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Abstract Cancer research is experiencing ‘paradigm instability’, since there are two
rival theories of carcinogenesis which confront themselves, namely the somatic muta-
tion theory and the tissue organization field theory. Despite this theoretical uncertainty,
a huge quantity of data is available thanks to the improvement of genome sequenc-
ing techniques. Some authors think that the development of new statistical tools will
be able to overcome the lack of a shared theoretical perspective on cancer by amal-
gamating as many data as possible. We think instead that a deeper understanding of
cancer can be achieved bymeans ofmore theoretical work, rather than bymerely accu-
mulating more data. To support our thesis, we introduce the analytic view of theory
development, which rests on the concept of plausibility, and make clear in what sense
plausibility and probability are distinct concepts. Then, the concept of plausibility is
used to point out the ineliminable role played by the epistemic subject in the devel-
opment of statistical tools and in the process of theory assessment. We then move to
address a central issue in cancer research, namely the relevance of computational tools
developed by bioinformaticists to detect driver mutations in the debate between the
twomain rival theories of carcinogenesis. Finally, we briefly extend our considerations
on the role that plausibility plays in evidence amalgamation from cancer research to
the more general issue of the divergences between frequentists and Bayesians in the
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philosophy of medicine and statistics. We argue that taking into account plausibility-
based considerations can lead to clarify some epistemological shortcomings that afflict
both these perspectives.

Keywords Cancer research · Evidence amalgamation · Plausibility · Probability ·
Somatic mutation theory · Tissue organization field theory

1 Introduction

Cancer research is experiencing what has been defined a period of ‘paradigm insta-
bility’ (Baker 2014), since there are two main rival theories of carcinogenesis which
confront themselves, namely the somaticmutation theory (SMT) and the tissue organi-
zation field theory (TOFT) (see Sect. 3.1). Despite this theoretical uncertainty, the huge
quantity of data that became available thanks to the improvement of genome sequenc-
ing techniques led to the development of newstatistical tools. These tools, someauthors
think, will be able to overcome the lack of a shared theoretical perspective on cancer by
amalgamating asmanydata as possible in order to giveus the ‘right’ answers as outputs.

We think instead that a deeper scientific understanding of cancer may come by
means of more theoretical work, rather than by merely accumulating more data to
be statistically analyzed. Indeed, the main thesis of this article is that the role played
by plausibility-based considerations in the development of statistical models across
scientific disciplines has been underestimated or even neglected. This led to under-
appreciate the ineliminable contribution of the epistemic subject to the development
of statistical tools, and to the process of evidence amalgamation. Cancer research is a
clear example of it. In this field, the relations between rival theoretical hypotheses on
carcinogenesis and the recent development of sophisticated statistical tools form an
intricated tangle. We think that our proposal can be fruitfully tested in such a context,
and that it can contribute to identify some of the epistemological shortcomings that
afflict the debate in this field.

This article is divided into three parts. In the first part (Sect. 2), we draw some
consequences from the usually underappreciated platitude that statistics is developed
in precisely the same way in which all other scientific disciplines are developed (Sect.
2.1). We consider some criticisms that have recently been moved to the so-called big
data revolution to point out that the relevance of the knowing subject has not to be
overlooked in accounting for statistics from an epistemological point of view (Sect.
2.2). Then, in order to better illustrate the role played by the epistemic subject in the
context of statistical research, the analytic view of scientific theories development is
presented (Sect. 2.3). The concept of plausibility is especially analyzed, in order to
make clear the difference between that concept and the concept of probability (Sects.
2.4, 2.5, 2.6), and to disentangle the concept of subjectivity from that of arbitrariness
(Sect. 2.7). A brief digression on the relation between the concept of probability and the
concept of randomness concludes this part (Sect. 2.8). In the second part of the paper
(Sect. 3), after having briefly illustrated the main rival conceptions of carcinogenesis
(Sect. 3.1), the notion of personalized cancer medicine (Sect. 3.2), and the concept
of driver mutations (Sect. 3.3), we address some issues in cancer research to test the
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adequacy and fertility of the theoretical framework presented in the first part. More
precisely, we focus on some of the computational tools that have been developed by
bioinformaticists for searching driver mutations in cancer specimens (Sects. 3.4, 3.5),
in order to highlight the role played by plausibility-based considerations in the devel-
opment of statistical tools and in the assessment of theoretical hypotheses (Sect. 3.6).
Finally, in the third part, we put the conclusions that can be drawn from our analysis in
a broader context (Sect. 4). We think that our proposal may be of use to address a more
general issue, which characterizes both the philosophy ofmedicine and the philosophy
of statistics, and which is also crucial for the epistemological investigations of cancer
research, namely the confrontation between frequentists and Bayesians on what is the
more adequate way to conceive of evidence amalgamation (Sects. 4.1, 4.2, 4.3).

2 Statistics and uncertainty

Several definitions of statistics can be found in the philosophical literature (see for a
survey Bandyopadhyay and Forster 2011; Romeijn 2017). One of the most interesting
way to conceive of statistics is the one advocated, among others, by Lindley (2000),
according to which statistics is the study of uncertainty and statisticians are experts
in handling uncertainty, who “developed tools, like standard errors and significance
levels, that measure the uncertainties that we might reasonably feel” (Lindley 2000,
p. 294).

Although it may appear very general and quite uninformative, this way of defining
statistics points out with immediacy the reason why statistics is nowadays so central
in almost every science. Indeed, since scientific knowledge is usually regarded by
scientists and philosophers as fallible, and so not certain, dealing with uncertainty
in order to develop fallible knowledge is what scientists routinely do. Computational
devices that may be of help in such an enterprise, as those developed by statisticians,
are obviously deemed to be of great value and widely adopted by researchers and
practitioners of many fields.

But, since uncertainty is related to fallibility, this way of defining statistics under-
lines also the fact that statistics has to face the same epistemological difficulties that
are often thought to be of exclusively concern of other scientific disciplines. Indeed,
there is a widespread perspective that takes “as given the statistical models we impose
on data, and treats the estimated parameters of such models as direct mirrors of real-
ity rather than as highly filtered and potentially distorted views” (Goodman 2001, p.
295). Contrary to this perspective, statistics itself provides fallible knowledge, since
it is the result of human efforts aimed at knowing and managing the world, as any
other scientific discipline is. So, it cannot be regarded as a mere repository of reliable
mathematical tools from which researchers of other disciplines can safely choose the
most adequate tool in order to produce genuine and objective knowledge in their fields.

2.1 Statistics and the method of science

In order to stress the analogies between statistics and other scientific disciplines, it may
be of use to consider also the definition of statistics given by Romeijn, according to
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which statistics “investigates and develops specific methods for evaluating hypotheses
in the light of empirical facts” (Romeijn 2017). In this view, a method is called statis-
tical “if it relates facts and hypotheses of a particular kind: the empirical facts must be
codified and structured into data sets, and the hypotheses must be formulated in terms
of probability distributions over possible data sets” (Ibidem). It is important to under-
line that in this line of reasoning statistics is not a merely mathematical discipline,
since it concerns the relationship between facts and hypotheseswhich (usually at least)
are not mathematical in character. On the other hand, it is undeniable that statistics is
a throughout mathematized discipline, since it relies on a specific branch of mathe-
matics, namely probability theory, in order to estimate whether a given hypothesis is
confirmed by the facts. This makes the commonness between statistics and other sci-
entific disciplines even more transparent: every scientific discipline develops models,
which rely in some way or another on mathematics, in order to better understand its
object of inquiry. Statisticians, relying on probability theory, develop models to better
understand how hypotheses relate to facts in uncertain contexts, models that in their
turn can be used to construct models in other disciplines.

To sum up: there are two crucial steps that have to be performed in order to develop
statistical models that may help us in dealing with uncertainty: (1) empirical facts
must be codified into data sets, and (2) hypotheses must be formulated in terms of
probability distributions. These two steps are what makes mathematics applicable to
worldly facts in the context of statistical research. In what follows, we will argue that
these steps involve the human knowing subject in an ineliminable way, in the sense
that these steps cannot be made human-independent in any relevant sense.

2.2 The big data approach

To better see this point, i.e. that model-building cannot be made (or regarded as)
human-independent, even in the case of statistics, or in the case of those disciplines
whose models strongly rely on statistics, consider the so-called big data revolution.
Supporters of this revolution usually maintain the view that constructing theories is an
unnecessary effort, since it may be replaced by big data analysis. For example, accord-
ing to Anderson, we are at “the end of theory,” because “the data deluge makes the
scientific method obsolete” (Anderson 2008). The “new availability of huge amounts
of data, along with the statistical tools to crunch these numbers, offers a whole new
way of understanding the world” (Ibidem). In this perspective, we “can analyze the
data without hypotheses about what it might show. We can throw the numbers into the
biggest computing clusters the world has ever seen and let statistical algorithms find
pattern where science cannot” (Ibidem). So, Anderson concludes, the old “approach
to science—hypothesize, model, test—is becoming obsolete” (Ibidem).

There are at least two main problems with this approach.1 The first problem is how
to discriminate among the huge number of correlations that data analysis may pick out
in the vast sea of available data. In other words, the question is: How can we evaluate
the significance of those correlations? Even granting that statistical algorithms may

1 For a survey of the challenges that the big data approach has to face, see Fan et al. (2014).
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reliably find patterns or correlations, this does not guarantee that those patterns or
correlations are significant. If we do not possess some theory to identify a criterion to
discriminate among those correlations, we will be unable to determine whether or not
the finding of any new correlation represents a genuine instance of scientific progress,
i.e. an ampliation of our knowledge. This is the problem of spurious correlations.2

And it is a big problem for big data supporters. Indeed, they claim that the more
data we have, the more theory is unnecessary to produce new knowledge. But it
has been demonstrated in a paper recently published by Calude and Longo (2016b),
that the more data we have, the more spurious correlations we may find among our
data. And so, the more we need a theory to discriminate the significant correlations
among all the correlations individuated by our algorithms. In a nutshell, they base their
argument, among other things, on Ramsey theory, i.e. the branch of combinatorics
which investigates the conditions under which order must appear. If we restrict our
attention to mathematical series, more precisely to arithmetic progressions, Ramsey
theory investigates the conditions under which an arithmetic progression must appear
in a string of numbers.

Calude’s and Longo’s analysis hinges on Van der Waerden’s theorem, according to
which for any “positive integers k and c there is a positive integer γ such that every
string, made out of c digits or colours, of length more than γ contains an arithmetic
progression with k occurrences of the same digit or colour, i.e. a monochromatic
arithmetic progression of length k” (Calude and Longo 2016b, p. 11).

For example, if we take a binary string of x digits, digits can be either ‘0’ or ‘1’.
Take ‘0’ and ‘1’ to be the possible colours of those x digits, i.e. c = 2. From Ramsey
theory, we know that there will be a number γ such that, if x is bigger than γ , that
string will contain an arithmetic progression of length k such that all k digits of that
progression are of the same colour, i.e. either all the k digits are ‘0’ or all the k digits
are ‘1’.3

Consider now a database D, where some kind of acquired information about some
phenomenon P is stored.Wewant to investigate the correlations among the data stored
in D in order to increase our knowledge of P:

2 On what spurious correlations are, cf., e.g., Dellsén (2016, p. 78): “Suppose we have two variables V1
and V2 that are known on independent grounds to be unrelated, causally and nomologically. Let us further
suppose that we learn, i.e. come to know, that there is some specific statistical correlation between V1 and
V2—e.g. such that a greater value for V1 is correlated with a greater value for V2.” The latter correlation
represents an instance of spurious correlation, i.e. a correlation between two variables which is not due
to any real relation between them. Such a correlation does not convey any information on the correlated
variables, nor on some other relevant aspect of the world, so it is useless, irrelevant, or worse, it may be
lead us astray, if we do not correctly identify it as spurious.
3 In this case (i.e. c = 2), if we have k = 3, then γ = 8. To see this, consider the following sequence
of binary digits of length 8: 01100110. This string contains no arithmetic progression of length 3, because
the positions 1, 4, 5, 8 (which are all ‘0’) and 2, 3, 6, 7 (which are all ‘1’) do not contain an arithmetic
progression of length 3. However, if we add just one bit more to that string (i.e. if we add either ‘1’ or ‘0’), we
obtain the following two strings: 011001100 and 011001101. Both these strings contain a monochromatic
arithmetic progression of length 3. Consider 011001100: positions 1, 5, 9 are all ‘0’. Consider 011001101:
positions 3, 6, 9 are all ‘1’. More generally, it can be proved that if a string contains more than 8 digits, it
will contain a monochromatic arithmetic progression of length 3.
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In full generality, we may consider that a correlation of variables in D is a set
B of size b whose sets of n elements form the correlation […]. In other words,
when a correlation function […] selects a set of n-sets, whose elements form a
set of cardinality b, then they become correlated. Thus, the process of selection
may be viewed as a colouring of the chosen set of b elements with the same
colour—out of c possible ones. […]. Then Ramsey theorem shows that, given
any correlation function and any b, n and c, there always exists a large enough
number γ such that any set A of size greater than γ contains a set B of size
b whose subsets of n elements are all correlated. (Calude and Longo 2016b, p.
12).4

Calude and Longo prove that the larger is D, the more spurious correlations will
be found in it. In other words, when our stock of available data increases, most of
the correlations that we can identify in it are spurious. Since large databases have
to contain arbitrary correlations, owing to the size of data, not to the nature of data,
the larger the databases are, the more the correlations in such databases are spurious.
Thus, the more data we have, the more difficult is to extract meaningful knowledge
from them.5

The second problem that afflicts the ‘big data revolution’ view is that it overlooks
the fact that data are not abstracted from the world in neutral and objective ways.
There is always “a theory or hypothesis which guides observation and experiment,
and generally data-finding” (Cellucci in press, Sect. 1). The big data revolution view
overlooks also the fact that the very algorithms used for data analysis are based on some
theory or another. Theories and previous knowledge are in some sense incorporated
in the design of algorithms when they are developed. Thus, “it is illusory to think that
statistical strategies may automatically discover insights without presupposing any
theory” (Ibidem).

2.3 Statistics and the logic of discovery

Let us now briefly address the issue of the identity of the method used in statistics and
in other sciences. At this regard, we think that it is important to untangle some issues
that are usually conflated. Indeed, usually statistics is used to confirm hypotheses, i.e.
statistics is primarily used in the context of justification, not in the context of discovery.
The distinction between those two contexts may confound our reflections on statistics,
since it may lead us not to take into due consideration, in some sense to ‘hide’, the
process of discovery that led to the development of statistical theories. And this may
affect our ideas on what statistics is.

4 It is important to stress that the nature of the correlation function is irrelevant: it can be completely
arbitrary, i.e. in no way related to the nature of the data stored in the database.
5 Cf. Calude and Longo (2016b, p. 6): “it is exactly the size of the data that allows our result: the more data,
the more arbitrary, meaningless and useless […] correlations will be found in them.” It may be interesting
to note that, in order to derive their result, Calude and Longo define ‘spurious’ in a more restrictive way
than usually is done. According to them, “a correlation is spurious if it appears in a ‘randomly’ generated
database” (p. 13). Details can be found in Calude and Longo (2016b). In any case, this does not impinge
on the considerations that follow.

123



Synthese (2019) 196:3279–3317 3285

So, even if we use some statistical tool (s) to confirm some hypothesis (h) in a given
scientific domain (D), we have to keep in mind that s has been developed through a
process of discovery in its turn. In other words, even if in a justificatory context with
respect to the hypothesis h in the domain D we use s, we have not to forget that s in
its turn has been produced and assessed in a different scientific domain (S), namely
the statistical field, where it played the role that h plays in D.

Taking into account the process of discovery is relevant in order to understand the
ineliminable role played by the knowing subject in the development of science. Thus,
taking into account the process of discovery of statistical theories may help us to
recognize the ineliminable human epistemic ‘coefficient’ that the statistical tools we
use introduce in our research.

Unfortunately, according to many authors, while there may be a logic of confirma-
tion, since confirmation can be formalized, there cannot be a logic of discovery, since
discovery processes cannot instead be formalized (for a survey, see Schickore 2014).
For example, Popper states that “there is no such thing as a logical method of having
new ideas, or a logical reconstruction of this process” (Popper 2005, p. 8). The prob-
lemwith this view is that it equates the intelligibility of a given reasoning process with
the possibility of formalizing that process, i.e. the possibility of making that process
algorithmically reproducible, and thus mechanizable. This approach leaves out from
the perimeter of rational analysis and understanding both (1) the inferential paths of
discovery that are not algorithmically describable (e.g. the process of hypotheses pro-
duction through non-deductive inferences); and (2) the non-algorithmic constituents
of those processes that are thought to be algorithmically describable (think of the
indispensable role that emotional circuits and subconscious inferences play in making
us able to experience the ‘sense of certainty’ that we associate with valid deductive
reasonings, see Rigo-Lemini and Martínez-Navarro 2017). But the fact that those ele-
ments cannot be formalized does not mean that they are irrational, nor that they cannot
be analyzed at all.

Moreover, the asymmetry between discovery and confirmation is unjustified. As
Putnam states, ifwe followPopper and claim that there is no logic of discovery, because
observations do not lead to theories “in a mechanical or algorithmic sense,” then, “in
that sense, there is no logic of testing, either” (Putnam1975, p. 268). The idea that there
can be a logic of confirmation because, since confirmation can be described in purely
deductive terms, there can be an algorithmic method for confirmation, is unjustified.6

Indeed, algorithms do not exhaustively account for all that is relevant to the process of
hypotheses confirmation. Just as “there is no algorithmic method of discovery, there
is no algorithmic method of testing. Indeed, by the undecidability theorem, there is
not even an algorithmic method for testing whether a formula is logically valid or not”
(Cellucci 2017a, p. 144). So, either one admits that there cannot even be a logic of
confirmation, or one should accept the idea that there can also be a logic of discovery.

In the last decades, the idea of developing a logic of discovery has been mainly
conceived as the attempt to develop a logic of inductive inferences in terms of proba-

6 Cf. Cellucci (2017a, p. 142): “Methods can be divided into algorithmic and heuristic. An algorithmic
method is amethod that guarantees to always produce a correct solution to a problem. Conversely, a heuristic
method is a method that does not guarantee to always produce a correct solution to a problem.”
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bility calculus (Howson and Urbach 2006). The main problem of this approach is that
it is mainly aimed at showing the validity and consistency of probabilistic inductive
inferences in the face of classical deductive logic. But in so doing, the probabilistic
view of the logic of discovery becomes analogous to the deductivist view: it cannot
take into account (and say something relevant about) some characteristic features of
the process of discovery, namely howwe produce and appraise new hypotheses. Those
features cannot be straightforwardly formalized, nor can they adequately be described
in probabilistic terms (more on this below). In this view, hypotheses production is just
taken as a datum, something prior and external to a logic of discovery, precisely in the
same way the process of hypotheses production is regarded as external to a logic of
confirmation by those who deny that there can be a logic of discovery.

Underlying these points does not mean to deny the theoretical relevance and prac-
tical usefulness of formal approaches to confirmation or induction. It is only meant
to stress that there may be some relevant theoretical insights in considering the role
of non-formalizable components of reasoning when addressing the issue of whether
knowledge ampliation can be regarded as (or made) human-independent.

At this regard, an interesting proposal aimed at modeling the process of scientific
development is the analytic view of theory development (see Cellucci 2013, 2016,
2017a), according to which knowledge is increased through the analytic method.7

In this view, “to solve a problem one looks for some hypothesis that is a sufficient
condition for solving it. The hypothesis is obtained from the problem, and possibly
other data already available, by some non-deductive rule, and must be plausible […].
But the hypothesis is in its turn a problem that must be solved, and is solved in the
same way” (Cellucci 2013, p. 55).8

7 For the differences that exist among the analytic method, the analytic-synthetic method, and the axiomatic
method, see Cellucci (2013).
8 The origin of the analytic method may be traced back to the works of the mathematician Hippocrates
of Chios and the physician Hippocrates of Cos, and was firstly explicitly formulated by Plato in Meno,
Phaedo and the Republic. As an example of the analytic method, consider the solution to the problem of
the quadrature of certain lunules provided by Hippocrates of Chios:

Show that, if PQR is a right isosceles triangle and PRQ, PTR are semicircles on PQ, PR, respectively,
then the lunule PTRU is equal to the right isosceles triangle PRS.

To solve this problem, Hippocrates of Chios states the following hypothesis:
(B) Circles are as the squares on their diameters.
Hypothesis (B) is a sufficient condition for solving the problem. For, by the Pythagorean theorem, the
square on PQ is twice the square on PR. Then, by (B), the semicircle on PQ, that is, PRQ, is twice the
semicircle onPR, that is,PTR, and hence the quarter of circlePRS is equal to the semicirclePTR. Sub-
tracting the same circular segment, PUR, from both the quarter of circle PRS and the semicircle PTR,
we obtain the lunulePTRU and the trianglePRS, respectively. Therefore, “the lunule”PTRU “is equal
to the triangle.” [Simplicius, In Aristotelis Physicorum libros Commentaria, A 2, 61]. This solves
the problem. But hypothesis (B) is in its turn a problem that must be solved (Cellucci 2013, p. 61).
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Assessing the plausibility of any given hypothesis is crucial in this perspective. But
how plausibility has to be conceived? The interesting suggestion made by the analytic
view is that, in the ultimate analysis, the plausibility of a hypothesis is assessed by a
careful examination of the arguments (or reasons) for and against it.

Let’s try to better illustrate this point. According to this view, in order to judge over
the plausibility of a hypothesis, the following ‘plausibility test procedure’ has to be per-
formed: (1) “deduce conclusions from the hypothesis”; (2) “compare the conclusions
with each other, in order to see that the hypothesis does not lead to contradictions”;
(3) “compare the conclusions with other hypotheses already known to be plausible,
and with results of observations or experiments, in order to see that the arguments for
the hypothesis are stronger than those against it on the basis of experience” (Ibidem,
p. 56). If a hypothesis passes the plausibility test procedure, it can be temporarily
accepted. If, on the contrary, a hypothesis does not pass the plausibility test, it is put
on a ‘waiting list’, since new data may always emerge, and a discarded hypothesis may
successively be re-evaluated.9 Thus, according to the analytic view of method, what in
the ultimate analysis we really do in the process of scientific knowledge ampliation, is
producing hypotheses, assessing the arguments/reasons for and the arguments/reasons
against each hypothesis, and provisionally accept or refute such hypotheses.

It is important to stress here the difference between the concept of probability
and the concept of plausibility. Indeed, as Kant points out, “plausibility is concerned
with whether, in the cognition, there are more grounds for the thing than against it”
(Kant 1992, p. 331), while probability measures the relation between the winning
cases and possible cases. This means that plausibility involves a comparison between
the arguments for and the arguments against, so it is not a mathematical concept.
Conversely, probability is a mathematical concept (see Cellucci 2013, section 4.4).

This distinction is relevant here because it allows us to better illustrate the episte-
mological import of statistics. As we have already noted, when a statistician develops
a statistical model s of some worldly domain D, she formulates the relevant empirical
D-facts in terms of a data set e, and the hypotheses relative to those facts in terms of
probabilities distributions hi over e. This account may give us the impression that a
statistician deals only with probabilities, and probabilities may well be interpreted in
a robust objective way, independent of the knowing subject who develops s.10 In other
words, since probability distributions may be claimed to be fully determined by the
way the world is, and statistics deals mainly with probabilities and empirical facts, it
may seem that statistics does nothing more than ‘translating’ in terms of probabilities
what the world dictates to us. And so that nothing which is relevantly dependent on
the human knowing subject is added by the statistical tools to what we model through
them.

9 For a more detailed confrontation of the concept of plausibility with some related (but distinct) concepts,
such as truth, probability, and warranted assertibility, see Cellucci (2017a, Chapter 9).
10 On the possible interpretations of probabilities, see Gillies (2000). Basically, probabilities may be
regarded as ‘objective’ or ‘subjective’. Cf. e.g. Djulbegovic et al. (2011, p. 309): “‘objective probabil-
ity’ is believed to reflect the characteristics of the real world, i.e., the probability somehow relates to the
physical property of the world or a mechanism generating sequences of events […]. On the other hand,
‘subjective probability’ is believed to represent a state of mind and not a state of objects […].”
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But the fact is that, independently of what interpretation of probability one prefers,
this is not the all story. Indeed, as we have already stressed above, the theories that a
statistician uses in order to build s (e.g. the theories she relies on when she translates
empirical facts into data sets, or she derives a probability distribution for rival hypothe-
ses fromour knowledge of D, or she decideswhat inferences can be legitimately drawn
from the amalgamated evidences for any h), are instances of human scientific knowl-
edge, and so they have been produced in their turn in the way described by the analytic
model of theory development. That is, every statistical theory or technique can be
regarded as a hypothesis that has been produced in order to solve a problem in the
statistical field of inquiry. This hypothesis may have been retained and accepted by
statisticians since it passed the plausibility test procedure. This means that conclusions
have been deduced from the hypothesis and have been compared with each other, in
order to see that they do not lead to contradictions, and then that conclusions have been
compared with other statistical hypotheses already known to be plausible, in order to
see that the arguments for the hypothesis are stronger than the arguments against it. In
this kind of evaluative process, hypotheses are assessed referring to their plausibility,
which is not just a matter of probabilities, and this makes the role played by the human
knowing subject epistemologically ineliminable.

2.4 Probability and plausibility

It is important to better explain why the process of knowledge ampliation cannot
simply be accounted for in terms of probabilities, and so the reason why relying on
the analytic view of scientific progress may be of use in this context.

When we produce a hypothesis to solve a problem, we do it by some non-deductive
inference rules (e.g. induction, analogy, etc.). Non-deductive inference rules are indeed
fallible, i.e. they are not truth-preserving, since they may lead us to incorrect conclu-
sions, even if the premises are regarded as true. But they are also ampliative, i.e. they
add something to what is already known that may be necessary in order to solve the
problem we want to solve (Goodman 1999).

Why not to use only deductive rules, which are truth-preserving, in the process
of knowledge ampliation? Because deductive rules are non-ampliative, i.e. they lead
us to conclusions that are correct, but which are in some sense already contained in
the premises (Ibidem). So, in many cases, and certainly in the most interesting and
difficult ones, non-deductive rules would not allow us to solve the problem we need to
solve. Thus, in the problem-solving process, we tentatively produce new hypotheses
applying some non-deductive rules to our data and background knowledge. Now the
question is: Why we do not deal with such hypotheses assigning them probabilities
in some objective way, instead of referring to their plausibility in order to accept or
refute them?

Theproblem is the same that spans acrossmanydebates in the philosophyof science,
e.g. in the debate over scientific realism. In order to assign a probability p with some
degree of objectivity to the hypothesis h that we produced to solve some problem A,
we should know the space of all the other possible hypotheses that may be formulated
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in order to solve A.11 But knowing such space is normally impossible. If we could
be able to know with certainty the space of all the possible solutions to A, we could
systematically examine all of them and pick out the best one. There could be no more
doubt about the hypothesis we selected, and this would make our knowledge certain,
i.e. forever unrevisable. Indeed, if we can know the space of all the possible solutions
to a given problem, we can also know whether we have exhausted the space of all
the possible alternatives to a given solution. And this implies that no other alternative
could ever appear, not even in the future. So, our hypothesis could be safely said to be
unrevisable. Unfortunately, there is no way to construct the space of all the possible
alternatives to any given hypothesis. Since probability is “a fraction whose numerator
is the number of favorable cases and whose denominator is the number of all the
cases possible” (Laplace 1951, p. 7), in order to effectively calculate the probability
of a hypothesis, we have to know the denominator, i.e. the number of all the cases
possible. But in many cases, we do not know (and perhaps we cannot know) the
number of all the cases possible. Thus, if plausibility were to be understood in terms
of probability, we could not be able to evaluate the plausibility of all those hypotheses
for which we are unable to determine the set of all the possible rival alternatives. But
we routinely evaluate the plausibility of that kind of hypotheses, so it cannot be the
case that probability is equivalent to plausibility.

Moreover, that plausibility has to be distinguished from probability clearly appears
by considering the fact that there are hypotheses that are plausible, but which, accord-
ing to probability theory, have zero probability, while there are hypotheses that are
implausible, butwhich have non-zero probability.12 Thus, contrary to Pólya (1941),we
should conclude that the calculus of plausibilities does not obey the same rules as the
calculus of probabilities, and that plausibility has to be distinguished from probability.

2.5 Plausibility and the role of the knowing subject

We think it is important to better point out whywhat we said so far leads us to conclude
that the role playedby the humanknowing subject is ineliminable even in a context such
as statistics. The point is that if it were possible to produce new hypotheses through
some deductivemethod, and assign to these hypotheses an objective probability value,
then ourmethod could be regarded as an algorithmicmethod and could bemechanized.

11 This is the problem of the unconceived alternatives, see below Sect. 2.6.
12 See Cellucci (2013, Chapter 20). An example of plausible hypotheses that have zero probability are
all the plausible hypotheses derived by an Induction from a Single Case (ISC). On the classical concept
of probability as ratio between favorable and possible cases, a conclusion obtained by (ISC) has zero
probability when the number of possible cases is infinite. An example of implausible hypotheses that have
non-zero probability are implausible hypotheses that have been obtained by Induction fromMultiple Cases
(IMC). Consider the hypothesis that all swans are white. Until the end of the seventeenth century, “all
swans observed were white. From this, by (IMC), it was inferred that all swans are white. But in 1697 black
swans were discovered in Western Australia.” Since then, the hypothesis that all swans are white is highly
implausible. But, this contrasts with the fact that, “on the classical concept of probability, a conclusion
obtained by (IMC) has non-zero probability when the number of possible cases is not infinite”, and such
“is the case of the hypothesis that all swans are white” (Cellucci 2013, p. 335).
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In this way, the ampliation of knowledge could be made human-independent in a
relevant sense.

Indeed, if it were possible to produce new knowledge through some deductive
method applied to already established knowledge, knowledge ampliation would be a
trivial and routine task.13 In fact, there is an algorithm for enumerating all deductions
fromgivenpremises. The algorithm“canbe said ‘to proceed likeSwift’s scholar,whom
Gulliver visits in Balnibarbi, namely, to develop in systematic order, say according
to the required number of inferential steps, all consequences and discard the unin-
teresting ones’ (Weyl 1949, p. 24). Given enough time and space, the algorithm will
enumerate all deductions, fromgiven premises” (Cellucci 2017a, p. 138). Thus, knowl-
edge ampliation would be a routine task. But there is a wide consensus that this is
not the way in which knowledge is really ampliated in scientific practice, and that
knowledge ampliation is not a routine, nor a trivial task. Indeed, while there is an
algorithm to enumerate all deducible consequences from given premises, there is no
algorithm for discovering new hypotheses through non-deductive inferences. More-
over, if it were possible to extend our knowledge by applying a deductive method to
some given premises already established, given that deduction is non-ampliative, this
would amount to say that those given premises will never be modified, and that all
our current and future knowledge will rest on the very same set of prime premises.
But this view is not really able to account for all the cases of knowledge ampliation
in which our already established knowledge is insufficient to solve a problem, and
so new hypotheses (i.e. premises) need to be introduced. For example, “when Can-
tor demonstrated that to every transfinite cardinal there exist still greater cardinals,
he did not deduce this result from truths already known […], because it could not be
demonstrated within the bounds of traditional mathematics. Demonstrating it required
formulating new concepts and new hypotheses about them” (Ibidem, p. 310). So, even
in the case of mathematical knowledge, which is usually regarded as the paradigm of
certain knowledge, new knowledge is not acquired by merely deductive methods from
already established results. A fortiori, these considerations can be applied to the case
of natural sciences.

Consider now the possibility of knowing the space of all possible alternatives to a
given hypothesis. If it were possible to know the space of all possible alternatives to any
given hypothesis h, we could assign objective probabilities to each alternative hypothe-
sis hi . Thiswould amount to say that the procedure of hypotheses evaluation can always
be performed through an algorithmic method and could be mechanized. Indeed, we
can develop an algorithm that enumerates all the possible alternative hypotheses to a
given hypothesis h, assigns to each of them the relative objective probability, calcu-
lates the likelihood of each hypothesis, and then picks out the one which displays the
higher likelihood. Thiswould render the process of hypotheses evaluation a trivial task,
in the sense that this process could be made human-independent in a relevant sense.
Indeed, if probabilities are regarded as objective, i.e. they reflect the way the world
is, and knowledge ampliation can be pursued through an algorithmic method, i.e. a

13 For an opposite view, see Musgrave (2011). For a criticism of Musgrave’s view, see Cellucci (2017a).

123



Synthese (2019) 196:3279–3317 3291

mechanizable one, the role played by the human knowing subject in the development
of scientific knowledge may well be said to be deniable.

2.6 Probability and the problem of the unconceived alternatives

It is important to clarify the reason why it is usually impossible to know the space of
all possible alternatives to a given hypothesis in the process of knowledge ampliation.
Indeed, knowing the space of all possible alternatives is necessary in order to assign
objective probabilities to each hypothesis, i.e. to consider the value of those probabil-
ities as determined by the way the world really is. Consider a standard six-faces dice.
We know that there are precisely six possible outcomes for one throw of that dice.
The space of possibilities is completely determined in advance by the symmetries of
the system, and this allows us to assign probabilities to the possible outcomes. But
usually in science when we try to solve a problem and produce new knowledge we are
not in such a position. We do not know in advance the space of relevant possibilities
for the given phenomenon we want to explain. Nor we know the exact configura-
tion of the space of all the possible alternative hypotheses that can be formulated in
order to explain that phenomenon. If the space of possible theoretical alternatives to
a given hypothesis h is not determinable in advance, we cannot safely claim to have
exhaustively searched that space, found that h is the hypothesis that best explains the
phenomenon under investigation, and so that we should trust h, because it is con-
firmed by the eliminative inferential procedure we performed. This is the problem of
the unconceived alternatives.

This problem has been in recent years fiercely stressed by Stanford (2006), in
his defense of the instrumentalist attitude towards science, according to which we
should refrain to commit ourselves to the existence of theoretical entities, because
historical record of science shows us that we humans routinely failed to conceive all
the possible alternatives to a given theoretical hypothesis h at any given time t .14

14 Many replies have been elaborated in the last decade to Stanford (2006) (see, e.g., Magnus 2006; Saatsi
et al. 2009; Ruhmkorff 2011); see Saatsi et al. (2009) for Stanford’s rejoinder to some criticisms; see
Rowbottom (2016) for an interesting extension of Stanford’s line of reasoning. Here we will focus on
Mizrahi’s (2016) attack to Stanford’s view, because, as a reviewer suggested, it puts into question the very
coherence of Stanford’s position, so it risks questioning the validity of all those positions which similarly
rely on the problem of the unconceived alternatives, as the one we advocate for in this paper. Mizrahi (2016)
develops an argument against Stanford’s view according to which, if (1) one accepts Stanford’s argument
against scientific realism, and (2) it is possible to adopt Stanford’s own line of reasoning in the field of
philosophy, then Stanford’s position is self-debunking. Indeed, according to Mizrahi (2014), it is possible
to construct an argument, which is analogous to Stanford’s argument against scientific realism, and so it is
not easily refutable by those who accept Stanford’s argument, according to which we should not believe our
current philosophical theories, because history of philosophy shows that philosophers routinely failed to
conceive of serious objections to their theories. Call Mizrahi’s Stanford-like argument for philosophy MA.
Now, according to Mizrahi’s argument against Stanford, if Stanford’s position is a philosophical position,
then we should not trust it, precisely because it is a philosophical position, given that according to MA
we should not trust philosophical theories. Many criticisms can be raised to Mizrahi’s approach, but we
cannot analyze them all here for reason of space. What can be briefly pointed out is that Mizrahi’s argument
against Stanford crucially relies on MA. Now, it is MA which is a self-defeating argument. Indeed, if one
maintains MA, one is clearly advocating for a philosophical position, i.e. one is committing oneself to a
given philosophical theory. But, according to MA itself, we should not trust philosophical theories. So, MA

123



3292 Synthese (2019) 196:3279–3317

Before Stanford’s proposal, analogous concerns were made by van Fraassen,15 in his
criticism of the inference to the best explanation (Fraassen 1989), and by Sklar (1981),
who considered both the case of the inference to the best explanation and the case of
confirmation theories.

Here, for the sake of brevity, we will consider just the case of confirmation theories,
which are usually developed in terms of probabilities. A clear formulation of the
problem of the unconceived alternatives in this context can be found in Sklar (1981):

Consider Bayesian strategies for confirmation theory. Here we must distribute a
priori probabilities over all the alternative hypotheses to be considered. If there
is only a finite set of hypotheses we have in mind, this is easy to do [...]. But if we
must keep inmind the infinite and indeterminate class of all possible hypotheses,
known and unknown, how can we even begin to assign a priori probabilities to
those few hypotheses [...] we do have in mind [...]? (Sklar 1981, p. 19).

We will follow (and simplify a bit) Rowbottom (2016) to better illustrate this point.
In Bayesian theories of confirmation, the confirmation of a given hypothesis h is equal
to its conditional probability given some evidence e:

P(h, e) = P(h)P(e, h)/P(e)

where P(h, e) is the conditional probability, P(h) and P(e) are the prior probabili-
ties respectively of h and e, and P(e, h) is the likelihood. In this approach, the prior
probability of e must be determined considering all the alternatives to h. Indeed, P(e)
decomposes as follows:

P(e) = P(h)P(e, h) + P(∼h)P(e,∼h)

and P(∼h)P(e,∼h) in its turn decomposes in:

P(∼h1)P(e,∼h1) + . . . + P(∼hn)P(e,∼hn)

where the set of all the possible alternatives to h is {∼h1, . . .,∼hn}.
Theories are considered to be highly confirmed provided that P(∼h)P(e,∼h) is

low, i.e. when the probability assigned to the negation of the proposed hypothesis is

Footnote 14 continued
is self-defeating. If we consider now Mizrahi’s argument against Stanford’s position, it is easy to see that
also this argument falls victim of MA’s self-defeatingness. Indeed, Mizrahi’s argument against Stanford
conveys in its turn a philosophical position, which implies a commitment to a given philosophical theory.
But, according to MA, we should not trust philosophical theories. Thus, since Mizrahi’s argument against
Stanford crucially rests on MA, if (1) one takes MA to be a cogent argument, then one should not trust
Mizrahi’s argument against Stanford, because Mizrahi’s argument against Stanford rests on a philosophical
theory, and according to MA we should not trust any philosophical theory; if (2) one takes MA to be a
self-defeating argument, i.e. a non-cogent argument, then Mizrahi’s argument against Stanford cannot even
take off the ground, since it rests on a self-defeating argument.
15 Cf. Schupbach (2011, p. 119, fn. 2): “Such scenarios correspond to van Franssen’s best of a bad lot
objection as well as what Stanford (2006) calls ‘the problem of unconceived alternatives’.”
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low. Confirmation theorists call ∼h the ‘catchall hypothesis’, i.e. the hypothesis that
incorporates all the alternatives to h.

To sum up, to confirm a hypothesis h, we have to assign P(e); to assign P(e), we
have to be able to estimate P(e,∼h); and to estimate P(e,∼h), we have to be able to
construct the set of all the alternatives to h and assign a prior probability to each of
those alternatives.

The impossibility to actually construct the set of all the possible alternatives to a
given hypothesis has been clearly stated by Salmon:

At any given stage of scientific investigation, the catchall is the disjunction of
all of the hypotheses we have not yet conceived. What is the likelihood of any
given piece of evidence with respect to the catchall? This question strikes me as
utterly intractable; to answer it we would have to predict the future course of the
history of science. (Salmon 1990, p. 329)

Salmon’s solution to the problem of unconceived alternatives for confirmation the-
ory is to consider, when evaluating the confirmation of a given hypothesis h, only the
actually conceived alternatives to h.

This is clearly an example of a plausible (and pragmatic) theoretical choice, since
it allows us to produce an estimation of the confirmation of a hypothesis, although a
provisional and revisable estimation. But this choice certainly cannot be justified by
making reference to its probability. This kind of theoretical choices can be proposed,
evaluated and accepted by pondering the arguments for and against it, i.e. by assessing
their plausibility. This is just an example of the fact that in the process of theory
construction and knowledge ampliation we do not deal merely with probability-based
considerations. Rather, we have to resort to plausibility-based considerations. The
process by which we evaluate this kind of considerations cannot be made algorithmic,
and so the process of knowledge ampliation cannot be mechanized.

2.7 Subjectivity and arbitrariness

We are aware of the possibility that many would be unwilling to concede a role to the
concept of plausibility in knowledge ampliation, since this concept is subjective in
character. Indeed, there has been the tendency in the last decades to equate ‘subjectiv-
ity’ and ‘arbitrariness’, and many scholars tried to avoid the latter by denying any role
to the former (Gelman and Hennig (2017)). Obviously, there is a sense in which the
attempt to avoid subjectivity in pursuing knowledge has a positive meaning, namely
when it means avoiding personal biases. For example, as Bird (2017) clearly points
out, the adoption of systematic methodologies allowed clinical medicine to become
a science, exactly because systematic methodologies allowed to eliminate (or at least
minimize) personal biases from medical practice. But not any subjective element in
the process of knowledge production can be regarded as a bias-producer. The risk is
that in some circumstances the quest for objectivity ends in merely hiding some of the
subjective components of the process of knowledge ampliation.

We think that the analytic view of theories, by making reference to the notion of
plausibility as defined above, may be of help in the attempt to counter this tendency
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and untangle the notion of subjectivity from that of arbitrariness. Indeed, some authors
seem to think that if knowledge were not objective (i.e. if it does not leave out any
subjective element), then knowledge would be arbitrary, and so there would be no
real knowledge at all. Contrary to this perspective, in the analytic view the presence
of some subjective components cannot be avoided, since the process of plausibility
evaluation of the hypotheses cannot bemade algorithmic, nor can it be ruled out. In this
perspective, there would be no knowledge only if the hypotheses we deal with in the
process of knowledge ampliation were arbitrary. But they need not be arbitrary, they
must be plausible, i.e. the arguments for them have to be stronger than the arguments
against them. If the plausibility evaluation of hypotheses is carefully conducted, even
if this process cannot be formalized, it nevertheless cannot be regarded as arbitrary,
since it is constrained in several rational ways (e.g. by the need of checking whether
contradictions can be derived from a given hypothesis, and whether conclusions that
can be derived from a given hypothesis are consistent with other hypotheses already
judged to be plausible, etc.). Thus, knowledge may well be possible, even if some
subjective elements enter the process of knowledge production.

We propose that not any aspect of reasoning is reducible to probability calculus,
and that this does not imply that those aspects which are not captured by the rules of
probability are irrational. In this perspective, some aspects of our reasoning remain
argumentative and inferential in character.16

2.8 Probability and randomness

A brief digression on the relation between the concept of probability and the concept
of randomness may be useful to conclude this section by recapitulating some of the
issues we addressed. Moreover, the analysis of such relation will allow us to provide
an argument to support our thesis. Indeed, the claim that the process of knowledge
ampliation cannot be adequately accounted for in terms of probabilities can be clarified
by reflecting on the relation between the concept of probability and the concept of
randomness.

As we said, statistics deals with uncertainty. Randomness can informally be con-
ceived of as unpredictability, i.e. a lack of those correlations which are able to guide

16 On this issue see Pollock (1983). Although his approach is distant from the view advocated here, there is
nevertheless some similarity between the two. For instance, Pollock points out the impossibility of equating
what he calls ‘epistemic probability’ and ‘statistical probability’. His conception of ‘epistemic probability’
is more akin to what we call ‘plausibility’ than to what is usually meant with ‘probability’. According to
him, ‘statistical probability’ is that kind of probability “about which we can learn by discovering relative
frequencies, counting cases” (Pollock 1983, p. 236). On the contrary, the “epistemic probability of a propo-
sition is the degree to which it is warranted” (Ibidem). In this view, a proposition is deemed warranted by
a careful examination of the reasons for and against it: “a person is justified in believing P just in case he
has adequate reason to believe P […], and he does not have any defeaters for it at his immediate disposal”
(p. 233). Moreover, Pollock clearly denies that arguments evaluation can be represented in probabilistic
terms. Indeed, Pollock also explicitly denies the possibility of equating ‘epistemic probability’ and ‘sub-
jective probability’. In his view, even if we follow the Bayesians and consider probability as expressing a
person’s ‘degree of belief’ on the truth of a given proposition, we cannot equate probability assignment and
arguments evaluation, mainly because we cannot reasonably impose on arguments evaluation the rules of
probability calculus.
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our predictions, so randomness can be regarded as a source of uncertainty. Probabil-
ity is the tool we use to manage uncertainty. Thus, randomness and probability are
deeply related. Our point is the following: if randomness is theory-dependent, and
probability can be regarded as a measurement of randomness, the process by which
we select a given theory in the first place cannot adequately be accounted for in terms
of probability-based considerations. Let’s unpack this claim a bit.

According to Calude and Longo (2016a), randomness is “unpredictability with
respect to the intended theory and measurement” (p. 266). In this view, probability
is a measurement of randomness,17 and randomness is unpredictability deriving from
theoretical assumptions. So, the probability values that we assign to the set of possible
outcomes of an event in a given domain are dependent on our theoretical commitments.
Thus, in order to assign probability values, we have to previously make a theoretical
choice. Since the choice of the theoretical framework we decide to deal with is indis-
pensable in order to assign probability values, this choice cannot in its turn be made by
relying on probability-based considerations. Otherwise a regression is lurking. Indeed,
if we commit to a given theoretical framework, say Ta , in order to assign probability
values in the A-domain, and, if in order to pick out Ta from the set T of similar but not
equivalent theoretical frameworks, i.e. Ta , T ∗

a , T
∗∗
a , etc., we rely on probability-based

considerations, this means that we can assign a probability value to every member of
T, i.e.Ta , T ∗

a , T
∗∗
a , etc. This also means that we can do that because we have already

chosen another theoretical framework, say Ft , which allows us to assign probability
values in the T domain. Now we have to account for how we chose Ft among similar
but not equivalent theories in set F. And so on.

Thus, we have to choose a theoretical framework, which will allow us to assign
probability values in the domain of interest, in some different way, i.e. without relying
on probability-based considerations. This choice, we claim, is made by relying on
plausibility-based considerations. Indeed, reasons and arguments that support differ-
ent theoretical frameworks can be assessed even if we are unable to coherently assign
probability values to rival theoretical frameworks. And evaluations made by relying on
plausibility-based considerations are fallible and revisable. It is important to underline
this point, because it stresses that our proposal is able to account for certain cases in
a more satisfying way than the rival hypothesis, i.e. that the choice of the relevant
theoretical framework is made by relying on probability-based considerations. Con-
sider theory change, or information update. Since when we deal with plausibility, we
evaluate whether the arguments for are stronger than the arguments against a given
hypothesis, we may form judgments which can be revised if new relevant information
is provided, since new arguments for or against a given hypothesis may be elaborated
in the light of this new information, and thus our plausibility-based judgement about
that given hypothesis may change. On the contrary, if the theoretical choice were made
on probability-based considerations, and probability is deemed objective, how could
we account for the phenomenon of theory change, which may lead to changes in the
probability values assigned to a given domain?

17 Cf. Calude and Longo (2016a, p. 273): “Randomness plays an essential role in probability theory, the
mathematical calculus of random events. Kolmogorov axiomatic probability theory assigns probabilities to
sets of outcomes and shows how to calculate with such probabilities.”
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It is also important to stress that, once the theoretical choice is made, probability
values can be assigned and computed in rigorous way. In this sense, probability may
well be regarded as ‘objective’, i.e. non-arbitrary. Two distinct epistemic subjects, if
they take the same theoretical framework, will obtain the same probability values for
any given domain. This accounts for the reliability and ‘objectivity’ of probabilistic
and statistical reasoning in scientific inquiry.

Finally, the adoption of our perspective may be of help in accounting for the case
in which two epistemic subjects, relying on plausibility-based considerations, make
different theoretical choices. To explain this, it is not necessary to search for some
arbitrary factors which prevent their reasoning from being rational.18 It may often
suffice to consider the different problems that they have in mind when assessing the
arguments for and against a given theory. In a given context, the arguments for the
choice of a given theory may be stronger than the arguments for the choice of that
theory in another context of inquiry. If, on the contrary, theoretical frameworks were
chosen by means of probability-based considerations, and probability is objective, i.e.
it is determined by the way the world is, how could we account for the possibility that
different theories may be chosen in different context to solve different problems?

Crucial to this defense of our thesis is the assumption that randomness is not abso-
lute, that “it depends on (and is relative to) the particular theory one is working on”
(Calude and Longo 2016a, p. 263). But, why should we think that randomness is
theory-dependent? This point is crucial, because if randomness is absolute, and prob-
ability is regarded as an objective measurement of randomness, it may be claimed that
plausibility-based considerations are irrelevant for the process of knowledge amplia-
tion. Rather, we should prefer probability-based considerations.

Thus, one may be tempted to search for an abstract and theory-independent defini-
tion of randomness. Mathematics is a good candidate as the place where to search for,
since dealingwithmathematics allows one to avoid the issue ofmeasurement,which, in
principle, introduces a degree of epistemic uncertainty that may be regarded as a cause
of the theory-dependence of randomness (Calude and Longo 2016a). The search for
randomness in mathematics is usually conducted by analyzing binary sequences, the
simplest infinite mathematical objects. So, in this line of reasoning, in order to prove
that there is theory-independent randomness, one has to investigate whether there are
true random infinite sequences. The problem is that such a kind of ‘pure’ randomness
cannot be proved to exist in mathematics. Calude and Longo (2016a) clearly illus-
trates this point. If we confine “to just one intuitive meaning of randomness—the lack
of correlations—the question becomes: Are there binary infinite sequences with no
correlations?” The answer is in the negative, so the search for ‘theory-independent’
randomness is doomed to fail: “there is no true randomness” in this abstract sense (p.
272). It is interesting to note that to prove this statement, Calude and Longo rely on the
very same result of combinatorics that we have illustrated above when dealing with
spurious correlations. In this case, the point is that, by Van der Waerden’s Theorem,
every infinite binary sequence contains arbitrarily long monochromatic arithmetic

18 It is important to note that we are not denying that external factors may relevantly affect theoretical
choices, we are just stressing that our perspective is able to account for relevant non-arbitrary epistemic
factors that may lead to theoretical divergence or theory change in a rational way.
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progressions. So, we know that there cannot exist binary infinite sequences with no
correlations.19 Thus, there is no ‘true’ or absolute randomness, and randomness can
well be regarded as unpredictability in the intended theory. We share Calude’s and
Longo’s view on randomness (2016a), according to which “randomness is not in the
world nor it is just in the eyes of the beholder, but it pops out at the interface between
us and the world by theory and measurement” (p. 265). This view fits our idea that
the epistemic role played by humans in the process of knowledge ampliation is ine-
liminable, and that, despite its being subjective in nature, it needs not be arbitrary.

3 Uncertainty and cancer research

Many of the issues discussed so far can be found combined together in cancer research.
Moreover, in this field the issue of how conceiving of uncertainty is not only related
to the debate on the statistical tools used in medical research, it is also related to
the even more basic assumptions that one has about what role uncertainty plays in
biology, and so about what are the very basic principles of biology (Longo et al. 2015;
Longo 2017; Zbilut and Giuliani 2008). We cannot fully address this topic here, but
it may be interesting to look at cancer research in order to show that: (1) the way we
use our statistical tools in medicine cannot be neutral with respect to our more basic
theoretical commitments; (2) the more adequate way to account for how one chooses
some basic theoretical commitments rather than some rival ones is by describing that
choice in terms of plausibility. Given the vastness of this theme, here, for illustrative
purpose, we will focus on the debate about what is the current theory that best explains
carcinogenesis, and on few related issueswhich affect the development of the so-called
personalized cancer medicine.

3.1 The somatic mutation theory and the tissue organization field theory

First of all, let us briefly set the stage. Currently, there are twomain competing views on
carcinogenesis, namely the somaticmutation theory (SMT) and the tissue organization
field theory (TOFT) (Bertolaso 2016; Sonnenschein and Soto 2016; Baker 2015a;
Bedessem and Ruphy 2015; Rosenfeld 2013; Soto and Sonnenschein 2011, Longo
2017).

SMT represents the mainstream view, and its main tenets can be summarized as
follows: (1) cancer is derived from a single somatic cell that has accumulated DNA
mutations; (2) cancer is a disease of cell proliferation; (3) quiescence should be actu-
ally considered the default cellular state (Baker 2015a). Corollaries of SMT are: (1)
mutations are needed for carcinogenesis; and (2) the analysis of genetic instability
may be the key to individuate any cancer’s cause. On the contrary, according to TOFT,
which is a minoritarian perspective, cancer is a tissue-based disease, not a cell disease.
The main tenets of TOFT can be summarized as follows: (1) carcinogenesis represents
a problem of tissue organization; (2) proliferation and motility are the default state of

19 For a demonstration that no infinite sequence passes all tests of randomness, so that ‘true randomness’
does not exist, see Calude (2002).
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all cells; (3) cancer arises from the disruption of interactions among cells and adjacent
tissue. Corollaries of TOFT are: (1) mutations are not needed for carcinogenesis; and
so, (2) genetic instability is mainly a byproduct of carcinogenesis (Baker 2015a).20

It is important to stress that in this paperwe aremainly interested in using this debate
as a case study to show the relevance of theoretical disagreement and plausibility-based
considerations in the development of statistical tools and in the interpretation of their
results, i.e. in processes of evidence amalgamation and science advancement. So, we
are not concerned here with taking sides in the SMT-TOFT debate, since this would
require a wider and quite different analysis (see Bertolaso 2016).21 We will use the
debate between SMT supporters and TOFT supporters to point out that often scientific
disputes are driven by plausibility-based considerations, and so that they cannot be
accounted for merely in terms of probability and empirical confirmation.

3.2 Personalized cancer medicine22

The majority of cancer patients is usually treated on the basis of large random clinical
trials in the general population of a specific tumor type. As a result, “a considerable
number of patients are exposed to often highly toxic treatment, with only a small sub-
set of these patients having benefit” (Cirkel et al. 2014, p. 417). In the past years, new
DNA sequencing techniques have revolutionized the identification of somatic muta-

20 It may be objected that the existence of hereditary cancer is a strong evidence for SMT. Supporters of
TOFT usually specify that “a distinction should be made about the types of cancers that appear in the clinic;
there are ‘sporadic’ cancers and hereditary ones. ‘Sporadic’ cancers represent over 95% of the cancers
in humans. On the other hand, inherited cancers (less than 5% of total cancers) are a discrete subclass,
mediated by germline mutations that have a distinct natural history, mostly appearing in early childhood
and/or young adults […]. While the DNA mutations in this latter type of cancers are present in all cells of
the organism, tumors mostly appear in one or a few organs” (Soto and Sonnenschein 2011, p. 333). Since,
according to TOFT, cancer is ‘development gone awry’, in this view hereditary cancers are regarded as
‘inherited inborn errors of development’ (Soto and Sonnenschein 2011).
21 It may be objected that SMT and TOFT, despite their diversity, are not genuine rival theories, because
they are not really incompatible. This issue is in fact strongly debated (see Bedessem and Ruphy 2017,
2015; Bizzarri and Cucina 2016; Bertolaso 2016; Rosenfeld 2013). However, this issue does not impinge
on our argumentation. We observed the disputes that are going on in the field and tried to represent the
situation. And, in fact, many of the participants in the SMT vs. TOFT debate do see those theories as really
incompatible. For example,Bizzarri andCucina (2016) state that SMTandTOFTare irreconcilable theories.
According to them, “irreconcilability depends on radical divergence existing among basic premises […].
Copernican theory was irreconcilably different from the Ptolemaic one, given that the central place in the
solar system was occupied by the Earth in the latter and the Sun in the former. It is obviously impossible to
support at the same time these two opposing hypotheses by constraining them into a ‘unified’ cosmological
model. By analogy, SMT and TOFT cannot bemerged because the premises onwhich those frameworks rely
are incompatible: the default state of the cell can be considered either quiescence (SMT), or proliferation
(according to TOFT). The two default states cannot be operational at the same time” (Bizzarri and Cucina
2016, p. 232). Now, whether SMT and TOFT are really incompatible is not relevant here. Indeed, we do not
aim at solving the dispute on which is the best theory between SMT and TOFT, nor we aim at solving the
dispute on whether SMT and TOFT are really incompatible. We just try to highlight how this confrontations
rest on theoretical commitments, whose adoption is better accounted for in terms of plausibility rather than
probability. We thank an anonymous reviewer for having raised this issue.
22 Some authors prefer to speak of ‘precision’ medicine rather than ‘personalized’ medicine. For a brief
reconstruction of the opinions on this terminological issue, see Katsnelson (2013). Since this distinction
does not impinge on our thesis, here we will use those terms as interchangeable.
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tions in genomes, and their decreasing costs made these techniques widely available.
These advances “hold promise for precision medicine, or precision oncology, where
a cancer treatment could be tailored to a patient’s mutational profile” (Raphael et al.
2014, p. 1). So, the progresses made in molecular biology and the ineffectiveness of
traditional pharmacological treatments developed on the basis of random trials encour-
aged investments in personalized cancer medicine, although it was widely recognized
that this approach may face serious challenges (Tannock and Hickman 2016; Ow and
Kuznetsov 2016).

Personalized cancer medicine can be regarded as laying at the intersection of (1)
the big data approach and (2) traditional SMT-inspired therapeutic strategy.

As regard to (2), as already noted, according to SMT, “tumors originate froma single
cell. Cancer is initiated and subsequently evolves by inactivating tumor suppressor
genes and acquiring multiple mutations that activate oncogenic pathways” (Cirkel
et al. 2014, p. 418). In this view, the best way to pharmacologically attack cancer is
by inhibiting the molecular paths that are responsible for cancer growth, which are
specific for every cancer. The idea is that it is possible to discriminate the mutations
that are responsible for the insurgence of a specific kind of cancer by individuating
the presence of some specific biomarkers in cancer specimens, and then calibrate the
most adequate therapy for that specific kind of cancer. The most adequate therapy
will be those drugs that fare better in selectively inhibiting the essential metabolic
and signaling paths associated to the crucial mutations of such cancer. In this way,
the argument goes, we will be able to disrupt the molecular paths specific of cancer
cells without affecting and disrupting those paths that are essential for normal cells.
Personalized cancer medicine moves along this traditional line of reasoning, but aims
at improving it by tailoring therapy to patient’s genetic specificity.

As regard to (1), the crucial elements in recent development of personalized cancer
medicine are usually considered to be (a) the availability of large amount of omics
data, and (b) the availability of big data analytics to manage and interpret those data
(Ow and Kuznetsov 2016; Raphael et al. 2014).23 For some authors, that personal-
ized medicine relies on big data and big data analytics almost amounts to a paradigm
shift in medicine (Chen and Snyder 2013). For example, Talukder states that genetic
“data analysis is mostly hypothesis driven; whereas, genomic data analysis is always
exploratory and hypothesis creating” (Talukder 2015, p. 203). In accordance with
the big data approach, some scholars regard the possibility of statistically analyz-
ing a huge amount of available data coming from a given domain as able to reduce
the need for developing theoretical hypotheses in order to advance the research in
that domain (Stevens 2013).24 In this view, by merely searching for correlations in
databases through an exploratory algorithmic procedure, hypotheses can be ‘created’,
and knowledge may be established (Gagneur et al. 2017). In this perspective, the use

23 Cf. Ow and Kuznetsov (2016, p. 1): “Big data analytics is the process of examining large data sets
containing heterogeneous patient sub-populations and a wide variety of data types […]. Big data analytics
aims to uncover hidden patterns, unknown correlations, complex trends, […], as well as other useful
features.”
24 Cf. Stevens (2013, pp. 65–66): “Bioinformatics can be understood […] as a kind of neo-Baconian science
in which hypothesis-driven research is giving way to hypothesis-free experiments and data collection.”
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of data which derive from DNA sequencing techniques “introduced a component of
data-driven […] science into evidence-based medicine” (Talukder 2015, p. 203).

In what follows, we do not aim at criticizing personalized cancer medicine, nor
bioinformatics. We just try to show that it may be epistemologically misleading to
focus on data analytics when one deals with theoretical disagreement. In our view,
the reliance on the big data approach can lead one to neglect the role of plausibility-
based considerations in the development of scientific research, and so to overlook
the fallibility and revisability of one’s assumptions. Indeed, the big data approach
relies on data analytics techniques, which essentially work by searching databases for
correlations through some given algorithms (Ow and Kuznetsov 2016). The problem
is that “big data approaches […] fail to provide conceptual accounts for the processes
to which they are applied. Nomatter their ‘depth’ and the sophistication of data-driven
methods […], in the end they merely fit curves to existing data” (Coveney et al. 2016,
p. 1). This way of conceiving of research as data-driven may also lead one to think
that scientific advancement can be mechanized and made algorithmic.25 Moreover,
conceiving of research as data-driven may lead one to think that one’s inquiry is
independent from any specific theoretical hypothesis, and so that the data one produces
and collects aremodel-independent.26 And regarding some data asmodel-independent
may lead one to think that those data can safely be used to independently confirm some
theoretical hypothesis over some rival hypothesis.

Contrary to this view, we argue (and we will try to illustrate this point in the next
sections) that hypotheses cannot be created, nor evaluated algorithmically. Nor can
data be regarded as completely model-independent (Mazzocchi 2015; Allen 2001).
If one neglects the role of plausibility-based considerations, one risks being not even
aware of the possibility that one is not exploring alternative possible and (possibly)
plausible research pathways (Baker 2017). Neglecting alternative hypothesesmay lead
one to mistake the ‘absence’ of alternatives for the confirmation that the path that one
is actually exploring is directly dictated to one by the way the world really is, while
this path is instead strongly dependent on one’s theoretical assumptions, which may
be wrong.

3.3 Driver mutations and passenger mutations

As noted above, SMT and TOFT support different hypotheses on carcinogenesis.
Those hypotheses imply different consequences, which are relevant for the develop-
ment of clinical approaches. For instance, according to SMT, cancer progression is

25 Cf. Stevens (2013, p. 69): “the computer becomes the crucial tool: efficiency is a product of bioinfor-
matic statistical and data management techniques. It is the computer that must reduce instrument output
to comprehensible and meaningful forms. The epistemological shift associated with data-driven biology is
linked to a technological shift associated with the widespread use of computers.”
26 On the idea of ‘hypothesis-free’ or ‘data-driven’ science, see Stevens (2013, Chapter 2); see also Chen
and Snyder (2013). On explanatory data analysis, cf. Bassett et al. (1999, p. 54): “Knowledge discovery by
exploratory data analysis is a ‘bottom up’ approach in which the data are allowed to ‘speak for themselves’
after a statistical […] procedure is performed.” Cf. also Brown and Botstein (1999, p. 33): “this process is
not driven by hypothesis and should be as model-independent as possible.”
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a unidirectional and mostly irreversible process, i.e. once a cell has become a cancer
cell it cannot reverse to a normal condition, while according to TOFT carcinogenesis
is not a unidirectional process, rather it may be reversible (Rosenfeld 2013). Those
discrepancies are due to the different role assigned to mutations in carcinogenesis.
Since according to SMTmutations are responsible for cancer insurgence, and the very
insurgence of cancer leads to increasingmutations rate because it disrupts the cell con-
trol mechanisms, so those mutations accumulate rapidly, once the ‘genetic program’
of tumor cells has been deteriorated in such a way, there is no way to remedy, reverse
the process and ‘reprogramme’ the genome of tumor cells. In this view, the gene-level
context is predominant in determining the fate of tumor cells.

On the contrary, according to TOFT mutations in somatic cells are not the cause
of cancer insurgency, they are consequences of the disruption of communicating and
regulatory paths at the tissue level, e.g. among somatic cells, stroma cells, and extra-
cellular matrix. In this view, mutations are regarded, on the one hand, as byproducts
of carcinogenesis, and, on the other hand, as neutralizable in most cases by a well-
functioning tissue. In other words, if cancer cells are put in the context of a normal
tissue, in which communicating and regulatory paths are not disrupted, despite the
accumulated mutations, those cells may stop being malignant.27 In this view, the
tissue-level complex context is predominant in determining the fate of tumor cells.
Obviously SMT and TOFT embrace two distinct perspectives on the role that genes
play in biology, and so on the relevance of mutations to carcinogenesis (Longo et al.
2015; Longo 2017).

Since SMT and TOFT start from so divergent assumptions, fromwhich so divergent
empirical consequences can be drawn, one may be tempted to adjudicate between
these two rival hypotheses on carcinogenesis on the basis of which theory is the most
confirmed by evidences. Indeed, if they are genuine scientific hypotheses, their claims
should be empirically verifiable (Soto and Sonnenschein 2011).

But things are not so easy. The point is that the search for the empirical confirma-
tion of a given theory is not always equivalent to the search for the confirmation of
that theory over some rival theory. Indeed, the pursuit of empirical confirmation of a
given theory is often not really independent from the theory itself. This means that
data cannot safely be said to be model-independent, so one cannot easily use data to
independently confirm some theoretical hypothesis over some rival hypothesis. For
instance, deciding whether or not some set of ‘evidences’ genuinely confirms a given
hypothesis can be dependent on whether one already accepted that very hypothesis
among one’s theoretical commitments in the first place. Consider again personalized
cancer medicine. According to SMT, personalized cancer medicine represents the
future of cancer research. According to TOFT, this way of searching for cancer reme-
dies will be ineffective as it is currently proposed. It may seem reasonable to someone
to claim that, since SMT and TOFT are rival theories, and they support two radical
different stances on the very same issue, namely personalized cancer medicine, we
could empirically verify which stance on personalized cancer medicine is the correct
one by examining empirically verifiable consequences of each stance’s assumptions.

27 This hypothesis has been empirically confirmed, see Soto and Sonnenschein (2011), Baker (2015a, b)
and Bizzarri and Cucina (2016).
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In this view, evaluating whether (some) central tenets of personalized cancer medicine
are sound and empirically confirmed may give support to the claim that SMT is the
right way of conceiving of carcinogenesis.

Now, in the case of personalized cancer medicine, there is at least a central claim of
this approachwhichmay appear prima facie easily empirically verifiable: the existence
of drivermutations and the possibility of identifying them in tumor specimens. Indeed,
high-throughput “DNA sequencing is revolutionizing the study of cancer and enabling
the measurement of the somatic mutations that drive cancer development” (Raphael
et al. 2014, p. 1). We will concentrate on this issue in the following.

In a cancer genome, “there often exist hundreds or thousands of various types of
mutations” (Zhang et al. 2014, p. 244). But, along the line of reasoning supported
by SMT, only a small subset of these mutations can be regarded as responsible for
carcinogenesis. Indeed, cancer is thought to undergo a process of Darwinian selection,
in which mutations are usually neutral, and so do not confer any ‘advantage’. Only
rarely some mutations confer some kind of ‘advantage’, and so are selected for.

In cancer research, these selected mutations are called driver mutations (Stratton
et al. 2009). A mutation is called a driver mutation if it is “directly implicated in
carcinogenesis by its ability to confer a growth advantage to tumor cells”, while a
mutation is called a passenger mutation if “it does not confer a growth advantage to
tumor cells and, therefore, will not contribute to the development of cancer” (Zhang
et al. 2014, pp. 244–245). Thus, in this perspective identifying driver mutations from
the “background of passenger mutations is critical for understanding the molecular
mechanisms of carcinogenesis and for identifying prognostic and diagnostic markers
as well as therapeutic targets” (Ibidem, p. 245).

3.4 Computational approaches for the identification of driver mutations

Unfortunately, distinguishing driver mutations from passenger mutations proved very
challenging (Tokheimet al. 2016).Raphael and colleagues, for example, state that “dis-
tinguishing driver from passenger mutations solely from the resulting DNA-sequence
change is extremely complicated, as the effect of most DNA-sequence changes is
poorly understood, even in the simplest case of single nucleotide substitutions in cod-
ing regions of well-studied proteins” (Raphael et al. 2014, p. 7). Nevertheless, in recent
years, thanks to the increasing availability and affordability of DNA sequencing tech-
niques, different computational approaches to identify somatic mutations in cancer
genome sequences and to distinguish driver mutations from random passenger muta-
tions have been developed by bioinformaticists (Dimitrakopoulos and Beerenwinkel
2017; Tokheim et al. 2016; Merid et al. 2014; Raphael et al. 2014; Zhang et al. 2014).

Is it possible to reach some shared consensus on whether SMT is objectively con-
firmed by the statistical tools developed to identify driver mutations? As we have
seen above, usually statistical tools are thought to allow us to calculate the degree
of confirmation that some evidences confer to a given hypothesis. The main problem
in the case of driver mutations is that if we closely inspect the computational tools
developed to identify these mutations, things seem to go the other way around, i.e. it
is the assumption of a given hypothesis on carcinogenesis that is necessary in order to
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make sense of a huge amount of messy data and select what data can be regarded as
evidences for that hypothesis.

Let’s try to clarify this point. There aremainly three different kinds of approaches to
individuate driver mutations in DNA sequences: (1) identifying recurrent mutations;
(2) predicting the functional impact of individual mutations; (3) assessing combina-
tions of mutations using pathways, interaction networks, or statistical correlations
(Dimitrakopoulos and Beerenwinkel 2017; Merid et al. 2014; Raphael et al. 2014;
Zhang et al. 2014). Since all these approaches have to face the same theoretical diffi-
culty thatwe aim topoint out, here itwill suffice to focus on just thefirst approach aimed
at detecting driver mutations, namely identifying recurrent mutations. The rationale
behind this approach is that, even if each cancer sample has undergone an independent
evolutionary process, the mutations that drive the progression of the same tumor type
should appear more frequently than expected by chance across patient samples.

In this perspective, recurrence may be revealed at different levels of resolution,
from individual nucleotide, or codon, to protein level, or to the whole gene, or even
to a pathway (Raphael et al. 2014). For the sake of simplicity, and brevity, here it
will suffice to focus on those approaches which deal with just one level of resolution,
namely statistical tests for genes with recurrent single-nucleotide mutations.

Several methods have been designed to find single-nucleotide recurrent mutations.
But they all share the same core principle. Indeed, the fundamental calculation “in
all these approaches is to determine whether the observed number of mutations in
the gene is significantly greater than the number expected according to a background
mutation rate (BMR)” (Raphael et al. 2014, p. 7). It is not difficult to recognize here a
standard way to statistically detect a significant deviation from expected results. But
in this context, this is a key point. Indeed, the BMR “is the probability of observing
a passenger mutation in a specific location of the genome” (Ibidem). From the BMR
and the number of sequenced nucleotides within a gene, “a binomial model can be
used to derive the probability of the observed number of mutations in a gene across a
cohort of patients” (Ibidem).28

The problem is: If we are searching for a way to identify driver mutations, i.e. to
distinguish driver from passenger mutations, how can the BMR, i.e. the probability
that a passengermutation can be found in a specific location of the genome, be already
estimable? In fact, it is estimated on the basis of previously acquired biological knowl-
edge. Indeed, those who develop statistical models for detecting single-nucleotide
recurrent mutations incorporate in their models some features of passenger mutations.
For instance, they assume, among other things, that “BMR is not constant across the
genome, but depends on the genomic context of a nucleotide […] and the type of
mutation”, that “the BMR of a gene is correlated with both its rate of transcription

28 Cf. Raphael (2014, p. 7): “Using the background mutation rate (BMR) and the number n of sequenced
nucleotides within a gene (g), the probability (Pg) that a passenger mutation is observed in g is given by
Pg = 1 − (1 − BMR). Since somatic mutations arise independently in each sample, the occurrences of
passenger mutations in g are modeled by flipping a biased coin with probability pg of heads (mutation).
Thus, if somatic mutations have been measured in m samples, the number of patients in which gene g is
mutated is described by a binomial random variable B(m, Pg)with parametersm and Pg. From B(m, Pg),
it is possible to compute the probability that the observed number or more samples contain passenger
mutations; this is the P value of the statistical test”.
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[…] and replication timing”, and that the “BMR is also not constant across patients”
(Ibidem). The estimated BMR greatly affects the identification of recurrent mutations,
and so the identifications of driver mutations. This means that different methods for
identifying recurrently mutated genes, since they may diverge in their estimation of
the BMR, can (and in fact do) diverge in the identification of driver mutations (Ibidem;
Tokheim et al. 2016). But this is not the problem we would like to focus on.

The big epistemological problem, as hinted above, is that these methods for iden-
tifying driver mutations assume data relative to the expected frequency of passenger
mutations, data which can be produced only by assuming that driver and passenger
mutations actually exist and can be distinguished, an assumption that is based in its
turn on the very hypothesis that should be confirmed, namely SMT. Indeed, driver
mutations can be regarded as such only by assuming SMT.29 If one tries to detect
driver mutations in order to confirm SMT, it would be circular to incorporate in one’s
method for detecting driver mutations a frequency distribution which is developed
relying on the assumed existence of driver mutations.

On the contrary, computational methods for detecting driver mutations, in order
to confirm SMT over TOFT, should be able to show us that the set of all detectable
mutations in a cancer genome can be unambiguously assigned to two distinct subsets,
namely the sets of driver and passenger mutations, in a principled way independent of
the way driver mutations are defined by SMT. If instead driver mutations are identified
because in the set of all the detected mutations in a cancer genome they are the most
recurrent, and, according to SMT, the most recurrent mutations cannot but be driver
mutations, we have no independent reason to claim that SMT is confirmed by the
computational methods developed to identify driver mutations.

Similar problems afflict the othermain strategies that have been developed by bioin-
formaticists for detecting driver mutations, namely predicting the functional impact
of individual mutations, and assessing combinations of mutations. Indeed, all these
approaches “assume that a priori information […] will help to distinguish passen-
ger from driver mutations” (Ibidem, p. 9). But “one important bias in the methods
that predict cancer genes is” precisely “the direct or indirect incorporation of prior
knowledge” (Dimitrakopoulos and Beerenwinkel 2017, p. 12).30 Such already avail-

29 The fact that some data can be regarded as relevant to the estimation of the frequency distribution of
passenger and driver mutations only if one assumes SMT can be clearly seen by considering that if one
assumes TOFT, then the very same data (i.e. the detected mutations in a given cancer genome) cannot
be regarded as instances of ‘driver’ mutations, simply because according to TOFT somatic mutations are
not the cause of cancer. If one does not assume SMT, by searching for mutations one can at most display
correlations of recurrent mutations in cancer cells, but one cannot prove that thosemutations are the cause of
carcinogenesis, and so one cannot disconfirmTOFT. Indeed, TOFT does not deny the existence ofmutations
in the genome of cancer cells. It denies that these mutations are the cause of cancer insurgence.
30 It may be objected that the so called de novo approaches, which aim at the identification of driver
mutations by statistically analyzing combinations of mutations in networks and pathways (this method
belongs to the third kind of approaches to individuate driver mutations listed above) are less prone to this
criticism, because they do not incorporate previous knowledge about genes associated with well-studied
cancer pathways. But this objection is inadequate. Indeed, even de novo approaches are not independent
from crucial assumptions that are not neutral with respect to what hypothesis on carcinogenesis is adopted.
In order to identify novel combinations of mutations or mutated genes, “it would be ideal to test all possible
combinations for recurrent mutations across a cohort of cancer patients, but such a de novo approach is
impractical. For example, there are more than 1029 possible sets of eight genes in the human genome,
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able information is often constituted and interpreted assuming SMT, and so assuming
the distinction between driver and passenger mutations. At this regard, Baker main-
tains that current bioinformatic methods identify driver mutations “in terms of their
likelihood of being driver mutations, but do not prove the existence of driver mutations
[…]. Gold standards for evaluating bioinformatics predictions of driver mutations […]
are based on postulated driver mutations and not on unambiguously established driver
mutations” (Baker 2015b, p. 1).

The case of the search for the identification of driver mutations seems to conform
to the above proposed distinction between plausibility and probability. Relying on
statistical tools we can well estimate the probability that a given mutation is a driver
mutation. And we may also claim that such probability is objective, because it is
calculated by relying on empirical reliable findings. But, for instance, the theoretical
decision of considering some mutations as instances of driver or passenger mutations
in order to estimate the BMR, i.e. to interpret these findings in accordance to SMT,
cannot be accounted for in terms of probability, it may instead be accounted for in
terms of plausibility, i.e. in terms of the assessment of the arguments for and against
this hypothesis.

3.5 The search for driver mutations and big data

The confidence on the possibility of developing effective treatments based on per-
sonalized cancer medicine is driven in part by an optimistic attitude towards the
increasing availability of large amount of data. Many thought that, despite the diver-
gences between our current theories of carcinogenesis, conflating in some statistical
algorithm the ‘deluge of data’ coming from ‘omics’ researches would have allowed us
to derive the right diagnoses and prognoses. On the contrary, as we have seen above
(Sect. 2.2), an enormous quantity of data may put pressure on the theoretical assump-
tions that currently dominate a research field. In other words, unless we possess a
powerful and adequate theoretical perspective on the phenomenon we are analyzing,
the deluge of data will probably not improve our understanding of that phenomenon.
The risk is to be confused.

As we have already noted above, when the stock of data increases, even the number
of spurious correlations increases. This is what happens in the case of the search for

Footnote 30 continued
which is both too many to evaluate computationally and too many hypotheses to test while retaining
statistical power” (Raphael et al. 2014, p. 12). In order to overcome this difficulty, de novo approaches try to
identify driver mutations by searching for genetic aberrations which are both (1) highly recurrent, and (2)
mutually exclusive, i.e. they do not compare in different pathways. So, only if one accepts the “hypotheses
that each tumor has relatively few driver mutations […] and these driver mutations perturb multiple cellular
functions in different pathways […], one can conclude that a tumor rarely possesses more than one driver
mutation per pathway”, and so that “when examining data across cancer samples, driver pathways […]
correspond to mutually exclusive sets of genes” (Ibidem). But these assumptions are not independent from
prior knowledge. Indeed, they relies on SMT, since they presuppose the existence of driver mutations, and
even a precise hypothesis about their frequency, presuppositions which cannot be based on nothing but some
kind of prior knowledge. Thus, de novo approaches do not really differ from other kinds of approaches
developed to identify driver mutations, and cannot be said to be independent from previous knowledge. So,
this objection is inadequate.
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the identification of driver mutations. Lawrence and colleagues describe the situa-
tion as follows: many “international projects are aimed at creating a comprehensive
catalogue of all the genes responsible for the initiation and progression of cancer”;
these studies “involve the sequencing of matched tumour-normal samples followed
by mathematical analysis to identify those genes in which mutations occur more fre-
quently than expected by random chance”; but the fundamental problem with cancer
genome studies is that “as the sample size increases, the list of putatively significant
genes produced by current analytical methods burgeons into the hundreds”, and the list
“includes many implausible genes […], suggesting extensive false positive findings
that overshadow true driver events” (Lawrence et al. 2013, p. 214).

In our view, this means that in order to achieve a deeper understanding of a given
phenomenon,what is really needed ismore theoreticalwork and theproductionofmore
plausible hypotheses to be tested, rather than the mere production of more data. The
process of evidence amalgamation necessarily requires some theoretical hypotheses
to work properly, and those hypotheses are produced and accepted on the basis of
plausibility-based considerations.

At this regard, Weinberg, one of the most influential authors of SMT, seems to have
an ambiguous position. Indeed, if, on the one hand, he claims that the “data that we
now generate overwhelm our abilities of interpretation”, and we “lack the conceptual
paradigms and computational strategies for dealing with” these data, on the other
hand, he seems to think, as supporters of big data usually think, that the key for the
advancement of our understanding is the development of more powerful statistical
models, i.e. the development of new tools to amalgamate the biggest quantity possible
of evidences, models which will give us the right answers. He states that “we don’t
know how to integrate individual data sets, such as those deriving from cancer genome
analyses, with other, equally important data sets, such as proteomics”, and that this
is frustrating, because it is “becoming increasingly apparent that a precise and truly
useful understanding of the behavior of individual cancer cells and the tumors that
they form will only come once we are able to integrate and then distill these data”
(Weinberg 2014, p. 271).

We think instead that the development of new theoretical hypotheses to be assessed
both by means of plausibility-based considerations and empirical confirmation, is still
the key issue in the advancement of science. We also think, as we hope to have made
clear, that also the so often invoked development of new statistical tools proceeds
in this way, and so that it is not independent from human theoretical efforts and
plausibility-based considerations.

3.6 Plausibility and the debate between SMT and TOFT

We would like to conclude this section with some more general considerations.
It may be objected that even if there is some difficulty in adjudicating between
SMT and TOFT by merely relying on computational tools for identifying driver
mutations, if we consider all the evidences available, we should be able to reach
a shared conclusion. But it seems not to be the case. Indeed, if it were possible
to objectively collect and amalgamate all relevant evidences available from cancer
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research, put data in some statistical model for theory confirmation, and objec-
tively assign some probability distribution to the rival hypotheses, we would be
able to clearly assess what theory is empirically more confirmed between SMT and
TOFT.

But, again, things are more complicated than that. Recently, there have been some
important confrontations on what is the best hypothesis on carcinogenesis between
SMT and TOFT (see e.g. Bedessem andRuphy 2015, 2017; Bizzarri and Cucina 2016;
Baker 2015a, b; Kaye 2015; Soto and Sonnenschein 2011; Sonnenschein and Soto
2011; Vaux 2011a, b). Although they often consider the very same set of evidences,
different scholars draw almost opposite conclusions on which hypothesis is the most
confirmed by those evidences.

For example, Bizzarri and Cucina (2016) think that SMT is not indirectly confirmed
by the results of the therapeutic strategy aimed at targeting specific relevant mutations
in the treatment of chronic myelogenous leukemia:

Evidence arguing for the irrelevance of mutations as a target for therapeutic
management comes from studies performed on chronic myelogenous leukemia.
It has been claimed that the abnormal fusion tyrosine kinase BCR-ABL acts as
an ‘oncogene’ and is deemed the key-initiating factor in myelogenous neoplastic
transformation. Inhibition of the corresponding oncoproteins by means of tyro-
sine kinase inhibitor (TKI) has indeed lead to significant short-term beneficial
responses, yet without achieving any benefit in terms of long-term survival. This
latter failure has been ascribed to the fact that a reservoir of cancer stem cells
still proliferates because they lack the alleged targeted-mutated gene and they are
therefore insensitive to the TKI […]. Thus, accordingly to this rationale, myeloid
cells would become transformed by an oncogene that curiously is absent among
the cancer stem cell population from which cancer is thought to arise. (Bizzarri
and Cucina 2016, p. 223).

On the opposite side, Vaux (2011a) think that precisely the same clinical example
provides the best empirical support currently available to SMT:

the most dramatic support [to SMT] comes from the clinic. CML [i.e. chronic
myelogenous leukemia] is caused by a chromosomal translocation that generates
the Philadelphia chromosome and activates the BCR-ABL fusion oncoprotein.
If CML were instead due to changes in tissue organization, it ought not respond
to imatinib, an inhibitor of the ABL kinase, yet CML responds extraordinarily
well to imatinib […]. Furthermore, in cases that develop resistance to the drug,
additional mutations are found to the bcr-abl gene in sub-clones of the leukemia
cells […], indicating that not only development of CML, but also drug resistance,
is due to sequential DNA mutations arising in somatic cells, in accordance with
SMT. (Vaux 2011a, p. 343).

As already stated, we do not aim at solving the dispute between SMT support-
ers and TOFT supporters here. What we aim at pointing out by focusing on such
a theoretical disagreement is that this kind of theory/hypothesis assessment may be
better accounted for in terms of plausibility-based considerations rather than in terms
of probability-based considerations. Given that often the authors that diverge on such
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theoretical issues consider almost the same empirical data, if they should have adopted
a theoretical stance relying on probability-based considerations, and probability were
objective and simply dictated to us by the way the world is, these authors should have
arrived at the same conclusions.

But authors do not arrive at the same conclusions. Nor they justify the theoretical
stance they adopt by making reference to probability-based considerations. Rather,
these authors provide arguments and reasons to support their favored hypothesis,
they do not merely provide a probability-based estimation of the degree of empirical
confirmation of that hypothesis. It may be objected that conclusions diverge because
theory assessment follows a Bayesian path, and given that different authors start from
different prior probabilities assigned to rival hypotheses, they arrive at different conclu-
sions. But even accepting such a Bayesian framework, the point now is: Why different
authors assign different prior probabilities to rival hypotheses? Again, if it were possi-
ble to objectively assign these probability values, conclusions should not be divergent.
But conclusions do diverge. This means that priors probabilities are not objectively
assigned, i.e. they are not assigned bymeans of a (potentiallymechanizable) procedure
which can univocally determine each prior in an uncontroversial way. Thus, it seems
fair to suppose that scholars assign prior probabilities to rival hypotheses by relying
on plausibility-based considerations.

Probability and plausibility do not stand opposed, they are not rival concepts, yet
they are distinct concepts, and we think that understanding how they are related may
allow us to better understand how evidences are produced and amalgamated in scien-
tific research.

4 Plausibility and evidence amalgamation in medicine

Let us conclude this article by considering our proposal from a broader perspec-
tive. Philosophical investigations on cancer research are nested in the philosophy of
medicine. So, we would like to address some more general epistemological issues
that are nevertheless central for the philosophical analysis of cancer research. In what
follows, we briefly put the thesis we argued for in this article in this broader con-
text.

There are at least two main conceptions of statistics, namely classical statistics and
Bayesian statistics.31 These two ways of conceiving of statistics are also often associ-
ated to twodistinctways of conceiving of probabilities: supporters of classical statistics
usually adopt a frequentist perspective on probability, while supporters of Bayesian
statistics usually adopt a conception of probability as degree of belief. The conception
of probability one adopts may affect the evaluation of one’s inquiry. We argue that,
despite their divergences, neither frequentists nor Bayesians give a complete represen-
tation of how evidences are amalgamated in medicine, and that considering the role
that plausibility-based considerations play in the process of evidence amalgamation
can give some insights on this issue.

31 For a detailed illustration of the main views of statistics, see Romeijn (2017).
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4.1 Random clinical trials

To better see this point, consider one of the most important issues in which statistics
and medicine intersect each other, namely the validation of the efficacy of drugs and
treatments. On this issue, scholars are divided into two main positions: on the one
hand, there is the dominant position, inspired by the ideas of the Evidence Based
Medicine (EBM),32 according to which the gold standard of confirmation in medical
research are Random Clinical Trials (RCTs) (see e.g. Papineau 1994); on the other
hand, there is the position advocated by those who criticize RCTs from a Bayesian
perspective (see e.g. Worrall 2007b).

These two ways of conceiving of clinical trials rest on two different conceptions of
probability. Indeed, supporters of RCTs usually adopt a frequentist interpretation of
probability, while Bayesians usually adopt an interpretation of probability as degree
of belief. The differences between these two conceptions of probability are reflected
in the way these approaches to clinical trials consider evidences be amalgamable.
Some authors speak of ‘evidence elitism’ with regard to the supporters of RCTs,
and of ‘methodological pluralism’ with regard to the Bayesians. According to EBM,
randomized trials are the only truly reliable source of evidence in clinical testing.
Other sources of evidences may well be taken into consideration in order to decide
how to act in the absence (or in the impossibility of performing) RCTs. But this does
not mean that evidences coming from other sources can be amalgamated with those
deriving from RCTs in order to draw a conclusion on the drug (or treatment) we are
evaluating through a RCT. In this case, evidences coming from the RCT have to be
preferred (Worrall 2007a).

4.2 Frequentist approaches to clinical trials

But how exactly the way probability is conceived affects the way clinical trials are
conceived? Consider RCTs. As already noted, supporters of RCTs adopt frequentism,
and in frequentism probabilities are relative frequencies of empirical events.

In this view, probability of an event e is defined as the limit of the proportion, as n
increases, of

f = k/n

“where f is the frequency of occurrence of the relevant event, k is the number of times
the event occurs in n repetitions of the experiment” (Djulbegovic et al. 2011, p. 309).
Ideally, when n goes to infinite, f gives us the objective probability of e. In other
words, in this perspective probability is equivalent to the frequency of an event, and
this frequency is determined by the way the world is. This is clearly an objective view
of probability, which may seem perfectly suitable for all those who aim at an objective
knowledge of the world.

32 For a survey on EBM, see Bluhm and Borgerson (2011).
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But the devil is in the details, and things are not so easy for frequentists as they may
prima facie appear. The main problem with this conception of probability is precisely
that it equates probabilities and frequencies. This idea leads to several difficulties,
which all derive from the same theoretical problem: if probabilities are frequencies,
then in order to calculate the objective probability of a given event e, we should try to
replicate the very same experiment as many times as possible, and see howmany times
e occurs. Indeed, if probabilities are frequencies, in order to estimate the probability
of e, we should estimate the frequency of e. Obviously, even granting that probability
is objective, if we deal with very limited sets of trials, our estimation of the frequency
of e may strongly diverge from the real value of such frequency. Thus, according to
the law of large numbers, in order to secure our confidence in the objectivity of the
probability assigned to e, we should be able to perform a huge number of replications
of the same trial to better estimate the frequency of e.

Consider a fair coin. If you toss it ten times, there is a high probability that you will
not obtain a score of 5 heads and 5 tails, i.e. the probability values that probability
theory predicts in this case. Frequencies approximate theoretical probability values
only if replications tend to infinity. So, if we try to test the equiprobability of heads
and tails empirically, we will approximate the theoretical value only in the (very) long
run. In the coin example, we will probably do better if we toss the coin 10,000 times.
And even better if we toss the coin 100,000,000 times.

Consider now RCTs. The rationale behind this experimental design is that random
assignment of patientsmay neutralize biases and confounders (Teira 2011). Thiswould
allow us to derive the objective probability of the hypothesis we are testing.

There are two main (and related) epistemological problems with this perspective.
The first is how to determine whether the sample of population we select in our trial
is sufficiently similar to the target population. As we have seen, in a small sub-set of
occurrences, our estimation of the frequency of an event may strongly diverge from the
frequency of that event relative to the whole set. In clinical trials, this divergence may
be due to relevant differences in the distributions of the relevant factors in the study
population and the target population.33 An analogous issue is establishing whether
the populations assigned to the different arms of the trial are equivalent.34 Indeed, a
trial is biased “if (whether or not we know it) there is some difference between the
experimental and control groups” (Worrall 2007a, p. 993).

Randomization and replication should be the keys here (Howson andUrbach 2006).
If there are say n factors that may be relevant and lead to biases or confounders in
evaluating the efficacy of a drug, a random assignment of patients is thought to be
able to distribute those n factors so that the frequencies of those n factors in the study
population approximate the frequencies of those n factors in the target population.
Indeed, it is known that non-random assignment of patients to the distinct arms of a
trial may induce bias and confounding.

33 This is the so-called problem of the external validity, see Worrall (2010).
34 Cf. Howson and Urbach (2006, p. 183): “Clinical trials typically involve two groups of subjects, all
of whom are currently suffering from a particular medical condition; one of the groups, the test group, is
administered the experimental therapy, while the other, the control group, is not […].”
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The problem is that even random assignment may well produce a study population
which is significantly divergent from the target population (Worrall 2010). To balance
all the possible biases and confounders we have to add replication to randomization,
i.e. we need to increase the number of study sub-populations selected through random
assignment. When the number of random sub-populations grows, the probability that
the mean value of the n factors in those populations will approximate the value of
the n factors in the target population increases. But n may be constituted by known
factors as well as unknown ones. This means that we could safely claim that the target
population is well represented in our study population and relevant factors are well
balanced, so that biases and confounders are prevented and neutralized, only in two
cases: (1) if we already know with certainty all the relevant factors that should be
considered for evaluating a given drug or treatment; (2) if the number of members of
the target population and the number of sub-populations go to infinity. Both conditions
usually do not obtain. The same reasoning applies to the issue of establishing whether
the trial is biased in the sense that there is some difference between the experimental
and control groups. How can we compare those groups and safely claim that they
are equivalent if there may be some unknown factors that may be not equivalently
distributed among them?

The point is that, as well as there is no way to claim that it is not possible that
some unconceived alternative to a given hypothesis will appear, there is no way to rule
out the possibility that there may be some not yet known relevant factors for the case
under investigation.35 Since our knowledge of what are the relevant factors is limited
and fallible, even if those factors are actually of a finite number, in order to claim with
certainty that all possible biases and confounders have been neutralized, we should be
able to managing infinite populations and replications. But managing actual infinity
in empirical domains is prevented to us humans. So, we cannot know with certainty
whether the frequency of event e that we estimated in our trial is really objective, i.e.
whether or not it approximates the frequency value of e in the whole population.

The second main epistemological problem with RTCs is more straightforwardly
connected with the issue of replicability. As we have seen, in frequentism it is the
number of replications that gives us reasons to think that the observed frequency
approximates the objective probability of a given event. Unfortunately, RCTs usually
cannot be too large for economical and ethical reasons (Worrall 2007a, b). But there is
also a theoretical difficulty. A randomized clinical trial can never be really replicated.
This is due to the fact that we cannot take our sample of patients, and after a first round
of treatment, re-randomize it and start the trial again (Worrall 2007b).36

This analysis of the epistemological difficulties that afflict RCTs is intended to point
out how the objectivity of the results obtained through RCTs, which is usually invoked

35 Cf. e.g. Worrall (2007b, p. 472): “there can be no estimate of how closely balanced a particular real trial
is with respect to any unknown factor—this is so by definition, since the unknown factor is unknown!”
36 Cf. Worrall (2007b, p. 472): “there is also an epistemological issue about whether any repeated random
trial would be comparable to the initial one. If a particular patient in the study receives, say, the ‘active
drug’ on the first round, then, since this is expected to have some effect on his or her condition, the second
randomization would not be rigorously a true repetition of the first. The second trial population, though
consisting of the same individuals, would, in a possibly epistemically significant sense, not be the same
population as took part in the initial trial.”
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as the main reason to adopt RCTs, can be maintained only if some epistemic decisions
are taken on how and (to what extent) less idealized conditions can be accepted for
a trial in a certain context. We maintain that these decisions are taken by performing
a plausibility-based analysis of the context under investigation, and are informed by
previous knowledge of relevant facts.37

4.3 Bayesian approaches to clinical trials

As we have already noted, Bayesians make several criticisms of RCTs. The most
relevant are: (1) the claim that RCTs deal with objective probabilities hides many
epistemic decisions that are instead taken in the actual development of RCTs; (2)
RCTs do not accept relevant kinds of evidences that should instead be taken into
consideration in the process of evaluation of a drug or treatment.

Those criticisms have their roots in the different way of conceiving of probability
that Bayesians adopt. Indeed, they usually regard probability as a measure of degree
of belief, rather than a frequency. In this view, probabilities are in the ultimate analysis
related to states of mind and not (directly, at least) to states of objects. According to
manyBayesians, adopting aBayesian strategy in the evaluation of drugs and treatments
would allow us to validate the efficacy of a drug or treatment in minor time and at a
minor cost.

Let’s briefly consider the epistemological difficulties that the Bayesians have to
face. Roughly, they can be reduced to the main one: the issue of prior probabilities
assignment.38 This is a crucial issue, because the assignment of different priors leads
to different results in the calculation of conditional probabilities.

There is a huge amount of literature on this issue (see Howson and Urbach 2006;
Williamson 2010). What is undeniable is that there is not a principled way to assign
prior probabilities which is widely accepted and may be really deemed to be objective.
Indeed, sincewe are dealing herewith a ‘degree of belief’ conception of probability,we
cannot rule out the possibility that different priorsmay be assigned by different subjects
to the very same hypothesis. According to critics of the Bayesian approach, such a
subjective view of probability would introduce an unacceptable degree of subjectivity
in our evaluative process, and this would make this process arbitrary.

Moreover, in this view priors reflect current knowledge, so they do not reflect the
way the world really is, but the degree of our knowledge of it. Thus, even if we put
aside the role of subjectivity in prior probabilities assignment, and adopt objective

37 Cf. Worrall (2007a, pp. 1000–1001): “randomisation does not free us from having to think about alter-
native explanations for particular trial outcomes and from assessing the plausibility of these in the light of
‘background knowledge’.”
38 On the different Bayesian perspectives on prior probabilities, cf. Williamson (2010, p. 2): “All Bayesian
epistemologists hold that rational degrees of belief are probabilities, consistent with total available evidence,
and updated in the light of new evidence by Bayesian conditionalization. Strict subjectivists (e.g. Bruno
de Finetti) hold that initial or prior degrees of belief are largely a question of personal choice. Empirically
based subjectivists (e.g. Howson and Urbach […]) hold that prior degrees of belief should not only be
consistent with total evidence, but should also be calibrated with physical probabilities to the extent that
they are known. Objectivists (e.g. Edwin Jaynes) hold that prior degrees of belief are fully determined by
the evidence.”
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Bayesianism (Williamson 2010), according to which prior degrees of belief are fully
determined by the evidence, the problem of the unconceived alternatives is still there.
This means that the problem of subjectively assigning some prior degree of belief is
just moved one step back. Indeed, prior probabilities can be assigned in an objective
way only if we could affirm to know all the possible outcomes. But since our current
knowledge is contingent and fallible, we cannot exclude that there may be other pos-
sible outcomes that we do not know yet. Thus, we cannot calculate the probability
of each possible outcome in a truly objective way. As we have seen above, we can
proceed by making plausibility-based considerations on the relevant data and our pre-
vious knowledge, and assigning prior probabilities accordingly. This means that the
objective Bayesian may well assign a prior probability value p to a given hypothesis
h on the basis of the set e of empirical evidences for p that are currently available. She
may also claim that p is fully determined by e. But what is the prior degree of belief
p1 that we should assign to the hypothesis h1 that evidences collected in e are reliable,
and so that we can safely rely on them in order to determine p? If we think that p1
may be fully determined in its turn by another set of evidences e1, we risk ending in
a regress. So, at some point at least, some prior probabilities assignment cannot be
maintained to be objectively and fully determined by evidences alone.

In other words, since prior probabilities assignment cannot avoid resorting to
plausibility-based considerations, even if Bayesian strategies of testing can account
for all the relevant evidences that enter the evaluative process of practitioners, they are
nevertheless unable to dictate an uncontroversial way of assigning values to the prior
probabilities relative to such evidences.

To sum up, plausibility-based considerations play a relevant role both in frequentist
and Bayesian approaches to clinical trials (although this role is neglected by both these
approaches), because these approaches deal with a context afflicted by the problem of
the unconceived alternatives. We think that taking into account the role of plausibility-
based considerations can contribute to clarify some epistemological shortcomings that
afflict both frequentist and Bayesian perspectives.

5 Conclusion

In this article, we firstly introduced the analytic view of theory development and illus-
trated the concept of plausibility to some extent in order to make clear in what sense
plausibility and probability are distinct concepts. We used the concept of plausibility
to point out the ineliminable role played by the epistemic subject in the process of
evidence amalgamation and in the process of theory assessment. Then, we moved to
address a central issue in current cancer research, namely the relevance of compu-
tational tools developed by bioinformaticists to detect driver mutations in the debate
between the twomain rival theories of carcinogenesis, namelySMTandTOFT. Finally,
we briefly extended our considerations on the role that plausibility plays in evidence
amalgamation from cancer research to the more general issue of the divergences
between frequentists and Bayesians in the philosophy of medicine and statistics. We
argued that considering the role played by plausibility-based considerations may lead
to clarify some of the epistemological shortcomings that afflict both these perspectives.
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