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Abstract The purpose of this paper is to present a paraconsistent formal system and
a corresponding intended interpretation according to which true contradictions are
not tolerated. Contradictions are, instead, epistemically understood as conflicting evi-
dence, where evidence for a proposition A is understood as reasons for believing that
A is true. The paper defines a paraconsistent and paracomplete natural deduction sys-
tem, called the Basic Logic of Evidence (BLE), and extends it to the Logic of Evidence
and Truth (LETJ ). The latter is a logic of formal inconsistency and undeterminedness
that is able to express not only preservation of evidence but also preservation of truth.
LETJ is anti-dialetheist in the sense that, according to the intuitive interpretation pro-
posed here, its consequence relation is trivial in the presence of any true contradiction.
Adequate semantics and a decision method are presented for both BLE and LETJ , as
well as some technical results that fit the intended interpretation.

Keywords Paraconsistent logic · Philosophy of paraconsistency · Intuitionistic
logic · Paracompleteness · Logics of formal inconsistency and undeterminedness

1 Introduction

The distinctive feature of paraconsistent logics is that the principle of explosion,
according towhich anything follows from a contradiction, does not hold, thus allowing
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the acceptance of contradictionswithin a theorywithout falling into triviality. Paracon-
sistency is the study of paraconsistent logics, both in its technical and philosophical
aspects. Dialetheism is the view according to which there are true contradictions
(see e.g. Priest and Berto 2013). The dialetheist claims that some contradictions are
ontological in the sense that they are due to some ‘inner contradictory essence of
reality’—or in other words, that reality, in order to be correctly described, demands
pairs of contradictory propositions.1 Of course, endorsing a paraconsistent logic and
being a dialetheist are not the same thing: the latter implies the former, but not the
other way round. One can be a paraconsistent logician without being a dialetheist,
since paraconsistent logics may be studied and developed without the commitment
to the truth of accepted contradictions. Another view in paraconsistency, that we call
metaphysical neutrality, ‘suspends judgement’ with respect to the nature of contradic-
tions. It is a somewhat pragmatic position: the fact that contradictions occur in several
contexts of reasoning is enough to justify a non-explosive account of logical conse-
quence, and there is no need to go into the metaphysical question about the nature of
such contradictions. A third position in paraconsistency, antagonistic to dialetheism,
claims that no contradiction is ontological but, rather, all contradictions that occur
in scientific theories, belief systems, a number of situations in informal reasoning,
and even in semantic and set theoretical paradoxes—that are, strictly speaking, results
about languages with certain characteristics—have epistemic character in the sense
that they are related to thought and language. This is the position endorsed by us.

It is likely that no paraconsistent logician would be opposed to epistemic contradic-
tions. However, to the best of our knowledge, a paraconsistent formal system suited
to an intuitive reading according to which only epistemic contradictions are allowed
(and true contradictions are ‘prohibited’) is still lacking. Our aim here is to present a
system of this kind. In order to work out such an account of paraconsistency we have
to explain what it means to say that a pair of propositions A and ¬A simultaneously
‘hold’, or ‘may be accepted’, without being true.

According to the standard view, that can be traced back to Aristotle and is to be
found in virtually every book on elementary logic, the validity of an inference is a
matter of necessary preservation of truth. The essential property of propositions, from
the viewpoint of classical logic, is truth. Indeed, the more effective way of prohibiting
true contradictions is the principle of explosion that, together with excluded middle,
composes the deductive properties of classical negation.But truth is not always the only
property of propositions that matters. In intuitionistic logic, for example, the property
at stake is not only truth but truth together with the availability of a constructive proof.
Thus, there may be a proposition A such that both A and¬A do not hold because there
is no proof for any of them. Given the soundness of the system, a proof of A entails
the truth of A, but it may be the case that A has been proved true by non-constructive
means although there is no constructive proof of A. Notice that the following situation
is perfectly feasible: given two propositions A and¬A, exactly one of them is true, but

1 Although the dialetheist view has some antecedents in the history of philosophy, especially in Hegel and,
according to some interpreters, also Heraclitus, the claim that there are ‘ontological contradictions’ is rather
contentious, both inside and outside philosophy. It is not our aim here, however, to discuss the legitimacy
of, nor argue against, dialetheism.
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from a constructivist point of view neither holds because there is no proof available
for A or for ¬A. Such a view combines a realistic notion of truth with a notion of
constructive proof that is essentially epistemic.2

In the case of a non-dialetheist paraconsistent logic the situation is dual. There may
be a proposition A such that it is not the case that both A and ¬A are true, but in
some sense both hold in a given context. In this case, the essential question Q is the
following:

Q: what property are we going to ascribe to a pair of accepted
contradictory propositions such that it would be possible

for a proposition to enjoy it without being true?

Such a property has to be somethingweaker than truth. Ifwewant to reject the principle
of explosion together with dialetheism, without assuming a position of metaphysical
neutrality, we have to give a convincing answer to Q. Our proposal is that the notion
of evidence is well suited to be such an answer.

The main aim of this paper is to present a paraconsistent formal system, that we
call the Logic of Evidence and Truth (LETJ ), and an anti-dialetheist explanation
of it according to which contradictions are understood epistemically as conflicting
evidence and true contradictions are not allowed. Section 2 briefly discusses the notion
of evidence in order to show that it is an appropriate answer to question Q above.
Section 3 presents a paracomplete and paraconsistent natural deduction system for a
logic we call BLE, (the Basic Logic of Evidence), whose inference rules are intended
to preserve evidence, not truth. Neither excluded middle nor explosion hold in BLE
because evidence can be incomplete as well as contradictory.3 Section 4 is dedicated
to extending BLE to a logic we call LETJ (Logic of Evidence and Truth based on
positive intuitionistic sentential logic). LETJ is a logic of formal inconsistency and
undeterminedness that extends BLE by adding resources to express that a particular
formula A behaves classically: a unary sentential connective ◦ is added to the language
of BLE, and ◦A recovers explosion and excluded middle for A. A valuation semantics,
a decision method and some technical results for BLE and LETJ will be presented.4

Finally, in Sect. 5, we face some issues related to paraconsistency as preservation of
evidence.

2 We defend this view in Carnielli and Rodrigues (2016). It is not unlikely that a view that accepts a non-
constructive proof of the truth of a given proposition, but distinguishes such a proof from a (perhaps) more
informative constructive proof, is the predominant approach to intuitionism nowadays (see Dubucs 2008).
3 BLE, although differently motivated, turns out to be equivalent to the well-known Nelson’s logic N4.
(See also Sect. 5.3, and footnotes 11 and 21). All the technical results presented here with respect to BLE,
including a valuation semantics and a decision method, also hold for N4. In a Fregian spirit, we may say
that N4 and BLE are two different names, with different senses, that happen to have the same reference.
4 In van Benthem and Pacuit (2011) and van Benthem et al. (2015) we find a proposal of ‘evidence logics’,
designed to give an account of “epistemic agents faced with possibly contradictory evidence from different
sources”. Their approach is mainly semantical, in terms of ‘neighborhood semantics’ and differs from ours,
motivated by proof-theoretical insights. The resulting logics proposed by them are quite different from both
BLE and LETJ presented here.
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2 On the notion of evidence

There are a number of circumstances inwhichwehave to dealwith pairs of propositions
A and ¬A such that there are reasons for accepting and/or believing in both. It does
not mean that both are true, nor that we actually believe that both are true. However,
in such circumstances, although there may be nothing conclusive with respect to the
truth-value of A, we still wish to draw inferences in the presence of both A and
¬A.5 The acceptance of A and ¬A can be understood as some kind of ‘conflicting
information’ about A, in the sense of having non-conclusive reasons for accepting the
truth as well as the falsity of A. This kind of ‘conflicting information’ we call here
conflicting evidence. Let the falsity of A be represented by ¬A. So,

‘evidence that A is true’ means ‘reasons for believing in/accepting A’;
‘evidence that A is false’ means ‘reasons for believing in/accepting ¬A’.

There may be evidence that A is true even if A is false. Conflicting evidence occurs
when reasons for accepting A and ¬A are simultaneous and non-conclusive. Conclu-
sive evidence is evidence that establishes conclusively the truth (or the falsity) of A,
and eliminates any opposed non-conclusive evidence. Typical cases of conflicting evi-
dence, in the sense explained above, are the following. You may ask two different but
reliable doctors about the cause of some symptoms and get two different and incom-
patible diagnoses. Another example: two witnesses may deliver two contradictory
statements regarding some point that is crucial to the judge’s final decision. Suppos-
ing, again, that both are reliable, it may be said that there are reasons for believing
both A and ¬A, although only one of them is true. The idea of non-conclusive versus
conclusive evidence is well illustrated in theories about empirical phenomena. A good
example is the conflict between classical mechanics and the theory of electromagnetic
field, that are in the origin of Einstein’s special relativity (see Carnielli and Rodrigues
2016). Actually, it is not uncommon that two different scientific theories, successful
in describing and predicting a class of phenomena, may yield contradictory results in
some specific situations.6

The use we make here of the notion of evidence is close to the way evidence in
understood in epistemology. In Kelly (2014) we read that evidence “is the kind of
thing which can make a difference to what one is justified in believing or …what it
is reasonable for one to believe” and later he adds that since “evidence is the sort of
thing which confers justification …it is natural to think that ‘reason to believe’ and
‘evidence’ are more or less synonymous.” The link between ‘evidence’ and ‘reasons
to believe’ is also clear in the ‘principle of reasonable belief’, presented by Achinstein
(2010a): if, in the light of background information Φ, κ is evidence that A, then,

5 The logic of evidence proposed by us does not intend to represent cognitive relations between agents
and propositions. It is not an account of any kind of propositional attitude. The idea is that there is some
objective criterion that, when satisfied, indicates the existence of evidence for a proposition A. So, again,
there can be evidence for A and an agent may be aware of such evidence and still does not believe in A.
Evidence, thus, is not a name for the epistemic attitude of an agent w.r.t. a proposition. We say that our
approach is epistemic because the property of propositions that is being preserved is an epistemic notion.
6 There are several examples in the literature—see, for example, da Costa and French (2003, chapter 5)
and Nickles (2002).
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given Φ, κ is a good reason for believing A. Achinstein also distinguishes potential
evidence from veridical evidence. Roughly speaking, an evidence κ for a proposition
A is veridical if A is true and there is an ‘explanatory connection’ between A and κ

(this means, as we understand it, that κ establishes conclusively the truth of A). On
the other hand, κ may be potential evidence for A, even if A is false. Achinstein’s
notions of potential and veridical evidence are close to what we call here, respectively,
evidence simpliciter (non-conclusive) and conclusive evidence.

It is important to call attention to the fact that evidence, in the sense used here, is
always external to the formal system. We are not formalizing the notion of evidence,
nor will we present a ‘semantics of evidence’.7 The aim of Sect. 3 is to give an account
of the deductive behaviour of the sentential connectives from the point of view of
preservation of evidence, instead of preservation of truth: an inference is taken to be
valid just in case there cannot exist evidence for the premises without evidence for the
conclusion. What constitutes evidence depends on the area of study and the subject
matter, and this is not a problem of logic. Actually, it is not surprising that there is no
unified account of what constitutes evidence for a given proposition A (see Achinstein
2010b). What kind of thing constitutes non-conclusive or conclusive evidence varies
for the physicist, chemist, archaeologist and so on.

3 A logic of evidence

The aim of this section is to devise a paraconsistent formal system suited to the reading
of contradictions as conflicting evidence. What we will do here has an analogy to the
inference rules for intuitionistic logic, when the latter is understood epistemically as
concerned with the availability of a constructive proof. Natural deduction rules are
particularly well suited to expressing the intuitionistic way of constructing proofs.
Roughly speaking, the basic idea of the Brouwer–Heyting–Kolmogorov (BHK) inter-
pretation is that an inference rule is valid if it transforms constructive proofs for one or
more premises into a constructive proof of the conclusion. Here, analogously, the guid-
ing idea is the following: supposing the availability of evidence for the premises, we
ask whether an inference rule yields a conclusion for which evidence is also available.

As we have seen, (i) the falsity of A is represented here by ¬A, (ii) ‘evidence that
A is true’ is understood as ‘reasons for accepting/believing in A’, and (iii) ‘evidence
that A is false’ means ‘reasons for accepting/believing in ¬A’. So,

‘A holds’ means ‘there is evidence that A is true’;
‘A does not hold’ means ‘there is no evidence that A is true’;
‘¬A holds’ means ‘there is evidence that A is false’;
‘¬A does not hold’ means ‘there is no evidence that A is false’.

Accordingly, the following scenarios may be described with respect to a proposition
A:

7 Melvin Fitting, in a forthcoming paper (Fitting 2017), proposes a formalization of the notion of evidence
that includes an embedding of the logic BLE into the modal logic KX4, that is S4 minus �A → A plus
��A → �A. In the well-known embedding of intuitionistic logic in S4,� represents provability; dually, in
the embedding of BLE into KX4, � represents evidence which, in contrast to proof, permits contradictions.
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1. No evidence at all: both A and ¬A do not hold.
2. Only evidence that A is true: A holds, ¬A does not hold.
3. Only evidence that A is false: ¬A holds, A does not hold.
4. Conflicting evidence: both A and ¬A hold.

Thus, the formal system we are looking for must be not only paraconsistent but also
paracomplete: neither the principle of explosion nor excludedmiddle should hold. The
next section examines which natural deduction rules are suitable for expressing the
propagation of evidence through implication, conjunction, disjunction, and negation.

3.1 A natural deduction system for preservation of evidence

Let L0 be a language with a denumerable set of propositional letters {p0, p1, p2, . . .},
parentheses, and closed under the connectives in the set {¬,∧, ∨,→}. The set S0
of formulas of L0 is obtained recursively in the usual way. Roman capitals stand for
meta-variables for formulas of L0. The definition of a derivation D of A from a set Γ
of premises is the usual one for natural deduction systems.

A complete natural deduction system for classical propositional logic is defined by
adding to the introduction and elimination rules for→,∨ and∧ the rules of explosion
and excluded middle below:

A ¬A
B EX P and

[A]....
B

[¬A]....
B

B PEM

By dropping the rules above and keeping only the introduction and elimination rules
for →, ∨ and ∧, we get positive intuitionistic propositional logic (PIL). We start with
PIL, arguing that it is able to express the notion of preservation of evidence.

A B
A ∧ B ∧I

A
A ∨ B ∨I

B
A ∨ B

[A]....
B

A → B → I

A ∧ B
A ∧E

A ∧ B
B

A ∨ B

[A]....
C

[B]....
C

C ∨E

A → B A
B → E
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With respect to PIL, the availability of evidence is analogous to availability of proof.
As usual in natural deduction systems, [A] means that the hypothesis A has been
discharged (or canceled). An evidence-interpretation for the introduction rules for ∧
and ∨ is straightforward. If κ and κ ′ are evidence, respectively, for A and B, κ and
κ ′ together constitute evidence for A ∧ B.8 Similarly, if κ constitutes evidence for A,
then κ is also evidence for any disjunction that has A as one disjunct. The rule → I
deserves some remarks. When the supposition that there is evidence κ for A leads to
the conclusion that there is evidence κ ′ for B, this is itself evidence for A → B. Notice
that → does not demand any relation between the contents or meanings of A and B.
If there is evidence for B, we may conclude that there is also evidence for A → B,
for any A. The implication, therefore, works analogously to both classical and BHK
interpretation: if B is true, A → B is also true; if there is a construction of B, there is
a construction of A → B. Up to this point, this takes care of the introduction rules.

The elimination rules may be obtained from the introduction rules. Gentzen (1935,
p. 80) famously remarks that “The introductions represent, as it were, the ‘definitions’
of the symbols concerned, and the eliminations are no more, in the final analysis,
than the consequences of these definitions”. Prawitz (1965, p. 33) has put this idea
more precisely in the so-called inversion principle. We reformulate Prawitz’ inversion
principle in terms of evidence as follows:

Evidence inversion principle (EIP)
Let α be an application of an elimination rule that has B as consequence. Then, any
κ that is evidence for the major premise of α, when combined with evidence for
the minor premises of α (if any), already constitutes evidence for B; the existence
of evidence for B is thus obtainable directly from the existence of evidence for the
premises, without the addition of α.

We thus easily gain the respective elimination rules which do preserve availability of
evidence. For the sake of an example, let us take a look at ∧E . If some evidence κ for
A ∧ B is available, κ would be, or would ‘contain’ evidence for A, as well as for B.
Analogous reasoning apply to the other rules.

Up to this point we have what could be called a positive logic of preservation of
evidence. PIL is well suited to express both preservation of evidence and the (positive)
BHK interpretation. It is worth noting that the introduction and elimination rules for
conjunction, implication and disjunction, therefore, preserve a notion stronger than
truth (constructive proof) as well as a notion weaker than truth (evidence).

8 The logic of evidence proposed by us is adjunctive because we want to express a notion of preservation
of evidence for which ∧-introduction holds in general. Suppose a document is (non-conclusive) evidence
for the truth of A, i.e. such a document is evidence κ for A. Now, suppose that from another source comes
another document that is (also non-conclusive) evidence for the falsity of A. The latter would be an evidence
κ ′ for ¬A. We can, of course, put these two documents together, say, in a folder, or even merge them in an
electronic file. These two pieces of evidence κ and κ ′ together are evidence that the conjunction A∧ ¬A is
true. So, it is not the case that evidence for the latter fails when there is conflicting evidence for A. Such a
situation, evidence for A ∧ ¬A, is nothing but an indication that further investigation is necessary. This is
a central point of the non-dialetheist approach to paraconsistency proposed by us: it may be that evidence
for a contradiction is available, but only as an indication that something is wrong and should be fixed.
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3.2 Negation

A central issue in paraconsistency is that of specifying a negation without (some of)
the properties of classical negation but that still retains enough properties to be termed
a negation. As discussed in the beginning of Sect. 3, the principle of explosion and
excluded middle do not hold from the viewpoint of preservation of evidence. Another
property of classical negation that must be invalid is the so-called introduction of
negation:

A → B, A → ¬B � ¬A. (1)

The reason is that any extension of PIL in which introduction of negation holds is able
to prove that for any A and B:

A,¬A � ¬B, (2)

that is, from a contradiction, any negated proposition follows, which is an undesirable
result for a paraconsistent system.9 Besides, and more importantly, the introduction
of negation does not fit the intuitive interpretation in terms of evidence, since there
may be a circumstance such that there is evidence for B and for ¬B, and so also for
A → B and A → ¬B, but no evidence for ¬A.

Now we turn to rules in which the conclusion is a negation of a conjunction, a
disjunction or an implication. Natural deduction rules for concluding falsities may be
obtained in a way similar to the rules for concluding truths. The point is that instead of
asking about the conditions of assertibility, we ask about the conditions of refutability
(cf. López-Escobar 1972). An example of a natural deduction rule whose conclusion
is the falsity of a conjunction is the following

¬A
¬(A ∧ B)

.

This rule is obtained by asking what would be sufficient conditions for refuting a
conjunction. We now apply an analogous idea, asking what would be sufficient con-
ditions for having evidence for the falsity of a conclusion. If κ is evidence that A is
false, κ constitutes evidence that A ∧ B is false—mutatis mutandis for B. Analogous
reasoning for ∨ and → gives the following introduction rules:

¬A
¬(A ∧ B)

¬ ∧ I
¬B

¬(A ∧ B)

¬A ¬B
¬(A ∨ B)

¬ ∨ I

A ¬B
¬(A → B)

¬ → I

9 A paraconsistent system in which explosion does not hold but A, ¬A � ¬B holds is called partially
explosive. An example of a partially explosive formal system is Kolmogorov’s ‘logic of judgment’ (see
Kolmogorov 1925).
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Elimination rules are obtained by applying the evidence inversion principle (EIP)
mentioned above.

¬(A ∨ B)

¬A ¬ ∨ E
¬(A ∨ B)

¬B

¬(A → B)

A ¬ → E
¬(A → B)

¬B

¬(A ∧ B)

[¬A]....
C

[¬B]....
C

C ¬ ∧ E

Indeed, let us take a look at rule ¬ → E . When κ is evidence that a formula A → B
is false, κ must also be evidence for the truth of the antecedent A and for the falsity of
the consequent B.10

The validity of double negation,

A
¬¬A DN

¬¬A
A

,

is perhaps not so clear as the other rules, but we claim that in both directions DN fits
an intuitive notion of evidence. The rules above relate, in a perspicuous way, evidence
that a proposition A is true and evidence that A is false. Suppose κ is evidence that A is
true. It is reasonable to see κ as evidence that it is false that A is false. Now suppose,
conversely, that κ is evidence that it is false that A is false. Again, it is reasonable that
κ also constitutes evidence that A is true.

Let us call the logic defined by the rules DN, introduction and elimination for →,
∨ and ∧, plus introduction and elimination for negated →, ∨ and ∧, the Basic Logic
of Evidence (BLE). BLE faithfully represents preservation of evidence when the latter
is understood as reasons for believing the truth/falsity of propositions, as explained in
Sect. 2 above.11

Lemma 1 The following properties hold for BLE:

P1. Reflexivity: if A ∈ Γ , then Γ � A;
P2. Monotonicity: if Γ � B, then Γ, A � B, for any A;
P3. Transitivity (cut): if Δ � A and Γ, A � B, then Δ,Γ � B;
P4. Deduction theorem: if Γ, A � B, then Γ � A → B;
P5. Compactness: if Γ � A, then there is Δ ⊆ Γ , Δ finite such that Δ � A.

10 Notice that the negation rules exhibit a symmetry with respect to the corresponding assertion rules for
the dual operators.
11 The rules for negation are the same as the rules for constructive falsity presented by Prawitz (1965,
pp. 96–97). Although the guiding idea that led us to BLE is different, BLE can be easily proved equivalent to
Nelson’s logicN4 (see Fact 10). Besides, BLE is also equivalent to the propositional fragment of refutability
calculus presented by López-Escobar (1972).
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Proof The properties P1, P2, P3 and P5 are direct consequences of the definition of a
deduction of A from premises in Γ . The deduction theorem (P4) amounts to the rule
→-introduction. 
�
Since its consequence relation is reflexive, monotonic and transitive (properties P1,
P2 and P3), BLE is thus a Tarskian or standard logic.

3.3 A semantics for BLE

Some logics allow for a semantics with an intuitive appeal independent of the cor-
responding deductive system. This is the case, for example, of the truth-tables for
classical logic and the possible-worlds semantics for alethic modal logic. Indeed,
these semantics do provide an insight into these logics because it really seems that the
semantic clauses ‘make sense’ independently of the inference rules and/or axioms.
And it is of course a relevant matter to show that the semantics and the deductive
system are two different ways of determining the same set of valid inferences. On the
other hand, the semantics to be presented here for BLE is not intended to have any
intuitive appeal independent of the deductive system. Rather, such semantics should
be seen as a mathematical tool capable of representing the inference rules in such a
way that some technical results may be proved, not only for BLE but also for LETJ ,
an extension of BLE that will be seen in Sect. 4. The ‘meaning’ of the logic BLE is
given by the fact that its rules preserve evidence.12 In what follows, the values 0 and
1 are better seen as labels that intend to be faithful to the inference rules. Ascribed
to a formula A, they mean, respectively, that A does not hold and that A holds. So,
according to the explanation in terms of evidence given in Sect. 3,

v(A) = 1 means ‘there is evidence that A is true’;
v(A) = 0 means ‘there is no evidence that A is true’;
v(¬A) = 1 means ‘there is evidence that A is false’;
v(¬A) = 0 means ‘there is no evidence that A is false’.

The valuation semantics presented below is sound, complete, and yields a decision
procedure for BLE.

Definition 2 A semivaluation s for BLE is a function from the set S of formulas to
{0, 1} such that:

1. if s(A) = 1 and s(B) = 0, then s(A → B) = 0;
2. if s(B) = 1, then s(A → B) = 1;
3. s(A ∧ B) = 1 iff s(A) = 1 and s(B) = 1;
4. s(A ∨ B) = 1 iff s(A) = 1 or s(B) = 1;
5. s(A) = 1 iff s(¬¬A) = 1;
6. s(¬(A ∧ B)) = 1 iff s(¬A) = 1 or s(¬B) = 1;
7. s(¬(A ∨ B)) = 1 iff s(¬A) = 1 and s(¬B) = 1;
8. s(¬(A → B)) = 1 iff s(A) = 1 and s(¬B) = 1;

12 In the so-called proof-theoretic semantics, the notion of proof is semantical in the sense that it gives the
‘meanings’ involved in the inferences of the formal system. Our approach has a similar spirit.
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Definition 3 A valuation for BLE is a semivaluation for which the condition below
holds:

(Val) For all formulas of the form A1 → (A2 → · · · → (An → B) . . .) with B
not of the form C → D:
if s(A1 → (A2 → · · · → (An → B) . . .)) = 0, then there is a semivaluation s′
such that for every i, 1 ≤ i ≤ n, s(Ai ) = 1 and s(B) = 0.

We say that a valuation v is a model of Γ (v � Γ ) if for all B ∈ Γ , v(B) = 1; v � A
means that v(A) = 1. Logical consequence in BLE is defined as follows: Γ � A
if and only if for every valuation v, if v is a model of Γ , then v(A) = 1. It is also
worth noting that this semantics shows that BLE is not compositional, in the sense
that the semantic value of a complex formula is not functionally determined by the
semantic values of its component parts. Indeed, this semantics may be represented by
the so-called quasi-matrices.13 Let us see an example below.

Example 4 A ∨ (A → B) is invalid in BLE.
A 0 1
B 0 1 0 1

A → B 0 1 1 0 1
A ∨ (A → B) 0 1 1 1 1

s1 s2 s3 s4 s5

The subformula A → B receives 0 in the semivaluation s1. The latter is not excluded
by condition Val (that is, it is a legitimate valuation) because there is a semivaluation s
such that s(A) = 1 and s(B) = 0, namely, s4. Notice that the formula A ∨ (A → B),
added to PIL, yields positive classical propositional logic.

The semantic clauses are intended to represent the deductive properties of the formal
system in terms of the semantic values 0 and 1. It is not difficult to see a correspondence
between the inference rules and the clauses 3–8 of Definition 2, for disjunction, con-
junction and negation. The clauses for implication deserve some remarks. Implication
is defined by clauses 1 and 2 of Definition 2 plus condition Val of Definition 3. Clause
1 expresses the fact that if v(A) = 1 and v(B) = 0, it cannot be that v(A → B) = 1,
since it would contradict modus ponens. Clause 2 expresses the fact that v(B) = 1
implies that v(A → B) = 1. ClauseVal establishes the equivalence betweenΓ, A � B
and Γ � A → B. In order to see how this works, notice that without the clause Val
we cannot guarantee the validity of � A → (B → A).14

13 As far as we know, non-functional valuation semantics (and the respective quasi-matrices) for para-
consistent logics were presented for the first time by Costa and Alves (1977) where we find a sound and
complete semantics for da Costa’sC1. The notion of semivaluation was introduced in Loparic (1986), where
we find semantic clauses for an intuitionistic implication. In Loparic (1986) and Loparic (2010) we find
adequate valuation semantics and decision procedures respectively for Cω and Heyting intuitionistic logic.
14 The conditions for implication are ‘global’ in the sense that one has to look at all semivaluations in order
to establish whether a given semivaluation is a valuation.
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Example 5 A → (B → A) is valid in BLE.
1 A 0 1
2 B 0 1 0 1
3 B → A 0 1 0 1 1
4 A → (B → A) 0 1 1 0 1 1 1

s1 s2 s3 s4 s5 s6 s7

Some semivaluations at line 4 need to be excluded: s1 and s4 do not satisfy condition
Val and therefore are not valuations. So, the formula receives 1 under every valuation
(namely s2, s3, s5, s6 and s7) and is thus valid.

3.3.1 Soundness

Theorem 6 If Γ � A, then Γ � A.

Proof We show by induction on the length of a derivation D with premises in Γ and
conclusion A, that Γ � A holds.
Base if D has one element A, it means {A} � A. So, A ∈ Γ , and Γ � A.
Inductive step For each rule, the inductive hypothesis says that there are sound deriva-
tions for the premise(s). The rest of the proof consists in showing that the derivation
obtained by the application of the rule is sound. Details of this routine proof are left
to the reader. 
�

3.3.2 Completeness

Theorem 7 If Γ � A, then Γ � A.

Proof Completeness is achieved by means of a Henkin-style proof. Suppose Γ � A.
AnA-saturated setΔ is obtained fromΓ bymeans of a Lindenbaum construction in the
usual way. The following propositions, corresponding to clauses 1 to 8 of Definition 2
plus condition (Val) of Definition 3, can be proved:

(1′) if A ∈ Δ and B /∈ Δ, then A → B /∈ Δ;
(2′) if B ∈ Δ, then A → B ∈ Δ;
(3′) A ∧ B ∈ Δ iff A ∈ Δ and B ∈ Δ;
(4′) A ∨ B ∈ Δ iff A ∈ Δ or B ∈ Δ;
(5′) A ∈ Δ iff ¬¬A ∈ Δ;
(6′) ¬(A ∧ B) ∈ Δ iff ¬A ∈ Δ or ¬B ∈ Δ;
(7′) ¬(A ∨ B) ∈ Δ iff ¬A ∈ Δ and ¬B ∈ Δ;
(8′) ¬(A → B) ∈ Δ iff A ∈ Δ and ¬B ∈ Δ;

(Val ′) If Δ is A-saturated and A1 → (A2 → · · · → (An → B) . . .) /∈ Δ, then there
is a B-saturated set Δ′ such that Δ ∪ {A1, A2, . . . An} ⊆ Δ′.

The proofs of (1′) to (8′) are straightforward. In order to prove (Val ′), suppose A1 →
(A2 → · · · → (An → B) . . .) /∈ Δ and Δ is A-saturated. So, Δ � A1 → (A2 →
· · · → (An → B) . . .), and consequentlyΔ∪{A1, A2, . . . An} � B. A B-saturated set
Δ′ maybeobtained fromΔ∪{A1, A2, . . . An}bymeans of aLindenbaumconstruction.
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Consider now the characteristic function v of the set Δ: in view of clauses 1′ to 8′
and Val ′, v is a valuation for BLE and v is a model for Δ15. Since Γ ⊆ Δ, v is also
a model for Γ . But v(A) = 0, so Γ � A. By contraposition, completeness is thus
obtained. 
�

3.3.3 A decision procedure for BLE

In Examples 4 and 5 above we have seen how all possible valuations involved could
be checked effectively by means of quasi-matrices. This depends essentially on the
fact that in order to determine whether A follows from (finite) Γ , it is enough to check
a finite number of valuations involving only subformulas and negated subformulas of
Γ ∪ {A}.
Theorem 8 Derivability in BLE is decidable.

Proof From Lemma 1 item 5, derivability in BLE is compact. Given a derivation D
of A from a (possibly infinite) set Γ , there will always be a finite set Γ 0 such that Γ 0

contains precisely the hypotheses ofD. Let Sub∗ be the set of subformulas and negated
subformulas of the formulas inΓ 0∪{A}. The set Sub∗ is finite, and a valuation depends
on no more than the formulas in Sub∗. Consequently, the corresponding quasi-matrix
is finite. So, checking clauses 1–8 of Definition 2 and the clause Val of Definition 3
is clearly computable. Hence, in view of completeness and soundness, derivability in
BLE is decidable. 
�

There is also an interesting result about BLE that we call ‘grounding of contradic-
toriness’. Roughly, it says that there can be no contradiction at all, unless there is some
contradiction in the atomic level.

Fact 9 A compound formula A is contradictory in a valuation v (i.e. v(A) = 1 and
v(¬A) = 1) only if at least one atom p that occurs in A is contradictory in v.

Proof Suppose there is a valuation v such that v(A) = v(¬A) = 1. By induction on
the complexity of A, we prove that there is at least one atom p that occurs in A such
that v(p) = v(¬p) = 1.
Base case A = p. Clearly, v(A) = v(¬A) = v(p) = v(¬p) = 1.
Inductive stepWe prove the case in which A = B → C .
Inductive hypothesis if v(B) = v(¬B) = 1, then there is a p in B such that v(p) =
v(¬p) = 1; mutatis mutandis for C. Suppose v(B → C) = v(¬(B → C)) = 1.
So, by clauses 1 and 8 of Definition 2, v(B) = v(C) = v(¬C) = 1. Now, apply the
inductive hypothesis. We leave the remaining cases to the reader. 
�
Notice, however, that the converse does not hold: there may be a contradictory atom p
in a formula Awithout A being contradictory. Let A be the formula p∨q and consider
the valuation v such that v(p) = v(¬p) = 1, v(q) = 1 and v(¬q) = 0. In this case,
v(p ∨ q) = 1 but v(¬(p ∨ q)) = 0.

15 Notice that v is a semivaluation that satisfies condition Val, given Val ′, and is thus a valuation.
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It is also worth noting that the dual of Fact 9 with respect to undetermined formulas
does not hold: theremay be compound formulasA and valuations v such that v(A) = 0
and v(¬A) = 0, although there is no atom p in A such that v(p) = 0 and v(¬p) = 0.
For example, itmaybe thatv(p → q) = v(¬(p → q)) = 0 forv(p) = 0,v(¬p) = 1,
v(q) = 0 and v(¬q) = 1 according to clauses 1 and 8 of Definition 2. In this aspect,
BLE differs from intuitionistic logic.

Although it is almost obvious that BLE is equivalent of N4, for the sake of clarity
we prove the fact below.

Fact 10 BLE is equivalent to Nelson’s logic N4.

Proof The equivalence betweenN4 andBLE is straightforward from the natural deduc-
tion system for N4 presented by Wansing and Kamide (2015, Sect. 2.4). The latter
slightly differs from the system we adopted in the negation rules (Sect. 3.2). Clearly,
the rules ¬ ∧ I , ¬ ∨ I , ¬ → I , ¬ ∨ E , ¬ → E are respectively equivalent in each
system. The only case deserving attention is the equivalence between Wansing and
Kamide’s rule ¬ ∧ E (call it R1)

¬(A ∧ B)

¬A ∨ ¬B R1

and ours (call it R2)

¬(A ∧ B)

[¬A]....
C

[¬B]....
C

C R2

(i) In order to get R1 from R2, make C = ¬A ∨ ¬B. The latter is obtained from ¬A
(resp. ¬B) by ∨I :

¬(A ∧ B)

[¬A]
¬A ∨ ¬B ∨I

[¬B]
¬A ∨ ¬B ∨I

¬A ∨ ¬B R2

(ii) On the other hand, we get R2 from R1 by means of obtaining C from ¬A ∨ ¬B
through ∨E :

¬(A ∧ B)

¬A ∨ ¬B R1

[¬A]....
C

[¬B]....
C

C ∨E


�
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4 A logic of evidence and truth

Although the logic BLE is able to express preservation of evidence, it is not able to
express preservation of truth. However, in some contexts of reasoning we deal simulta-
neously with truth and evidence, that is, with propositions that we take as conclusively
established as true or false, as well as others for which only non-conclusive evidence
is available. On the other hand, classical logic gives a very good, maybe the best pos-
sible, account of truth preservation. Thus, we get a tool for dealing with such contexts
of reasoning if we are able to restore classical logic for propositions for which there is
conclusive evidence, that is, those we want to declare either true or false. If classical
logic holds with respect to such propositions, we may express (with respect to them)
the relation of truth-preservation. What we need is to add to BLE the means of recov-
ering the properties of classical negation—or, more precisely, we need to restore the
validity of explosion and excluded middle with respect to those formulas for which
we want to recover classical logic. This will be made clear in what follows.

4.1 Logics of formal inconsistency and undeterminedness

TheLogics of Formal Inconsistency (fromnowon,LFIs), are a family of paraconsistent
logics able to express, inside the object language, the notions of ‘non-explosiveness’,
‘consistency’, or even ‘inconsistency’, as applied to formulas. This is done by means
of adding a unary propositional connective ◦ to the language, where ◦A means that A
is consistent.16

Explosion holds only with respect to propositions marked with ◦, i.e. consistent (in
some sense) propositions. Although explosion is not valid simpliciter in the sense that

for some Γ , A and B: Γ, A,¬A � B,

the following always holds:

for every Γ , A and B: Γ, ◦A, A,¬A � B.

In any paraconsistent logic with few logical resources it cannot be that all con-
tradictions are logically equivalent, otherwise the principle of explosion would hold.
Indeed, suppose that for any A and B, A∧¬A �� B∧¬B. Then, A∧¬A � B∧¬B,
and by conjunction-elimination, A∧¬A � B. Rephrased contrapositively, this means
that if a logic is paraconsistent, then it has some pairs of non-equivalent contradictions.
This nonequivalence between contradictions fits the idea that in real-life contexts of
reasoning some contradictions are more relevant than others. In such contexts, infor-
mation contradicting a proposition that has been conclusively established as true is
immediately rejected as false. Hence, it seems natural to have a connective able to

16 The idea of expressing a metalogical notion within the object language is not new in the literature. It is
found, e.g. in the Cn hierarchy introduced by da Costa (1963), through the idea of ‘well-behavedness’ of
a formula. In da Costa’s hierarchy, however, this is done by means of a definition: in C1, for instance, it
is expressed by A◦, an abbreviation of ¬(A ∧ ¬A), which makes the ‘well-behavedness’ of A equivalent
to saying that A is non-contradictory. On the other hand, in the LFIs, ◦A is introduced in such a way that
allows ◦A and ¬(A ∧ ¬A) to be logically independent (non-equivalent). The family of LFIs incorporate a
wide class of paraconsistent logics, as shown in Carnielli et al. (2007) and Carnielli and Coniglio (2016).
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distinguish ‘different kinds’ of contradictions, separating the contradictions that do
not lead to explosion from those that do.

The idea that leads to the restriction of explosion—separating propositions into
those for which some logical property holds and those for which it does not—is
generalizable. In particular, excluded middle may be restricted in an analogous way. A
Logic of Formal Undeterminedness (LFU) is a logic such that its language is extended
by a newunary connective✩, where✩Ameans that A is (in some sense) determined.17

Excluded middle does not hold, that is

for some Γ , A and B: Γ, A � B, Γ,¬A � B but Γ � B,

while the following always hold:

for every Γ , A and B: if Γ, A � B and Γ,¬A � B, then Γ, ✩A � B.

As we have seen above, it cannot be that all contradictions are equivalent in a
paraconsistent logic. Similarly, in a paracomplete logic in which transitivity and ∨I
hold (BLE for example), it cannot be that all instances of A ∨ ¬A are equivalent,
otherwise excluded middle would be unconditionally valid. A proof of this follows.
Let A be any theorem. Since A � A∨¬A, if for any A and B, A∨¬A �� B∨¬B, by
transitivity it follows that A � B ∨ ¬B. As A is a theorem, we conclude � B ∨ ¬B.
This, however, contradicts the definition of a paracomplete logic.

4.2 The logic LETJ

An LFI and an LFU may be combined in an LFIU—a Logic of Formal Inconsistency
and Undeterminedness. In a context that is at the same time paraconsistent and para-
complete, we may recover at once explosion and excluded middle with respect to a
given formulaA. Since consistency and determinateness are recovered simultaneously,
we change the symbol ✩ to ◦. An LFIU is obtained by adding the following inference
rules to the logic BLE:

◦A A ¬A
B EX P◦ ◦A

[A]....
B

[¬A]....
B

B PEM◦

We call LETJ the logic defined by the addition of EX P◦ and PEM◦ to BLE. The
name LETJ stands for ‘logic of evidence and truth based on positive intuitionistic
propositional logic’. The language L1 of LETJ is the language L0 of BLE plus the
unary connective ◦. The definition of the set S1 of formulas of L1, and the other
definitions, are analogous. LETJ enjoys properties P1 to P5 of Lemma 1, and is also
a Tarskian logic. Notice that EX P◦ and PEM◦ may be considered elimination-rules
for ◦, but it is not by accident that there is no introduction-rule for ◦ (we will return to
this point soon).

17 The notion of LFUs is introduced in Marcos (2005).
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In LETJ , the connective ◦ works as a classicality operator in the sense that ◦A
recovers classical logic for any formula that depends only on A and is formed with ¬,
∧, → and ∨ (see Fact 18 below). From ‘outside’ of the system, ◦A may be informally
understood as saying that the truth-value of A has been (or may be) conclusively
established. So,

‘◦A ∧ A holds’ means ‘A is true’,
‘◦A ∧ ¬A holds’ means ‘A is false’.

It is important to emphasize that the particular way in which the truth or falsity of
a proposition is going to be established is not a problem of logic. Truth comes from
outside the formal system. The latter is no more than a tool that allows the recovering
of classical consequence, and thus truth-preservation, with respect to some formulas.
If classical logic holds for A, it cannot be the case that there is still conflicting evidence
for A and for ¬A. If A has been established as true, any evidence for ¬A is canceled
(mutatis mutandis when A is false).

It is also worth noting that in LETJ classical and paraconsistent logic coexist pacif-
ically. ◦ works like an indicator of a context switch: for formulas marked with ◦ the
context is classical, otherwise, the context is paraconsistent and paracomplete. There
is, thus, no rivalry between classical and paraconsistent approaches, and this is made
possible by the fact that, according to the proposed interpretation, classic and para-
consistent logics are ‘talking about different things’.

4.3 A semantics for LETJ

In order to extend the semantics presented in Sect. 3.3 to LETJ we need only to add
the clause

9. s(◦A) = 1 implies [s(¬A) = 1 iff s(A) = 0]

to Definition 2. Clause 9 above says that if ◦A holds, we secure classical conditions for
negation, but not the converse. Indeed, there may be a valuation such that s(¬A) = 1
and s(A) = 0 (or vice-versa) but ◦A still does not hold. Informally, this is understood
as saying that there may be evidence only for A, or only for ¬A, but such evidence is
non-conclusive. The semantics so obtained is sound, complete, and yields a decision
procedure for LETJ .

Theorem 11 Soundness and completeness: Γ �LET j A iff Γ �LET j A.

Proof In order to prove completeness, the proof of Sect. 3.3.2 is modified to include
clause 9′ below:

9′. ◦A ∈ Δ implies ¬A ∈ Δ iff A /∈ Δ.

For soundness, it suffices to modify the proof of Sect. 3.3.1, showing that the rules
EX P◦ and PEM◦ are sound with respect to clause 9 above. Details are left to the
reader. 
�
Theorem 12 Derivability in LETJ is decidable.
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Proof The argument is similar to the proof of the decidability of BLE (Theorem 8).
The set Sub∗ is finite, so the number of valuations, and the quasi-matrices, are also
finite. The only difference concerns clause 9 above. All checking procedures involved
are clearly computable. Hence, in view of completeness and soundness, derivability
in LETJ is decidable. 
�

4.4 Some facts about LETJ

The logic LETJ has features that fit the intuitive interpretation based on evidence and
truth presented here. We show some of them below.

Fact 13 A bottom particle ⊥ (that is, a formula that by itself trivializes the system) is
definable in LETJ .

Proof Define ⊥ def= ◦ A ∧ A ∧ ¬A. It can be proved in a few steps that ⊥ � B for
any B. 
�
Fact 14 LETJ has no trivial models, hence LETJ does not prove ⊥.

Proof Semantic clause 9 relates ◦ and¬ in such away that trivial models are excluded.
In other words, in LETJ there is no valuation v such that for every formula A of L1,
v(A) = 1. As a consequence, given soundness, LETJ does not prove ⊥, as defined in
Fact 13. 
�
The above result is the paraconsistent counterpart of the usual consistencyproofs. Since
triviality in paraconsistent logic is not equivalent to freedom from contradiction, the
relevant result, tantamount to proving consistency (as freedom from contradiction)
when the underlying logic is classical, is to prove that ⊥, or whatever would entail
triviality, is not a theorem.

Fact 15 ¬(A ∧ ¬A) and A ∨ ¬A are logically equivalent in LETJ . But neither of
them is logically equivalent to ◦A.
Proof Since DN (double negation) holds, A ∨ ¬A is equivalent to ¬A ∨ ¬¬A, and
the latter, in its turn, is easily proved to be equivalent to ¬(A ∧ ¬A). In LETJ , ◦A �
¬(A ∧ ¬A). Suppose ◦A. So, A ∨ ¬A. The latter implies ¬A ∨ ¬¬A, which is
equivalent to ¬(A ∧ ¬A). To see that neither ¬(A ∧ ¬A) nor A ∨ ¬A implies ◦A,
take v(A) = 1, v(¬A) = 0 and v(◦A) = 0. 
�
It is worth noting that the above non-equivalence fits the intuitive interpretation pro-
posed here: it may be the case that ¬(A ∧ ¬A) holds even if ◦A does not hold.
Accordingly, there may be a situation such that there is some non-conclusive evidence
for the truth of A but no evidence for the falsity of A. In this case, v(¬(A∧¬A)) = 1,
although v(◦A) = 0, since the evidence available is non-conclusive. On the other
hand, if v(◦A) = 1, there are only two possibilities: either v(A) = 1 and v(¬A) = 0,
or v(A) = 0 and v(¬A) = 1.

Fact 16 The formulas A ∧ ¬A and ◦(A ∧ ¬A) jointly trivialize the consequence
relation of LETJ .
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Proof A∧¬A implies ¬A. Applying ∨I we get A∨¬A, that is equivalent to ¬(A∧
¬A), and triviality follows from Fact 13, since A ∧ ¬A, ◦(A ∧ ¬A) and ¬(A ∧ ¬A)

define a bottom particle. 
�

Given that according to the intuitive interpretation proposed here a true contradiction
is expressed in LETJ by (A ∧ ¬A) ∧ ◦(A ∧ ¬A), the consequence relation of LETJ

trivializes in the presence of a true contradiction. Therefore, Fact 16 implies that LETJ

is anti-dialetheist in the sense that it cannot tolerate any true contradiction.

Fact 17 The logic LETJ does not have any theorem of the form ◦A.

Proof The strategy of this proof is to show that ◦A is independent of the rules and
therefore cannot be a consequence of the rules of LETJ . Consider for this purpose
the following alternative semantics: for the connectives ∨, ∧, → and ¬, the classical
conditions over {0, 1}; for ◦, v(◦A) = 0 for any value ofA. According to this semantics,
no rule of LETJ yields a conclusion with value 0 if all premises have value 1, that is,
the rules are sound w.r.t. this new semantics. On the other hand, a formula ◦A receives
0 for any A. Hence, such a formula is independent of the rules, and cannot be proved
in LETJ . 
�

This result is in accordance with the intuitive idea that the attribution of ◦ to a formula
A may be done only from outside the formal system. It is the user of the system who
establishes under which circumstances a formula may be marked with ◦. That there
is no introduction rule for ◦ is an intentional limitation of the formal system. What
constitutes evidence for a given proposition A, and whether or not such evidence is
conclusive and Amay be established as true, are problems that depend on the specific
area of knowledge being dealt with. These problems must be kept outside the formal
system.

Fact 18 If ◦A1, ◦A2, …◦An hold, then all formulas that depend only on A1, A2, …An

and are formed with →, ∧, ∨ and ¬ behave according to classical logic.

Proof Let A1, A2, . . . An be any formulas and B = φ(A1, A2, . . . An) be any com-
posed formula formed by one or more formulas among A1, A2, . . . An through ¬, →,
∧ and∨.We prove belowby induction on the complexity of B that if ◦A1, ◦A2, . . .◦An

hold, then the rules

B ¬B
B ′ and

[B]....
B ′

[¬B]....
B ′

B ′

hold. Therefore, all such formulas behave according to classical logic.
Base B = Ai (for any i). The proof is straightforward.
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Inductive step
Case 1 B = ¬C . We prove PEM. The inductive hypothesis is the rule below:

[C]....
B ′

[¬C]....
B ′

B ′

In order to prove that

[¬C]....
B ′

[¬¬C]....
B ′

B ′

holds, we need only an application of DN. The proof of EXP is left to the reader.

Case 2 B = C ∨ D.
We prove EXP. The inductive hypothesis is:

C ¬C
B ′ and

D ¬D
B ′ .

[C]1
¬(C ∨ D)

¬C ¬ ∨ E

B ′ i.h.
[D]1

¬(C ∨ D)

¬D ¬ ∨ E

B ′ i.h.
C ∨ D

B ′ ∨E, 1

The proof of PEM and the remaining cases (∧ and →) are left to the reader. 
�
A corollary of Fact 18 is that once a formula A is marked with ◦, no contradiction is
allowedwith respect to formulas with¬,∨,∧ and→ that depend only on A. However,
from this, it does not follow that any formula that depends only on A is also marked
with ◦. Again, the point is that the attribution of ◦ to any formula can be done only
from outside the formal system. It must always be a proposition added to the theory
at stake by means of non-logical means. Classicality does not propagate through the
connectives.

It is also worth mentioning that a corollary of Fact 18 is a perspicuous form of
a derivability adjustment theorem (DAT ). The purpose of a DAT is to establish a
relationship between two logics in the sense of restoring inferences that are lacking in
one of them.18 The basic idea is that we have to ‘add some information’ to the premises
in order to restore the inferences that are otherwise lacking. The general form of a
DAT is the following:

For all Γ and B, there is a Δ such that: Γ �L B iff Γ,Δ �L∗ B.

18 As far as we know, DATs were proposed for the first time by Batens (1989), but a seed of this idea may
be found in da Costa (1963) and da Costa (1974) (see Carnielli et al. 2007, p. 23).
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Suppose that the logic L above is classical logic and L∗ is LETJ . The result above is
tantamount to a DAT that specifies how classical logic may be recovered: the ‘infor-
mation’ required (represented by the set Δ) consists of the atomic propositions that
occur in Γ , marked with ◦.

5 On some issues related to paraconsistency as preservation of evidence

5.1 A remark on Restall’s approach to logical pluralism

What we have done here clearly indicates an approach to logical pluralism: different
accounts of logical consequence may preserve different properties of propositions.We
do not think that logical consequence has to be always identified with preservation of
truth. Thus, classical, paracomplete (e.g. intuitionistic) and paraconsistent logics may
be interpreted as being concerned with preservation of, respectively, truth, availability
of a constructive proof (a notion stronger than truth) and availability of evidence (a
notion weaker than truth).

Restall (2014) presents a proof-theoretic approach to logical pluralism in terms
of different standards of proof based on the duality between paraconsistency and
paracompleteness, a point also emphasized by us (see Carnielli and Rodrigues 2016).
A detailed analysis of Restall’s arguments is outside the scope of this text. But his
approach differs significantly from ours for two main reasons. First, as much as in
Beall and Restall (2006), what is at stake in Restall (2014) is truth-preservation.19

The same argument can be valid in one sense and invalid in another, but in both cases
truth is the property of propositions being preserved (Restall 2014, p. 280). Second,
although interesting from the technical point of view, Restall’s approach does not seem
to be an attempt to represent inferences accepted in real-life argumentative scenarios.

The dual-intuitionistic logic in Restall (2014) is a paraconsistent logic obtained
by restricting inference rules of classical sequent calculus in such a way that at most
one formula occurs in the left hand side of a sequent (Restall 2014, p. 283). Restall’s
approach sheds light on interesting features of the duality between paraconsistency and
paracompleteness. But it is not clear that the paraconsistent logic so obtained really
intends to correspond to real argumentative contexts. However, this does not make
Restall’s dual-intuitionistic logic uninteresting; it just makes his approach different
from ours. Instead, the approach to paraconsistency worked out here has tried, from
the beginning, to find a way to interpret contradictions that appear in real-life contexts
of reasoning. From the guiding question what does it mean to accept A and ¬A
simultaneously without accepting their truth? we reached the notion of evidence. The
next step was to find inference rules appropriate to express preservation of evidence.

The view we endorse w.r.t. the duality between paraconsistency and paracom-
pleteness is that logics intended to represent real-life argumentative contexts have a
common core (e.g. PIL) to which dual inference rules (and perhaps something else)

19 The account of logical pluralism given by Beall and Restall (2006) is based on preservation of truth, but
it considers different types of cases: Tarskian models, constructions and situations that are, respectively,
cases for classical, intuitionistic and relevant (i.e. paraconsistent) logics.
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are added. Excluded middle and explosion are dual inference rules in the sense that
anything follows from A ∧ ¬A, while A ∨ ¬A follows from anything (see Carnielli
and Rodrigues 2016, Sect. 2).

5.2 A remark on the problem of ‘just true, just false’

Under the intended interpretation, LETJ is immune to the problem of ‘just true, just
false’, faced by the so-called ‘glut-theorists’ (see, e.g. Beall 2013). We do not need
to distinguish a scenario in which a formula A is just true (or just false) from a
scenario in which A is both true and false because the latter is avoided in the intuitive
interpretation proposed here: the simultaneous truth and falsity of A is expressed by
(A∧◦A)∧ (¬A∧◦A), and this formula in LETJ implies triviality. It may happen that
in LETJ A and ¬A hold together, but only if ◦A does not—and in this case it does not
mean that A is both true and false, but only that there is conflicting evidence w.r.t. A.

It is worth noting, however, that nothing a fortiori prevents the formal system
of LETJ of being interpreted differently, even in a dialetheist way. So, in such an
alternative interpretation, it is remarkable that LETJ would have the means to solve
the problem of ‘just true, just false’ just by assuming that A∧¬Ameans that A is both
true and false, while ◦A ∧ A (resp. ◦A ∧ ¬A) means that A is only true (resp. only
false).

5.3 Evidence versus constructive falsity

Nelson (1949), extending a proposal of Kleene (1945), suggested a constructive
interpretation for the first-order number theory based on the formal system N of ‘con-
structible negation’. Nelson (1959) introduced a paraconsistent system called S (not
yet the well-known N4), and remarked that “In both the intuitionistic and classical
logic all contradictions are equivalent. This makes it impossible to consider such enti-
ties at all in mathematics” (Nelson 1959, p. 209, our emphasis). Later, Almukdad
and Nelson proposed the logic N−, saying only that it is “a constructive logic which
may be applied to inconsistent subject matter without necessarily generating a trivial
theory” (Almukdad and Nelson 1984, p. 231). The difference between N and N− is
that explosion does not hold in the latter, but holds in the former. Following Odintsov
(2003, 2008), the propositional fragments of Nelson’s logics N and N− have been
dubbed, respectively, as N3 and N4, and the latter became the standard presentation
of Nelson’s paraconsistent logic.

The notion of realizability (Kleene 1945) can be understood as the formal side
of the BHK interpretation of intuitionistic logic. Since in BHK the idea of proof is
informal, the notion of realizability defines a formal notion of ‘proof’ by appealing
to the notion of ‘realizers’ (see Rose 1953). The property of realizability is thus a
kind of ‘intuitionistic notion of truth’ for intuitionistic number-theoretic statements.
According to Kleene’s formulation, formulas of intuitionistic arithmetic are realized
by (inductively defined) Gödel numbers of constants and of general recursive func-
tions. Nelson (1949) extended Kleene’s approach, defining both a notion of ‘positive’
and ‘negative’ realizability. The latter adds a new feature to intuitionistic logic: for-
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mulas can also be constructively falsified.20 So, Nelson’s motivation for proposing a
constructive negation was to overcome non-constructive features of the intuitionistic
negation. Indeed, negations in both N3 and N4 satisfy De Morgan’s laws, as well as
the following meta-property:

� ¬(A ∧ B) implies � ¬A or � ¬B.

It seems plausible, from the constructive viewpoint, that if A∧B has been proved false,
then either a proof of the falsity of A or a proof of the falsity of B is available. The con-
structive negation of N3 (and, of course, of N4) may be also interpreted as refutability
(see López-Escobar 1972). By treating constructive falsity independently of construc-
tive truth, refutability becomes not complementary to provability—i.e. constructive
falsity does not coincide with the complement of constructive truth (an ‘asymmetry’
similar to that between positive and negative evidence).

It is clear, thus, that Nelson was interested in constructive mathematics: this was
the framework in which N3 and N4 were conceived. The motivation for BLE is quite
different. Its inference rules have been established according to the question posed in
Sect. 3: supposing the availability of evidence for the premises, we ask whether an
inference rule yields a conclusion for which evidence is available.21 BLE expresses,
as we have seen in Sect. 3, four different scenarios corresponding to positive evidence,
absence of positive evidence, negative evidence and absence of negative evidence. On
the other hand, the similarity between the intended interpretation of BLE and Nelson’s
notion of constructive falsity lies in the fact that the notion of evidence for the falsity
of A is not complementary to the notion of evidence for the truth of A: absence of
evidence for falsity does not count as evidence for truth, and vice-versa. So, the notion
of evidence for falsity is primitive in the sense that it does not coincide with the
complement of evidence for truth.

BLE is not able to express, in the intended intuitive interpretation, a scenario in
which the evidence for A is conclusive. This can be done by LETJ , by means of
the classicality operator: A ∧ ◦A means that A holds and behaves classically. But in
such a case, A is true—mutatis mutandis for the falsity of A, expressed in LETJ by
¬A ∧ ◦A. That is precisely the point of LETJ : since the formulas marked with ◦
behave classically, we may say that they are true (or false) and that there is conclusive

20 In Nelson (1949, p. 17), we read: “This notion of [constructive] truth will be made precise by defining a
syntactical predicate ‘The natural number a P-realizes the formulaA.’ At the same time a correlative concept
of constructible falsity will be expressed by a predicate ‘The natural number a N-realizes the formula A’.”
21 The line of reasoning that lead to the logic BLE started in a modification in the logic mbC, an LFI
presented in Carnielli et al. (2007). mbC is an extension of classical positive propositional logic, and
excluded middle holds in mbC. In order to make mbC suitable for expressing contradictions as conflicting
evidence, we presented in Carnielli and Rodrigues (2015) the logic mbCD, in which A ∨ ¬A has been
replaced by the axiom ◦A → (A ∨ ¬A), that corresponds to the rule PEM◦. Then, in the search for a
logic that could express preservation of evidence for both truth and falsity, we adopted the natural deduction
system for PIL as the starting point, thus rejecting A∨ (A → B), that holds in mbC, and we found out that,
w.r.t. negation, natural deduction rules equivalent to De Morgan’s laws and double negation should hold,
as well as the equivalence between ¬(A → B) and A ∧ ¬B. The logic so obtained is LETJ . BLE is LETJ
without the rules EX P◦ and PEM◦.
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evidence for their truth (or falsity). So, in LETJ , if ◦A holds, the notions of truth and
falsity turn out to be complementary: either A is true, or A is false.

6 Final remarks

We have presented here an approach to paraconsistency that explicitly rejects dialethe-
ism. According to the intended interpretation of LETJ , true contradictions are not
allowed because they imply triviality (see remarks on Fact 16). There is no way to
explain a context of reasoning in which a pair of propositions A and ¬A simulta-
neously hold, without being dialetheist or metaphysically neutral, unless a property
weaker than truth is attributed to A and¬A. Our proposal here (our answer to question
Q posed in Sect. 1) is that evidence, in the sense explained in the Sect. 2, may be such
a property. Thus, the principle of explosion is rejected because a circumstance such
that there is (non-conclusive) evidence for both A and ¬A, while there is no evidence
for some proposition B, is completely feasible. This is an epistemic approach since
evidence is an epistemic concept. But we can go one step further and say that our
approach to paraconsistency is radically epistemic because true contradictions are not
tolerated—as we have seen, they imply triviality as much as they do in classical logic.

We believe, however, that no philosophical, a priori argument can conclusively
confirm or reject the claim that some aspects of reality need contradictory propositions
in order to be described. In fact, ‘real contradictions’ seem to be quite impossible, but
of course we cannot, and do not intend to, prove that. The intuitive interpretation
proposed for the formal system LETJ would fail if it were confirmed someday that
real contradictions do exist. But in such an improbable scenario, a considerable part
of science, and also of philosophy, would collapse altogether.
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ical views. In P. Arazim and M. Dančák (Eds.), Logica yearbook 2015. College Publications.
Carnielli, W., & Coniglio, M. (2016). Paraconsistent logic: Consistency, contradiction and negation. New

York: Springer.

123



Synthese (2019) 196:3789–3813 3813

Carnielli, W., Coniglio, M., & Marcos, J. (2007). Logics of formal inconsistency. In G. Gabbay (Ed.),
Handbook of philosophical logic (Vol. 14). New York: Springer.

Carnielli, W., & Rodrigues, A. (2015). Towards a philosophical understanding of the logics of formal
inconsistency. Manuscrito, 38, 155–184.

da Costa, N. (1963). Sistemas Formais Inconsistentes. Curitiba: Editora da UFPR.
da Costa, N. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic,

XV (4), 497–510.
da Costa, N., & Alves, E. H. (1977). A semantical analysis of the calculi Cn. Notre Dame Journal of Formal

Logic, 18, 621–630.
da Costa, N., & French, S. (2003). Science and partial truth: A unitary approach to models and scientific

reasoning. Oxford: Oxford University Press.
Dubucs, J. (2008). Truth and experience of truth. In M. van Atten, et al. (Eds.), One hundred years of

intuitionism. Basel: Birkhäuser Verlag.
Fitting, M. (2017). Paraconsistent logic, evidence, and justification. Studia Logica, 105(6), 1149–1166.
Gentzen, G. (1935). Investigations into logical deduction. In M. E. Szabo (Ed.), The collected papers of

Gerhard Gentzen. Amsterdam: North-Holland.
Kelly, T. (2014). Evidence. In: E.N. Zalta (Ed.) The Stanford encyclopedia of philosophy (Fall 2014). http://

plato.stanford.edu/archives/fall2014/entries/evidence.
Kleene, S. (1945). On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic,

10(4), 109–124.
Kolmogorov, A. (1925). On the principle of excluded middle. In J. van Heijenoort (Eds), From Frege to

Gödel. Lincoln: toExcel Press.
Loparic, A. (1986). A semantical study of some propositional calculi. The Journal of Non-classical Logic,

3(1), 73–95.
Loparic, A. (2010). Valuation semantics for intuitionistic propositional calculus and some of its subcalculi.

Principia, 14(1), 125–133.
López-Escobar, E. (1972). Refutability and elementary number theory. Indagationes Mathematicae, 34,

362–374.
Marcos, J. (2005). Nearly every normal modal logic is paranormal. Logique et Analyse, 48, 279–300.
Nelson, D. (1949). Constructible falsity. The Journal of Symbolic Logic, 14, 16–26.
Nelson, D. (1959). Negation and separation of concepts in constructive systems. In A. Heyting (Ed.),

Constructivity in mathematics: Proceedings of the colloquium held at Amsterdam. Amsterdam: North-
Holland.

Nickles, T. (2002). From Copernicus to Ptolemy: Inconsistency and method. In J. Meheus (Ed.), Inconsis-
tency in Science. Dordrecht: Springer.

Odintsov, S. (2003). Algebraic semantics for paraconsistent Nelson’s logic. Journal of Logic and Compu-
tation, 13(4), 453–468.

Odintsov, S. (2008). Constructive negations and paraconsistency. New York: Springer.
Prawitz, D. (1965). Natural deduction: A proof-theoretical study. New York: Dover Publications.
Priest, G., & Berto, F. (2013). Dialetheism. In Stanford encyclopedia of philosophy. http://plato.stanford.

edu/archives/sum2013/entries/dialetheism/.
Restall, G. (2014). Pluralism and proofs. Erkenntnis, 79, 279–291.
Rose, G. F. (1953). Propositional calculus and realizability. Transactions of the American Mathemati-

cal Society, 75, 1–19. http://www.ams.org/journals/tran/1953-075-01/S0002-9947-1953-0055952-
4/home.html.

van Benthem, J., Fernández-Duque, D., & Pacuit, E. (2015) Evidence logic: A new look at neighborhood
structures. http://www.aiml.net/volumes/volume9/Benthem-Fernandez-Duque-Pacuit.pdf.

van Benthem, J., & Pacuit, E. (2011). Dynamic logics of evidence-based beliefs. Studia Logica, 99, 61–92.
Wansing, H., & Kamide, N. (2015). Proof theory of N4-related paraconsistent logics. New York: College

Publications.

123

http://plato.stanford.edu/archives/fall2014/entries/evidence
http://plato.stanford.edu/archives/fall2014/entries/evidence
http://plato.stanford.edu/archives/sum2013/entries/dialetheism/
http://plato.stanford.edu/archives/sum2013/entries/dialetheism/
http://www.ams.org/journals/tran/1953-075-01/S0002-9947-1953-0055952-4/home.html
http://www.ams.org/journals/tran/1953-075-01/S0002-9947-1953-0055952-4/home.html
http://www.aiml.net/volumes/volume9/Benthem-Fernandez-Duque-Pacuit.pdf

	An epistemic approach to paraconsistency: a logic  of evidence and truth
	Abstract
	1 Introduction
	2 On the notion of evidence
	3 A logic of evidence
	3.1 A natural deduction system for preservation of evidence
	3.2 Negation
	3.3 A semantics for BLE
	3.3.1 Soundness
	3.3.2 Completeness
	3.3.3 A decision procedure for BLE


	4 A logic of evidence and truth
	4.1 Logics of formal inconsistency and undeterminedness
	4.2 The logic LETJ
	4.3 A semantics for LETJ
	4.4 Some facts about LETJ

	5 On some issues related to paraconsistency as preservation of evidence
	5.1 A remark on Restall's approach to logical pluralism
	5.2 A remark on the problem of `just true, just false'
	5.3 Evidence versus constructive falsity

	6 Final remarks
	Acknowledgements
	References




