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Abstract This paper deals with two issues. First, it identifies structured propositions
with logical procedures. Second, it considers various rigorous definitions of the gran-
ularity of procedures, hence also of structured propositions, and comes out in favour
of one of them. As for the first point, structured propositions are explicated as algo-
rithmically structured procedures. I show that these procedures are structured wholes
that are assigned to expressions as their meanings, and their constituents are sub-
procedures occurring in executed mode (as opposed to displayed mode). Moreover,
procedures are notmere aggregates of their parts; rather, procedural constituentsmutu-
ally interact. As for the second point, there is no universal criterion of the structural
isomorphism of meanings, hence of co-hyperintensionality, hence of synonymy for
every kind of language. The positive result I present is an ordered set of rigorously
defined criteria of fine-grained individuation in terms of the structure of procedures.
Hence procedural semantics provides a solution to the problem of the granularity of
co-hyperintensionality.

Keywords Procedural semantics · Transparent intensional logic · Structured
propositions · Mereology of structured procedures · Unity of propositions,
synonymy · Co-hyperintensionality · Procedural isomorphism

Introduction

It is good and well that we philosophers of language and logicians invoke structured
meanings as cornerstones of our respective semantic theories. But, first, what is the

B Marie Duží
marie.duzi@vsb.cz

1 Department of Computer Science, VSB-Technical University of Ostrava, 17. listopadu 15,
708 33 Ostrava, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-017-1595-5&domain=pdf
http://orcid.org/0000-0002-5393-6916


1250 Synthese (2019) 196:1249–1283

structure of structured meanings? And, second, how are structured meanings individ-
uated? In this paper, I am going to investigate structured procedures in the role of
structured linguistic meanings. The framework I will use is Tichý’s transparent inten-
sional logic (TIL) that comes with a procedural semantics, according to which the
structured meaning of an expression is explicated as a procedure that produces at most
one object, which is denoted by the expression.1 In well-defined cases procedures fail
to produce anything, which reflects the fact that there are meaningful terms that do not
refer to anything, like ‘the greatest prime number’. When an object is produced, the
produced object is a possible-world semantic (PWS) intension in the case of empirical
expressions, and an extension in the case of logical/mathematical expressions, or a
(lower-order ‘displayed’) procedure, which is especially the case with the comple-
ments of hyperintensional attitudes. These procedures are rigorously defined in TIL
as so-called constructions. The main points I will be arguing for below are these two:

• Structured meanings are procedurally structured. TIL constructions are procedu-
rally structured wholes that are assigned to expressions as their meanings, and
their constituents are sub-procedures occurring in executed mode (as opposed to
displayed mode).

• There is no universal criterion of the structural isomorphism of meanings, hence of
co-hyperintensionality, hence of synonymy for every kind of language.2 Though
the individuation of TIL constructions is rigorously defined, the individuation
of structured meanings does not coincide seamlessly with the individuation of
constructions. The positive result of this paper is that we can put forward an
ordered set of rigorously defined criteria of fine-grained individuation in terms of
procedural structure. Hence procedural semantics offers a principled solution to
the problem of the granularity of co-hyperintensionality.

My starting point is provided by King (2014, p. 1).

It is a truism that two speakers can say the same thing by uttering different
sentences, whether in the same or different languages. For example, when a
German speaker utters the sentence ‘Schnee ist weiß’ and an English speaker
utters the sentence ‘Snow is white’, they have said the same thing by uttering
the sentences they did. Proponents of propositions hold that, speaking strictly,
when speakers say the same thing by means of different declarative sentences,
there is some (non-linguistic) thing, a proposition, that each has said.

The question that many logicians and philosophers have been worried about is what
kind of object is this ‘same thing’, the ‘proposition’, that sentences can have in com-
mon. The two sentences ‘Schnee ist weiß’ and ‘Snow is white’ in the quote by King
certainly have the same meaning, hence they are synonymous: the same thing they
have in common is their meaning. Logically or analytically equivalent sentences also
have something in common, though they may fail to be synonymous. For instance,
sentences of the form “It is not true that if A then B” and “A and not B” are logi-
cally equivalent, yet I take it to be obvious that they do not have the same meaning.

1 See Duží, Jespersen and Materna (2010, Chapters 1 and 2), and also Tichý (1988).
2 Faroldi (2016) makes a similar point.
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Otherwise we would not have to teach students how to negate implicative sentences:
linguistic competence would do. These two sentences share the same truth-conditions:
whenever one is true, so is the other.3

Propositions should arguably perform many other functions in addition to being
bearers of truth or falsity and being the things expressed by declarative sentences.
They are commonly thought to be:4

– the meanings of sentences
– the objects that can be true or false
– the objects that are necessary, possible, or contingent, that is, bearers of modal
properties

– the objects that can be true with a certain likelihood or to a certain degree, that is,
bearers of probabilities or fuzzy degrees of truth

– the complements of propositional attitudes, that is, objects that can be understood,
known, believed, desired, etc.

– the informational content of sentences

Obviously, one and the same ‘thing’ can hardly play all of these roles. Thus, several
conceptions of propositions have been developed. While PWS-propositions modelled
as functions from possible worlds and times to truth-values are the objects that can be
true or false at this or that world and time, true to a certain degree, and arguably also
objects that are necessary, (merely) possible or contingent, they are not the structured
meanings of sentences, because as set-theoretical mappings they are not structured.
Furthermore, they are too coarse-grained to serve as meanings in the first place, and
as the complements of explicit propositional attitudes (which the agents are aware
of having and can manipulate logically, as when acquiring inferential knowledge),
because they are individuated only up to analytical equivalence.5 Moreover, in Duží
(2010) it has been shown that PWS-propositions cannot be bearers of the so-called
analytic information content of sentences, because if theywere the paradoxof inference
would be inevitable and analytically true sentences would convey no information and
thus be useless.6

3 When I say that the two sentences are logically equivalent I tacitly presuppose here that both A and
B have a truth-value. In other words, I disregard the possibility of truth-value gaps. In the logic of partial
functions, wide-scope and narrow-scope negation may fail to be equivalent. For details, see Duží (2017b).
4 See, for instance, Pickel (2017).
5 Hanks and Soames have recently presented theories of complex acts in a series of articles and books,
see, for instance, Hanks (2011, 2015) and Soames (2012, 2014). Complex acts with which propositions are
identified can differ with respect to different ways of cognizing objects and properties. Distinct complex
acts can deal with the same objects, which have the same properties and stand in the same relations. In
other words, these theories can handle the cases of distinct propositions expressed by analytically equivalent
sentences denoting one and the same PWS-proposition.
6 The paradox of inference was put forward in Cohen and Nagel (1934, p. 173). It goes roughly like
this: since the conclusion of a valid argument is contained in the premises, it fails to provide any novel
information. Yet Duží (2010) argues that it seems evident that there is something that we learn when
deducing the conclusion of a sound argument. We obtain a new piece of analytic information about the
procedure the product of which is the proposition (or truth-value, in the case of mathematics) denoted by
the conclusion.
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One straightforward way to accommodate both fine-grained, structured proposi-
tions and coarse-grained, flat PWS-propositions within one and the same theory is to
operate with two different levels with the former at the top and the latter ones below.
This is the way we proceed in TIL. At the top, hyperintensional level, we explicate
fine-grained propositions as algorithmically structured procedures that are assigned to
sentences as their meanings. At the lower, intensional level are the PWS-propositions
produced by these procedures as their products.

One might wonder what kind of an object our abstract structured procedure is, and
what motivates us to explicate meanings as structured procedures. As for the former,
let me say this. Procedures are neither set-theoretical mappings (Church’s functions-
in-extension), nor properties or types. Rather, they might be compared to functions-
in-intension, as suggested by Church in (1941, pp. 2–3). To anticipate a possible
misunderstanding, note that in the semantics of mathematics, the terms ‘function-in-
intension’ and ‘function-in-extension’ are used in this sense: function-in-extension
corresponds to the modern notion of a function as a set-theoretical mapping, and
function-in-intension could arguably correspond to our notion of procedure producing
a mapping. Thus function-in-intension is a structured way or rule laying down how to
obtain a function-in-extension. Only I am hesitant to push the parallel, since function-
in-intension remains a poorly-understood notion. See also Church (1956, pp. 2–3).

Maybe the best explanation of the character of abstract procedures is provided in
Duží et al. (2010, §1.3, pp. 54–56). Briefly, abstract procedures are generalized algo-
rithms, as suggested inMoschovakis (1994, 2006), see also van Lambalgen andHamm
(2004). In Moschovakis (2006) a procedure is an “(abstract, idealized, not necessarily
implementable) algorithm” (2006, p. 27). Algorithms are normally understood to be
effectively computable.7 But not every procedure can be evaluated in an effective way.
This is in particular the case of procedures that are assigned as meanings to empirical
expressions. Their evaluation calls for an ‘oracle’ that supplies empirical facts.8 For
the most recent account of abstract procedures, I agree with Jespersen (2017a) which
characterizes procedures in this way:

[. . .] I identify structured propositions with particular kinds of objective logical
(as opposed to, say, psychological or pragmatic) molecular procedures whose
parts are sub-procedures (as opposed to entities such as mountains or numbers).
The underlying logic is a typed function/argument logic that specifies which
functions of which logical types are lined up to be applied to which arguments
of which types to obtain values (if any) of which types. [. . .] Though mod-
elled on a function/argument logic, procedures are not functions-in-extension,
i.e., mappings. Nor are they set-theoretic sequences, nor, for that matter, the
formulae of a symbolic notation. Instead they are Platonic, higher-order, fine-
grained structures. Procedures, as I understand them, are neither set-theoretic,
nor inscriptional, nor linguistic entities. They are mereological entities, because
they arewholeswith parts. Furthermore, procedures are governedby amereology
that cannot be fully extensional, because their parts interact with one another.

7 See Cleland (2002) for discussion.
8 For details, see Duží (2014).
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As for the latter question, i.e. the motivation to explicate the meanings of sentences,
or generally of any linguistic terms, procedurally, I’d like to refer to Duží (2014a). To
summarise the main ideas, there are two main reasons. The first one is obvious. That
the structuredmeaning of a sentence cannot be a possible-world semantics proposition
(PWS-proposition) should be obvious. A PWS-proposition is a set of possible worlds
(and times); in this set, there is no trace of the structure of the respective sentence. For
instance, Westerhoff (2005) criticizes the opinion that possible-world semantics is a
proper tool for explaining the semantics of structures:

Consider the sense in which states of affairs (possible worlds) could be taken to
have parts. It is straightforward to argue that the state of affairs that John loves
Becca has John as a part. But it is equally straightforward to argue that John’s
brain is part of the state of affairs that John lovesBecca.But themere parts (John’s
brain as opposed to John) are just any parts of that particular bit of the world we
happen to be talking about, whether they take part in our conceptualization or
not. (Ibid., p. 609).9

The second argument is this. How is it possible that we are able to learn a (new)
language? On its standard conception, a language is a (potentially) infinite set of
expressions. In order to obtain such an infinity, we need a sequence of instructions
detailing which operations to apply to which operands that would make it feasible to
get to know any (as opposed to every) element of the infinite set in a finite number of
operational steps. I am in favour of the idea that this sort of sequence of instructions
is exactly the sort of structured procedure I have been talking about so far.

The procedural character of structuredmeanings inmathematics should be obvious.
For instance, when one is seeking the solution of the equation sin(x) = 0 he/she is
not related to the infinite set {…, −2π, −π, 0, π, 2π, …}, because otherwise the
seeker would immediately be a finder and there would be nothing to solve. On the
other hand, relating the seeker to a particular syntactic term is not general enough.
The Ancient Greek or Babylonian mathematicians, for instance, would solve such an
equation using a different syntactic system. Rather, the seeker is related to the very
procedure consisting of these constituents: applying the function sine to a real number
x , checking whether the value of the function is zero, and, if so, abstracting over the
value of the input number x .When solving the equation, the seeker aims to execute
this procedure to potentially produce the infinite set of multiples of π.

For an empirical example, consider the sentence “The Pope is a Pole”. The sentence
encodes an instruction how, in any possible world w at any time t , to evaluate its
meaning procedure producing the reference of the sentence at the world w and time t
of evaluation, i.e., a truth-value. This instruction consists of a few simple steps: take
the individual officePope; take the property of being a native of Poland; extensionalize
the papal office, i.e., find out empirically who (if anybody) is the Pope at the world w

and time t of evaluation (if there is no such individual, then finish with no truth-value);
and finally, check (empirically) whether the individual occupying the papal office is a
native of Poland in the world w and time t of evaluation; if so, produce the truth-value
T, otherwise F.

9 Similar arguments can be found also in Tichý (1995, pp. 179–80).
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Onemight object that procedures cannot be trueor false, and thus procedurally struc-
tured hyperpropositions cannot be intrinsically connected with truth-conditions.10 But
the same objection would be applicable to sentences themselves. A sentence is a piece
of syntax endowed with meaning. Neither a piece of syntax, nor a PWS-proposition
understood as a set of worlds and times, is true or false. What then does it mean that,
for instance, the sentence “The Pope is a Pole” is true or false, or, as the case may be,
has a truth-value gap? There is no mystery, however. It means that the evaluation of its
procedural meaning in a given state-of-affairs as described above yields a truth-value
or no truth-value. If evaluating the meaning procedure of the sentence “The Pope is a
Pole” in the actual world in the period between October 16, 1978 and April 2, 2005,
one obtains T. If evaluating after April 2 and before April 19, 2005, one obtains a
truth-value gap. Later on, one obtains F.

Hence hyperpropositions that are typed to produce PWS-propositions, or truth-
values in the case of mathematics, unambiguously produce truth-conditions, or truth-
values, upon being executed, and in this way, they are intrinsically connected with
truth-conditions. Hence, this objection has little purchase.

Thus, I take it for granted that formal semantics demands a notion of hyperintension-
ality and that meanings of sentences, or generally of any expressions, are structured
procedures. The focus of my research below is to put forward a formally precise and
philosophically persuasive theory of fine-grained, structured meanings.

My background theory is TIL, as set out in Tichý (1988) and Duží et al.
(2010). The formal apparatus of TIL will be fairly familiar to those who are
acquainted with typed λ-calculi or Montague’s IL system11, because from the
formal point of view TIL is a hyperintensional, partial, typed λ-calculus. It is par-
tial, because we embrace properly partial functions; and hyperintensional, because
TIL terms are interpreted procedurally, which is to say that they denote abstract
procedures (roughly, Church’s functions-in-intension) producing set-theoretical func-
tions/mappings (Church’s functions-in-extension) rather than the mappings them-
selves. This is actually in good harmony with the original interpretation of the terms
of the λ-calculus, which was indeed procedural. For instance, Barendregt (1997, p.
184) says,

[I]n this interpretation the notion of a function is taken to be intensional, i.e., as
an algorithm.

I would prefer to say, “... is taken to be hyperintensional”, because the term ‘inten-
sional’ is currently reserved for mappings from possible worlds (if not among
proof-theoretic semanticists, then at least among model-theoretic semanticists).

Thus, λ-Closure, [λx1…xn X ], transforms into the very procedure of producing a
function by abstracting over the values of the variables x1,…, xn . Similarly, Composi-

10 In order to terminologically distinguish truth-conditions (understood as functions from possible worlds
and times to truth-values) from procedures producing truth-conditions, in what follows I will use the term
‘PWS-propositions’ for the former, and the term ‘hyperproposition’ for structured procedures producing
PWS-propositions, or truth-values in the case of mathematics.
11 Tichý’s TIL was developed simultaneously with Montague’s IL. For a critical comparison of TIL and
IL, see Duží et al. (2010, §2.4.3).
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tion, [XX1…Xn], transforms into the very procedure of applying a function produced
by the procedure X to the tuple-argument (if any) produced by the procedures X1,
…, Xn . The procedural semantics of TIL makes it possible to explicitly deal with
those features that are otherwise hidden if dealing only with the products of the pro-
cedures, i.e. functions-in-extension. These features concern in particular operations
in a hyperintensional context where the very procedure denoted by a term is being
operated on. For instance, if Tilman calculates the cotangent of the number π, he is
not related to a non-existing number. He is related to the procedure of applying the
function cotangent to the number π, aiming to uncover the product of this procedure.
And even if the function cotangentwere defined at this number, it still makes no sense
to compute a number without any procedure specifying how to obtain that number.
Hence the procedure of applying the cotangent function at the number π is here the
object of predication, making the context of calculating a hyperintensional one. In
TIL we strictly distinguish between procedures producing set-theoretical functions
and the functions (-in-extensions) themselves (including sets and atomic objects such
as truth-values, numbers and individuals viewed as zero-place functions). Not to lose
one’s way in this stratified ontology all entities (including procedures) receive a type
within a ramified hierarchy of types.

The rest of this paper is organised as follows. In Sect. 1 I introduce the relevant
basic principles and definitions of TIL. Section 2 introduces the three kinds of context,
namely hyperintensional, intensional and extensional ones, in which a TIL construc-
tion can occur. Section 3 deals with the mereological structure of TIL constructions.
In Sect. 4 I deal with the problem of the individuation of structured procedures and
the problem of synonymy. Section 5 contains some concluding remarks.

1 Basic principles of TIL

As mentioned above, the terms of the TIL symbolism denote abstract procedures that
produce set-theoretical mappings (functions-in-extension) or lower-order procedures.
These procedures are defined as TIL constructions.

Definition 1 (Construction)

(i) Variables x, y, … are constructions that construct objects (elements of their
respective ranges) dependently on a valuation v; they v-construct.

(ii) Where X is an object whatsoever (even a construction), 0X is the construction
Trivialization that constructs Xwithout any change of X .

(iii) Let X,Y1,…,Yn be arbitrary constructions. ThenComposition [XY1. . .Yn] is the
following construction. For any v, the Composition [XY1. . .Yn] is v-improper
if at least one of the constructions X,Y1, . . .,Yn is v-improper by failing to
v-construct anything, or if Xdoes not v-construct a function that is defined at
the n-tuple of objects v-constructed by Y1,…,Yn . If Xdoes v-construct such a
function, then [XY1. . .Yn] v-constructs the value of this function at the n-tuple.

(iv) (λ-) Closure [λx1. . .xmY ] is the following construction. Let x1, x2, . . ., xm be
pair-wise distinct variables andY a construction. Then [λx1. . .xmY ] v-constructs
the function f that takes any members B1, . . ., Bm of the respective ranges of
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the variables x1, . . ., xm into the object (if any) that is v(B1/x1, . . ., Bm/xm)

constructed by Y , where v(B1/x1, . . ., Bm/xm) is like v except for assigning B1
to x1, . . ., Bm to xm .

(v) Where X is an object whatsoever, 1X is the construction Single Execution that
v-constructs what X v-constructs. Thus, if X is a v-improper construction or not
a construction as all, 1X is v-improper.

(vi) Where X is an object whatsoever, 2X is the construction Double Execution. If
X is not itself a construction, or if Xdoes not v-construct a construction, or if
X v-constructs a v-improper construction, then 2X is v-improper. Otherwise 2X
v-constructs what is v-constructed by the construction v-constructed by X.

(vii) Nothing is a construction, unless it so follows from (i) through (vi). ��
Comments Being procedural objects, constructions can be executed in order to oper-
ate on input objects (of a lower-order type) and produce the object (if any) they
are typed to produce, while non-procedural objects, i.e. non-constructions, cannot be
executed. Hence the constituents of constructions cannot be non-procedural objects;
non-procedural objectsmust be presented, or referred to, by atomic constructions.Triv-
ialization and Variables are the two atomic constructions that present input objects
(which can also be lower-order constructions) to be operated on. The operational sense
of Trivialization is similar to that of constants in formal languages. A Trivialization
presents an object X without the mediation of any other procedures. Using the ter-
minology of programming languages, the Trivialization of X, ‘0X ’ in symbols, is just
a pointer referring to X. Variables produce objects dependently on valuations; they
v-construct. We adopt an objectual variant of the Tarskian conception of variables. To
each type (see Def. 2) are assigned countably many variables that range over this par-
ticular type. Objects of each type can be arranged into infinitely many sequences. The
valuation v selects one such sequence of objects of the respective type, and the first
variable v-constructs the first object of the sequence, the second variable v-constructs
the second object of the sequence, and so on. Hence the execution of a Trivialization
or a variable never fails to produce an object; these constructions are not v-improper
for any valuation v. The (λ-) Closure [λx1. . .xmY ] is also not v- improper for any v,
as it always v-constructs a function. Even if the constituent Y is v-improper for every
valuation v, the Closure is not v-improper. Yet in such a case the constructed func-
tion is a bizarre object; it is a degenerate function that lacks a value at any argument.
However, the other molecular constructions, namely Composition, Single and Double
Execution, can fail to present an object of the type they are typed to produce, they can
be v-improper. The main source of improperness is an application of a function to an
argument at which the function is not defined.12

With constructions of constructions, constructions of functions, functions, and func-
tional values in our stratified ontology, we need to keep track of the traffic between
multiple logical strata. The ramified type hierarchy does just that. The type of first-
order objects includes all non-procedural objects. Therefore, it includes not only the
standard objects of individuals, truth-values, sets, functions, etc., but also functions

12 The other source can be a type-theoretically incoherent (‘nonsensical’) way of composing a construction,
for instance, by composing the Sun with being a natural number.
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defined on possible worlds (i.e., the intensions germane to possible-world semantics).
The type of second-order objects includes constructions of first-order objects and
functions with such constructions in their domain or range. The type of third-order
objects includes constructions of first- and second-order objects and functions with
such constructions in their domain or range; and so on, ad infinitum.

Definition 2 (Ramifiedhierarchyof types). Let B be abase,where a base is a collection
of pair-wise disjoint, non-empty sets. Then:

T1(types of order 1).

(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1,…, βm(m > 0) be types of order 1 over B. Then the collection

(α β1 . . . βm) of all m-ary partial mappings from β1 × . . . × βm into α is a func-
tional type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii).

Cn (constructions of order n)

(i) Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of
order n over B.

(iii) Let X, X1, . . . , Xm(m > 0) be constructions of order nover B. Then
[XX1 . . . Xm] is a construction of order n over B.

(iv) Let x1, . . . , xm, X (m > 0) be constructions of order nover B. Then
[λx1 . . . xm X ] is a construction of order n over B.

(v) Nothing is a construction of order n over B unless it so follows from Cn (i)–(iv).

Tn+1(types of order n + 1)
Let *n be the collection of all constructions of order nover B. Then

(i) *n and every type of order n are types of order n + 1.
(ii) If m > 0 and α, β1, . . . , βm are types of order n + 1 over B, then (α β1 . . . βm)

(see T1 ii)) is a type of order n + 1 over B.
(iii) Nothing is a type of order n + 1 over B unless it so follows from (i)

and (ii). ��
For the purposes of natural language analysis, we are assuming the following base

of ground types:

o: the set of truth-values {T, F};
ι: the set of individuals (the universe of discourse);
τ: the set of real numbers (doubling as discrete times);
ω: the set of logically possible worlds (the logical space).

We model sets and relations by their characteristic functions. Thus, for instance, (o ι)

is the type of a set of individuals, while (o ι ι) is the type of a relation-in-extension
between individuals. Empirical expressions denote empirical conditions that may or
may not be satisfied at the particular world/time pair of evaluation. These empirical
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conditions are modelled as possible-world-semantic (PWS) intensions. PWS inten-
sions are entities of type (β ω): mappings from possible worlds to an arbitrary type
β. The type β is frequently the type of the chronology of α-objects, i.e., a mapping
of type (α τ). Thus α-intensions are frequently functions of type ((α τ)ω), abbrevi-
ated as ‘ατω’. Extensional entities are entities of a type α where α �= (βω) for any
type β. Where w ranges over ω and t over τ, the following logical form essentially
characterizes the logical syntax of empirical language: λwλt[. . .w. . ..t . . .].

Examples of frequently used PWS intensions are: propositions of type oτω, prop-
erties of individuals of type (oι)τω, binary relations-in-intension between individuals
of type (oι ι)τω, individual offices (or roles) of type ιτω, attitudes to constructions of
type (o ι ∗n)τω.

Logical objects like truth-functions are extensional: ∧ (conjunction), ∨ (disjunc-
tion) and ⊃ (implication) are of type (o o o), and ¬ (negation) of type (o o). Below all
type indications will be provided outside the formulae in order not to clutter the nota-
tion. The outermost brackets of the Closure will be omitted whenever no confusion
arises. Furthermore, ‘X/ α’ means that an object X is (a member) of type α .‘X →v α’
means that X is typed to v-construct an object of type α, if any. We write ‘X → α’ if
what is v- constructed does not depend on a valuation v. Throughout, it holds that the
variables w →v ω and t →v τ. If C →v ατω then the frequently used Composition
[[Cw]t], which is the intensional descent (a.k.a. extensionalization) of the α-intension
v-constructed by C , will be encoded as ‘Cwt ’. Whenever no confusion arises, we
use traditional infix notation without Trivialisation for truth-functions and the identity
relation, to make the terms denoting constructions easier to read.

2 Displayed versus executed constructions

Here I go through the twomodes in which constructions (procedures) can occur, either
displayed or executed. This distinction is a crucial ingredient of my account of the
constituents of structured propositions, as they themselves are also procedures.

When a construction occurs displayed, then the construction itself becomes the
object on which other constructions can operate; we say that it occurs hyperinten-
sionally. When a construction occurs executed, then the product of the construction
is the object to operate on.13 In this case the executed construction is a constituent
of its super-construction, and an additional distinction can be found at this level. The
constituent presenting a functionmayoccur either intensionally (de dicto) or extension-
ally (de re). If intensionally, then the produced function is the object of predication; if
extensionally, then the value of the produced function is the object of predication. The
two distinctions, between displayed/executed and intensional/extensional occurrence,
enable us to distinguish between three kinds of context. The rigorous definitions of the
three kinds of contexts can be found in Duží et al. (2010, §2.6). The exact details are
rather complicated, though the basic ideas are fairly simple. Thus, here I only explain
the main ideas, with the rigorous definition of displayed vs. executed occurrence of a
construction coming afterwards.

13 If there is no such product, the construction is v-improper.
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– Hyperintensional context a construction occurs in displayedmode (though another
construction at least one order higher needs to be executed in order to produce the
displayed construction)

– Intensional context a construction occurs in executed mode in order to produce a
function rather than its value (moreover, the executed construction does not occur
within another hyperintensional context)

– Extensional context a construction occurs in executed mode in order to produce
a particular value of a function at a given argument (moreover, the executed con-
struction does not occur within another intensional or hyperintensional context).

The basic idea underlying the above trifurcation is that the same set of logical rules
applies to all three kinds of context, but these rules operate on different complements:
procedures, produced functions, and functional values, respectively. Having defined
the three kinds of context, we are thus in a position to build up TIL as an extensional
logic of hyperintensions.14

The analysis of the meaning of an expression consists in furnishing the expres-
sion with the construction encoded by it. The meaning of an empirical sentence is a
construction that is typed to produce a PWS-proposition, and the meaning of a math-
ematical/logical sentence is a construction that is typed to produce a truth-value. If
a construction C is typed to produce a truth-value (C →v o) or a PWS-proposition
(C → v oτω) then C is a hyperproposition.

When assigning a construction to a sentence (or generally to a piece of language),
we apply a three-step method of analysis. First, we assign types to the objects that
receive mention in the sentence. Second, we combine constructions of these objects
so that to obtain a hyperproposition that constructs the PWS-proposition or a truth-
value denoted by the sentence. Finally, we apply type-theoretical control to check
whether the resulting hyperproposition is composed in a type-theoretically coherent
way. To this end, we often draw a derivation tree; yet the tree is not the structure, it is
just a graphic representation of the hyperpropositional structure.

Since the distinction between executed and displayed occurrence of a construction
plays a significant role in particular in attitudinal sentences, I will use as a paradigmatic
example the attitude of calculating.When a calculates something, for instance 2+5 or
cotangent of the number π, a is not related to the number 7 or to a non-existing num-
ber, respectively. It makes no sense to calculate a number without any mathematical
operation. Rather, a is related to the very procedure expressed by the terms ‘2+ 5’ or
‘cotangent of π′; a wants to find out what the procedure in question produces. Thus,
Calculate is of type (o ι ∗1)τω: relation-in-intension of an individual to a construction
of a number. Here is the analysis of the sentence “Tom calculates the cotangent of π”
followed by its derivation tree accompanied by type assignments.

(i) Type analysis. Tom/ι; Calculate/(o ι ∗1)τω; Cot(angent)/(τ τ);π / τ.
(ii) Synthesis. In order to apply the relation-in-intension Calculate to its two argu-

ments, we have to extensionalize it first: [[0Calculate w]t], or 0Calculatewt for
short. Since Tom is related to the very procedure [0Cot 0π] of applying the
function Cotangent to the number π rather than to its non-existing product,

14 For details see Duží (2012).
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the Composition [0Cot 0π] must be Trivialized in order to become displayed:
0[0Cot 0π]. The agent, Tom, also must be pinpointed by Trivialization, as
explained above. Thus, we have [0Calculatewt

0Tom 0[0Cot 0π]] →v o. Finally,
abstracting over the values of the variablesw, t , we construct the PWS-proposition
denoted by the sentence:
λwλt[0Calculatewt

0Tom 0[0Cot 0π]] →v oτω

(iii) Derivation tree.

λw λt [[[0Calculate  w] t] 0Tom 0[0Cot 0π]]

(((οι∗1)τ)ω) ω

((οι∗1)τ) τ

        (οι∗1) ι ∗1

ο

      (οτ)

((οτ)ω) abbreviated as οτω.

The resulting type is the type of a PWS-proposition.
Note that the types of the objects that the constructions 0π,0Cot and [0Cot 0π] are

typed to produce (i.e., τ, (τ τ) and τ, respectively) are irrelevant here. This is since
Composition [0Cot 0π] occurs here only displayed as an argument of the relation
0Calculatewt . In any world w and time t , the evaluation of the truth-conditions of the
analysed sentence amounts just to checking whether Tom does calculate Cotangent of
π, i.e. the execution of the Composition

[0Calculatewt
0Tom 0[0Cot 0π]];

yet execution of this Composition does not involve the execution of the procedure
[0Cot 0π]; this is the futile activity Tom is trying to do.

To put these ideas on more solid grounds, we define:

Definition 3 (Subconstruction). Let C be a construction. Then

(i) C is a subconstruction of C.
(ii) If C is 0X,1X or 2X and X is a construction, then X is a subconstruction of C.
(iii) If C is [XX1. . .Xn] then X , X1, . . ., Xn are subconstructions of C.
(iv) If C is [λx1. . .xnY ] then Y is a subconstruction of C.
(v) If A is a subconstruction of B and B is a subconstruction of C then A is a

subconstruction of C.
(vi) A construction is a subconstruction of C only if it so follows from (i)–(v). ��
Asmentioned above, it is important for our theory of procedurally structured construc-
tions that a construction can be not only executed as a procedural whole to produce an
object (if any) but can itself figure as an argument or value of a function produced by
another construction of a higher order. Yet the constituents of a construction are not
the particular material or abstract objects that the construction operates on. Rather, the
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constituents are only those sub-constructions that occur in executed mode; those that
occur as objects to be operated on are displayed as arguments or values. To define the
distinction between displayed and executed mode, we must take the following into
account:

• a constructionC can occur in displayed mode only as a subconstruction of another
construction D that operates on C ;

• C itself has, therefore, to be constructed by another subconstruction C ′ of D; and
• it is necessary to define this distinction for occurrences of constructions, because
one and the same construction Ccan occur executed in D and at the same time
serve as an input/output object for another subconstruction C ′ of D that operates
on C.

The distinction between displayed and execution mode of a construction is charac-
terised as follows, with a rigorous definition following afterwards.

Displayed versus executed subconstruction Let C be a subconstruction of a con-
struction D. Then an occurrence of C is displayed in D if the execution of D does
not involve the execution of this occurrence of C . Otherwise, an occurrence of C is
executed in D and C occurs as a constituent of D.

A simple example to illustrate the situation. Consider this argument.

The conclusion is obviously unreasonable, and probably even nonsensical, for how
could anybody be calculating anything in the absence of an arithmetical operation?
The reason why the substitution within the first premise based on the identity specified
by the second premise is invalid is this. There is a substantial difference between
using the term ‘2 + 5’ in the first and the second premise. The first premise expresses
Tilman’s relation(-in-intension) to the very procedure of applying the function plus to
the arguments 2 and 5. Tilman is trying to execute this procedure, and the procedure,
which is the meaning of ‘2 + 5’, is displayed as an argument of calculating in the
first premise. The evaluation of the truth-conditions expressed by the first premise
consists in any possible world w at any time t in checking whether Tilman is in the
extensionalized relation of calculating to the procedure of adding 2 and 5. Hence the
execution of the hyperproposition expressed by the first premise does not involve the
execution of the procedure of adding 2 and 5; this is something Tilman is responsible
for. On the other hand, in the second premise the procedure of adding 2 and 5 is
executed to identify the result with the number 7.

The analyses of premises P1, P2 are:

P1: λwλt[0Calculatewt
0Tilman 0[0+02 05]] /∗2,→ oτω

P2: [0= [0+ 02 05] 07] /∗1,→ o.

Types: Tilman/ι; Calculate/(oι*1)τω; +/(τ τ τ); 2, 5, 7/τ; =/(oτ τ).
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It should be obvious that the identity specified by P2, namely the identity of the
number presented by the Trivialization 07 and by the Composition [0+ 02 05], does
not make the substitution of 07 for the Trivialization 0[0+ 02 05] in P1 possible. Such
a substitution would constitute a type-theoretical category mistake, attempting as it
would to substitute an entity of one type for an entity of another type, because 07
constructs the number 7 while 0[0+ 02 05] constructs the Composition [0+ 02 05]. This
goes to show that the occurrence of [0+ 02 05] is displayed in the P1 premise by another
constituent of P1, namely the Trivialization 0[0+ 02 05], whereas it is executed in P2.
This particular occurrence of 0[0+ 02 05], in turn, occurs executed in P1.

The execution steps specified by P1, i.e., the constituent parts of P1, are as follows.

(1) λwλt[0Calculatewt
0Tilman 0[0+02 05]]

(2) λt [0Calculatewt
0Tilman 0[0+02 05]]

(3) [0Calculatewt
0Charles 0[0+02 05]]

(4) 0Calculatewt

(5) [0Calculate w]
(6) 0Calculate
(7) w

(8) t
(9) 0Tilman
(10) 0[0+02 05]

Note that each construction is a part of itself, hence the Closure (1) is a constituent of
itself. The other constituents are proper parts of (1). The Composition [0+ 02 05] is
not a part of (1), it occurs displayed in (1) as an object on which the other constituent
parts operate.

Constructions are displayed by Trivialization. As the above examples illustrate, all
the subconstructions of a displayed construction occur displayed as well. A context in
which a construction occurs displayed is a hyperintensional context. It might seem that
in order to define rigorously the distinction between displayed and executed occurrence
it would suffice to say that a construction occurs displayed if it occurs within the scope
of a Trivialization. Alas, matters are more complex than that. The complicating factor
is this. Trivialization has a dual operation, namely Double Execution. It follows from
Definition 2, (vi) that while Trivialization raises the context to the hyperintensional
level, Double execution cancels the effect of Trivialization, because this law is valid:
20C = C . Therefore, the effect of Trivialization is voided by Double Execution.

Thus, we define:

Definition 4 (Displayed vs. executed occurrence of a construction) Let C be a con-
struction and Da subconstruction of C.

(i) If D is identical to C then the occurrence of D is executed in C .
(ii) If C is identical to [X1X2…Xm] and D is identical to one of the constructions

X1, X2,…, Xm , then the occurrence of D is executed in C .
(iii) If C is identical to [λx1…xm X ] and D is identical to X , then the occurrence of

D is executed in C.
(iv) If C is identical to 1X and D is identical to X , then the occurrence of D is

executed in C .
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(v) If C is identical to 2X and D is identical to X , or 0D occurs executed in X
and this occurrence of D occurs executed in Y v-constructed by X , then the
occurrence of D is executed in C.

(vi) If an occurrence of D is executed in C’ and this occurrence of C’ is executed
in C , then the occurrence of D is executed in C .

(vii) If an occurrence of a subconstruction D of C is not executed in C then the
occurrence of D is displayed in C .

(viii) No occurrence of a subconstruction D of C is executed/displayed in C unless
it so follows from (i)–(vii).

Remark If a construction D is displayed in C then all the variables occurring in D are
Trivialization-bound in C , i.e. bound by Trivialization. Proof follows from Definition
4; if D is displayed in C then there is a construction D′ such that 0D′ is, and D′ is
not, executed as a constituent of C , and D is a subconstruction of D′.

Definition 5 (Constituent part of a construction) Let C be a construction and D a
subconstruction of C. Then any occurrence of D is a constituent part of C if the
occurrence is executed in C.

Corollary Since a construction C occurs executed in itself (as per Def. 4, i), C is a
constituent part of C. Other subconstructions of C occurring in the execution mode
(as per Def. 4, ii, iii, iv, v) are proper constituent parts of the construction C.

Claim 1 The relation of being a constituent part of a construction is a partial order on
the collection of constructions.

Proof

(a) Reflexivity follows immediately from Def. 4, (i)
(b) Transitivity follows immediately from Def. 4, (vi)
(c) Antisymmetry Suppose that C1 is a part of C2 and C2 is a part of C1, and C1 is not

identical with C2. Then Def. 4, i) is not applicable. Hence C1 is a proper part of
C2 and C2 is a proper part of C1. This contradicts the corollary of Def. 5, because
none of the items (ii), (iii), (iv) and (v) of Def. 4 is applicable. HenceC1 is identical
to C2.

Definition 6 (Atomic and molecular constructions). A construction is atomic if it
does not contain any other constituents but itself. If a construction has at least one
proper constituent part, then the construction is molecular.

Corollary A construction C is atomic if C is

• a variable, or
• a Trivialization 0X, where X is an object of any type, even a construction
• a Single execution 1X where X is an object of a type of order 1, that is, X is not a
construction

• a Double execution 2X where X is an object of a type of order 1, that is, X is not
a construction.
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3 On the mereological structure of constructions

Above we saw that each construction is a structured whole with unambiguously deter-
mined constituent parts. Moreover, each construction can be executed as a whole to
yield at most one object, and each construction can itself figure as a whole object on
which other constructions operate. That an atomic construction is a whole is trivially
true, because an atomic construction is a constituent part of itself (Def. 4, i). Now the
question arises what unifies the proper parts of a molecular construction. The proper
constituents of a molecular construction interact by producing functions and their
values. The product of one or more constituents becomes an argument of the function
produced by another constituent. If one or more constituents fail to produce an object
(that is, if they are v-improper) the whole constructionwhich is typed to operate on this
object fails as well (that is, the whole construction comes out v-improper), because the
process of producing an output object has been interrupted. Hence, constructions (or
procedures in general) are notmere aggregates of their proper parts. The elements of an
aggregate lack ‘direct connection inter se’ even when they are organised in an ordered
sequence or list. And direct connection inter se is exactly what makes something parts
of a whole.15

A simple example to illustrate the interaction in question. The Composition [0+ 02
05] is the procedure of applying the function + to the couple of numbers 2 and 5 (in this
order) to produce the value of + at this couple. Using programming-language jargon,
the execution of this procedure can be described as follows. Since the constituent part
0+ is composed with 02 and 05, it calls the other two constituent parts, 02, 05, to yield
their respective products, namely the numbers 2 and 5, so that the couple (2, 5) can
serve as the argument of the function + produced by 0+. In this way, the execution of
the whole Composition produces the value of the function + at the argument (2, 5), to
wit, the number 7.16

Similarly, the Closure λx[0+ x01], when executed, produces the successor func-
tion. Again, using programming jargon, it is a procedure with the formal parameter
x .Whenever the actual argument n is substituted for x into the procedural ‘body’
[0+ x01], the body produces n’s successor, the number n + 1. Since this process can
be executed for any number n, by abstracting over the values of n the mapping from
naturals to their successors is produced.

Now we can compare the structure of abstract procedures (TIL constructions) with
Classical Extensional Mereology (CEM). Cotnoir (2013) recapitulates the three main
principles of CEM as follows.

Extensionality If x and y have the same mereological make-up, then x and y are
identical.

Antisymmetry If x is part of y and y part of x , then x and y are identical.
Idempotency If x is a proper part of y, then the sum of x and y is identical to y.

15 See Russell (1996: §136). For more on interaction between parts, see Jespersen (2017b).
16 The fact that 7 is the number produced is a piece of mathematical knowledge external to the above
Composition; 7 is not mentioned above. If we wanted to indicate that this particular number is produced,
we would specify the identity [[0+ 02 05] = 07].
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The principle of antisymmetry has been proved in Claim 1.
The principle of idempotency can be formulated like this. It is not possible to add

a further occurrence of a proper part x to y, because any such ‘addition’ would be
‘swallowed up’ by the existing occurrence of x . In other words, one thing cannot be
part of the same whole twice or more times over. This seems to be a valid principle for
material entities, but obviously does not hold for abstract entities such as structured
procedures. One and the same constituent sub-construction can occur twice or more
times in a whole construction. A simple example: the Composition [0+ 02 02] of
applying the addition function + to the couple (2, 2) has two occurrences of the
part 02.17 Moreover, we cannot simply add another proper part to an unambiguously
determined structured whole. If we wish to iterate a part (i.e. add another instance of a
part already found in the whole), we must also determine the way this additional part
is composed with the other parts; this addition makes for another construction. For a
simple example, consider the constructions A, B → o that are typed to produce a truth-
value. Then the constructions [A ⊃ B], [[A ∧ A] ⊃ B] are not identical, though they
are equivalent by producing the same truth-value. These two Compositions are two
distinct procedures, because the latter instructs us to process a conjunction whereas the
former contains just one of the conjuncts. The truth-conditional idempotency between
A and [A∧ A] is irrelevant to the absence of mereological idempotency between them.

Extensionality, as expressed by “Same parts = same whole”, is in classical mere-
ology of material objects a subject of much dispute.18 In this paper I am disregarding
the mereology of concrete entities, such as bronze statues and the chunks of bronze
they are made of, and focusing on the mereology of abstract logical procedures. In
the mereology of abstract procedures (TIL constructions, in my case), the principle
of extensionality is trivially valid if it is applied both to proper and improper parts,
because it is tantamount to reflexivity, as has been proved above. The stronger principle

“The same proper parts = the same whole”

is, however, not valid. The failure of the stronger extensionality axiom was obvious
already to Bernard Bolzano. In his (1837) Bolzano shows that the mere sum of the
components of the content of a concept does not define the concept.19 We have to
take into account the way of composing these components.20 Bolzano worked out a
systematic realist theory of concepts (Vorstellungen an sich), construing concepts as

17 In this respect, the structure of constructions is similar to the formal mereology introduced in Bennet
(2013).
18 For instance, Cotnoir illustrates this problem in (ibid., p. 835): “The classic counterexample to exten-
sionality involves objects (e.g., a statue) and the matter which constitutes them (e.g., a lump of clay). They
presumably have different properties: e.g., the clay can survive squashing whereas the statue cannot. They
must, therefore, be different objects. Yet every part of one appears to be part of the other. Their structure
(insofar as mereology is concerned, anyway) is exactly the same. Another example involves the construction
of two objects by a rearrangement of the same parts. Supposemy son builds a house out of some Lego bricks.
He then destroys the house (as he often does) and proceeds to build a boat from the same Lego bricks. Is the
house identical to the boat? Or are they distinct? Extensionality would seem to force us to identify the two.”
19 A theory of concepts has been worked out in TIL by Materna in (1998, 2004). We explicate concepts
as closed constructions in their normal form. For details, see also Duží et al. (2010, §2.2).
20 “die Art,wie diese Theile untereinander verbunden sind“ (1837, §244).
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objective entities endowed with structure. Our theory is continuous with this concep-
tion. Traditional theories of concepts built on the Port Royal school define a concept
as a couple consisting of an extension (Umfang) and an intension (Inhalt, or content).
The intension of a conceptC is the sum of features or sub-conceptsC1,…,Cn , while the
extension of C is the intersection of the sets of objects having these features by falling
under the sub-concepts C1,…,Cn . Thus, the so-called Law of inverse proportion of
extension and intension (the more components in the intension, the fewer elements
in the extension, and vice versa) is valid within the framework of Port Royal logic.
For instance, the extension of the concept Prague inhabitants is greater than that of
Prague inhabitants speaking German. Bolzano criticizes this Law in (1837: §120).
He adduces an example of a pair of concepts for which the Law is not valid.

1. A man who understands all European languages
2. A man who understands all living European languages

The first concept contains fewer components than the second one but (contra the Law)
its extension is smaller than the extension of the second concept. This is due to the
fact that the actual-world set of all European languages that ever existed, currently
exist or once will exist is greater than the set of all living (i.e. currently spoken)
European languages, hence there are fewer people falling under this more exacting
concept. By this example, Bolzano wants to show that theway of composing particular
components is important. The classical Port Royal theory of concepts presupposes only
a conjunctivemethod of composition.21 The ‘sum’ of the components of an intension
is meant as their conjunctive connection. Then, of course, the Law is an elementary
consequence of set theory. However, if the way of composing is not conjunctive, the
Law does not hold. For instance, the Law holds for the concepts expressed by ‘Prague
citizens speakingCzech’ and ‘Prague citizens speakingCzech andGerman’. However,
it obviously does not hold for the concepts expressed by ‘Prague citizens speaking
Czech’ and ‘Prague citizens speaking Czech or German’.

Not only that; Bolzano also shows that a concept is not the same thing as its
intension/content. As an example, Bolzano considers two mathematical concepts, 35

and 53. These concepts have exactly the same proper parts, namely the respective
concepts of the numbers 3 and 5, and the concept of the power function. Yet 35 and
53 are different concepts. This is due to the fact that the procedure of raising 3 to the
power of 5 is different from the procedure of raising 5 to the power of 3.

0[0Power 03 05] �= 0[0Power 05 03]

Types Power/(τ τ τ); 3,5/τ; [0Power 03 05], [0Power 05 03]/*1 → τ; 0[0Power 03
05]/*2 → *1; 0[0Power 05 03]/*2 → *1; �=/(o*1*1): the relation of not being identical
between constructions of order 1.

Even if constructions C1 and C2 produce the same object and have the same proper
parts, they can be non-identical. For instance, according to Def. 1, Compositions

21 By these critical remarks, I do not want to imply that the classical concept theory is not useful. There are
many useful applications of this theory. So-called Formal Concept Analysis has been successfully applied
in computer science. For details, see, e.g., Ganter and Wille (1999).
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[0+ 02 05] and [0+ 05 02] are not identical, though they consist of the same proper
parts and produce the same number:

[0+ 02 05] = [0+ 05 02]
but

0[0+ 02 05] �= 0[0+ 05 02]
Types +/(τ τ τ); 2,5/τ; [0+ 02 05], [0+ 05 02]/*1 → τ; =/(oτ τ);0 [0+ 02 05],
0[0+ 05 02]/∗2 → ∗1; �= /(o ∗1 ∗1).

Again, this is as it should be. The respective meanings of the terms ‘2 + 5’ and
‘5+ 2’ are insufficient in order to prove that they are equivalent. It must, furthermore,
be proved that the addition function is commutative, using, for instance, the axioms
of Peano arithmetic.

4 Hyperintensionality and inferences

Asmentioned above, the basic idea underlying our distinction between the three kinds
of context in which a construction can occur is that the same set of logical rules
applies to all three kinds of context, but these rules are properly applicable to objects
of different types. In an extensional context, the relevant objects are the values of the
constructed functions; in an intensional context, the produced functions themselves;
and in a hyperintensional context, the constructions themselves.

The rules that operate in an extensional or intensional context are easy to specify,
for instance, in the standard manner of the λ-calculi, because in an intensional con-
text equivalent constructions are substitutable, that is, constructions v-constructing
the same object for every valuation v.22 However, applying logical rules into a hyper-
intensional context is far from being straightforward. The technical complications
we are confronted with are rooted in displayed constructions, because a displayed
construction cannot at the same time be executed. The original motivation for hyper-
intensionality was a negative one. Whenever substitution of logically/analytically
equivalent terms fails, the context was declared hyperintensional. Thus, the main rea-
son for introducing hyperintensionality was originally to block various inferences that
were argued on philosophical grounds to be invalid. Naturally, the converse question
arises as to which arguments involving hyperintensional contexts are valid. I am going
to deal with these two issues now.

4.1 Invalid inferences

Consider this argument:23

Tilman is seeking his brother

Tilman is seeking his male sibling

22 For the rules of substitution see Duží, Materna (2017), and for the rules of existential quantification see
Duží and Jespersen (2015).
23 Church (1951, n. 15) offers various examples of non-propositional attitudes, including the famous
example of Ponce de León searching the fountain of youth.
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Is this argument valid? In my opinion, it is not. Tilman can be seeking his brother
without him seeking his male sibling, though both ‘male sibling of’ and ‘brother of’
denote one and the same attribute.24 To get the example of Tilman seeking his brother
and not seeking his male sibling off the ground, I am stipulating that ‘is a brother
of’ and ‘is a male sibling of’ are a pair not of synonymous but merely equivalent
predicates. Their respective meanings are co-intensional, but not co-hyperintensional.
The rationale for this stipulation is that the latter predicate has a molecular structure
thanks to the application of the modifier denoted by ‘male’ to the attribute denoted
by ‘sibling’, whereas the former predicate is atomic.25 Hence this is a case where
the mode of presentation of one and the same intension matters.26 In this case an
intensional analysis will yield a contradiction, because Tilman would be related, and
at the same time not related, to one and the same property by the seeking relation.27

Here is the proof of the contradiction. First, the property to which Tilman is related
is constructed by this Closure: λwλt[0Brother_ofwt

0Tilman]. Thus, the analysis of
the premise is this construction:28

λwλt[0Seekwt
0Tilman λwλt[0Brother_ofwt

0Tilman]]

Types: Seek/(oι(oι)τω)τω: the relation-in-intension of an individual to a property the
instance of which the seeker wants to find; Tilman/ι; Brother_of/((oι) ι)τω: attribute,
i.e., an empirical function associating an individual with a set of individuals, his or
her brothers.

The proof of the contradiction is this:

(1) λwλt [0Seekwt
0Tilman λwλt[0Brother_ofwt

0Tilman]] ∅

(2) λwλt¬[0Seekwt
0Tilman λwλt[[0Male 0Sibling_of]wt

0Tilman]] ∅

(3) [0Seekwt
0Tilman λwλt[0Brother_ofwt

0Tilman]] λ-elimination, 1)
(4) ¬[0Seekwt

0Tilman λwλt[[0Male 0Sibling_of]wt
0Tilman]] λ-elimination, 2)

(5) [λwλt[[0Brother_of]wt
0Tilman] = λwλt[[0Male 0Sibling_of]wt

0Tilman]] ∅

24 It might be debatable whether the argument is invalid, and whether ‘brother of’ and ‘male sibling of’
are not synonymous. As for the latter, the two terms are equivalent rather than strictly synonymous, as I
explain above. As for the former, true, on its intensional reading the argument would be valid. In such a
case Tilman would be related to the property of being Tilman’s brother or Tilman’s male sibling, regardless
of the way in which this property is conceptualised. Yet, from a strictly logical point of view, if it is just
possible that the premise was true without the conclusion being true as well, the argument should not be
considered valid. For this reason, I opt for the hyperintensional reading and analysis of the above argument.
25 For details on property modifiers, see Jespersen (2015b, §4). Here we deal with a subsective attribute
modifier that assigns to an attribute sibling of (somebody) a new attribute male sibling of (somebody).
26 I agree with Church’s view, see his (1956, p. 8, n. 20). Church argues that in “Schliemann sought the
site of Troy’ it is a concept of a location, not the location itself, that guides Schliemann’s and every other
seeker’s search for the site of Troy.
27 Here I analyse de dicto seeking; Tilman wants to find out who his brother is. It can be the case, for
instance, in such a situation where Tilman receives information that his parents might have had another son
of whom he had no idea before. For more details on the difference between de dicto and de re seeking, see
Duží (2003), or Duží et al. (2010, § 5.2.2).
28 For simplicity, I am ignoring the anaphoric reference ‘his’ and stick to the result of resolving this
reference by substituting 0Tilman for the anaphoric variable denoted by ‘his’. More on the logic of dynamic
discourse and anaphora resolution, see Duží (2017a).
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(6) [0Seekwt
0Tilman λwλt[[0Male 0Sibling_of]wt

0Tilman]] Leibniz’s Law, 3, 5)
(7) Contradiction! 4, 6, ∧I
Additional types. Sibling_of/((oι) ι)τω; Male/(((oι) ι)τω((oι) ι)τω): an attribute modi-
fier.

To block the above invalid inference, a hyperintensional analysis must be applied.
Here is how.

(1) λwλt [0Seek*wt
0Tilman 0[λwλt[0Brother_ofwt

0Tilman]]] ∅

(2) λwλt¬[0Seek*wt
0Tilman 0[λwλt[[0Male 0Sibling_of]wt

0Tilman]]] ∅

(3) ¬[0=∗ 0[λwλt[0Brother_ofwt
0Tilman]] 0[λwλt[[0Male 0Sibling_of]wt

0Tilman]]]
∅

Additional types Seek*/(oι*n)τω: the relation-in-intension of an individual to a con-
struction of a property; =*/(o*n*n): the identity of constructions.

No contradiction arises. When construed hyperintensionally, Tilman’s search is
only ostensibly inconsistent. One could object that it seems reasonable to assume that
there is a meaning postulate in place to the effect that ‘is a brother of’ is shorthand
for, or a notational variant of, ‘is a male sibling of’, the same way ‘lasts a fortnight’ is
arguably short for ‘lasts two weeks’. Yet it is questionable what semantic and inferen-
tial gain may be accrued from introducing a redundant predicate as a mere notational
variant of another predicate.29 What speaks against this assumption, at least through
the lens of TIL, is that the Trivialization 0Brother_of and the Composition [0Male
0Sibling_of] are not co-hyperintensional but only equivalent constructions. Further-
more, the latter is a refinement of the former providing more analytic information than
just the Trivialization of the attribute.30

4.2 Valid inferences in hyperintensional contexts

Above I illustrated how invalid inferences can be blocked in hyperintensional contexts.
But there is the other side of the coin, which is the positive topic of which inferences
should be validated.

For instance, an argument like this:

Tilman calculates the cotangent of π

There is a number x such that Tilman calculates the cotangent of x

is obviously valid. Surely, if Tilman calculates the cotangent of π, then there is such a
number, namely the number π, the cotangent of which Tilman calculates. But careless
existential generalization into a hyperintensional context is not valid:

λwλt[0Calculatewt
0Tilman 0[0Cot 0π]]

λwλt[0∃λx[0Calculatewt
0Tilman 0[0Cot x]]]

29 See Jespersen (2015b, §5) for the parallel example of ‘is a bachelor’, ‘is an unmarried man’.
30 For details on analytic information see Duží (2010).
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The reason is this. The Trivialisation 0[0Cot x] constructs the Composition [0Cot x]
independently of any valuation v. Thus, from the fact that at 〈w, t〉 it is true that
Tilman calculates [0Cot 0π], we can not validly infer that Tilman calculates [0Cot x],
because Tilman calculates the cotangent of π rather than of an arbitrary value of x .
Put differently, the variable xoccurring displayed in a hyperintensional context is not
amenable to the logical operation of λ-binding, because it is bound by Trivialization
(‘0-bound’). In other words, the Composition [0Cot x] is not a constituent of the whole
construction. The problem just described of λx being unable to catch the occurrence
of x inside the displayed construction is TIL’s way of phrasing the standard objection
to quantifying-in (i.e. the impossibility of reaching across an attitude operator). Yet in
TIL we are able to overcome this obstacle. To validly infer the conclusion, we need
to apply our substitution method that pre-processes the Composition [0Cot x] and
substitutes the Trivialization of π for x . Only then can the conclusion be inferred. To
this end we deploy the polymorphic functions Sub/(∗n∗n∗n∗n) and Tr/(∗n α) defined
as follows.

The function Sub of type (∗n∗n∗n∗n) operates on constructions in this way. When
applied to constructions C1,C2,C3, Sub returns as its value the construction D that
is the result of substituting C1 for C2 in C3. The likewise polymorphic function Tr
returns as its value the Trivialization of its argument.

For instance, if the variable x ranges over ι, the Composition [0Tr x] v(John/x)-
constructs 0John. Note one essential difference between the function Tr and the
construction Trivialization. Whereas the variable x is free in [0Tr x], the Trivialization
0x displays the variable x by constructing just x independently of valuation. Thus, for
instance, the Composition

[0Sub [0Tr x] 0him 0[0Wife_ofwt him]]

v(John/x)-constructs the Composition [0Wife_of 0wt John], while the Composition

[0Sub 0x0him 0[0Wife_ofwt him]]

constructs the Composition [0Wife_ofwt x] independently of valuation.
Consequently, the following inference comes out valid:31

λwλt[0Calculatewt
0Tilman 0[0Cot 0π]]

λwλt[0∃λx[0Calculatewt
0Tilman [0Sub[0Tr x] 0y 0[0Cot y]]]]

Gloss. Since the variable x occurs free as a constituent of [0Tr x], it v-constructs the
Trivialization of the number v-constructed by x . Hence [0Sub [0Tr x] 0y 0[0Cot y]]
v(π/x)-constructs the Composition [0Cot 0π], to which Tilman is related according
to the premise. For this reason, it follows from the premise that the class of numbers
v-constructed by λx[0Calculatewt

0Tilman [0Sub [0Tr x]0y 0[0Cot y]]] is non-empty;
the function ∃ can be validly applied.

Hence existential generalization into a hyperintensional context is just a technical
issue that is easily solvable by our substitution method. Another fundamental rule that

31 Valid rules for existential quantification into hyperintensional context have been specified in Duží and
Jespersen (2015).
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is universally valid and should thus be applicable even in hyperintensional contexts is
Leibniz’s Law of indiscernibility of identicals, which translates into a rule of substi-
tution of identicals. However, there is a philosophical rather than technical problem
here. At the linguistic level, a hyperintensional context is such a context where the very
meaning is the object of predication, and the problematic issue is the individuation of
procedures. That is, how hyper are hyperintensionally individuated structured mean-
ings? If there is one central question permeating hyperintensional logic and semantics
then it is arguably this one.

There is a simple answer, which, unfortunately, also happens to be simplistic. Since
we assign constructions to expressions as their meaning, then if a construction C
occurs displayed in a hyperintensional context, then, trivially, an identical (not merely
equivalent) construction is substitutable.32 So the answer is simplistic because trivial
because self-substitution is trivially valid.

Example. Suppose that ‘cerulean’ and ‘azure’ are synonymous terms. Since synony-
mous terms have the same meaning, they express the same construction; thus, the
Trivializations 0Cerulean/*1 → (oι)τω and 0Azure/*1 → (oι)τω are identical. One
and the same property has been Trivialized, regardless of the name we use for that
property.33 Let now Believe*/(oι*n)τω be a hyperintensional relation-in-intension of
an individual to a hyperproposition (i.e., to a construction of the proposition). Then
the following argument is valid:

Tilman believes* that the Italian national football team wear azure shirts; Cerulean is azure

Tilman believes* that the Italian national football team wear cerulean shirts

The standard objection would be that the argument is not valid, because it can be
true that Tilman believes that the shirts are azure without him believing them to be
cerulean. But no, this is not possible. For sure, Tilman can assent to a sentence and
fail to assent to another sentence, though the two sentences that report his attitude
are synonymous but deploy two different predicates. But then the problem has to
do with Tilman’s linguistic incompetence (be it a restricted vocabulary or failure to
recognize a pair of synonyms). Richard’s principle of Transparency bears directly on
this objection:

… It is impossible for a (normal, rational) person to understand expressions
which have identical senses but not be aware that they have identical senses.
(Richard 2001, pp. 546–7)

Hence the paradox of analysis is not a problem of hyperintensionality. Rather, it is a
matter of linguistic incompetence and not of logical incompetence.

32 Constructions C, D are analytically equivalent if and only if for any valuation v C and D v-construct
the same object or are both v-improper.
33 See Duží et al. (2010, § 5.1.1) for discussion of Mates’s (1952) puzzle. The authors argue here that if ‘is
a woodchuck’ and ‘is a groundhog’ are synonymous predicates then there is no room for even the slightest
hyperintensional distinction. The Trivializations 0Woodchuck and 0Groundhog are not two constructions,
but one and the same construction.
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On the other hand, this example is from the logical point of view too trivial. It is
obvious that identical constructions are always mutually substitutable, because there
is nothing to substitute; there is just one construction.34

At the linguistic level, strictly synonymous expressions (expressions encoding one
and the same procedure) are substitutable in any hyperintensional context. Synonymy
of semantically simple expressions is a matter of linguistics. Now we are, however,
interested in the synonymy of complex expressions.35 Since semantically complex
expressions encode molecular procedures, the issue of synonymy of complex expres-
sions transforms into the problem of the identity of their composed meanings, i.e., the
problem of the identity of molecular procedures. To this end we introduce the relation
of procedural isomorphism.

4.3 Procedural isomorphism and synonymy

For a simple example, consider the analysis of the sentence

“Tilman is solving the equation Sin(x)=0”

As explained at the outset, when solving this equation, Tilman is not related to the
infinite set of multiples of the numberπ, because then there would be nothing to solve:
Tilman would have the solution straightaway. In his effort to solve the equation he is
related to the very procedure

λx[0= [0Sin x] 00];

he wants to find out what the procedure produces. Hence, Solving is of the type
(o ι ∗n)τω. The analysis amounts to this construction:

λwλt[0Solvingwt
0Tilman 0[λx[0= [0Sin x] 00]]]

But couldn’t we equally well assign to the above sentence as its meaning the fol-
lowing construction?

λwλt[0Solvingwt
0Tilman 0[λy[0= [0Sin y] 00]]]

Both constructions λx[0= [0Sin x] 00] and λy[0= [0Sin y] 00] seem to play the
same procedural role in this hyperintensional context, because they are α-equivalent.
When aiming to find the solution Tilman must perform these procedural steps:

• Take the function sine (0Sin)
• Take any real number (x , or y, …)
• Apply the sine function to this number to obtain its value ([0Sin x]; or [0Sin y]; …)
• Compare the value with the number 0 ([0= [0Sin x] 00]]; or [0= [0Sin y] 00]]; …)

34 This holds also for terms of different languages. Recall the example from the outset of this paper. The
sentences ‘Schnee ist weiß’ and ‘Snow is white’ are synonymous, because the terms ‘Schnee’ and ‘Snow’
are atomic references to the same property; the same holds for the terms ‘weiß’ and ‘white’. Hence, the
respective Trivializations 0Schnee, 0Snow and 0Weiß, 0White are identical constructions, and the respective
Closures λwλt [0Weißwt

0Schnee], λwλt [0Whitewt
0Snow] are also identical.

35 For the discussion on the issue of synonymy of complex expressions see also Duží (2014b).
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• If the value is equal to zero, assign the number (x , y, …) to the resulting set. In
other words, abstract over the value of the variable (λx , λy, …)

Any difference there might be between x , y, or any other variable ranging over the
reals, does not translate into a procedural difference. This amounts to a distinction
without a difference.36

We furnish non-synonymous terms with different constructions, i.e., different pro-
cedures. Hence, two terms are synonymous if they express one and the same procedure.
This is trivial, but the deep issue is this. From the semantic point of view constructions
are in some cases too fine-grained so that their difference cannot be expressed in a
given language. This is usually the case with λ-bound variables that are not used in
an ordinary vernacular. We need a slightly less fine-grained criterion of synonymy in
order to weed out certain distinctions without a semantic difference. My thesis is that
synonymous expressions share structurally isomorphic meanings. Meaning being a
procedure, we need to define the relation of procedural isomorphism holding between
constructions.

The problem of how fine-grained hyperintensional entities, hencemeanings, should
be was important already for Carnap who introduced in (1947: §§13ff) the relation
of intensional isomorphism. However, Church (1954) found a counterexample of two
terms that are obviously not synonymous, yet intensionally isomorphic. Church him-
self considered several so-called Alternatives of how to constrain these entities so as to
develop a notion of synonymous isomorphism.37 Senses are identical if the respective
expressions are (A0) ‘synonymously isomorphic’, (A1) mutually λ-convertible, (A2)
logically equivalent. (A2), the weakest criterion, was refuted already by Carnap, and
was not acceptable to Church, either. (A1) was considered to be the right criterion of
synonymy. Yet it has been subjected to a fair amount of criticism, in particular due
to the inclusion of unrestricted β-reduction (‘by name’). For instance, Salmon (2010)
adduces examples of expressions that should intuitively not be taken to be synony-
mous, yet their meanings are mutually β-convertible.38 Moreover, partiality throws
a spanner in the works; β-conversion by name is not guaranteed to be an equivalent
transformation as soon as partial functions are involved.39 Church also considered
Alternative (A1′), which is (A1) plus η-convertibility. Yet η-convertibility is plagued
by similar defects as those of β-convertibility by name. The alternative (A0) arose
from Church’s criticism of intensional isomorphism, and it is synonymy resting on
α-equivalence and meaning postulates for semantically simple terms. Of course, we
need meaning postulates to fix synonymy for pairs of semantically simple terms (pos-
sibly even of different languages). Now we are, however, interested in the synonymy
of molecular terms, which depends on structural isomorphism.40

36 By this I do not want to suggest that variables x and y (or any other different variables) are one and the
same procedure and substitutable in all contexts in any language. They are different constructions, and in a
logical or programming language this difference may turn out to be significant. See also Pickel and Rabern
(2016) on ‘the antinomy of the variable’.
37 For details see Anderson (1998) and Church (1993).
38 For discussion of Salmon’s arguments, see Jespersen (2015a).
39 For details see Duží (2017b).
40 See Duží (2014b).
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In TIL similar work has been done by Materna (1998, §5.3) and (2004, §1.4.2.2)
where the relation of quasi-identity of closed constructions is defined. It includes
α- and η- conversion. This criterion has been later coined procedural isomorphism
and incorporated into Duží (2010) as Alternative (A1/2). Duží and Jespersen (2013)
and Duží (2014b) put forward a new definition of the criterion of structured syn-
onymy called (A3/4). It includesα-equivalence, η-equivalence, and so-called restricted
βr -conversion. Finally, in Duží and Jespersen (2015) and Duží (2014) alternative
(A1′′) is introduced. Close to Church’s (A1), it includes an adjusted version of α-
conversion and β-conversion by value, while η-conversion is excluded. (A1′′) arguably
counts at present as the right calibration of procedural isomorphism, hence of co-
hyperintensionality, from the point of view of TIL. However, there can be no such
thing as a transcendental argument for the necessity and sufficiency of (A1′′). It is per-
fectly conceivable, indeed likely that (A1′′) is going to face cogent counterexamples.

It should be obvious now that the problem of co-hyperintensionality is not simple,
and the question arises whether there is a unique universal solution. I am going to
formulate several conditions that should be met by constructions Cand D in order for
them to qualify as procedurally isomorphic, hence substitutable in hyperintensional
contexts. Yet before doing so, let me summarize the definitions of particular con-
versions; α-conversion, β-conversion by name, and η-conversion are defined in the
ordinary manner of the λ-calculi. In the TIL formalism they are as follows.41

α-conversion. Constructions C and D are α-equivalent if they differ at most by using
different λ-bound variables. Formally, let a construction Y contain at most x1, . . ., xn
as free variables. Then:

[λx1. . .xn Y ] ⇒α [λy1. . .yn Y (y1/x1. . .yn/xn)]

where Y (y1/x1. . .yn/xn) is the construction that arises from Y by collision-less sub-
stitution of y1 for all the occurrences of x1, . . ., yn for all the occurrences of xn , is
α-conversion.

β-conversion by name. Let Y →v α; x1,D1 →v β1,…, xn ,Dn →v βn ;
[λx1. . .xn Y ] →v (α β1 . . . βn). Then :

[[λx1. . .xn Y ]D1. . .Dn] ⇒β n Y (D1/x1. . .Dn/xn),

where Y (D1/x1. . .Dn/xn) is the construction that arises from Y by collision-less
substitution of D1 for all the occurrences of x1, . . ., Dn for all the occurrences of xn ,
is β-conversion by name.

As a special case of β-conversion by name we define restricted βr -conversion. Let
Y →v α; x1, y1 →v β1, . . ., xn, yn →v βn;[λx1. . .xn Y ] →v (α β1 . . . βn). Then :

[[λx1. . .xn Y ]y1. . .yn] ⇒β r Y (y1/x1. . .yn/xn),

where Y (y1/x1. . .yn/xn) is the construction that arises from Y by collision-less sub-
stitution of y1 for all the occurrences of x1, . . ., yn for all the occurrences of xn , is
restricted β-conversion by name.

41 For details on β-conversion in λ-calculi see Duží and Kosterec (2017).
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Using the functions Sub and Tr introduced above, β-conversion by value is defined
as follows.

β-conversion by value.
Let Y →v α; x1, D1 →v β1, . . ., xn, Dn →v βn, [λx1. . .xnY ] →v (α β1 . . . βn).

Then

[[λx1. . .xnY ]D1. . .Dn] ⇒βv
2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn 0Y ]]

is β-conversion by value.
Duží and Jespersen (2015) proves that this conversion is strictly equivalent in the

sense that for any valuation v the left-hand and right-hand side constructions v- con-
struct the same object or both are v-improper, unlike unrestricted β-conversion by
name.42

η-conversion. Let Y →v (α β1 . . . βn); x1 →v β1, . . ., xn →v βn . Then:

[λx1. . .xn[Y x1. . .xn]] ⇒η Y

is η-conversion.

Next, I put forward and assess several conditions to bemet by constructionsC and D
in order to qualify as procedurally isomorphic, hence substitutable in hyperintensional
contexts.

(a) Strict equivalence; for any valuation v constructions C and D v-construct the
same object or are both v-improper.

(b) Constructions C and D have the same number of constituents.

Both conditions aremet only byα-conversion and bymeaning postulates. Condition (a)
is met by βr-conversion (i.e. the restricted β-conversion by name that only substitutes
variables for λ-bound variables of the same type) and by βv-conversion by value.
However, both βr-conversion and βv-conversion by value do not meet condition (b).
Finally, η-conversion fails to meet either of them.43

It is a well-known fact that β-conversion by name does not preserve equivalence
in a logic of partial functions. Yet the fact that η-conversion also does not preserve
logical equivalence in a logic of partial functions such as TIL might be surprising.
To see why, consider the following example. Let F v-construct a function of type
((α β)γ ) that is not defined at the argument v-constructed by A →v γ . Then the
Composition [F A] →v (α β) is v-improper. However, the η-expanded construction

42 In programming languages, the difference between conversion by name and by value revolves around the
programmer’s choice of evaluation strategy. Historically, call-by-value and call-by-name date back to Algol
60, a language designed in the late 1950s. The difference between call-by-name and call-by-value is often
called passing by reference versus passing by value, respectively. Call-by-value is not a single evaluation
strategy, but rather a cluster of evaluation strategies in which a function’s argument is evaluated before
being passed to the procedure. In call-by-reference evaluation (also referred to as call-by name or pass-by-
reference), a calling procedure receives an implicit reference to the argument sub-procedure. This typically
means that the calling procedure can modify the argument sub-procedure. A call-by-reference language
makes it more difficult for a programmer to track the effects of a procedure call, and may introduce subtle
bugs. The notion of conversion strategy in the λ-calculi is similar to the evaluation strategy in programming
languages.
43 For the proofs see, for instance, Duží and Jespersen (2015) or Duží and Kosterec (2017).
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λx [[F A] x] →v (α β), x → β, v-constructs a degenerate function, which is a
function undefined at all its arguments. To be sure, due to the v-improperness of [F A]
the Composition [[F A] x] is also v-improper. But λ-abstraction raises the context to
an intensional one, hence the Closure λx [[F A] x] v-constructs a degenerate function,
which is an object, if a bizarre one. Hence the constructions [F A] and λx [[F A] x]
are not strictly equivalent.

We might formulate weaker requirements like the following two.

(c) Weak equivalence; for any valuation v constructionsC and D v-construct the same
object, provided neither of them is v-improper.

(d) Constructions C and D have the same number of closed constituents.

Both of these requirements are met by η-conversion, while β-conversion by name
meets only (c). β-conversion by value meets, of course, (c) because it satisfies (a), but
it does not meet (d).

However, if we postulated that the term ‘[[λx1. . .xn Y ]D1. . .Dn]’ is just a
notational shorthand for ‘2[0Sub [0Tr D1] 0x1 . . . [0Sub [0Tr Dn] 0xn0Y ]]’, then β-
conversion by value would trivially meet also the condition (d).44 Such a notational
convention is well justified, because conversion by value specifies the correct and
proper way of executing the procedure of applying a function to its argument, unlike
the β-conversion by name.

But then an adjusted version of α-conversion is called for. Consider, for instance,
the constructions

[λx[0+ x 01] 05] and [λy [0+y 01]05]
They are α-equivalent according to the standard definition. Yet their respective

βv-reduced forms

2[0Sub [0Tr 05]0x0[0+ x01]] and 2[0Sub [0Tr 05]0y0[0+ y01]]

would not be α-equivalent. Yet they ought to be, because from the procedural point
of view it is irrelevant which bound variables are used as formal parameters of the
respective procedure.

Thus, the adjusted version of α-conversion is defined as follows. Let C , D be
constructions. Then C , D are α-equivalent, if either C , D differ at most by using
differentλ-boundvariables, or theirβv-expanded formsdiffer atmost byusingdifferent
λ-bound variables.

Let us next reflect on meaning postulates. Above we wondered what semantic and
inferential gain can be obtained from introducing a redundant predicate like ‘is a
brother of’, on its construal as a mere notational variant of ‘is a male sibling of’, and
we did not stipulate those terms to be synonymous. In my opinion, we can accept
only very few meaning postulates for semantically simple terms as assigning to these
simple terms complex synonymous terms. It is usually just the case of introducing
a shorthand for something frequently used, like ‘fortnight’ for ‘a period of fourteen
days’. In mathematics, it can be the case of introducing a new term as a shorthand for
a long definition; for instance, ‘group’ for an ‘algebraic system consisting of a set, an

44 This proposal can be found in Duží (2014).
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identity element, one binary operation and its inverse operation’. Once we introduce
such a shorthand into a language, the two terms become automatically synonymous.
Yet a problem can arise that for one and the same mathematical object there are more
non-synonymous definitions. For instance, ‘lattice’ can be defined either as a partially
ordered set L such that every two-element subset of L has an infimum and supremum
in L , or as an algebra with two binary operations meet and join satisfying the axioms
of commutativity, associativity and absorption. Then we must decide which of them
is the primary definition of ‘lattice’ and prove that the other one is just equivalent.45

Now I am in the position to specify a series of criteria for procedural isomorphism
partially ordered from the strongest (most restrictive) to the weakest (most liberal). Of
course, there is no warranty that the list as specified below is exhaustive. Nonetheless,
I provide good reasons for each of these criteria and specify conditions under which
this or that criterion is applicable. Hence, when one needs to pick this or that criterion,
he/she knows the conditions under which the criterion can be safely applied.

Where ‘MP’ abbreviates ‘meaning postulates’, the proposed criteria are as follows.
First, I adduce the criteria that apply none or only one kind of conversion. Afterwards,
I consider variants of applying more than one conversion.

C0 MP (and nothing else)

This is the most restrictive criterion that would be applicable in any language,
provided the above specified conditions are met. Recall Mates’s puzzle and the para-
dox of analysis. As mentioned above, it is not a problem of hyperintensionality and
synonymy; rather, it is a problem of linguistic competence.

C1 MP, α-conversion

This criterion is applicable in any non-professional, ordinary language where λ-
bound variables are not explicitly used.

Yet, for instance, it cannot be carelessly applied in a functional programming lan-
guage where a λ-bound variable plays the role of a formal parameter of a procedure
for which an actual argument should be substituted when calling the procedure.

Consider, for instance, the easy procedure λx [0+x 01], x →v τ, computing the
successor function. Whenever we call this procedure to compute the successor of
a number n we must substitute this number n for the formal parameter x . If we
applied α-conversion to this procedure, for instance, λy [0+ y 01], y →v τ, every
calling procedure deployed to obtain the successor of the number n would have to be
adjusted. Thus, in such a language λx[0+ x 01] is not procedurally isomorphic with
λy [0+ y 01].
C2 MP, βr-conversion

This criterion is applicable in any non-professional, ordinary language where λ-
bound variables are not explicitly used.

45 An important role of non-synonymous definitions of the number π is examined in Duží et al. (2009).
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Yet, for instance, in a slightly more technical jargon βr-conversion is not applicable
as a criterion of procedural isomorphism. For instance, is there any semantic difference
between the following sentences?

(1) “The president of the USA is a Republican”
(2) “The holder of the office of President of the USA is a Republican”
(3) “The president of the USA has the property of being a Republican”
(4) “The holder of the office of President of the USA has the property of being a

Republican”

In my opinion, there is. These sentences do not have, strictly speaking, the same
meaning, though their respective analyses reveal that they express constructions that
are just βr-equivalent. For instance, (1*) is a βr -reduced form of (2*):

(1*) λwλt[0Republicanwt [0President_ofwt
0USA]]

(2*) λwλt[0Republicanwtλw1λt1[0President_ofw1t1
0USA]wt ]

Types. Republican/(oι)τω;President_of/(ι ι)τω;USA/ι; [0President_ofwt
0USA]→v ι;

λw1λt1[0President_ofw1t1
0USA] → ιτω.

C3 MP, βv-conversion

This criterion is applicable in any language, provided we postulate, as proposed
above, that the term ‘[[λx1. . .xnY ]D1. . .Dn]’ is just a notational shorthand for

‘2[0Sub [0Tr D1] 0x1. . .[0Sub [0Tr Dn] 0x0nY ]]’.
C4 MP, η-conversion

This criterion is not applicable in any logic of partial functions, because it does not
preserve strict equivalence. In an ordinary language, the exclusion of η-conversion
from the definition of procedural isomorphism might seem to be harmless. When
analysing expressions in TIL we apply our method of literal analysis according to
which semantically simple terms are furnished with the Trivialisation of the denoted
object as their meaning. For instance, the literal analysis of “The Pope is wise” (when
understood de re) is the Closure

λwλt[0Wisewt
0Popewt ]

rather than the Closure

λwλt[λwλt[λx[0Wisewt x]]wt
0Popewt ],

because the literal analysis of the predicate ‘is wise’ is the Trivialization 0Wise rather
than the Closure λwλt[λx[0Wisewt x]], which should be glossed as ‘is someone who
is wise’ or ‘is one of the wise ones’. The types areWise/(oι)τω; Pope/ιτω; x → ι. Yet
the sentences “The Pope is wise” and “The Pope is one of the wise ones” can hardly be
taken as strictly speaking synonymous, as the latter makes a detour via the population
of wise individuals at the indices of evaluation.
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C5 MP, βn-conversion

This criterion is in general not applicable in any logic of partial functions, because
it does not preserve strict equivalence; nor is it applicable in an ordinary language,
because we do use non-referring terms like ‘the King of France’. Moreover, as Duží
and Jespersen (2013) shows, βn-conversion by name has other serious defects which
include the loss of analytic information and non-effectiveness.

C6 MP, α-conversion, βr-conversion

The applicability rests on the assumptions as those of C1 and C2

C7 MP, adjusted α-conversion, βv-conversion

The applicability rests on the same assumptions as those of C1 and C3

C8 MP, adjusted α-conversion, βr-conversion, βv-conversion

The applicability rests on the same assumptions as those of C1, C2 and C3

C9 MP, adjusted α-conversion, βr-conversion, βv-conversion, η-conversion

The applicability rests on the same assumptions as those ofC1,C2 andC3, provided
semantically simple terms are analysed as mere references to the denoted object (i.e.,
Trivialization of the denoted object)

C10 MP, α-conversion, βr-conversion, βv-conversion, βn-conversion, η-conversion

The applicability rests on the same assumptions as those ofC1,C2,C3,C9, provided
properly partial functions are not involved

To illustrate mutual dependences and ordering of these criteria, here is a graph (in
the form of a Hasse diagram).

C0 (MP)

C1 (α)             C2 (βr)              C3 (βv)                    C4 (η)                C5 (βn) 

C6 (α+βr) C7 (α+βv) 

C8 (α+βr+βv) 

C9 (α+βr+βv+η)  

C10 (α+βr+βv+η+βn) 

To sum up, in an ordinary language without explicitly used λ-bound variables, the
most liberal criterion for procedural isomorphism includes meaning postulates for
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semantically simple terms, adjusted α-conversion, βr-conversion, and βv-conversion,
which is the criterion C8. The more technical the language, the less liberal a criterion
can be applied, so that, at the other extreme, the most restrictive criterion includes just
meaning postulates defining semantically simple terms (criterion C0). Criterion C9 is
applicable, provided one strictly applies the method of literal analysis, i.e., provided
semantically simple terms are conceived as mere references to the objects denoted by
the terms. Themost liberal criterionC10 is applicable only in a logic of total functions.
Other variants combining particular conversions are thinkable, of course, yet, for an
ordinary vernacular we recommend as the most suitable the criterion C8.

As a result, the rule of substitution of co-hyperintensional terms in hyperinten-
sional contexts can be formulated only conditionally:

If constructionsC, D are procedurally isomorphic per one of the existing criteria of
procedural isomorphism thenC, D can be validly substitutedwithin a hyperintensional
context, provided the discourse has been so defined as to obey that particular calibration
of procedural isomorphism.

Themethodological take-home is that it is a philosophical and linguistic decision—
not one based on pure logic—which sorts of discourse obey which calibrations of
procedural isomorphism.

5 Conclusion

In this paper, I have discussed structured propositions explicated as algorithmically
structured logical procedures. I have put forward a number of reasons in favour of
a procedural semantics that furnishes expressions with meaning procedures encoded
by those expressions. There are two issues I dealt with in this paper. The first one
concerns the mereological structure of procedures, while the second one concerns the
granularity of structured meaning procedures.

Concerning the former, I explicated the fundamental distinction between the occur-
rence of a procedure in the executed mode and the displayed mode. If a procedure
occurs in the executed mode, then the procedure is a constituent part of another pro-
cedure (and of itself), while if a procedure occurs in the displayed mode, then the
procedure itself figures as an object on which other procedures operate. Yet the input
object(s) on which a procedure operates and the output object (if any) that a proce-
dure produces are not constituent parts of the procedure. The constituent parts of a
procedure are defined as those sub-procedures that occur in the executed mode. Thus,
I have also demonstrated that procedures are structured wholes consisting of unam-
biguously determined parts, which are those sub-procedures each of which must be
individually executed whenever the whole procedure is to be executed to produce at
most one object. Moreover, I have proposed a solution to the problem of what unifies
the proper parts of a molecular procedure. The proper constituents of a molecular
procedure interact in the process of producing an object. The product of one or more
constituents becomes an argument of the function produced by another constituent.
If one or more constituents fail to produce an object, the whole procedure, which is
typed to operate on an object of an already specified type, fails as well, because the

123



Synthese (2019) 196:1249–1283 1281

process of producing an output object has been interrupted. Hence, procedures are not
mere set-theoretical aggregates of their proper parts. The elements of an aggregate
lack direct connection inter se, even when they are organised in an ordered sequence
or list. And direct connection inter se is exactly what makes some things parts of a
whole. As another novel result, I proved that this part-whole relation is a partial order.
On the other hand, the mereology of structured procedures is non-classical, because
the principles of extensionality and idempotence do not hold; and it is desirable that
they should not, as already Bolzano demonstrated.

In the second part of the paper I dealt with the problem of co-hyperintensionality,
and in generalwith the problemof valid inferences in a hyperintensional context,where
such a context is defined in terms of a procedure occurring in the displayed mode. I
demonstrated that the problem of validly applying extensional rules of inference (such
as the rule of existential generalization and substitution of identicals) in a hyperinten-
sional context is closely connected with the problem of the structural isomorphism of
meanings, hence of co-hyperintensionality, hence of synonymy. I demonstrated that
the individuation of procedures assigned to expressions as their structured meaning
cannot be decided in virtue of a universal criterion applicable to every language. Yet,
the positive result of this paper is that I have specified a set of rigorously defined crite-
ria of fine-grained procedural individuation, partially ordered according to the degree
of their being permissive with respect to synonymy. It turned out that the formal-
ization of procedures in my background theory Transparent Intensional Logic (TIL)
may become a bit too fine-grained from the point of view of the semantics of natural
language. Yet the same problem must be met in any formalization that makes use of
λ-bound variables, i.e. in any λ-calculus, because in an ordinary vernacular we do not
use λ-bound variables. For this reason, I proposed a criterion that is the most suitable
for an ordinary, non-professional language. It is the criterion that declares that pro-
cedural isomorphism of TIL constructions obtains whenever the differences between
constructions consist just in technical manipulations with λ-bound variables. Thus,
the rule of co-hyperintensionality (i.e. the rule for substitution of synonymous terms
in hyperintensional contexts) has been formulated only conditionally.
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