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Abstract If physics is a science that unveils the fundamental laws of nature, then the
appearance of mathematical concepts in its language can be surprising or even myste-
rious. This was Eugene Wigner’s argument in 1960. I show that another approach to
physical theory accommodates mathematics in a perfectly reasonable way. To explore
unknown processes or phenomena, one builds a theory from fundamental principles,
employing them as constraints within a general mathematical framework. The rise of
such theories of the unknown,which I call blackboxmodels, drives home the unsurpris-
ing effectiveness of mathematics. I illustrate it on the examples of Einstein’s principle
theories, the S-matrix approach in quantum field theory, effective field theories, and
device-independent approaches in quantum information.
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1 Introduction

“The enormous usefulness of mathematics in the natural sciences is something border-
ing on themysterious…[T]here is no rational explanation for it”, wrote EugeneWigner
in a well-known article in 1960 (Wigner 1960). Above all, this “unreasonable” effec-
tiveness manifests itself in physics. The latter, for Wigner, is devoted to “discovering
the laws of inanimate nature”. This view of physics, widespread but also challenged
several times during the twentieth century, relies on the concept of “law of nature” in
a fundamental way. Any such law applies to one or several kinds of inanimate matter
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and describes their dynamical evolution. Physics is seen, then, as a study of natural
phenomena by first deducing and subsequently applying corresponding general laws.
The overarching aim of the laws is to enable the prediction of future events. Wigner
wonders why this goal happens to be aligned with an apparently different one, that of
mathematics, which he describes as selecting concepts that are “amenable to clever
manipulations [in producing] striking, brilliant arguments”. If one takes for granted
that mathematical thinking is exclusively concerned with a search for such arguments,
it may indeed seem mysterious that the mathematical concepts and formulae should
be useful in facilitating the prediction of future events.

I submit that the effectiveness of mathematics in the natural sciences is perfectly
reasonable and rational if one adopts a different view of physical theory. The aim
of prediction of future observations, for sure, remains; but the substance changes.
This view applies whenever the object of study involves phenomena or processes
whose nature remains unknown. Under these circumstances, physicists are not in
position to say what kind of matter is involved but they are nevertheless eager to
build a theory. In order to do so, they employ fundamental principles tasked with
limiting the possibilities in a theoretical description of unknown facts. For short, this
approach will be named ‘blackbox models.’ Its main feature is that physical theory
is to be constrained by universal principles rather than dynamical laws. On this point
the blackbox approach complements, but does not contradict, Wigner’s conception
of physics. It is now broadly used, with applications spanning more than a century
of research work that gave birth to new physical theories and discoveries. I illustrate
the importance of this physics of the unknown on four examples: Einstein’s principle
theories (Sect. 2), S-matrix (Sect. 3), effective field theories (Sect. 4), and device-
independent approaches (Sect. 5).

On the basis of these four case studies I argue in Sect. 6 that the effectiveness of
mathematics in blackbox models is neither surprising nor unreasonable. Blackbox
models leave no room for Wignerian amazement because their success depends on
mathematics as a driving force of theoretic construction. Yet they are predictive, as
required of physics, and also explanatory. That physical explanation can be provided
by blackbox models is precisely the missing element in Wigner’s view: these models
do not seek to establish a law of nature, however their explanatory power is as real
as that of constructive, dynamical theories. Combined with the constitutive role of
mathematical concepts in blackbox models, it clears away the cloud of mystery over
the use of mathematics.

2 Principle theories

In 1919 Einstein made a well-known distinction between principle and constructive
theories (Einstein 1982). Constructive theories match Wigner’s view of physics: they
contain dynamical laws describing the behaviour of particular kinds of matter, e.g.,
Newton’s laws for the movement of rigid bodies. Since their aim: employing laws
to predict future events, is different from the aim of mathematics, Wigner’s claim to
surprising effectiveness fully applies to constructive theories. By contrast, a principle
theory, e.g., Einstein’s own special relativity, is a theory derived from simple postu-
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lates. It does not begin with an assumption about the type of matter or its dynamics;
these become consequences of the postulates rather than theoretical prerequisites. The
postulates are formulated as universal physical principles and are expressed in the
formalism as mathematical axioms.

For example, the relativity principle or the independence of the speed of light of
the reference frame in which it is measured play the role of fundamental principles
in Einstein’s relativity theory. A different set of postulates may begin with setting an
upper limit on velocities (Fock 1959, 1971). A modern avatar of these postulates,
called no-signalling, stipulates that in an experimental setting with two observers the
choice of measurement by one party must not influence the statistics of the outcomes
registered by a different party. It is widely used in device-independent approaches for
introducing constraints on operations with quantum information (see Sect. 5). The
interest of this formulation is that it is entirely non-dynamical: no-signalling is an
algebraic condition expressed in the language of conditional probability. At best it
receives a kinematic—but not a dynamical—expression.

To use Einstein’s own words about principle theories, the principles are employed
in them in order to “narrow the possibilities” (Einstein 2004). This means that one
should begin the model-building exercise by adopting a very inclusive framework that
can encompass the unknown phenomena in question but also much more. This frame-
work may possibly extend beyond what has been or can be experimentally observed
at a current stage of technological development. The point of choosing this starting
point is that a broad framework can accommodate a yet unspecified theory with unpre-
dictable empirical consequences. Principles, then, limit the possibilities and serve to
narrow the framework down to a particularmodel. For example, no-signalling excludes
faster-than-light travel in a geometric framework with a preselected spacetime, either
Euclidean or Minkowski, or in the Riemannian way of introducing a spacetime man-
ifold and arbitrary Riemannian metric. In a non-dynamical framework which does
not begin with a geometric object, the very notion of ‘travel’ might be undefined.
Here, the no-signalling principle helps to make sure that a purely algebraic model
will not produce a contradiction with the theory of relativity when it is applied for the
description of real-world phenomena. The impossibility of faster-than-light signalling
is “elevated” (Friedman 2001, p. 88) to the status of universal postulate even in the
absence of geometric assumptions. It then becomes a fundamental principle of nature
and a constitutive feature of physical theories.

Einstein’s own road to the distinction between principle and constructive theories
was a challenging one. After his 1905 article describing the photoelectric effect in
terms of light quanta (Einstein 1905), his belief in the fundamental character and the
exact validity ofMaxwell’s electrodynamics was destabilized. As he wrote in the 1949
Autobiographical Notes,

Reflections of this type [on the dual wave-particle nature of radiation] made it
clear to me as long ago as shortly after 1900, i.e., shortly after Planck’s trailblaz-
ing work, that neither mechanics nor electrodynamics could (except in limiting
cases) claim exact validity. By and by I despaired of the possibility of dis-
covering the true laws by means of constructive efforts based on known facts.
Einstein (1949, p. 51, 53)
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This “desperation” led Einstein to special relativity. To find the theory, he looked for
one that would not be based on “known facts”. Special relativity, indeed, remains mute
on the issue of material constitution of the rods and clocks that act as measurement
devices.

There is good evidence that Einstein believed that this lack of constructivity was
a disadvantage and that principle theories did not offer a satisfactory understanding
of physics (Brown and Timpson 2006; Frisch 2005). This claim has been challenged
recently via a comparison with James Jeans’s position (Lange 2014) but another, more
seasoned critique focuses on the status of general relativity. According to Brown,
it should be seen as a constructive theory since it contains a dynamical law (Brown
2005).Without entering the debate on constructive relativity, I would like to emphasize
the importance of the argument from explanatory power. The capacity to explain
phenomena was uncontroversially ascribed by Einstein only to constructive theories:
“When we say we have succeeded in understanding a group of natural processes, we
invariably mean that a constructive theory has been found which covers the processes
in question” (Einstein 1982). Einstein wished to build an explanatory account based
on known facts but despaired to do so. In his time and later, the desideratum to obtain
a constructive theory as a replacement of principle-based special relativity never came
to be realized.

To be sure, constructive theories are still widely in use. What has changed since the
time of Einstein’s tergiversations is that principle theories are now taken to be explana-
tory. They are capable of giving an understanding of physics on a par with constructive
theories, i.e., they can underlie theoretical knowledge as well as experimental setups
(e.g., in quantum cryptography, see Sect. 5). That physical knowledge can be gained
through the pursuit of a principle-based approach has helped to legitimize it, not only
as a widespread method on sociological grounds, but also on the grounds of epis-
temology as an approach that is explanatory. Its key method: the choice of a broad
framework and its subsequent narrowing down through limiting principles, which is at
the same time an application of mathematics to physics and the enabling force behind
theory-building and ultimately behind explanation. A conjunction of these two factors
showcases a paradigm of physical theory in which it is perfectly reasonable to assign
the central methodological place to mathematics.

3 S-matrix

In the years before quantum electrodynamics and subsequently quantum chromody-
namics were fully developed it had not been clear that a field-theoretic approach would
be successful in accounting for the electromagnetic, the weak and the strong interac-
tions. In the early 1950s, for example, it was not obvious to the physics community
whether the method of quantum field theory (QFT) based on gauge symmetry would
be an appropriate framework for building the theory of strong interactions. A similar
uncertainty plagued quantum electrodynamics a decade earlier. In 1954, same year as
the work by Yang andMills, during a conference discussion in the presence of Oppen-
heimer, Gell-Mann, Fermi, Wick, and Dyson, Goldberger challenged the applicability
of QFT methods to nuclear interactions. Surprisingly, nobody in the audience spoke
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to the contrary (Noyes 1954). This episode was still remembered in the 1970s as a
typical example of early doubts about the future of quantum field theory (Appelquist
and Bjorken 1971).

The doubts about the applicability of QFT were prevalent because of renormal-
izability issues. In response physicists began to look for methods to build a theory
that did not assume any known particle content leading to divergencies. The main
idea of this approach was borrowed from Heisenberg’s philosophical program in the
1920s, which prescribed that a theory should focus only on observable quantities.
This idea proved to be extremely successful in the discovery of quantum mechan-
ics (Heisenberg 1925). The hope was that the same approach would again produce a
crucial insight. As Weinberg wrote, the physicists of the generation before his own
believed that “by using principles of unitarity, analyticity, Lorentz invariance and other
symmetries, it would be possible to calculate the S-matrix, and you would never have
to think about a quantum field” (Weinberg 1996, p. 248). Indeed, history has largely
followed this prescription in developing the way in which our current physical theories
with unknown particle content are constructed. One detail of this approach presents a
particular philosophical interest. For a theoretician, the central question bears on the
mathematical content of the theory: what mathematical concepts should one use to
represent observable quantities? What physical constraints are to be imposed on such
representatives? The success of the theory-building exercise is directly dependent on
finding a framework in which the connection betweenmathematical concepts will turn
out to have predictive power.

In 1937 John Wheeler introduced one such mathematical concept, which he called
the scattering matrix, later to be known as S-matrix (Wheeler 1937). Wheeler’s ini-
tial intent was to develop a mathematical method of “resonating group structure” that
would allow one to build a description of the whole interacting system of elemen-
tary particles from the knowledge of its parts. This did not fully work out. Wheeler,
however, obtained a result suggesting that the problem as he had formulated it could
in fact be bypassed: “The connection which we have obtained between the scattering
and disintegration cross sections does not depend for its validity on the accuracy of
what we have called the method of resonating group structure”. The scattering matrix
that involved the cross sections depended only on some general asymptotic proper-
ties but not on the details of the interacting compound system. Among the general
arguments used by Wheeler one mainly finds symmetry considerations credited by
him to Bohr and Jordan. In the wake of Heisenberg’s quantum mechanics, Wheeler’s
work provided a new example of a physical theory of unknown interactions, which
involved exclusively the observables. It was built through the introduction of a new
mathematical object. Wheeler published the results but did not pursue his method
further; only much later did his scattering matrix become known as a precursor of the
S-matrix theory of strong interactions (Mehra 2001, p. 990).

Between 1942 and 1944 Heisenberg, who did not know about Wheeler’s work,
wrote a series of three articles in Zeitschrift für Physik explicitly pursuing the goal
of building a theory of unknown physics. The reason why the constructive physical
content had to be taken as unknown, according to Heisenberg, was that the theory
could change in the future:

123



978 Synthese (2019) 196:973–989

In view of the later alteration [Abänderung] of the theory, the present investi-
gation attempts to isolate from the conceptual scheme of the quantum theory
of wave fields those concepts which probably will not be affected by the future
changes [in the theory of elementary particles] and which may therefore repre-
sent an integral part [Bestandteil] also of the future theory. Heisenberg (1942)

The concepts that Heisenberg thought would not be affected by a future theory change
were the observable quantities. He admitted although, in an indisputable influence
of his earlier discussions with Einstein, that ‘only the final theory will decide which
quantities are “really observable”’. As early as 1938, simultaneously with Wheeler
but independently, Heisenberg wrote:

Perhaps one may remember to advantage, in attempting to find new concepts,
that in mathematical formulae, we are now confronted with the task of finding
computational rules, by which we can connect the cross sections… (Heisenberg
1938)

This stance, to quote the historian Helmut Rechenberg, was a consequence of the
fact that “one did not yet know how to formulate a divergence-free theory describing
elementary particles” (Rechenberg 1989). Heisenberg’s conviction was that the right
theory would contain a minimal length. It was not immediately clear, however, how
one was supposed to introduce such minimal length in QFT. Heisenberg reasonably
believed that the asymptotic results, because they belong among observable quantities
that the theory must be able to predict, should remain independent of the minimal
length. While working out a complete theory remained a matter for future research, it
was possible to introduce a direct connection between the momenta and the energies
of free particles and the scattering and reaction cross sections. The connection was
to be expressed mathematically: “It seemed appropriate to find a mathematical [our
emphasis—AG] object capable of housing these observable quantities. Heisenberg
realized that the momentum space kernel of the probability amplitude for transitions
between free particle states was the object hewanted” (Grythe 1982). ThusHeisenberg
introduced a unitary ‘characteristic’ S-matrix becoming the founding father of the S-
matrix approach in theoretical physics.

Heisenberg’s S-matrix met fierce opposition fromWolfgang Pauli. He believed that
it could not be fundamental, because the way the approach was constructed did not
rely on arguments from simplicity and, in fact, produced a result that was anything
but simple:

In general I have arrived at the opinion that the S-matrix is not a concept, ofwhich
wemay expect that it occurs in a future theory as a primary fundamental concept.
It indeed has the character of something complicated and derived and therefore
might hardly be suitable to lead us beyond the present wave mechanics. (Pauli
1946)

This lack of simplicity underwrote Pauli’s conviction that the S-matrix could not be a
part of the laws of nature. It seems that Pauli believed that for reasons of mathematical
elegance a law of nature should have a simple expression. He then concluded:
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The S-matrix, although it might exist in a future theory, seems to be completely
unfit to constitute the point of departure for a [new] theory. It is not the quan-
tity which will occur in the general laws of nature, but a late consequence of
them. (Pauli 1948)

This reveals a tension between two approaches to physical theory, each pushing toward
a different role of mathematical formalism. Pauli wished to have a theory containing
laws of nature, i.e., dynamical rules of evolution of particular kinds of matter. If a law
is found, e.g., describing light quanta, and if this law has a mathematical expression,
then it is perfectly legitimate to wonder, as Wigner did, why mathematics would be so
effective in describing their behaviour. It is even more surprising that mathematics is
equally effective in describing the evolution of directly perceivable objects like tables
or chairs. Whatever answer one may give to this Wignerian wonder, the theory in
question is, in Einstein’s terms, a constructive one.

The situation is different for principle theories. They explore unknown territories,
which cannot yet be accounted for in terms of a particular kind ofmatter, let alone a law
of its dynamical evolution. The S-matrix, asWheeler discovered, bypasses the problem
of “resonatinggroup structure”,whichwoulddescribe the content of the theory in terms
of interacting particles. Similarly,Heisenberg’s focus on observable quantities does not
require a physical description of how one such observable gets dynamically converted
into another. Themiddle ground can remain unknown—ablack box—whilemathemat-
ical relationswill still be available describing the relationbetween theobservables.This
is a clear sign thatmathematics in a principle theory is not playing the role of underwrit-
ing the laws of nature, asWigner thought, but rather of letting a theory of the unknown
to be built in the first place. When Gregor Wentzel called the S-matrix program “very
incomplete—it is like an empty frame for a picture yet to be painted” (Wentzel 1947),
he believed to be giving a pejorative assessment of Heisenberg’s program. In fact, he
put his finger on the main feature of principle theories: a physical theory is possible
without filling in “an empty frame” or opening up a black box.

The S-matrix theory of nuclear interactions has become history after the advent of
quantum chromodynamics but the S-matrix approach is still well and alive. In quan-
tum gravity, for example, it is used for constructing low-energymodels of supergravity
from high-energy theories like string theory. String theory itself was discovered by
Veneziano as a consequence of his work on the S-matrix approach, when he used
general principles to correctly guess the unknown amplitudes satisfying duality prop-
erties, which described the excitations of a one-dimensional object (Veneziano 1968).
One can use this all-encompassing theory of quantum gravity to construct low-energy
gravitational models with unknown physical content. This study of unknown territory
requires the same tool as the one used by Heisenberg for exploring the unknown land
of QFT, the S-matrix:

Such an S-matrix, which is tightly constrained by properties such as unitarity and
analyticity, can be a very powerful way to summarize our ignorance of a theory.
…We might anticipate that such study in the context of gravity, supplemented
by additional physical input, could bear important fruit. (Giddings 2013)

Thus the anticipated physics is always mathematical.
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4 Effective field theories

The S-matrix approach only asked ‘practical’ questions about the yet unknown the-
ory of strong interactions, formulated in the language of physical observables, and
methodically avoided the need to have a full theory. In the effective field theory (EFT)
approach the unknown is not the theory of nuclear interactions but new physics beyond
the Standard Model. With little prospect for distinguishing in the near future between
the different alternatives, EFT offers a method for developing a theory-independent
approach, in which observable effects are all that matters about new unknown physics.
Just as the S-matrix enables an exclusive focus on observable quantities by disregard-
ing the quantum field, EFT relieves one from the need to worry about the physical
content of high-energy theory. To this end, EFT prescribes that the Lagrangian of the
theory should include all terms in the most general form compatible with symme-
try principles. Its assumes no particular physical content or physical meaning, with
symmetry principles being the only constraints.

The notion of renormalizability in the context of quantum field theory and its early
representatives like quantum electrodynamics was developed by Bethe, Schwinger,
Tomonaga, Feynman, and Dyson. The latter introduced crucial power-counting tech-
niques for analyzing operator relevance. Since his 1949 work (Dyson 1949a, b) and up
to 1970s renormalizability was thought to be a necessary condition for a field theory
to make sense. Wilson’s work on the renormalization group (Wilson 1971) has paved
the way for a new attitude due to a modified view on the reality of the renormalization
cut-off. In the older understanding, the cut-off scale was a residue of abstract mathe-
matics introduced with the only goal of avoiding infinities in summation series. The
new appreciation of non-renormalizable theories came with the understanding that
the cut-off could be taken as physical and corresponding to the limit of applicability
of a given theory. New physics was to be expected beyond the same cut-off scale
�N P . Since the domain of applicability of particular field theories became limited
by a number denoting an energy scale, they began to be seen as effective rather than
fundamental theories whose validity only extends up to some frontier. Wilson’s work
and Weinberg’s reintroduction of EFTs as useful theories with ‘phenomenological
Lagrangians’ (Weinberg 1967, 1979, 1989) boosted this new view.

Much of the historic development of EFTs focused on the top-down approach
stipulating that the fundamental physical theory is known but inapplicable for practical
purposes. This may be due to the complexity of high-energy theory or, in the case of
EFTs in condensed matter physics, to heuristic arguments as suggested by Shankar:
“Evenwhen one knows the theory at amicroscopic level (i.e., the fundamental theory),
there is often a good reason to deliberately move away to an effective theory” (Shankar
1999). A typical example from particle physics is the chiral perturbation theory, which
gives a low-energy approximation of quantum chromodynamics in the light quark
sector (for a review see Pich 1999). Even when the physical content is known, it
is often instructive and necessary to build a physical theory as if it had remained
unknown. This effectively transforms EFTs into blackbox models, with a history of
the approach that treats the known as if it had been unknown going back to the Euler-
Heisenberg calculation in the 1930s of photon-photon scattering at small energies
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within the framework of Dirac’s quantum field theory (Euler and Kockel 1935; Euler
1936; Heisenberg and Euler 1936).

High-energy physics often uses an alternative ‘bottom-up’ approach, whose popu-
larity reflects a change in the conception of EFTs. Today physicists tend to think of all
physical theories, including the Standard Model, as EFTs with respect to new physics
at higher energies. Blackbox models have become universal: it is not wrong to claim
that to some extent any quantum field theory is a theory of the unknown.

A typical model-building scenario, following Wilson, starts with a Lagrangian of
an effective field theory valid up to scale �. This Lagrangian can be generally written
as a sum over local operator products:

L =
∞∑

n=0

λn

�n
On . (1)

Coefficients λn are the coupling constants. They encode information on the unknown
physics at scales higher than � and can be fixed experimentally; additionally, when
the underlying high-energy theory happens to be known, the values of the coupling
constants appear through a renormalization group calculation.

The only constraints on the form of operator product terms On come from the
symmetries of the theory. The tree level of the power series in 1

�
is obtained by the

usual Standard Model calculation. Effects of new physics appear in loop corrections
and influence the value of coupling constants λn . The main value of Lagrangian (1) for
high-energy physics is that it can be used to study low-energy effects of new physics
beyond the Standard Model without having to specify what this new physics actually
is, apart from the assumption of its irrelevance to interactions below the cut-off.

To give a realistic example, consider a ‘top-down’ electroweak EFT that reproduces
the Standard Model for the light degrees of freedom (light quarks, leptons and gauge
bosons) as long as energies are small compared with the Higgs mass (Pich 1999). This
EFT is Higgless in the sense that it cuts off the Higgs sector by a choice of �. The
lowest-order effective Lagrangian fixes the masses of Z and W bosons at tree level and
does not carry information on the underlying symmetry breaking SU (2)L ×U (1)Y →
U (1)QED down to the gauge groupU (1) of quantumelectrodynamics.At the next order
the most general effective chiral Lagrangian with only gauge bosons and Goldstone
fields,

L(4)
EW =

14∑

i=0

aiOi , (2)

contains fifteen operators. This complexity is essential as it stems from the requirement
that we use the most general form of the Lagrangian compatible with symmetry prin-
ciples. Gell-Mann formulated a rule called “the totalitarian principle”, which asserts
that everything that is not forbidden is compulsory (Bilaniuk and Sudarshan 1969).
For Lagrangian (2), constraints from symmetry include invariance with respect to C P
and SU (2)L × U (1)Y . Also, three of the fifteen operators vanish as a consequence of
the equations of motion under the assumption of light fermions. With the remaining
terms, one finds various effects such as the usual electroweak oblique corrections (six
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operators involved at the bilinear, four at the trilinear and five at the quartic levels),
corrections to rare B and K decays, the C P-violating parameter, etc. This effective
approximation of a very large Higgs mass in the Standard Model gives a field theory,
whose operator content is not simple but which nevertheless possesses phenomeno-
logical predictive power and provides an easier way to perform calculations than the
complete Standard Model Lagrangian.

As if he were developing an argument to counter Pauli’s critique of Heisenberg’s
S-matrix, Weinberg insists that the absence of any assumption of simplicity about the
EFT Lagrangian is what makes the EFT method so efficient (Weinberg 1996, p. 246).
He further supports the parallel by claiming that “the S-matrix philosophy is not far
from the modern philosophy of effective field theories”. However, he also adds a
critique of S-matrix: “More important than any philosophical hang-ups was the fact
that quantumfield theory didn’t seem to be going anywhere in accounting for the strong
and weak interactions”. The S-matrix was the only rational reaction to a situation in
which no one knew what language to use, nor in which direction to look for a theory
of the strong and weak interactions. This was despair quite analogous to Einstein’s
unease when he realized that the theory he’d been developing could not be based on
known facts (Sect. 2). Similarly, today we do not know whether supersymmetry, or
extra dimensions, or yet another model, will turn out to be the right solution for new
physics. However, the blackbox approach to unknown phenomena is generalized in
EFTs to the point where it can be applied above and beyond any despair. It has become
a usual, and arguably a normative, tool in quantum field theory.

Like Einstein or Heisenberg, we resort to a language that does not require knowl-
edge of the dynamical laws or the constitutive types of matter. Unlike Einstein or
Heisenberg, we treat this situation as perfectly reasonable. The method of building an
EFT that starts from a general mathematical framework of gauge theory, then proceeds
with a Lagrangian compatible with the constraints coming from symmetry principles,
is neither a surprising nor a scandalous jump as Pauli may have thought about Heinsen-
berg’s S-matrix. That mathematics plays an effective role in physics of the unknown, if
we look at it from the point of view of effective field theories, becomes a new normal.

This view is a far cry fromWigner’s insistence on physical theories as collections of
laws of nature but it fits well with another one of his ideas. When Wigner announces
that the aim of mathematics is to develop concepts that can be “manipulated [for]
making striking, brilliant arguments”, he insists that these concepts are not chosen
for their conceptual simplicity. Similarly, simplicity is not at work in the selection of
operators for an EFT Lagrangian dictated by Gell-Mann’s totalitarian principle. The
latter is driven by the concern of effectiveness in the prediction of future events: this
is precisely Wigner’s definition of physical theory. What is more, this type of theory,
like all blackbox models of unknown physics, is constitutively grounded in the use of
mathematics.

Wigner connected mathematics with a capacity to make striking arguments. What
is striking in EFTs is that an argument can be made at all without the knowledge of
complete theory. Summing up, we see in the case of effective field theories an example
of perfectly reasonable and rational effectiveness of mathematics in physics.
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5 Device-independent models

Quantum cryptography works with systems of “unspecified character” (Bancal et al.
2011) or “unknown nature” (Bardyn et al. 2009). This is performed in a device-
independent approach: a theoretical investigation that does not rely on the knowledge
of laws governing the systems’ behaviour. A conventional ‘device’ refers here to any
process or apparatus described by an operational theory, whether classical or quantum,
which is explicitly designated. This terminology was first introduced by Mayers and
Yao (1998), who developed device-independent quantum cryptographywith imperfect
sources. Over the years quantum cryptography has developed an array of suchmethods
for dealing with adversaries which effectively turn systems into untrusted entities by
acting upon sources. Device-independent protocols play an important role in exper-
imental tasks such as randomness generation (Colbeck 2006; Pironio et al. 2010),
quantum key distribution (Barrett et al. 2005), estimation of the states of unknown
systems (Bardyn et al. 2009), certification of multipartite entanglement (Bancal et al.
2011), and distrustful cryptography (Aharon et al. 2016). Some of these cryptographic
protocols have found a broader use in quantum information, e.g., device-independent
tests are performed on Bell inequalities or on the assumption that superluminal sig-
naling is impossible (Bancal 2013).

In full generality, device-independentmodels are defined as a set of n parties, each of
which ‘selects’ ameasurement setting or ‘places’ an input value x1 ∈ X1, . . . , xn ∈ Xn

respectively, and ‘subsequently’ ‘obtains’ an output value or a measurement result
a1 ∈ A1, . . . , an ∈ An . The sets X1, . . . ,Xn and A1, . . . ,An are alphabets of finite
cardinality. The verbs used in these expressionsmerely convey an operational meaning
of the inputs and outputs; they do not imply that any party exercises free will or has
conscious decision-making procedures. The term ‘subsequently’ introduces a local
time arrow pointing from each party’s input to its output. Although such local time
arrows seem quite intuitive, in full generality they need not be assumed either. A fully
general setting requires, therefore, that absolutely nothing be postulated about the
way inputs are transformed into outputs, except two conditions: a) these two types of
data are clearly distinguished; b) the process of transformation is physical. Physics
is contained in the generalized probability distribution p = P(a1, . . . , an|x1, . . . , xn)

(Fig. 1).
All device-independentmodels studied in the literature introduce further constraints

on p. A customary one is the no-signalling principle mentioned in Sect. 2: a choice of
measurement by one party must not influence the statistics of the outcomes registered
by a different party. Mathematically, the distribution p is non-signalling if and only if
all one-party marginal probabilities are functions of their respective inputs xi :

P(ai |x1, . . . , xn) = P(ai |xi ). (3)

Although very common, this assumption is not universal: when device-independent
methods are used to test general causal inequalities, the impossibility of signalling is
not a prerequisite (Baumeler and Wolf 2014).

One of the earliest examples of device-independent methods in quantum infor-
mation involves what is literally called a box. The no-signalling constraint was
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Fig. 1 In the case of n = 3 parties, physics is fully contained in the probabilities p = P(a1a2a3|x1x2x3)

studied by Popescu and Rohrlich (1994) through the introduction of a non-local, or
Popescu-Rohrlich (PR), box describing unknown processes which connect the inputs
x, y ∈ {0, 1} and the outputs a, b ∈ {0, 1} of two parties according to the joint distri-
bution:

P(ab|xy) =
{
1/2 : a + b = xy mod 2
0 : otherwise.

(4)

While a PR-box is a general algebraic framework designed to go beyond quantum
theory, the application of the no-signalling principle implies that this box will respect
the laws of special relativity. Its device-independent non-local structure accommodates
a violation of the Tsirelson bound (Cirel’son 1980) by reaching the maximum amount
of correlations in the CHSH inequality (Bell 1964; Clauser et al. 1969).

Hailed as a “very important recent development” (Popescu 2014), device-indepen-
dent models are characterized by the absence of assumptions about the internal
workings of the box. Its ‘interior’ is not described by a particular physical theory.
The box is unknown territory which, since it is assumed to be of interest for physical
theory, is also a territory of science. The entire setup belongs within the boundaries of
physics; at the same time, as we argue elsewhere, it opens new possibilities to redefine
these very boundaries (Grinbaum 2017).

The redefinition of the boundaries of physics achieved by device-independentmeth-
ods in quantum cryptography and quantum information is entirely due to the use of
mathematics. The prediction of future events, to use Wigner’s term, is made possible
by a connection, which remains to be found, between the inputs and the outputs. In the
absence of any additional assumptions, the search for such a connection is performed
in the space of mathematical tools available to the physicist. This is a common trait of
blackbox models that deal with unknown physics. In the operational framework based
on generalized probability distributions, the physicist’s only elementary notions are
the inputs and the outputs. She then applies mathematical constraints, like the no-
signaling principle, to obtain a particular theory with predictive power. Not only is
the effectiveness of mathematics unsurprising: it becomes a driving force that propels
device-independent theory building.
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6 Analysis and conclusion

Wigner’s argument about unreasonable effectiveness ofmathematics in physical theory
relied on an intuitive feeling that nothing, in principle, urges nature to be mathemat-
ical. Unlike, for example, Galileo, Wigner did not seek to ground his statement in a
particular philosophical system. He expressed the immediate surprise of someone who
discovers that mathematical formulae can correctly predict future events and account
for reality outside human mind. Evidently, a Pythagorean or a neo-Platonist would not
be puzzled, for these philosophical systems put the number among fundamental con-
stitutive principles of nature. But Wigner’s amazement produced an urge to motivate
the underlying connection by means other than the application of a doctrine.

In rational terms the Wignerian wonder can be understood as two questions: one
about the substance and another about the aim of physical theory. The first one is: why
are objective phenomena and matter in the world outside human mind described by
mathematical laws? However, physical theory does not always deal with phenomena
or matter that are known or already available. This is but a limitation that has led
Wigner to the view of physical theory as a collection of laws of nature. Physics must
often explore the unknown and one of its tasks is to determine what kind of matter is
involved in an experiment or what events can be predicted, and subsequently observed,
in support of a theory. In this case, the impulse for creating a theory stems from the
desire to study new and unknown territory. Its deeper motivation usually relates to
a feeling of dissatisfaction with the available old theories; it is rare that one would
obtain at an early stage a sufficiently precise idea about the content of the new one.
On other occasions old theories are too complex or unsuited for the needs of solving
particular problems. Even if complete knowledge is available, it may be reasonable to
treat it as if it had remained unknown. Thus physics of the unknown is established as
a collection of exploratory instruments whose nature, as we saw on four examples, is
mathematical.

This last point shifts focus to Wigner’s second question about the divergence of
aims between physics and mathematics. Had Wigner taken a suitably broad definition
of physical theory to include the physics of the unknown, he would have seen this
divergence quickly evaporate. This is because the physical theory of the unknown takes
the form of a blackbox model purporting to establish a link between the inputs and
the outputs of the box. The link must be conceptual and striking, i.e., mathematical in
Wignerian terms, but it must also provide the power of prediction of future events, i.e. it
should position the theory within the boundaries of physics. This is the ‘box’ language
of the device-independent approach. Equivalently, one may say with Heisenberg that
the theory should only operate with observable quantities.Wheeler expressed the same
idea by focusing his introduction of the S-matrix on asymptotically free particle states.
In effective field theories, the unknown high-energy theory is replaced by operators
describing all possible effects observable at a given energy scale.

What is unknown is placed in a black box, which the theory does not necessarily
seek to open up. As shown by Einstein’s principle theories, this approach does not, and
often cannot, help to uncover the content of the box. In spite of its non-constructive
character, it can still be predictive and explanatory. Explanation in this case origi-
nates, not from any knowledge of what lies inside the box, but from the postulates
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that constrain the connection between the inputs and the outputs. If a theory is suc-
cessful in predicting future events, then these principles become our best candidates
for fundamental principles of nature. This new knowledge about the world does not
come in the form of a dynamical law for a new kind of matter. Instead our worldview
is put on a new foundation, whose status is established through an enquiry enabled by
mathematics.

Wigner stopped short of claiming this essential theory-building role ofmathematics.
He calls it “somewhat irresponsible” as he identifies it with the following attitude:
“When [the physicist] finds a connection between two quantities which resembles a
connection well-known from mathematics, he will jump at the conclusion that the
connection is that discussed in mathematics simply because he does not know of any
other similar connection”. This phrase appears after a brief reference to Einstein’s
appreciation of beauty, which in Wigner’s words “comes closest to an explanation for
the mathematical concepts’ cropping up in physics”. Had he been reading Einstein’s
correspondence that predatedhis article byonly a fewyears,Wignermight havenoticed
that the “jump” that he was talking about was strictly analogous to another such jump,
or an “elevation”, which Einstein placed at the center of his epistemology (Einstein
1987). As he was drawing a schema of theory building in physics in a letter to Maurice
Solovine, Einstein stipulated that there exists “no logical path from the E[xperiences]
to the A[xioms], but only an intuitive (psychological) connection” and, furthermore,
that “the relations between the concepts that appear in [theorems] and the experiences
are not of a logical nature”. Therefore, the correspondence between theoretic results
and experimental findings, although “obtainable with great certainty”, requires a jump
which is performed by the physicist. The validity of a result obtained by suchmeans, as
Olivier Darrigol puts it, “comes as a surprise” (Darrigol 2014, p. 344), hence perhaps
Wigner’s complaint about a “somewhat irresponsible” attitude of the physicist.

It appears that this Einstein-inspired surprise is very much the same as Wigner’s.
The latter, however, has a different rationale. Like Heisenberg’s reason for using the
S-matrix, Wigner’s account of theory building refers to the physicist’s ignorance.
Unlike Heisenberg’s appeal to ignorance, though, the Wignerian claim should lead to
a connection with [only?] “well-known” mathematical concepts. Wigner then, seeing
perhaps his mistake, tries to clarify this point: “It is true also that the concepts which
were chosenwere not selected arbitrarily from a listing ofmathematical terms but were
developed, in many if not most cases, independently by the physicist and recognized
then as having been conceived before by the mathematician”. If one puts together
this prescription and Heisenberg’s conviction that only observable quantities should
be used in theory building, one gets very close to the general characterization of the
blackbox approach. It seems that in the discussion of the aims of mathematics Wigner
stopped really short of finding a satisfactory answer to his bewilderment about its
connection to physics.

This shows that the connection between the inputs and the outputs of a black box
in a device-independent approach is inherently conceptual and striking or, in other
words, mathematical. To paraphrase Einstein, its mathematical character is not subject
to logical deduction. Once established, this connection becomes a basis for physical
explanation.
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To sum up: to develop a blackbox model means to identify a mathematical link,
i.e. the right mathematical concept and often the right mathematical language, for
connecting the inputs and the outputs. This search is performed in the space of concepts
and theories rather than in the empirical world of physical experimentation. A success,
for sure, can only be proclaimed if the identified mathematical object helps to make
empirically testable predictions of future events or to explain previously unaccounted
phenomena. Whenever one achieves such success, the mathematical nature of the
connectionbetween the inputs and the outputs helps to provide both the constitutive and
the explanatory powers of the theory. Contrary to Wigner’s claim about a “somewhat
irresponsible” intrusion of mystery, the effectiveness of mathematics in describing
the physics of the unknown—new and uncharted territory of science or nature yet
unexplored—cannot but be deemed reasonable and unsurprising.
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