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Abstract Marc Lange argues that proofs by mathematical induction are generally
not explanatory because inductive explanation is irreparably circular. He supports
this circularity claim by presenting two putative inductive explanantia that are one
another’s explananda. On pain of circularity, at most one of this pair may be a true
explanation. But because there are no relevant differences between the two explanantia
on offer, neither has the explanatory high ground. Thus, neither is an explanation. I
argue that there is no important asymmetry between the two cases because they are two
presentations of the same explanation. The circularity argument requires a problematic
notion of identity of proofs. I argue for a criterion of proof individuation that identifies
the two proofs Lange offers. This criterion can be expressed in two equivalent ways:
one uses the language of homotopy type theory, and the second assigns algebraic
representatives to proofs. Though I will concentrate on one example, a criterion of
proof identity has much broader consequences: any investigation into mathematical
practice must make use of some proof-individuation principle.

Keywords Mathematical explanation · Proof theory · Homotopy type theory ·
Mathematical induction

1 Introduction

Lange (2009) argues that proofs by mathematical induction are generally not explana-
tory on the grounds that inductive explanation is irreparably circular. He supports
this circularity claim by presenting two putative inductive explanantia that are one
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another’s explananda. On pain of circularity, at most one of this pair may be a true
explanation. But because there are no relevant differences between the two explanan-
tia on offer, neither has the explanatory high ground. Thus, neither is an explanation.
Since any inductive explanatory attempt has this kind of evil twin, no inductive proof
is explanatory. The claimed virtue of Lange’s argument is that it avoids “making any
controversial presuppositions about whatmathematical explanationswould be” (2009,
p. 203), unlike most other approaches to this question, which rely on intuitions about
particular cases and the nature of the natural numbers.

One kind of defense of induction’s explanatory value tries to break the symmetry
between the two cases (Baker 2010). Perhaps one of the explanations will be longer, or
perhaps one will be more complex, disjunctive, unnatural, or whatever. And perhaps
one of these differences is relevant when it comes to explanatory power. I do not
think that this approach can work here, because there are no differences in explanatory
power. Lange’s argument fails for a different reason. There is no important asymmetry
between the two cases because they are two presentations of the same explanation.
That is, Lange’s argument requires the supposition that the two explanations on offer
are different. This supposition is controversial, though the controversy has not, to
my knowledge, been raised in the literature on mathematical explanation. In what
follows, I aim to drum up this controversy by arguing for a criterion of proof identity
that identifies the two proofs Langes offers. Though I will concentrate on one example,
a criterion of proof identity has much broader consequences: any investigation into
mathematical practice must make use of some proof-individuation principle.

2 The need for a theory of proof identity

When presented with the question of what makes a proof explanatory, there is a natural
strategy to pursue. Suppose that an explanatory proof is a proof that has some X factor.
Collect a stack of proofs. From these, select the ones that are intuitively explanatory. If
we are lucky, there will be some characteristic shared by all and only the explanatory
proofs. We can then take this to be the X factor. Sadly, we are spectacularly unlucky.
Intuitions on the explanatory power of particular proofs diverge wildly. On the one
hand, inductive proofs are sometimes taken “to be paradigms of non-explanatory
proofs”(Hafner and Mancosu 2005, p. 237). On the other, it is sometimes said that
induction “more than any other feature, best characterizes the natural numbers,” and
that this is why, compared to other approaches, proof by induction “is in many ways
better—it is more explanatory” (Brown 1997, p. 177). This battle of intuitions has
reached a standoff.

The great strength of Lange’s argument is that it sidesteps this problem entirely.
Leave explanatory virtue unanalyzed. Whatever else an explanatory proof is, it is an
explanation, and so it must partake of the same properties as other explanations. In
particular, it cannot be circular—no mathematical fact can explain itself. But suppose,
says Lange, that some proof by mathematical induction were explanatory. Then it
would explain for some predicate P why it is that for all n ∈ N, P(n). And it would
do so by the following method:

N induction: to prove that P(n) for all n ∈ N, prove:
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– P(0)
– for all n ∈ N: if P(n), then P(n + 1)

But there is another proof method nearby, which would also establish that P(n) for
all n ∈ N:

N 5-induction: to prove that P(n) for all n ∈ N, prove:
– P(5)
– for all n ≥ 5, if P(n) then P(n + 1)
– for all 0 ≤ n < 5, if P(n + 1) then P(n)

While induction on the naturals starts at 0 and goes up, 5-induction starts at 5, then
goes both up and down. They are apparently different methods of proof, but none of the
differences are explanatorily relevant, so they are equally explanatory. But they cannot
both be explanatory, because this leads to circularity. To see why, note that through
standard induction, P(0) helps to explain why P(5) holds. Through 5-induction, P(5)
helps to explain why P(0) holds. Thus, by transitivity of explanation, P(0) helps to
explain why P(0) holds, an absurdity.

This circularity argument assumes that induction and 5-induction are different proof
methods. That is, it tacitly relies on some principle of individuation of mathematical
proofs. And perhaps taking these proofs to be different has some initial plausibility.
But this first thought weakens under scrutiny. First, syntactic differences don’t suffice
to distinguish proofs. Simply rearranging the order of the premises doesn’t produce
a new proof. Nor, for that matter, does changing the order of subproofs, as long as
they are logically independent. Just imagine submitting such a reshuffled proof to
a mathematics journal as a piece of novel scholarship! These syntactic features are
aspects of the presentation, not the proof. Presenting a proof in written form requires
writing it down in a certain order, but ordinal facts about this presentation are properties
of the proof itself just to the extent that they track inferential relationships.

This is not to say that syntax is the only difference between induction and 5-
induction. It is just to say that if there is an important difference between the two
proof methods, it must be a difference in inferential structure, not in presentation.
Furthermore, it seems that not just any difference in inferential structure will do.
Suppose thatwe have some proof that P from some set of premises. Our premises stand
in some inferential relationship with our conclusion, and these relationships are most
likely mediated by other inferential relationships between intermediate conclusions.
We can modify this inferential network by appending “if P , then P; therefore P” to
the end of our proof, introducing one more inferential relationship. This results in a
valid proof, and the inferential network is different in some sense, but this modification
does not give us a new proof, and certainly not in a sense that’s relevant to explanation.
And this is just one of many ways that a proof might be trivially “modified” without
actually producing a new proof—a similarly empty instance of modus ponens might
be introduced, or a tautology inserted, at any step along the way.

It seems to me that the differences between some proof by induction and its 5-
inductive partner are differences of this kind. In both cases we show that P holds of
some small number or numbers, and then we show that P also holds for an arbitrarily
large number because it holds for its predecessor. The difference between a proof by
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induction and a proof by 5-induction is a matter of where we turn our attention when
describing the inferential structure of the proof, not a matter of the inferential structure
itself. But as noted above, intuitions on these questions diverge wildly, and someone
moved by Lange’s argument is not likely to share this one. So this appeal to intuition
needs to be backed up with more general theoretical considerations. The next two
sections are two ways of spelling out a more systematic story about identity of proofs
that agrees with the intuition that induction and 5-induction coincide.

The intuitive picture behind this story proceeds from the observation above that
some rearrangements of a proof’s presentation are clearly changes in presentation
alone, not in the proof itself. Changing the order of the premises, or changing the names
of variables, or translating the proof into French does not change the mathematical
content. In these cases it’s easy to see that such manipulations change nothing about
the mathematics, because they make no reference to the mathematical facts involved
or the relationships between them. So too, I claim, for the manipulations that turn a
proof by induction into a proof by 5-induction, and vice versa. A proof by induction
can be turned into a proof by 5-induction via a recipe expressed just in terms of the
two proof steps of induction and the three proof steps of 5-induction. This translation
can be effected regardless of the conclusion of the proofs or the internal details of the
proof steps. And it really is a translation, not a mere correspondence: the justifications
of P(5) in each proof, for example, or the proof that P(n) → P(n + 1) for arbitrarily
high n, are the same before and after the translation. This systematicity suggests that
the underlying inferential networks are the same, and that an appropriate principle of
individuation would—by virtue of correctly capturing the inferential network—make
the translation plain.

For a simple example, consider the statement that everynatural number has anumber
less than or equal to it. We could prove this by induction in two intuitively different
ways. We could, for example, prove it by noting that 0 is equal to itself, and n + 1 is
greater than 0 for all n. Alternatively, we could prove it by noting that 0 is equal to
itself, and n + 1 is greater than n for all n. Either way, the translation into a proof by
5-induction is the same: the fact that 0 is equal to itself appears in both translations,
and the witness to P(5)—which is 0 in the first proof and 4 in the second—appears in
the corresponding proof by 5-induction as the justification for P(5), as well. Clearly
it doesn’t matter to our translation what the specific justification for P(5) is in a proof
by induction; we just take the justification for P(5), whatever it may be, and present
it as the justification in the base case of our proof. So, intuitively, such a translation
turns one description of the justifications for P(n) and their arrangement into another
description of the same array of justifications. We have some reassurance that this
translation hasn’t forgotten anything about the inferential structure of the proof: it
produces two intuitively different proofs by 5-induction from two intuitively different
proofs by induction. And indeed, we can translate any proof by 5-induction back the
other direction, preserving intuitive differences in the same way.

Wemight make this intuitive story precise in twoways. Either way, the strategy will
be to find somemathematical representation of the network of inferential relationships
that connects the premises, intermediate conclusions, and conclusion. This allows us
to individuate proofs by individuating their mathematical representatives, which is a
muchmore familiar task.On the first approach, induction principles and the proofs they
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produce are treated syntactically. This is the point of view found in the theory behind
automated proof software, which may be used to check and construct mathematical
proofs. In this theory, induction principles like induction, 5-induction, and more are
associated with particular types of objects, and proofs about these objects just are
proofs that involve the corresponding induction principle. That is, an object of an
inductive type is picked out by its place in a network of inferences that is described by
the corresponding induction principle. The theory of these types can provide us with
a criterion of identity of types, and we can distinguish or identify induction principles
on the basis of their corresponding types. Alternatively, we might try to describe this
network more directly. Given an induction principle, we can construct an algebraic
object that characterizes the schematic shape of the inferential relationships that the
principle describes. For example, any proof by induction must involve some proof that
the property of interest holds for 0, as well as a proof that the property holds for n + 1
when it holds for n, and thesemust be appropriately related. Oncewe have an algebraic
characterization, we can then distinguish proofs by induction by distinguishing their
corresponding algebras.

3 The syntactic approach

For the syntactic approach I will adopt a version of homotopy type theory (UFP 2013),
including at least higher inductive types and univalence. Homotopy type theory is a
recent interpretationofMartin-Löf type theory into abstract homotopy theory.As a type
theory, it allows us to implement the broad-strokes syntactic picture of proof identity in
the previous paragraph. Indeed, this is the same broad-strokes picture Kreisel (1971, p.
111) draws on the basis of Martin-Löf’s work. As a type theory, homotopy type theory
is proof relevant. Any mathematical statement has a corresponding type in the theory,
and a proof of this statement is a term of that type. The same statement may have more
than one proof, and as a result there may be more than one term of the corresponding
type. For example, consider the claim “for all n ∈ N, there exists some m ∈ N such
that m ≤ n”. Giving a proof of this means deriving a term of type ∀n.P(n), where
P is a predicate corresponding to the existential claim. By induction, it suffices to
give a term of type P(0) and one of type ∀n.(P(n) → P(n + 1)). Two terms will
differ just in case they involve different terms of type P(0) or different terms for the
induction step. For example, we might produce 0 for all n in the induction step, or
we might produce n + 1. Because these are different terms they produce different
terms of type ∀n.P(n) after applying induction. So if we adopt term identity as a
criterion of proof identity, then these proofs are different, in accord with the above
plausibility argument. Furthermore, trivial modifications like appending “if ∀n.P(n),
then ∀n.P(n); therefore ∀n.P(n)” will not change the term produced, so this appendix
does not give a new proof. Inserting tautological detours along the way will also have
no effect.

Proof relevance of this kind allows homotopy type theory to avoid some worries
faced by the naive criterion. But it does not completely address the problem of different
syntactic presentations of the same proof. For example, there is no way to compare
a proof that starts with the base case to a proof that starts with the induction step,
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even though this ordering doesn’t reflect anything about the inferential structure of
the proof. This is where the homotopical side of homotopy type theory steps in. The
univalence axiom, introduced by Voevodsky, gives a way to prove that two types are
equal, and thus a way to compare their terms (UFP 2013, Sect. 2.10). Without adding
the univalence axiom to Martin-Löf type theory, there is in general no way to prove
that two types are equal. So if we are going to say that two types give different syntactic
presentations of the same mathematical statement, we need univalence.

Roughly, univalence says that to prove that two inductive types are equal, we must
show that their induction principles describe the same inferential structure. It must
be possible to give a canonical, systematic translation rule between proofs using one
induction principle and proofs using the other. This rule must be canonical in the sense
that there must be only one possible translation, given the rule. That is, the translator
must not be required to make any arbitrary choices. The systematicity requirement
means that the translationmust be independent of the proofs given as input, for example
the base case and induction step. Moreover, it must really be a translation, not just
a correlation, in that it must also correlate proper parts of proofs it relates, in a way
compatible with the correlations between proofs themselves. Induction principles are
meant to describe a network of inferential relations in which the various subproofs
stand, and these relations are independent of the internal structure of the subproofs. A
systematic translation between proofs by induction and shuffled proofs by induction
is easy: we just provide the two subproofs in a different order. So the two types are
equal, as we would expect.

This syntactic criterion judges induction and 5-induction to be the same induction
principle. This follows straightforwardly from the definition of the natural numbers
(UFP 2013, Sect. 1.9) any adequate characterization of 5-induction as a higher induc-
tive type (UFP 2013, Chap. 6) and univalence.1 To show that these induction principles
produce the same proofs, it suffices to show that they correspond to equal inductive
types. To show this, we must give a canonical, systematic translation from one induc-
tion principle to the other. So suppose thatwe have a proof by induction. To give a proof
of P(5), we can apply the induction step five times to our proof of P(0). To give a proof
of P(n) for all n ≥ 5, note that this is just the induction step with a restricted domain
of quantification. Finally, for each 0 ≤ n < 5, we can apply the induction step n times
to P(0) to prove P(n), from which follows the conditional “if P(n + 1), then P(n)”.
Feeding these three pieces into the 5-induction principle, we have produced a proof of
∀n.P(n). We can tell a similar story if we start with a proof by 5-induction; using P(5)
and the downward induction step gives a proof of P(0), and taking all three subproofs
together gives the standard induction step. Most importantly, this translation goes two
ways: if I start with a proof by induction, translate it to a proof by 5-induction, and
then translate it back, I end up with the same proof I started with, and vice versa. So if
I start with distinct proofs by induction I will produce distinct proofs by 5-induction.
If we take these induction rules to describe a particular inferential structure, then this
translation rule shows that they give superficially different descriptions of the exact
same inferential structure. That is, nothing is lost in translation.

1 5-induction must be given by a higher inductive type because it has 5 = S5(0) as a generator, as well as
equalities that quotient out the higher path structure.
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So, to return to the motivating case, this syntactic principle of proof individuation
avoids the problems of the naive account, and it adequately characterizes the inferential
structure of a proof by induction. Because it judges induction and 5-induction to
describe the same network of inferences, there is no circularity nearby. One could, of
course, use induction to conclude that∀n.P(n), and then argue, again by induction, that
this implies ∀n.P(n). But this is not some pathological feature of induction, because
this can be done with any explanation of a universal generalization. If induction has
some endemic explanatory defect, it must be found in whatever X factor it is that
endows proofs with explanatory power. And this is just the very difficult question that
Lange’s argument aimed to avoid. So if we adopt this syntactic principle, then Lange’s
argument is blocked.

4 The semantic approach

Alternatively, wemight try to characterize the inferential network of an inductive proof
more directly, with more familiar mathematical objects. The main difficulty here is
turning an inductive principle, which is like a recipe, into amathematical object, which
seems much more like a freestanding thing. A principle of induction tells you how to
do something; it is instructions for some sort of behavior that will result in a proof.
A mathematical object, on the other hand, is inert. It does not tell you how to make
things. If we are to encode an inductive principle as a mathematical object, we must
have some way of recovering the principle from that object. So we need some way to
turn an inert mathematical object into a recipe for doing.

The key feature that allows this is the fact that induction acts “freely”. That is,
it takes some number of subproofs and extends them to a larger domain in the only
possible natural way. So an inductive principle is a recipe, but it is like a recipe for
a stew. A stew recipe is a list of some vegetables, some meat, and some liquid. If I
give you such a list, there’s really only one natural thing you can do with the listed
ingredients: put them in a pot and heat them. Indeed, stews can be characterized by
this fact. That is, a stew just is whatever food you end up with after heating vegetables,
meat, and liquid in a pot.

Slightly less fancifully, wemight try to characterize an induction principle by giving
some minimal algebraic structure that will support the principle’s application. Natural
numbers induction can be applied in many contexts. For a concrete example, suppose
we would like to show that a binary tree of height h has at most 2h+1 − 1 nodes. A
natural strategy is to run an inductive argument on the height h of the tree. If we show
that this fact is true for a tree of height 0, and that it is true for height h + 1 whenever
it is true for height h, then by induction it is true for any height h. We can similarly
induct on lengths of lists, number of lines in a natural deduction, and so on. We could
even run induction on subsets of the natural numbers. The minimal structure that will
support induction is a triple (X, x0, s) of a set X , a distinguished element x0 ∈ X , and
a function s : X → X . Whenever we have a triple like this, we can apply induction.
We can do this when X is the natural numbers, x0 is 0, and s is the successor function,
and we can do this when X is the set of equivalence classes of binary trees by height,
x0 is the set of trees of height zero, and s increments the height by 1.
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Define anN-algebra to be some triple like this. Any time that we have this structure,
we can apply induction. Similarly, any time we have a list of vegetables and meat, we
can make a stew. What we would like to do is go the other way. That is, we would
like some N-algebra such that any proof about it will be a proof by induction. This
algebra would then be the perfect stand-in for the structure of proof by induction: it
would represent all and only the structure required for the proof technique. If we had
such a representative (X, x0, s), then any proof by induction must have an inferential
structure comparable to a proof about (X, x0, s). There must be some domain of
quantification corresponding to X , and there must be some base case corresponding
to x0, and there must be some “successor” function corresponding to s. Moreover,
this correspondence must preserve the inferential structure of the proof. We should
be able to label elements of our domain of quantification with elements of X , and
the successor function should take the element labeled by x to the element labeled
by s(x). This would give a homomorphism of inferential structures, which is what
we seek to capture. And if we have a similar algebraic stand-in for some other proof
method, we can turn the question of comparing the inferential structure of the proofs
into the question of comparing the algebraic structure of the algebras.

So a representative of an induction principle, if it exists, is a universal “labeling
algebra” for structures to which that induction principle applies. But what makes an
induction principle an induction principle, and not some other method of proof, is the
fact that it acts “freely”. This is why a proof by induction is more like a recipe for
stew than for something fussy like, say, a macaron. Mathematically, this freedom is
witnessed by the existence of this sort of universal labeling algebra.2 Sowemay assign
to each induction principle a particular algebraic object: its “universal labeler”. For
example, induction over the natural numbers is assigned the triple (N, 0, S), where
S is the successor function. You might think of this triple as equipping the target
domain of the proof, N, with an algebraic structure (0, S) representing the structure
of proofs by induction. Other kinds of proofs about the naturals amount to other kinds
of structures that can be put on the set of natural numbers. Likewise, some other N-
algebra (X, x0, s) can be thought of as equipping the set X with an algebraic structure
(x0, s) representing proofs by induction.

We’ve reduced the problem of distinguishing between proofs to a problem of dis-
tinguishing between the associated universal labelers. Again, wemust be cautious.We
ought to distinguish between labelers only insofar as they disagree about the inferential
structure of the induction principles they represent. For example, one might take N to
be the set of Zermelo ordinals, where 0 is represented by ∅, and the successor function
sends some set n to {n}. Or one might take N to be the set of von Neumann ordinals,
where 0 is represented by ∅ and the successor function sends n to n ∪ {n}. These
choices give isomorphic N-algebras, meaning that they are identical with respect to
their labeling ability. In other words, there is a unique way to label von Neumann ordi-
nals with Zermelo ordinals in a way that respects the successor function, and likewise

2 More prosaically, every induction principle has an associated (homotopy) initial object in the category of
algebras associated with that induction principle. See Sojakova (2015) for a precise statement and proof of
this fact.
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for the other direction. So two induction principles with isomorphic representatives
differ merely in relabeling, not in inferential structure.

But isomorphism is still too strict a criterion. For suppose that we preferred to prove
the induction step first. Then our universal labeler would be of the form (X, s, x0),
with s : X → X the successor function and x0 the distinguished element. And this
triple could never be isomorphic to (N, 0, S), because they are algebras of different
signature. The second entry in (X, s, x0) is a function on the first entry, and the sec-
ond entry of (N, 0, S) is an element of the first entry. So isomorphism simply can’t
be defined between these two objects. Nevertheless, they must represent the same
induction principle, if syntactic reshuffling really makes no difference.

To solve this, wemay again appeal to the existence of a canonical, systematic corre-
spondence between substructures that generates a translation. Given anN-algebra, we
can produce an algebra for the shuffled induction principle by using the same set but
taking the third entry for the second and the second for the third. This same translation
principle will also allow us to turn a shuffled induction algebra into an N-algebra.
And no choices ever need be made in this translation, so when following this rule we
never add or subtract any information. Moreover, when this sort of translation exists,
it always sends universal labelers to universal labelers, so (N, 0, S) is matched up with
(N, S, 0). If we can reconstruct an network of inferences from the triple (N, 0, S)—and
we can—then we can reconstruct the same network from (N, S, 0) by first translating
it by our rule to (N, 0, S). So we should not distinguish between induction principles
that differ only up to this kind of translation.3

This individuation principle also judges induction and 5-induction to be the same
principle. Induction may be represented by the triple (N, 0, S) of a set, a distinguished
zero element, and a successor function. 5-induction appears to be more complicated,
as it is represented by a quadruple (N, 0, 5, S) of a set N, two distinguished elements
0 and 5, and a successor function S such that 5 is equal to S5(0). These could not be
isomorphic, since they are tuples of different length, but as algebras they describe the
same structure. Given a triple (N, 0, S) we can produce a quadruple (N, 0, S5(0), S),
and given a quadruple we can produce a triple by forgetting about the second distin-
guished element. That is, the only difference between induction and 5-induction is
that 5-induction gives a special name to the element S5(0). But we should not care
about the names we give to places in the network of inferences, because these are facts
about the representation, not the structure of the proof itself. It is really no different
from reordering S and 0.

So we have a second principle of proof individuation that also avoids the problems
of the naive account, and also adequately characterizes the inferential structure of
proof by induction. And it comes to the same verdict as the first principle: induction
and 5-induction describe the same network of inferences from different points of view.
The circularity argument is undercut because there is no circle after all. So again, if
induction systematically fails to provide explanations, then this is a fact about the extra
explanatory factor, not the structure of inductive proofs.

3 To put this all more precisely, we should not distinguish between induction principles if their associated
categories of algebras are equivalent. Equivalence preserves initiality, so a “universal labeler” for one
principle is equivalently a “universal labeler” for the other.
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5 Conclusion

Two principles of proof individuation may seem an embarrassment of riches. The
success of Lange’s argument turns on which principle we adopt, so we must pick the
correct one. I have offered two serious options in addition to our naive point of depar-
ture, so we now seem to be faced with the task of sorting out the right individuation
principle from all the available options. This is a valuable task, and its consequences
are far broader than the present question of induction’s explanatory power.Mathemati-
cians assess proofs with respect to many other values, as well—beauty, purity, depth,
and more. Insofar as these are virtues of proofs and not presentations, an account
of any one of these must only appeal to properties that are invariant under the right
notion of proof identity. Or, contrapositively, any aspect of a proof that appears only
in some of its presentations cannot be relevant to its explanatory power, beauty, depth,
and so on. So a criterion of proof individuation is a valuable tool in the development
of these accounts, offering at least some constraint on the wildly divergent intuitions
about explanatory power. By the same token, a criterion of proof individuation helps
our intuitions about these other features to regiment our intuitions about explanatory
power. When we evaluate criteria like the two I have presented, we can appeal to many
more considerations than explanation. This gives us many reasons on which to make
our choice—and my opponent a wider set of cases to wield against my criteria.

But evenwithout looking to these other considerations, youmightworry that neither
of my criteria gets things right, since they conflict with intuitions about proof identity
itself. You might worry that these criteria identify proofs that they should not. For
example, most any proof of a statement beginning “for all natural numbers n…” is
identical to some proof by induction or other, by these criteria—this is part of why
induction and 5-induction deliver identical proofs of statements about the naturals.
This seems counterintuitive, for it seems that there are some proofs about the natural
numbers that are not proofs by induction. And if this worry is right, then what I’ve said
above isn’t very reassuring when it comes to the circularity worry. Since my solution
relies on identifying the two proofs that generated the circularity, any reason to think
that my criteria are too weak is also a reason to worry that the right criteria won’t
defuse the circularity.

To some extent this is just the clash of intuitions about induction with which we
began. On the one hand are the intuitions that induction is paradigmatically non-
explanatory; on the other, the thought that induction best characterizes the naturals
and gives the most explanatory proofs. According to my criteria proofs about the
naturals are always inductive, so they give the only proofs. This seems right to me.
Proofs about the naturals generally involve induction because they are about the natural
numbers, what it is to be a natural number is to be zero or a successor of a natural
number. It’s not just that induction best characterizes the naturals, it defines them. So
if you’d like to prove something about the naturals, you’ll have to say what you’re
talking about, and this means referring to induction. The approaches I’ve sketched
above are ways of spelling out the thought that induction best characterizes the natural
numbers.

Because this is just where we began, I don’t expect that these considerations will
do much to assuage worries about this verdict. My purpose in offering the criteria
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above is, in part, to draw a connection between this debate and any other where it
matters when two proofs are the same or different. With luck, we will find further
resources to adjudicate the present dispute. But this will only succeed if we use the
right criterion from above. However, we need not choose; they come down to the same
thing. As shown by Awodey et al. (2012) and Sojakova (2015), the inductive types
of the syntactic approach may be equivalently characterized by the universal labeling
algebras of the semantic approach. So the approaches agree on how to individuate
inferential networks produced by inductive principles—we need not choose between
them. We have one good criterion of proof individuation, and with it in hand there is
no threat of circularity in inductive proofs. What’s more, this criterion gives a univocal
and well-defined tool we can bring to bear on questions of beauty, purity, depth, and
other virtues of proofs.
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