obtained by accommodation from D1 through EFA using AIC and M is

used to predict the variance in D2 via CFA.

8 A new debate

8.1 Achieving empirical adequacy

Assuming that one goal of science is empirical adequacy, predictive accuracy can
be seen as an indicator that can be used to achieve that goal. However, many would
be inclined to argue that, though science should aim at predictive accuracy to achieve
empirical adequacy, another important indicator of empirical adequacy is replicability.
Replication of experimental results can be seen as a gold standard of the scientific
enterprise (cf. Norton 2015). This conception also applies to psychology (cf. Francis
2012;Asendorpf et al. 2013). Hitchcock and Sober’s analysis provides an answer to the
debate between prediction and accommodation. However, the analysis of the different
guidelines that are suggested for scale construction brings a third player to the table:
Replication. We thus obtain a new debate, namely prediction versus accommodation
versus replication.

Both prediction and replication can be used to safeguard against overfitting. Indeed,
an accurate prediction is an indicator that overfitting did not happen (cf. Hitchcock and
Sober 2004, p. 18). In strategy IVEC , if the model obtained via accommodation of D1
is predictively accurate with regard to D2, then it is an indicator that overfitting did not
happen. Similarly, in strategy IVEE , we would not expect a replication to happen on
D2 if themodel obtained throughEFA via accommodation of D1 were overfitted. As it
stands, replicability is also a criterion that can be seen as an indicator that can be used
to achieve empirical adequacy. After all, empirically adequate theories should have
consequences that can be replicated. Put differently, given an empirically adequate
theory, one should be able to reproduce similar results using the same techniques and
procedures.

The idea that replication of a measurement model via EFA is more rigorous than
trying to confirm it via CFA might seem self-evident for psychologists and perhaps
some researchers in social sciences. After all, quantitative human and social sciences
capitalize on chance. In the context of scale construction, the model obtained through
EFA inevitably includes idiosyncratic characteristics of the data set (i.e., the model
will include chance relationships found in the data; cf. MacCallum et al. 1992). As
such, one might believe that it is prima facie improbable that the results obtained via
EFA might be replicable on other data sets, so replication of a measurement model
would be a worthy achievement.

To say that human and social science research capitalize on chance relationships that
can be found in samples is another way to look at the problem of overfitting. Indeed,
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when overfitting, one is taking into account characteristics that are idiosyncratic to the
data set. It is noteworthy, however, that there are safeguards that are used to prevent
overfitting during scale construction.16 EFA, for instance, includes error terms that
are meant to capture (at least part of) the noise in the data. In addition, using AIC as a
criterion for model selection insures that one is not sacrificing simplicity for goodness-
of-fit. The threshold of .3 to consider factor loadings as significant is also another way
to avoid considering chance relationships that are specific to a given sample.

In light of these considerations, it is not improbable that one might be able to
replicate a measurement model via EFA on further data sets. As such, it is worth
attending to the role played by replication during scale construction and studying the
epistemic significance of that methodology.

8.2 Predictive accuracy and replicability

In the context of scale construction, predictive accuracy, as it is achieved throughCFA,
and replicability, as achieved via EFA, are two related criteria. To see this, consider
how Penny and Rosie would fare if the results of their analysis were positive.

In the best case scenario, Rosie succeeds in replicating M on D2. On the grounds
of the measurement model obtained via accommodation of D1, Rosie discarded some
items in D2 and was able to reproduce the factorial structure using EFA. Hence,
the measurement model M is replicable. In this eventuality, it follows that it is also
predictively accurate. Indeed, given specific constraints, EFA provides the best mea-
surement model that fits D2. As such, if Rosie were to perform CFA on D2 with M as
a hypothesis, then she would obtain a good fit. Performing CFA on the same data set
using the measurement model obtained via EFA is somewhat redundant (cf. Hurley
et al. 1997, pp. 675–677). This should not come as a surprise seeing that Rosie would
take a model that yields the actual covariation matrix of D2 to estimate a population
covariation matrix that would then be compared to the actual covariation matrix of D2.
The hypothesized factorial structure will accurately predict the variance on the items
in D2 given that it is (modulo error and the number of factors that are extracted) the
factorial structure of D2. With respect to scale construction, it can thus be argued that
replicability (achieved through EFA) is a higher standard than predictive accuracy
(achieved through CFA) given that the satisfaction of the former implies the satis-
faction of the latter. Consequently, Rosie wins on both accounts: Replicability and
predictive accuracy are both satisfied.

Penny has the second best case scenario. IfM has a good fit on D2, then the factorial
structure is predictively accurate. Predictive accuracy is thus satisfied. However, Penny
will not knowwhether M is replicable per se. She will know that there is a good fit, but
she will not know if the model can be replicated using EFA. Indeed, a measurement
model can be predictively accurate with respect to CFA without being replicable
through EFA. The predictive accuracy of the model is determined via statistically
significant regression coefficients (factor loadings). As we mentioned earlier, EFA
accommodates the data and provides the actual covariation matrix of the data, modulo

16 This would not be the case if one were to use principal component analysis instead of EFA.
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the number of factors and some noise that might be in the data set. Nonetheless, one
can test a model via CFA that might turn out to be good enough, with acceptable
regression coefficients and an acceptable fit. This would not imply, though, that it is
the model that would be provided by EFA (which would represent the actual factorial
structure of the data). If Penny were to perform an EFA, there is nothing guaranteeing
that the factorial structure would be replicated. It is possible to have different factorial
structures with the same number of factors with good fits and acceptable regression
coefficients. This is actually why model selection is an important aspect of CFA.
Therefore, if she succeeds, Penny only satisfies the criterion of predictive accuracy.
She would have to actually perform an EFA to determine whether M is replicable,
and there is nothing in the procedure guaranteeing it is.

8.3 Prediction versus accommodation versus replication

Hitchcock and Sober use two external criteria to rank the results of the different
strategies, namely the principle of total evidence and predictive accuracy. As a result
of our analysis, we propose to consider a third external principle, namely replicability.

Hitchcock and Sober’s understanding of the principle of total evidence is that all
available data should be taken into account when assessing a model. To some extent,
Annie, Penny and Rosie all violate this understanding of the principle insofar as they
discard some items during the iterative use of EFA. This formulation of the principle
of total evidence, however, can be criticized. As Autzen (2016) argued, total evidence
does not dictate to consider all available data, but rather specifies that all relevant
available data should be considered. Accordingly, given two data sets D and D′ such
that D′ is a proper subset of D, a measurement model should be based on D if these
data are relevant for the model in light of D′ (cf. Autzen 2016, p. 286). Applying this
conception of total evidence to our example, D represents the entire data set used by
Annie, Penny and Rosie before the iterative use of EFA, whereas D′ represents the
data set obtained after some items have been discarded.

To say that Annie, Penny and Rosie all violate the principle of total evidence
amounts to say that total evidence dictates that researchers should not be discarding
items during the process. Put differently, this amounts to the claim that the data set
before the iterative use of EFA is relevant for the measurement model given the data
set obtained afterwards. The formulation of the principle of total evidence as proposed
by Autzen relies on a relevance criterion, which can be conceived in different ways.
Essentially, however, this relevance criterion relies on a criterion for evidential assess-
ment, specifying the conditions under which data provide support for a measurement
model (cf. Autzen 2016, pp. 285–286).

A measurement model obtained through EFA is considered to be empirically sup-
ported by the data when it satisfies the simple structure criterion (cf. Thurstone 1947,
1954). Although further criteria might be used when there are competing simple struc-
tures (e.g. AIC), it is the simple structure criterion that is used to evaluate whether a
factorial structure is appropriate. As a criterion for evidential assessment, the simple
structure criterion is also a relevance criterion. As such, given that an adequate mea-
surement model has to be representable via a simple structure, a data set from which
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one cannot obtain an adequate simple structure is irrelevant for the model. Therefore,
discarding items from the data set in order to be able to obtain a model that satisfies
the simple structure criterion does not violate the principle of total evidence.

In light of these considerations, it can be argued that all three researchers satisfy
the principle of total evidence, although they do so in different ways. Indeed, all
three researchers use the entire data set obtained after the iterative use of EFA. The
differences lie in the analyses that are subsequently made. Penny and Rosie also use all
the data but they do so differently. Although both Penny and Rosie accommodate D1
using EFA, Rosie uses the remaining of the data to apply the same statistical analysis
whereas Penny uses it to perform a CFA. Given that, to some extent, both Penny and
Rosie satisfy the principle of total evidence, the aforementioned considerations provide
us with an argument in favor of local weak replicationism. Granted that predictive
accuracy and replicability are (among others) two indicators of empirical adequacy,
then, in the eventuality that both strategies are successful, Rosie wins on both counts
whereas Penny only achieves predictive accuracy. Hence the result of Rosie’s strategy
is superior to Penny’s (IVEE > IVEC).

We have established that all three researchers do not violate the principle of total
evidence by discarding items from the initial data set. Nonetheless, Annie might have
an advantage over Penny and Rosie with respect to total evidence seeing that she
accommodates the data while safeguarding against overfitting using all the relevant
available data. To clearly understand why, wemust see that all three research strategies
share a common method, namely the iterative use of EFA. If all three strategies are
compared solely on the grounds of this common method to examine how the items
are discarded, then there is a case to be made in favor of Annie’s satisfaction of the
principle of total evidence.

Prior to the iterative use of EFA, Annie starts with the entire data set D whereas
Penny and Rosie start with proper subsets D1 of D. Given Autzen’s formulation of
total evidence, there is a case to be made in favor of Annie if D is relevant for the
measurement model given D1. As it stands, D is relevant for the measurement model
at this stage of the research process, but its relevance is not assessed using the simple
structure criterion. After all, prior to the iterative use of EFA, neither data set enable
researchers to have a measurement model that satisfies the simple structure criterion.

To properly understand why D is relevant here but was not relevant earlier when we
were considering discarding items, we must note a shift of meaning in the expression
all available data from Hitchcock and Sober to Autzen’s criticism of the principle of
total evidence.When saying that all available data should be considered,Hitchcock and
Sober are concerned with the number of observations, whereas Autzen is concerned
with the number of variables.

To exemplify this point, let us represent the initial data set D via a 2-dimensional
table. Each row in the table corresponds to a participant, whereas each column cor-
responds to a variable. An intersection row/column in that table corresponds the
observation made for a participant on a given variable. When claiming that total evi-
dence applies to relevant data, Autzen means that only irrelevant columns (variables)
should be deleted from the data set. In contrast, when Hitchcock and Sober claim
that all data should be considered, they mean that, given a fixed number of columns
(variables), all rows (participants) should be considered.
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The relevance criterion used to establish whether columns (variables) should be
deleted from the data set (i.e., whether some items should be discarded) is not the
same criterion used to determine whether rows (participants) should be deleted (i.e.,
whether the set should be partitioned). While the simple structure criterion can be
used to judge the relevance of a variable in the former case, sample size is a relevance
criterion in the latter. Whether researchers are justified to discard items from the
data set concerns the elimination of columns (variables). However, whether Annie’s
strategy satisfies total evidence better than Penny and Rosie during the iterative use
of EFA regards the number of rows that are considered in the analysis. The number
of rows is a matter of sample size, and sample size always matters, for it is directly
linked to statistical power (e.g. Aron et al. 2013). In this sense, D is relevant for the
measurement model, hence Penny and Rosie violate the principle of total evidence.

In light of these considerations, it is noteworthy that Annie’s (IIIE ) and Penny’s
(IVEC) strategy fitHitchcock and Sober’s analysis. Therefore, we have a partial answer
to Sara’s problem since their arguments allow us to rank these strategies (IIIE >

IVEC). Given that we have also established that Rosie’s strategy is superior to Penny’s
(IVEE > IVEC), it remains to determine what is the relationship between Rosie’s and
Annie’s strategies.

Granted that the principle of total evidence, in addition to predictive accuracy and
replicability, is also a criterion that should be used to evaluate the results of the different
strategies, Rosie’s strategy only fully satisfies two criteria (predictive accuracy and
replicability). Even though she uses all the data at her disposal, one could argue that the
model obtained through accommodation of D1 violates the principle of total evidence
insofar as it does not consider all the data available (cf. Hitchcock and Sober 2004, p.
31). In contrast, Annie’s model fully satisfies the principle of total evidence. Further,
Annie’s strategy satisfies the criterion of predictive accuracy given that she used AIC
to determine the appropriate factorial structure. However, Annie’s strategy does not
satisfy the criterion of replicability. As far as she knows, she cannot determine whether
her model is replicable (she would need to externally cross-validate her result).

As a result of our analysis, it appears that the ranking of one strategy over the other
reflects a deeper conflict between the criterion of replicability and the principle of total
evidence. There are two avenues one can take to argue in favor of the ranking of one
strategy over the other: Either one gives primary importance to the principle of total
evidence or one rather insists on reaching the criterion of replicability.

The former avenue might be argued along the lines of Hitchcock and Sober’s anal-
ysis. One could argue that as along as one is not overfitting the data, replication has
no advantage over accommodation and one should consider all the data at hand (cf.
Hitchcock and Sober 2004, pp. 17–18). In this case, one would rank the principle
of total evidence over the criterion of replicability, thus IIIE would be better than
IVEE since both achieve predictive accuracy but only IIIE fully takes into considera-
tion the principle of total evidence. As such, one would obtain a transitive ordering:
IIIE > IVEE > IVEC .

Nonetheless, one might be inclined to argue that replication, as a criterion meant
to achieve empirical adequacy, has priority over the principle of total evidence. For
instance, one might argue that data should be used to provide an accurate account
of causal parameters (e.g. Myrvold and Harper 2002). Hence, safeguarding against
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overfitting is not sufficient to argue in favor of the principle of total evidence. Rather,
one should achieve replicability seeing that reproducing a factorial structure is a good
indicator of its empirical adequacy. In this case, IVEE would be ranked over IIIE since,
in addition to balancing simplicity and goodness-of-fit, it also satisfies the criterion of
replicability. Again, one would obtain a transitive ordering: IVEE > IIIE > IVEC .

With that being said, all three criteria are important, and steps should be taken to
satisfy each of them. In the context of scale construction, the ranking of one strategy
over the other depends upon the research plan. In the eventuality that the research
team does not intend to externally cross-validate their results, then Rosie’s model
should be preferred. Indeed, the violation of the principle of total evidence is very
small and should be neglected. Rosie does use all the data available, although she does
so differently. Further, her strategy allows to satisfy replicability, predictive accuracy
and avoid overfitting. Hence, in the context of an internal cross-validation, local weak
replicationism holds.

But still, one could insist that there should be no compromise and that the mea-
surement model should be obtained by accommodation (using AIC) of all the data
available. In this case, however, the research team would need to externally cross-
validate their results, otherwise the criterion of replicability would remain unsatisfied.

Consequently, if the research team intends to perform an external cross-validation
and replicate their results, then Annie’s model should be preferred and local weak
accommodationism holds. Given that the sample size from which Annie’s measure-
ment model was obtained (through an iterative use of EFA) was bigger, her model is
less likely to capitalize on chance and is therefore more likely to replicate.

Otherwise, if the research team is not able (or do not intend) to perform an external
cross-validation (e.g. due to lack of time, participants, or resources), then Rosie’s
model should be preferred. In both cases, the three criteria are met, though there is a
slight violation of total evidence in the latter.

9 Problem solved

On the next day, Sara invited Annie, Penny and Rosie to meet in order to discuss
the issue of model selection with respect to scale construction. After greeting her
colleagues, Sara went straight to the point. Assuming that one goal of your research
is empirical adequacy, then the choice of the measurement model should be justified
through criteria that are meant to achieve that goal. Among these criteria we find
predictive accuracy and replicability. In addition to these criteria, the principle of total
evidence, as a matter of rationality, should be taken into account. All three criteria
are important and steps should be taken to satisfy each of them. That being said, the
choice of the best model to use also depends upon your research plan. If you do not
intend to externally cross-validate your model, then Rosie’s model should be used.
Indeed, Penny’s strategy (predictive accuracy and, although with a slight violation,
total evidence) as well as Annie’s strategy (total evidence and predictive accuracy)
only satisfy two out of three of these criteria, whereas Rosie’s strategy satisfies all
three (with a slight violation of total evidence). In this context, Rosie’s violation
of total evidence is negligible and replicability should have priority insofar as it is
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a good indicator of empirical adequacy, which is an important goal of psychological
research. Otherwise, if you intend to externally cross-validate your model (on data that
is assumed to come from the same population), then you should use Annie’s model
and try to reproduce it via EFA. Either way, each criterion is met. In the eventuality
that replication fails during the external cross-validation, then use CFA to determine
whether the measurement model is nonetheless acceptable. Annie, Penny and Rosie
were quite satisfied by Sara’s answer. They had more work to do, but they were happy
to have a solution to their problem. They thus thanked Sara and began to see their way
out of her office. It was a pleasure, Sara said, but one last thing: Next time, please just
call Piper.
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