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Abstract In this paper, we consider how certain longstanding philosophical questions
aboutmental representationmaybe answered on the assumption that cognitive and per-
ceptual systems implement hierarchical generative models, such as those discussed
within the prediction error minimization (PEM) framework. We build on existing
treatments of representation via structural resemblance, such as those in Gładziejew-
ski (Synthese 193(2):559–582, 2016) and Gładziejewski and Miłkowski (Biol Philos,
2017), to argue for a representationalist interpretation of the PEM framework. We
further motivate the proposed approach to content by arguing that it is consistent with
approaches implicit in theories of unsupervised learning in neural networks. In the
course of this discussion, we argue that the structural representation proposal, properly
understood, has more in common with functional-role than with causal/informational
or teleosemantic theories. In the remainder of the paper, we describe the PEM frame-
work for approximate Bayesian inference in some detail, and discuss how structural
representationsmight arisewithin the proposedBayesian hierarchies.After explicating
the notion of variational inference, we define a subjectively accessible measure of mis-
representation for hierarchical Bayesian networks by appeal to the Kullbach–Leibler
divergence between posterior generative and approximate recognition densities, and
discuss a related measure of objective misrepresentation in terms of correspondence
with the facts.
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1 Introduction

The theory that the brain is an organ for prediction error minimization (PEM) has
attracted considerable attention in recent cognitive science (for discussion and review,
see Clark 2013, 2016; Hohwy 2013). On this theory, the brain is engaged constantly
in predicting its own sensory input, registering the error in these predictions—the pre-
diction error—and then minimizing this error as best it can in a long term perspective,
by optimizing its internal model as well as by supporting actions that intervene on the
world to produce expected input.

The PEM framework offers novel insights into the mechanisms underlying human
perception, action, attention, learning and other cognitive processes, and suggests
surprising connections between these processes. It also seems useful for the under-
standing of more subtle and troublesome aspects of mental life: the sense of self and
bodily presence (Limanowski and Blankenburg 2013; Seth 2013; Apps and Tsakiris
2014; Hohwy and Michael 2017), emotions (Hohwy 2011; Seth 2013; Barrett 2016),
the sense of agency (Hohwy 2016a, b), the sense of presence of perceived objects
(Clark 2012; Seth 2014), top-down modulation and cognitive penetrability (Faren-
nikova 2014; Vetter and Newen 2014; Lupyan 2015; Hohwy 2017), consciousness
(Hohwy 2015a, b), depersonalisation disorder (Seth et al. 2012), autism (Cruys et al.
2014; Palmer et al. 2017), and schizophrenia (Hohwy 2004; Fletcher and Frith 2009;
Corlett and Fletcher 2012; Adams et al. 2015).

In addition to this wealth of literature on applications of the PEM framework,
there are more theoretical discussions of what it implies for our overall conception
of the mind and its place in nature (Orlandi 2014; Hohwy 2015a, b, 2016a, b; Allen
and Friston 2016; Bruineberg 2016; Burr and Jones 2016; Gallagher and Allen 2016;
Kirchhoff 2016; Sims 2016; Hutto 2017). Several recent discussions consider the
theoretical underpinnings of the framework as they apply to concerns in the philosophy
of science, philosophy of mind and epistemology (Colombo and Seriés 2012; Hohwy
2015a, b;Gładziejewski 2016;Klein 2016; Loughlin 2016;Colombo andWright 2017;
Macpherson 2017).

Overall, there is considerable excitement about the PEM framework within cogni-
tive science, tempered by healthy skepticism (see the open access volume, Metzinger
and Wiese 2017). It is an extremely ambitious approach that, in some incarnations,
has very wide explanatory scope that includes not just mind and cognition but also life
and morphogenesis (Friston 2013; Friston et al. 2015). The theory is accompanied by
empirical process theories about implementation in terms of brain function (such as
predictive coding, for the case of perceptual inference), and the jury is still out about
the proposed implementation details (Bastos et al. 2012). The result is an extraordi-
narily fertile intellectual climate that, it seems to us, offers the possibility of genuine
unification among philosophical as well as scientific theories of mind, brain, and life.
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Here, we step back from recent developments and challenges and delve into funda-
mental aspects of representation within the PEM framework. A primary philosophical
attraction of the framework is its grounding in approaches to representation derived
from statistical modeling that may shed new light on old philosophical problems
concerning representational content (cf. Hohwy 2013, Chs. 1, 8). The statistical mod-
eling approach to the mind is already part of the conceptual foundations of successful
approaches to artificial intelligence and machine learning focused on generative mod-
els and deep neural networks (Hinton and Sejnowski 1999; Bengio et al. 2012). This
overarching idea is itself less controversial than many of the details of the PEM frame-
work, and repays careful scrutiny in its own right. That said, the details of the PEM
framework provide a setting that helps make concrete and clarify outstanding issues
for the more generic approach.

In what follows, we consider how an unsupervised prediction error minimizer may
meaningfully represent the changing world in which it operates. We contend that
the PEM framework, like many approaches to perception and cognition in machine
learning, provides the tools for a theoretically mature internalist semantics centered
on the notion of structural representation, which can be used to reply to well-known
arguments against a representationalist interpretation of the PEM framework. We then
describe and motivate various aspects of hierarchical Bayesian inference in order
to explain how such structural representations may be implemented in systems that
employ it. This discussion culminates in an account of the possibility of misrepresen-
tation, which we shall analyze in terms of the some of the formal tools of variational
Bayesian inference.

2 Structural representation and the problem of content

In this section we describe and motivate the view that mental representation involves
exploiting structural resemblance between an internal model and an environment in
order to guide action. We consider in some depth how representational content might
be assigned to parts of a structural representation under such an approach, and compare
the resulting view with more established accounts of mental representation. We then
argue against anti-representationalist arguments from this perspective, emphasizing
the indispensable use of a similar concept of representation in the field of machine
learning.

2.1 Representation as exploitable structural similarity

Recently, philosophers interested in the PEM framework and related theories have
revived interest in an often neglected approach to mental representation, based on
structural resemblance between a representational vehicle and what it represents (see
e.g. Cummins 1994; O’Brien andOpie 2004; cf. Gładziejewski 2016). This conception
of representation is clearly endorsed in early statements about how PEM systems
represent the world, i.e. by recapitulating its causal structure (see e.g. Clark 2013;
Hohwy 2013). A version of this view has now been considerably elaborated and
defended as a theory of mental representation (Gładziejewski and Miłkowski 2017).
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Here, wewish to consider how this theoretical approach to representationmight handle
certain traditional philosophical concerns.

One fundamental question about mental representations concerns how precisely
they get their contents—that is, in virtue of what they represent what they do, or get to
be “about” what they are about. One widely discussed answer to this question, advo-
cated in various ways by (Field 1977; Block 1994; Brandom 1994; Harman 1999;
Sellars 2007) and many others, is that the contents of mental representations depend
in some way on their overall functional (inferential, causal, conceptual, or evidential)
roles within a cognitive system. Another, advocated by (Dretske 1981; Millikan 1984,
1989; Papineau 1984; Fodor 1990) and, again, many others, identifies the contents of
a representation, at least in the basic case, with (some subset of) its regular external
causes, or, what amounts to the same thing, with (some subset of) the causes about
which the representation carries information (Millikan 1984; Papineau 1984). Under
this second umbrella we include teleological theories, which due to well-known the-
oretical problems for the pure causal/informational theory such as the “disjunction
problem” (Fodor 1990), appeal to facts about the etiology of representations— in par-
ticular, the learning histories that gave rise to them (Dretske 1981), or the evolutionary
history in virtue of which the capacity to carry information about certain things was
favored by selection pressures (Millikan 1984; Papineau 1984)—to fix their contents.1

The structural representation (henceforth, for brevity, “S-representation”) approach
seems to give a clear and distinct third answer: representations get their content via
structural resemblance to what they represent. A precise definition of structural resem-
blance will be considered later in Sect. 5, but apart from that, there are at least two
obvious reasons to qualify this answer. One is that while the structured representation
as awhole gets its content via resemblance, the same need not be true of its parts, which
get their content via the overall structural resemblance, by being placed in correspon-
dence with parts of the represented structure. But the part-part relations themselves are
not resemblance relations.2 Second, as is often emphasized in discussions of the struc-
tural resemblance theory, simple resemblance is not sufficient for representation in any
intuitive or theoretically useful sense. Any two items resemble one another in some
respect, so an account of representation based on similarity alone would be trivial. It is
also clear that representation is an asymmetric relation, while resemblance is not. Both
of these problems can be solved by requiring that the structural resemblance be used
or exploited by a cognitive system in order to make cognitive functioning effective
(see, e.g., Godfrey-Smith 1996; Shea 2014; Gładziejewski andMiłkowski 2017). This
captures the intuitive idea that a representation (mental or otherwise) serves as a proxy
or stand-in for what is represented.

The first point shows that a form of content holism is entailed by the structural
representation theory: the content of one part of the overall S-representation cannot be
determined without simultaneously fixing the contents of the other parts. This holism

1 We also here include Fodor’s (1990) solution to the disjunction problem, based on asymmetries among
nomic relations.
2 Of course, we do not mean to rule out that parts may also be structured and function themselves as
structural representations. Indeed, this is likely the case in hierarchically organized systems like those
considered in this paper, but we lack space to consider this issue here.

123



Synthese (2018) 195:2387–2415 2391

seems to follow obviously from the fact that structural similarity is a relation between
the whole representing system and what it represents, and not one entered into by the
parts as such.

The second point, concerning the exploitability or “proxy” constraint on repre-
sentation, merits careful consideration. Gładziejewski and Miłkowski (2017) unpack
this constraint by requiring that structural similarity underwrite the successful opera-
tion of cognitive capacities based on S-representations. Depending on the capacity in
question, successful operation may in turn be defined in terms of causal transactions
with the environment (Gładziejewski and Miłkowski consider for example successful
maze navigation in rats based on hippocampal maps). If this kind of case is taken
as a model, the proxy constraint may be read as restricting the possible contents of
any S-representation to entities and states of affairs in the environment with which its
owner causally interacts.

But our cognitive capacities can also plausibly be directed at merely imaginary
or hypothetical environments, as happens normally in cases of imagination and day-
dreaming and perhaps occasionallywhen radicalmisrepresentation of the environment
occurs (cases of misrepresentation may be distinguished from non-representational
failures precisely in that the wrong thing is represented). Importantly, we can engage
with merely imagined environments cognitively, for example by reasoning about them
or finding routes through them. Therefore if structural representations underlie men-
tal representation generally, they must first and foremost be proxies for hypothetical
worlds or states of affairs (defined in terms of their relevant structures).3 In the con-
text of capacities such as perception and action, these structures can be compared
for veridicality with the actual environment, and are likely to underwrite successful
causal interaction with it only insofar as they are accurate. Thus, despite the relational
character of S-representation, the theory can be developed in an internalist way, which
seems necessary to adequately accommodate imagination and misrepresentation.4

The considerations thus far suggest similarities between our S-representational
and functional role approaches to mental content, which are also widely regarded as
entailing content holism, and usually appeal to a “narrow” or internalist notion of
content.5 As O’Brien and Opie (2004) note, the way in which content is determined in
functional role theories is also sometimes cast as relying on structural resemblance (for
example, between a system of causally related vehicles and a system of inferentially
related propositions—see (Fodor 1990, Ch. 1)). It is thus tempting to assimilate our
structural representation proposal to the paradigm of functional role semantics.

Despite this superficial similarity, however, one might suppose that the two theories
operate in very different ways. S-representation theories claim that structures represent

3 Thisway of putting thingsmay go to the heart of some of themore radical formulations of the implications
of PEM-style accounts for the nature of the mind-world relation—for example, claims that perception is
“controlled hallucination” (Grush 2004). Similarly, Geoff Hinton (one of the originators of contemporary
models of perceptual inference involving generative models) claims in essence that the contents of mental
states are hypothetical worlds (Hinton 2005).
4 There may be ways of resisting the conclusion in the case of misrepresentation by distinguishing types of
misrepresentation, as discussed in Sect. 5 below. However, the point seems difficult to sidestep with respect
to imagination.
5 It should be noted that there are ‘wide’ versions of functional role semantics as well; see Harman (1973).
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whatever they lie in relations of (exploitable) resemblance to (in the case of interest to
us, the causal structure of an organism’s environment), but functional role theories do
not usually claim that the network of inferential relations, to which causal transitions
among vehicles stand in a relation of resemblance, is itself what is represented. Rather,
the idea is that inferential roles implicitly define the contents, i.e. truth-conditions, of
representations, and these conditions may themselves concern environmental states of
affairs.6 Even if inferential roles and thus contents are assigned to vehicles in a causal
network on the basis of structural resemblance, the functional role approach does not
require that a represented environment itself corresponds in structure to anything in
the representation.

While it is true that there is no entailment in general from functional role seman-
tics to S-representation of the environment, accepting the latter may nonetheless be
consistent with an inferential role approach. To guarantee that a functional role the-
ory of the sort just considered will entail structural resemblance between representing
vehicle and environment, we need only assume that the inferential relations in terms
of which contents are implicitly defined are inductive inferential transitions—what
Sellars (1953) called “material inferences”, such as that from “It’s raining” to “The
street is wet”. Such inductive inferences keep track, in effect, of regularities in the
world. Thus, the relevant inferential structure will be similar to the structure of the
environment insofar as the latter is captured by the representation. And, moreover,
it is still the case, as S-representation requires, that the resemblance between vehicle
and environment causally explains the success of behavior based on the representation
(Gładziejewski and Miłkowski 2017). We here conceive of this resemblance as medi-
ated by a structure of inferential relations, but this just a different way of saying that
fundamentally it is possible environments (whose causal structure is specifiable via
probabilistic relations among propositions) that are represented, with representation
of the immediate physical environment falling out as a special case that occurs in some
(i.e. perceptual and action-involving) contexts.7

We suggest, therefore, that the contents of parts of a structural representation are (at
least in the case of causal generative models of an environment) in effect determined
by their internal functional roles. But even if one resists treating structural represen-
tation as a species of functional role semantics,8 the preceding considerations seem
to show that such representations cannot be assimilated to representations understood
on the model of causal or teleological theories,9 according to which content depends

6 We thank an anonymous reviewer for an earlier version of this paper for pressing this crucial point, as
well as the issue concerning internalism just considered.
7 This is a decidedly Kantian reading of these ideas, but we believe it would be more procrustean to
attempt to defend the opposite view according to which all representation in imagination is really somehow
representation of one’s physical environment. This is true even though actual sources of sensory input play
an indispensable explanatory role within the PEM framework, and in fact are etiologically necessary to get
any kind of representation off the ground.
8 O’Brien and Opie (2004) distinguish strictly between functional role semantics and their preferred
version of structural representation theory on the grounds that the former appeals to causal relations among
vehicles while the latter appeals to physical relations. It is not obvious, however, why the latter category
should preclude the former.
9 Gładziejewski and Miłkowski (2017) draw a similar conclusion for different reasons.
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ultimately on one-one (atomistic) relations between internal states and what they rep-
resent.

It should be noted that one may reject the latter view without supposing, implau-
sibly, that the information that representations carry about environmental conditions
is irrelevant to their content. A generative statistical model guided by the online min-
imization of prediction error, for example, is bound to carry information about the
phenomena it models in its learned parameters (Hohwy 2013, and see below). This
ensures that the parameters will tend to co-varywith individual causes. But if represen-
tationworks fundamentally in the structural way sketched here, such covariation is one
of its predictable effects, at least in perceptual cases, and is thus heuristically useful in
identifying the contents of a representation (and perhaps in marking it as perceptual),
rather than being constitutive of representation as such. The relation of indication that
causal/informational and teleological semantic theories focus on is, from the perspec-
tive of S-representation, only one (non-essential) function of representations, derivable
in some cases from their broader role of participating in exploitable structural resem-
blance.

2.2 Anti-representationalism

Before going on to consider in detail how S-representations might operate in hierar-
chical Bayesian systems, we address arguments against Bayesian representationalism.
Such arguments would, if successful, constitute an objection to any such representa-
tionalist line of thought.

According to Nicoletta Orlandi, Bayesian theories, such as PEM, might describe
how the brain “grows” structures that allow it to respond selectively to the environment,
in a way that is sensitive to likely environmental causes of sensory input and even
“attunes to the structure of the environment” (2014: 16), but without the internal states
mediating this process deserving to be called “representations”.

Orlandi argues that such internal states are, instead, merely “biases” that skew
processing and operate in a causal manner:

[I]n predictive coding accounts, priors, hyperpriors and likelihoods do not look
like contentful states of any kind. They are not map-like, pictorial or linguis-
tic representations. Having accuracy conditions and being able to misrepresent
are not their central characteristics. Priors, hyperpriors and likelihoods rather
look like built-in or evolved functional features of perception that incline visual
systems toward certain configurations (2014: 25).

This point of view reflects a broader trend against the positing of internal representa-
tions in cognitive science (Hutto andMyin 2013), based primarily on concerns that the
relevant notion of content, rooted in “indicator” or “detector”, or causal covariation,
relations, is too thin and liberal to be of explanatory value.

However, Orlandi does not consider the account of representation outlined above,
which is in fact endorsed bymost advocates of the PEM framework: that the generative
model as a whole represents the environment in virtue of (partially) sharing the causal
structure among its parts with the causal structure among events in the represented

123



2394 Synthese (2018) 195:2387–2415

environment. Indeed, priors, likelihoods, and such are not map-like representations,
but something in the vicinity is the case: the overall network of hypotheses is an
S-representation of the environment.10

Orlandi also argues (p. 19) that the causal intermediaries between proximal stim-
ulation and high-level perceptual hypotheses are not representations because they
“do not model distal or absent conditions”, but are mere indicators of their proximal
causes. Evidence for extra-classical receptive field effects adduced in favor of the PEM
framework (see Harrison et al. 2007), which shows that what a given neural popula-
tion indicates may vary contextually, complicates this picture somewhat, but neural
activities may still be conceived of as indicating some combination of top-down and
bottom-up proximal causes. Even so, Orlandi’s description appears to beg the ques-
tion against the account of representation sketched earlier, according to which these
indicator relations are just strands in the broader functional roles that determine the
contents of such states.

It may be objected that this is merely a representational gloss on a process that
can be understood without appeal to representation (Hutto 2017). But to give this
charge proper weight, at least a sketch of a non-representational explanation of the
process must be given. And the alternative ecological theory endorsed by Orlandi tells
precisely half the relevant explanatory story. It is best seen, not as a competitor to the
representationalist PEM story, but as consistent with and in fact a part of it, insofar as
either offers a genuinely explanatory account of cognition.

Orlandi relies on the framework of natural scene statistics (NSS): “NSS discovers
the law-like or statistical regularities that [Bayesian] priors are supposed tomirror...By
doing so, itmakes appeal to the priors themselves secondary…Priors are explanatorily
redundant in accounting for how a single percept is secured in ordinary perceptual
circumstances—if such circumstances are low in noise. In such cases, the stimulus for
vision constrains ‘from the bottom’ the perceptual hypothesis that is most plausible”
(Orlandi 2016: 340).

This does not seem an optimal characterization of PEM to us. According to the
PEM framework, when, for example a retinal projection gives rise to a perception of
a single contour, this is because one perceptually infers to that contour as the best
explanation, and the reason one does this, in turn, is that a single contour is the most
likely cause given the retinal state, and one’s internal model, shaped by empirical
Bayes (discussed below), recapitulates the causal structure of the environment (i.e.
represents its elements). Thus, the full PEMexplanation,wewould argue, encompasses
the ecological perspective. On the other hand, without the additional insight supplied
by the representational description, Orlandi’s claim seems at best a promissory note
for just the type of theory that PEM provides. To suppose that a retinal state gives rise
to the perception of X simply because X is the most likely cause of the retinal state
short-circuits the explanation.

10 It is sometimes claimed that this notion of representation is also too liberal. The “exploitability” con-
straint mentioned earlier goes some way toward mitigating this. Also note that interesting, human-like cases
at least are hard to come by: a system must, as a matter of empirical fact, be quite complex before it is able
to structurally represent deeply hidden environmental causes.
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Orlandi could perhaps respond that the full explanation, rather than requiring repre-
sentation, requires only that the biases and detector-relations in the system be such that
the brain is caused to activate the “single contour” hypothesis on the basis of the retinal
input. But explaining how this is possible is, we think, the hard part. And it is pre-
cisely in filling in the details of the promissory note above that appeal to representation
occurs in practice, as discussed next from the perspective of machine learning.

2.3 Unsupervised learning of internal models

Many of the core notions employedwithin the PEM framework derive from research in
machine learning. Indeed, this field was among the first to offer accounts of perception
based on prediction error minimization, and many of the seemingly esoteric formal
notions underlying the prediction error minimization scheme are now standard text-
book items in machine learning (Bishop 2007), as well as computational neuroscience
(Dayan and Abbott 2001; Trappenberg 2010).

Philosophical issues about naturalizing representation are largely as remote from
the concerns of machine learning researchers as they are from the work of practicing
neuroscientists. But the notion of representation does play a key role in machine learn-
ing (arguably, at least as robust a theoretical role as it plays in neuroscience). Itmay thus
prove fruitful to consider how the term ’representation’ is employed in this discipline.

In general, ‘representation’ in machine learning (and in particular in connection-
ist approaches) refers to an internal state of a system that carries information, as it
does throughout most of cognitive science. But the information-relations most often
appealed to in connectionist theories are those between internal states of a system, for
example the compressed information that one layer in a neural network carries about
another. Internal information-relations can be thought of as capturing (probabilistic)
functional/causal roles, bringing this conception of representation in line with the
structural account sketched above. This is not surprising, since there is a large degree
of overlap between work in machine learning and statistical modeling, and statistical
models may be thought of in general as (often low-fidelity) simulations of the systems
they model, representing via structural similarity (Cummins 1994).

We contend that ‘representation’ plays a rich and indispensable theoretical role in
machine learning research, one which cannot be reduced to that of merely presenting
a compelling gloss on processes that could be understood without it. In the remainder
of this section, we attempt to illustrate this point by describing more fully the role that
talk of representation plays in understanding connectionist accounts of perception and
learning.

To date, much machine learning has focused on supervised learning. For example,
typical artificial neural networks trained to classify images based on their content learn
amapping from image pixel intensities to a distribution over class labels. Learning pro-
ceeds by beginning with an arbitrary mapping and measuring the difference between
the predicted and the correct class labels across a body of images, and adjusting the
weights on the connections in the network to improve the mapping, as measured by
the classification error.

This is of course implausible in itself as amodel of howbiological cognitive systems
initially come to understand theworld, since such an explicit “teacher” providing direct
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feedback on the application of concepts is rarely present. Additionally, if the objective
is to understandwithout circularity how representational content arises, then positing a
supervisor will not help since the instructions given by the supervisor must themselves
alreadybeunderstood (lest an endless regress of supervisors is invoked). For this reason
among others, unsupervised learning, learning that can proceed effectively without
explicit, external feedback about whether the system’s output is correct, is a central
area of research in machine learning.

Over the past several decades, significant progress has been made on the problem
of unsupervised learning, and it is now the focus of much state of the art research
in the field (see, e.g., Goodfellow et al. 2014). The PEM framework is in effect a
specific proposal about how unsupervised learning occurs in the brain (generalized to
cover action). We may hope to make progress on problems of mental representation,
then, by examining the way in which mappings between sensory input and accurate
representations of the world can be learned without (in a sense) an external teacher.
Such unsupervised learning seems capable of explaining from the perspective of the
system itself (the “animal’s perspective”, in the terminology of Eliasmith 2000) how
content arises.

Thekey assumptionbehindunsupervised learning schemes formodels of perception
is that, as Orlandi (2014), following Gibson, suggests, the driving sensory signal itself
provides a very rich source of information—far richer, in terms of bits, than do the class
labels used in supervised learning (Hinton and Sejnowski 1999). It is thus possible
that we can understand how the brain ends up selecting hypotheses in a way that
respects natural scene statistics but is mediated entirely by the proximal stimulus
(plus, perhaps, genetic factors). A popular approach supposes that redundancies or
correlations among the elements of the proximal stimulation—i.e., the distribution
of the multidimensional sensory data itself—can be exploited to extract information
aboutworldly causes (Hinton and Sejnowski 1999). This extraction is possible because
theNSS, even those pertaining to deeply hidden causes, are implicit in the higher-order
correlations among elements of the proximal stimulus.

Consider for example the information available to an unsupervised computer vision
network exposed to images of natural scenes. Collections of pixels that look like
edges are much more likely to occur than any given random scatter. These collections
(which correspond to correlations among pixels) are correlated as well, leading to
higher-order correlations that also correspond to environmental regularities. Correla-
tions between edges define shapes likely to occur in natural images. Extrapolating,
correlations between shapes may define larger features of visual objects, and visual
objects can be defined in terms of those larger features. A little more speculatively,
the same principle can be used to define objects in a way not tied to a particular
sensory modality, in terms of correlations among representations in several modali-
ties.

A hierarchically organized system can exploit these correlations by explicitlymark-
ing them at each level and using these marks as data for the next level up, a process
which at each level is easy to implement in a neural network using simple rules for
synaptic plasticity such as Hebbian learning rules (see, e.g., Bogacz 2017). The activ-
ities of neurons with receptive fields sensitive to first-order correlations can then be
modeled by higher layers, and this process can be extended recursively, yielding a
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hierarchical stack of filters from raw data (i.e. hierarchical representation learning or
feature learning (Goodfellow et al. 2016)).

Even though activities in each layer are only immediately determined by activities
in proximal layers, the overall system of dependencies among states recapitulates the
system of dependencies among properties in the source of the training data (i.e. the
world), and thus the system’s states are genuine structural representations. Importantly,
such learning schemes have been shown empirically to yield intuitively meaningful
features in artificial networks, from oriented edge filters to higher-order features cor-
responding to the presence of objects in images (Rao and Ballard 1999; Bengio et al.
2012; Le et al. 2012), which can be used effectively for image classification based
on semantic categories even though such classification was not an explicit goal of
learning (Hinton 2007).

Crucially, as a rule, this bottom-up “feature grabbing” in unsupervised learning
systems is made possible only by simultaneously learning a generative model that can
be used to drive the units top-down, implementing a generate-and-refine cycle that, as
we will see, can be interpreted in terms of successive rounds of hypothesis-testing. To
take three prominent examples: the Helmholtz Machine (Dayan et al. 1995) learns an
explicit generative model in its top-down connections; the “contrastive divergence”
algorithm (Carreira-Perpiñán and Hinton 2005) used to train Restricted Boltzmann
Machines accomplishes the same thing (increasing the probability of generating things
similar to the data and decreasing the probability of generating arbitrary “fantasies”) by
adjusting symmetrical weights between layers; autoencoders (Bengio 2009) minimize
the “reconstruction” error between input and output, which amounts to improving a
generative model of the input.

Thus, a learning goal that makes sense for unsupervised systems is to attempt to
learn to match the statistics in the input using a generative model (this same goal can
be described also in terms of energy minimization, or minimization of the Shannon
description length of the inputs—see, e.g., Dayan et al. 1995).11 Even simple unsuper-
vised learning schemes not usually thought of as involving generative modeling tend
to work in similar ways. The k-means clustering algorithm, for example, can be seen
as a variant of the expectation-maximization algorithm, which improves a generative
model by minimizing free energy (Neal and Hinton 1998; Friston 2005).

It is not obvious how such talk of “models”, “features”, “representations”, and so
on, whose descriptive efficiency, dimensionality and other features can be measured,
could be understood in non-representational terms, and indeed it would be difficult
even to state one of the core achievements of unsupervised learning models (showing
that useful representations can be learned even without explicit feedback about their
correct application) without appeal to representation. Over the next several sections,
we supplement the foregoing by describing how generative models can be learned
via Bayesian inference in the hierarchically organized systems posited in the PEM
framework.

11 There is thus reason to think that perceptual systems employ generative models based on considerations
about learning alone, in addition to the considerations about contextually biased interpretation of stimuli
mediated by extra-classical receptive field effects.
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3 From prediction error minimization to content

The PEM framework assumes that mental representation is a matter of probabilistic
perceptual and active inference, precision optimization and complexity reduction,
through which a system infers the hidden causes of its sensory input, in a process
similar to that described above from the perspective of machine learning. Much of
this is discussed in philosophical terms elsewhere (Hohwy 2013; Clark 2016). In this
section we briefly review the main tenets of the framework and tie the discussion more
closely to Bayesian inference. We close by addressing an early criticism of the PEM
framework as equivocating on ‘prediction’.

3.1 Bayesian inference and sensory evidence

Starting with a set of hypotheses hi , ..., hn , based on an overall model of what the
worldly causes of sensory input might be, a system needs to infer the most likely
hypothesis given the input (evidence), e, it receives. This can be captured in Bayesian
terms, where the posterior probability of a hypothesis p(h|e) is proportional to the
product of the prior probability of the hypothesis p(h) and the probability of the evi-
dence given the hypothesis, or the likelihood, p(e|h). Selection among twohypotheses,
h1 and h2, then depends on the ratio p(e|h1)p(h1)/p(e|h2)p(h2).

Here, the likelihood term captures the notion of prediction error. If the predic-
tions for the sensory evidence e generated by h1 are much better—less erroneous on
average—than those generated by h2, then p(e|h1) > p(e|h2). In this way, the like-
lihood varies inversely with the prediction error. To consider a simple example, if h1
is ‘a dog is present’ and h2 is ‘a sheep is present’, we should expect the system in
question to be able to assess p(e|dog) vs. p(e|sheep) (as well as the priors p(dog) vs.
p(sheep)). This suggests that the system must be able to discern patterns in e pertain-
ing to dogs and sheep.12 If e is a particular auditory input, a1 (for example, captured
as a time series of spikes in auditory cortex), then p(a1|dog) might be higher than
p(a1|sheep). The sound might be a bark, which is better predicted by the hypothesis
that a dog is present than the hypothesis that a sheep is present. We elaborate further
on this by setting inference in a hierarchical context in Sects. 3.2 and 3.3 below.

It is possible to recast Bayesian inference to bring out more clearly the role of pre-
diction errors in learning. We will assume that the probability distributions involved
are normal Gaussian distributions that can be described in terms of their sufficient
statistics, namely their mean and variance (or precision, which is the inverse of vari-
ance, cf. Mathys et al. 2014). Likelihoods and priors can thus be described using two
numbers. The prediction is given by the mean of the prior, m, and the prediction error
by the difference between m and the mean of the current sensory input, e.

Given this setup, how should m be updated to yield the new posterior estimate
in the light of e? The system has a spectrum of possibilities at its disposal, from
ignoring the prediction error altogether (not changing m) to changing m by the entire

12 Though of course the system need not begin by representing such distinctions, for reasons discussed in
Sect. 2.3.
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prediction error, e − m. Bayes mandates a particular strategy: update relative to how
much is already known (the prior) and how much is being learned (the likelihood).
We can capture this by assigning a Bayesian precision weight, πl/πp + πl , to the
prediction error. This weight will ensure that the prediction error influences inference
according to (i) how certain the system already is—the weight decreases as the prior
precision πp increases—and (ii) howmuch is being learned: the weight increases with
the likelihood precision πl .

For example, if there is a state of near total ignorance, then the prior precision is
close to 0 and the weight on the prediction error will increase so that the posterior will
largely follow e (modulo πl). Since the posterior becomes the prior for the next round
of inference, the prior precision should increase over time, up to the limit set by the
variance of the evidence. This displays how Bayesian inference, updating the prior
step-by-step, depends crucially on learning from prediction errors as well as on how
the priors evolve over time as the old posterior becomes the new prior for the next step
of inference. Simply by doing Bayesian inference, the prediction error will decrease,
as accuracy improves and evidence is accumulated at each step.

3.2 Bayesian inference in a changing world

If we assume a simple universe with causes that do not interact, so that sensory input
is a linear function of the causes, the type of Bayesian inference discussed above
should suffice to arrive at a correct model. The rate of learning in such a universe
would decrease as evidence is accumulated over time and the model’s predictions
approached perfect accuracy. In the actual world, however, causes tend to interact
with one another and with sources of noise to create variable, nonlinear changes in the
sensory input. This may cause increases in prediction error when the world changes in
ways not captured by the model, even if other aspects of the world have been modeled
perfectly.

Suppose for example that after having spent some time learning the true location of
a sound through many steps of inference, an agent begins to move around the source
of the sound such that the existing prior for its location begins to generate unexpected
prediction error. The system as described so far would tend to ignore this change in the
environment due to a high-precision prior that would treat the new prediction errors
as outliers. As a result, real change in the environment, in this case the agent’s own
actions, will go unnoticed. In essence, the model is now underfitted: it is too simple
to accurately represent the world.

The right response to this kind of underfitting would be to increase the learning rate
(that is, give the prediction error more weight) so that new patterns can be learnt. In
general, in a changing and uncertain world, the learning rate needs to be variable in a
way that is responsive to such changes. To see how this adjustment of the learning rate
can be governed by Bayesian norms, we return to the hierarchical filters implemented
in neural net models (see Sect. 2.3), which can be interpreted in a Bayesian way—i.e.,
hierarchical Bayes.

In a hierarchical model, various causes and their patterns of interaction can be
modelled in terms of their sufficient statistics, and the learning rate can be controlled
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dynamically by adjusting expected precision. For example, such amodel can represent
both the source of a sound (the dog, say) and a further cause interacting with the dog
(the master taking the dog for a walk). Now the system can anticipate changes in
the pattern of sensory input, and thereby decrease prediction error. For example, the
system will anticipate when the master tends to take the dog for a walk and hence
when the pattern of barks is likely to change location; the learning rate can then go up
(in effect weakening the influence of the prior for the dog’s location) when the master
is around so the dog’s location can be estimated, and go down again when the dog is
in the pen.

By judiciously varying the learning rate underfitting can be avoided, since now real
changes are accurately picked up. Conversely, by decreasing the learning rate, some
cases of overfitting can be avoided, since this will help prevent accidental changes in
the prediction error from influencing the posterior too much. The link from cause, v1,
to effect e, is now modulated by a further cause, v2, operating at a longer time scale.
Of course the modulating link from v2 might itself be modulated by yet another cause
v3 (e.g., the master finally gets permission to go away on holiday such that contrary
to expectation the dog is not taken for walks).

The types of modulating causes can vary in many different ways. For example, the
precision of the sensory input might periodically deteriorate (during rush hour, traffic
noise on the nearby road adds a source of noise to e, making it hard to accurately
assess the location of the dog). In this case, the learning rate should decrease rather
than increasing even though some of the e-pattern may be indistinguishable from the
pattern emerging when the dog is taken for a walk. This introduces further problems
for inference, as the system may need to discern whether the change in e is caused by
a changing mean or a changing precision.

This complicated causal structure in the world needs to be recapitulated in the
Bayesian system’s internal model, necessitating a hierarchy of interacting levels. By
optimising means and precisions over time, the system should be able to vary its
learning rate and update its posterior in Bayes-optimal fashion. That is, prediction
error will always be weighted according to how much, in a global perspective, is
already known, and how much is being learnt in a particular situation, given learned
expectations for precision (Mathys et al. 2014). In such a system, each inference occurs
within a represented context informed by long-term patterns in the sensory input. The
accuracy of the inferences will tend to increase over the long term, even in a changing
and uncertain world, because now interacting, modulating hidden causes are taken into
account and the system can update its learning as new and unexpected things begin to
happen.

Of course, prediction error will fluctuate as the system encounters volatile
and changing environments. There may be scenarios where irreducible uncertainty
increases, and there will inevitably be periods where, given the knowledge of the
system, it will make inferences that are rational given its prior beliefs but which a
better-informed observer would be inclined to say are false. This may happen during
learning of volatility in the environment, for example as the system begins to model
the changes in precision during dusk, dawn and full daylight—the system may ratio-
nally but falsely infer that a dog is a sheep. Mistakes cannot be entirely eliminated,
given that even extremely likely hypotheses may be false on some occasions, as dis-
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cussed later. But in the long-term average, systems engaged in hierarchical Bayesian
inference should be able to keep their prediction error within narrow bounds.

Earlier, we discussed the ambition in machine learning of developing an unsuper-
vised system for causal inference. Systems like those described here need only the
sensory evidence and their own (subjective) priors that are refined over time to drive
inference of the hidden causes. This suggests that a hierarchical Bayesian system
could in principle learn representations in an unsupervised way. However, the term
’unsupervised’ is, taken at face value, not quite appropriate. Though not guided by
a supervisor’s knowledge of the causes, inference is “supervised” or constrained by
prediction error and by knowledge stored in the model itself subsequent to previous
inferences, both of which stem from the world (since the priors are not set subjectively
for each round of inference but extracted over time through successive inferences—this
is known as empirical Bayes). Bayesian inference thus delivers rational supervision
that stems from the sensory signal itself and ultimately from the causes in the world
being modeled, since these shape the sensory signal and its evolution over time.

3.3 Content in Bayesian hierarchies

Weconclude this section by explicitly relating the hierarchical Bayesian PEMarchitec-
ture to the notion of S-representation outlined earlier. Broadly, hierarchical predictions
tie individual hypotheses like ’There is a dog’ or ’There is a sheep’ to distinct spa-
tiotemporal patterns of sensory attributes, and to hypotheses at other levels in the
hierarchy.

In the hierarchical PEM framework as described by Friston (2005), the influence
of units encoding hypotheses on the prediction error units at lower levels implicitly
represents the likelihoods, and also implement the predictions (a bark will be more
likely given the ’dog’ hypothesis according to the model just in case activation of
the ’dog’ hypothesis causes a top-down prediction for characteristic auditory signals
at lower levels of the model). The influence on the hypotheses at a given level from
error units at the same level implements the prior for those hypotheses, which is also
influenced by the hypotheses at the level(s) above, since these influence the error units
(the likelihood p(h2|h1), where h1 is a higher-level hypothesis relative to h2, in part
determines the prior for h2).

The resulting network of causes yields states with internal causal roles in virtue of
which those states stand in for environmental entities and states of affairs via structural
resemblance of the two causal networks. The prior probability of the “dog” hypothesis
may, for example, depend on the represented setting (rural vs. urban; daylight vs. dusk).
Concepts thus emerge in a linked network of sensory attributes and progressively
more abstract ways of grouping them, and hypotheses are tested by passing messages
(predictions and prediction errors) up and down in the hierarchy.

One challenge to the PEM framework that we would like to address here concerns
the sense in which terms like ‘prediction’ are being used. In particular, it has been
suggested (Anderson and Chemero 2013) that PEM trades on an ambiguity between
contentful, personal-level predictions (i.e., about the weather or what will happen this
evening) and the “predictions” that occur when, e.g., the activities of one neuronal
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population are anticipated by those of another, as in predictive coding theories (e.g.,
Hosoya et al. 2005).

As our examples have illustrated, the predictions in question can be understood
in neural terms—a prediction is a top-down signal that feeds into a lower cortical
area and is compared with activity at that level. This is a “vehicular” description—
couched in terms of the vehicle of representation. But each of these predictions also
has a content, determined by its place in the overall network of causes. Thus, the
predictions referred to in a description of the neural network architecture are also
predictions about the world. Predictions can be picked out by their local anticipatory
functional role within the brain, but their contents depend on their place in the broader
functional architecture. Importantly, the content-based and vehicle-based descriptions
of a prediction are systematically related. A given neural vehicle could in general
not have the specific content it has without playing the specific causal role it plays,
including its local causal role of probabilistically anticipating nearby neural activity.

Accordingly, the term ‘prediction error’ can also be understood in this dual light.
Prediction errors are implemented by the state of the error units at each level of the
hierarchy, which depend on local features of the top-down and driving sensory signals,
and the way in which they interact. But from the perspective of S-representation, each
such error is also an error in a genuine representational sense. Here caution is due,
because there are two senses in which a top-down prediction may be considered to be
(genuinely) “in error”. First, it may fail to entirely “explain away” the sensory signal
at the lower level, in which case there is a mismatch between the predicted content and
the content arrived at at the lower level via approximate inference (see the following
section for more detail). Or, it may fail to match the way things really are in the world.

Crucially, both of these sorts of errors depend, as such, on the states’ having
full-fledged truth-evaluable content. One person can contradict another only if both
genuinely say something, i.e. if the speech-acts of both are contentful representations.
And what each person says may contradict a true description of things, that is, fail
to “correspond with reality”. In short, we can in general assess representational error
either by direct appeal to a mismatch between the content of a representation and the
way things really are, or indirectly by comparing the content of one representation
to another presumed to be true (as is done in practice). After discussing approximate
inference in detail in the next section, we will return to this theme and see how it
can be made more precise for the representations considered here, using the formal
apparatus of Bayesian inference.

So far, we have seen that, if we begin with a system capable of hierarchical, empir-
ical Bayesian inference, we get a plausible first step in allowing a resolutely intrinsic,
unsupervised (or “world-supervised”) perspective on the system, within which con-
tents, conceived of in terms of causal roles similar to those of environmental causes,
can arise.

4 Approximate inference through prediction error minimization

The PEM framework goes beyond a straightforward commitment to hierarchical
Bayesian inference in that it focuses on ways in which Bayesian inference may be
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approximated in biologically plausible ways via long-term prediction error minimiza-
tion. In this section,we explain how such approximate inferenceworks, first informally
and then in slightly more formal terms. The latter discussion sets the stage for our con-
ception of misrepresentation in Sect. 5.

4.1 Prediction error minimization and inference

Above, it was noted that Bayesian inference over time will tend to minimise average
prediction error. As samples come in, the systemwill settle on the best overall estimate.
New samples will disperse around this estimate since there will always be levels of
irreducible noise, and thus always some prediction error, even after a long series of
inferences. Some errors will be small (sitting close to the estimated value) and some
will be larger (outliers). On average and over time, however, the error will tend towards
a minimum value determined by the level of irreducible noise. Notice that here the
long-termperspective is critical: prediction errormayfluctuate and fail to beminimized
in the short term.

This relationship between Bayesian inference and long-term average prediction
error minimization can be turned around. If Bayesian inference minimizes prediction
error, then it seems reasonable to expect that a system that is able to minimize long
term average prediction error is able to approximate Bayesian inference. To be sure,
this reversal needs to be handled with care since without further assumptions it is
not guaranteed that a prediction error minimizer will in fact end with the estimates
that would have come from applying Bayesian inference explicitly. But if Bayesian
inference is the optimal way to improve a model and thus reduce the errors in its pre-
dictions, a system employing such a model must approximate the results of Bayesian
inference in proportion to its ability to minimize prediction error.

This is important because a biological system such as the brain is more likely to be
able to minimize prediction error than it is to apply Bayes’ rule explicitly. Tominimize
prediction error in the simple case of a single neural representational unit encoding
a probability distribution, neuronal populations just need to be tuned to some types
of input and their variance so that the mechanism can match the sensory input with
the expected mean and variance of the distribution. This matching can occur either
by changing the expectations over time so that they better approximate the statistics
of the perceptual input (this is perceptual inference), or the system can act in the
world to change its sensory input to fit with the expectations—this is action or “active
inference” (so-called because action will minimize prediction error, and minimizing
prediction error is approximating Bayesian inference).

We have already discussed (in Sect. 3.2) how effective minimization of prediction
error in a world such as ours requires a hierarchically organized system that scales
up from singular representational units to harbour expectations of sensory input at
increasing time scales, as well as expectations about how levels of uncertainty change
over time, and about how causes in the world interact in ways that, under Bayes,
would change the learning rate. The system must also learn how to balance perceptual
and active inference, and must be able to manage this balance over the long term.
This involves building up expectations for how the prediction error minimization
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rate is affected by certain learning rates in perceptual inference VS certain types of
behaviours. Further, the system must learn to adjust the complexity of its model so
that it is neither underfitted nor overfitted, each of which leads to increased prediction
error.

Over time, a systemwith these capacities should be able to approximate hierarchical
Bayesian inference by employing a number of strategies, which minimize prediction
error and thereby increase the joint probability of its model and the sensory input it
receives. We then have an informal account of how a system that minimizes long term
average prediction error can be expected to approximate Bayesian inference, that is, to
progress towards approximating Bayesian models that represent the world. Crucially,
the PEM framework shows how this can be done using biologically plausible, neuronal
mechanisms.

4.2 Approximate variational inference

So far we have considered informally the relationship between prediction error and
inference. Parts of this argument can however be considered from a slightly more
formal perspective, borrowed from statistical physics and now adopted in machine
learning (Bishop 2007). Below we offer a condensed version of the core ideas, leading
to the general notion of variational Bayes that sits behind the ideas we have just gone
through.

Return first to exact inference. The aim is to infer the probability of the hypoth-
esis h given the evidence e, p(h|e). We know from Bayes’ rule that p(h|e) =
p(e|h)p(h)/p(e) but rather than trying to tackle this directly we can adopt an approx-
imate “recognition” probability distribution (or density), q(h), and try to make it
approximate the true posterior, p(h|e). This is useful because computing the latter
directly may require solving very complex integrals in the marginal probability func-
tion for the denominator, which is often intractable.

The measure of success for such a strategy is the Kullbach-Leibler divergence,
or relative entropy, between q(h) and p(h|e), KL(q(h)||p(h|e)). The KL divergence
is either 0 or positive and, roughly, measures the difference in average information
between two probability distributions (that is, for the discrete rather than continuous
case, the entropies are subtracted and parts of the expression are reorganized as a log
ratio such that KL(p||q) = �p(i) log(p(i)/q(i)) = −�p(i) log(q(i)/p(i)). There
is a twist in that, while entropy or average information of a distribution p over a set of
events is a sum of the log probabilities of the events weighted by the probability of each
event occurring under p, the KL divergence between p and q, KL(p||q) privileges p,
in that it weights both sets of log probabilities for events i by p(i). This allows the log
probabilities, when subtracted, to be expressed as the single log ratio).

Once we use the fact, from probability theory, that p(h|e) = p(e, h)/p(e), it is rel-
atively simple to show that KL(q(h)||p(h|e)) + �q(h) log p(e, h)/q(h) = log p(e).
Here log p(e) is the log probability of e, known as the surprise or model evidence.
Since we are considering p(h|e), the evidence e is given and this means that log p(e)
is a fixed negative value (negative because it is the log of a value between 0 and 1) and
this in turn constrains what happens on the left side of the expression. Specifically,
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since e is given, we can only vary q(h) and as we do that in the second term, which
is always negative, we must be controlling KL, which is never negative (this relation
between the terms is easy to verify with a simple set of numbers). The second term is
thus a lower bound on the log probability of the evidence, often written as L, so that
the overall expression can be simplified to KL + L = log p(e). This shows that we can
approximate the true posterior just by manipulating q(h) to maximize the function for
L, �q(h) log p(e, h)/q(h), rather than attempt to engage in exact inference.

The burden then moves on to considering how q(h) can be used to perform this
job. Variational Bayes suggests that this can be done by dealing with the parameters of
the model, h, one by one, assuming that the other parameters are known even though
in fact they are not (Bishop 2007; Bogacz 2017). One might imagine that the recog-
nition density q(h) “wobbles” around and begins to approximate the true posterior,
p(h|e), during such variational Bayesian inference. We can view the earlier more
informal discussion of prediction error minimization as an instantiation of variational
Bayes (properly speaking for probability density functions and under the (Laplace)
assumption that the probability densities are Gaussian); for discussion see (Friston
2010).

The technical literature here is immense and mathematical but there is a key
philosophical point that is relatively easy to bring across. The brain is proposed to
approximate Bayesian inference by adopting some parameterised internal model h
and engaging in variational Bayes on q(h). Essentially, since we are both approxi-
mating the posterior p(h|e) and improving the lower bound on the (log) probability of
the evidence, this means changing parameters so as to maximise the joint probability
of the hypothesis h and the evidence e. The processes outlined as part of the PEM
framework above spell out how maximizing this joint probability can be done via
perception, action, attention, and model selection. In principle, variational Bayes can
be conducted in a number of different ways—PEM spells out one of these, which, in
particular, gives a role for action. Predictive coding, which is often mentioned in these
debates and was assumed above in our discussion of predicting sensory evidence, is
one process theory for the perceptual inference part of PEM.

Given the conceptual tools just introduced, we can return again to unsupervised
learning and formulate a perspicuous way of thinking about how it is possible: as
priors and likelihoods of hypotheses are mutually adjusted in light of prediction error,
a reliable channel of information transmission is set up between neural populations
encoding sensory input and higher-level representations—an approximate recognition
model.13 In the other direction, a reliable channel is also constructed from those high-
level representations back down to the sensory input layers—the generative model.
Since sensory input drives a signal up through the hierarchy, which reaches the highest
levels, and then those high-level representations send signals back down through the
hierarchy to the lowest levels,we can think of the overall network as learning amapping
from sensory input, through high-level representations of causes, back onto sensory
input. Hierarchical message-passing and revision in light of prediction error can then

13 It should be stressed that the construction of the reliable information channel and the development of
meaningful representations are constitutively related. These are twoways of describing the process whereby
causal structure (which representation exploits) is set up within cortical hierarchies.
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accomplish the kind of unsupervised learning we have been seeking. The supervisor
is, as we mentioned earlier, literally the world, in the form of the proximal stimulus
at the sensory input channel, caused by states of affairs in the world.

What makes this more than a simple loop, or a matter of slavishly imitating the
sensory input just received, is the fact that higher-level representations (a) receive input
from (and output signals to) more than one sensory modality, thus integrating multiple
sources of sensory information (forming a joint generative model over wider slices of
the input channel), (b) tend to compress information from sensory input channels, so
that succinct descriptions of sensory input (andmotor output) result, and (c) are already
active given the context established by previous experience over several time scales,
so that information is integrated over time (one of the core features of PEM systems).
Because of these facts—and relatedly, the articulation of the loop into distinct stages
of hierarchical processing—the system is able to generalize and make predictions not
just about the current input but about temporally surrounding inputs, and even inputs
in the distant future, via refinement of its internal representations.

5 Representation and misrepresentation

The brain is proposed to be an organ for prediction error minimization. This proposal
is, as we have discussed, best understood in terms of a system that by adjusting various
parameters minimizes long-term average prediction error and thereby approximates
Bayesian inference. The result of this process of long-term prediction error minimiza-
tion can be cast in terms of minimization of the KL divergence between a recognition
distribution (or density) q(h) and the distribution for the true posterior under the
generative model. Inference of the states of the world given by q(h) is correct when
q(h) corresponds to what Bayesian inferencewould yield, i.e. whenKL(q(h)||p(h|e))
= 0. In this section we propose a measure of misrepresentation based on this idea.

5.1 Misrepresentation and KL divergence

In an early computational model of Bayesian perceptual inference, Hinton and
Sejnowski (1983) propose the KL divergence between a neural network’s genera-
tive distribution over sensory input states and the distribution over sensory states
determined by the external environment as “an information theoretic measure of the
discrepancy between the network’s internal model and the environment” (p. 451).
This KL divergence is thus a candidate measure of misrepresentation, but for reasons
discussed below is limited as a measure appropriate to structural representation. After
discussing these limitations, we adopt a similar proposal set specifically in the con-
text of our above treatment of hierarchical, structured representations characteristic of
hierarchical generative and recognition models in PEM systems.

Before we begin this discussion, we address two preliminary points. One concerns
the definition of structural similarity. For present purposes, we do not need a very
precise definition, but at least for comparisons of probabilistic causal models such
as Bayesian networks, an appropriate measure would be one that takes into account
both the topological properties preserved across two graphical models and the degree
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of similarity in dependencies between similarly situated nodes. We are not aware
of a single measure that explicitly combines both properties, but methods for struc-
tural comparison of various types of graphical models (including “inexact matching”
that is weaker than isomorphism or homomorphism) are an active area of ongoing
research, and there are many options to choose from (see, e.g., Gallagher 2006 for a
survey). For concreteness, we can provisionally require a strict homomorphism from
one graph to the other as a prerequisite for any degree of structural similarity, with the
degree depending on the difference between the joint distributions determined by the
conditional dependencies, as discussed below.

The second preliminary point concerns the fact that a priori, there are at least
two sorts of possible misrepresentation in systems that employ S-representations:
mismatch in structure (which, as the previous paragraph suggests, is likely a graded
notion) and improper registration of the representation with the represented system (as
happens for example when one locates oneself on a map incorrectly, or, in the case of
interest at present, infers a false hypothesis within a generative model).14 The account
of misrepresentation offered here directly captures the first type of misrepresentation,
whose relation to the second type is discussed shortly.

With these preliminaries out of theway, consider firstwhetherHinton&Sejnowski’s
measure makes sense as a rendering of the intuitive account of structural misrepresen-
tation sketched so far. On that account, representation is a matter of partial structural
resemblance, andmisrepresentation occurswhen there is some divergence between the
structure of the model and the structure of the thing modeled, against the background
of an overall exploitable similarity sufficient to ground content.15

Prima facie, Hinton & Sejnowski’s measure seems not to quantify misrepresenta-
tion in this sense, because it only concerns the sensory input states and is agnostic
about the structure of the model. It may be supposed that an agent that can predict the
sensory input must understand the structure of the environment, but two very different
networks of causal factors could, in principle, give rise to the same distribution over
observed variables (sensory input states). In real cases, the chance of being able to
generate the same distribution with an alternative structure of causes is negligible even
if intelligible. But the divergence at the sensory periphery still seems at best a proxy
for misrepresentation in the intuitive sense.

We suggest instead taking the divergence between p(h|e) and the approximate
recognition distribution q(h), which tracks prediction error in PEM systems, as a
measure of misrepresentation. On this proposal, as long as KL(q(h)||p(h|e)) > 0, the
inferred state of the world given by q(h) is a misrepresentation. For example, if q(h)

says that the most probable state of the world conditional on some particular sensory
input is that the dog is going for a walk, and this differs from the true posterior, which

14 We thank an anonymous reviewer for pressing us to clarify this distinction, which is also drawn by
Gładziejewski (2016), who uses the “X”-on-a-map example referred to here.
15 Clearly, if each generative model represents only the hypothetical world whose causal structure is
isomorphic to it, there can be no misrepresentation, and thus arguably no genuine representation either. We
need an independent standard of comparison to define misrepresentation, but note that this target need not
be the actual world: it could be one specified by a fictional description, for example.
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might say it is most probable under these sensory conditions that the dog is in the pen,
there is misrepresentation.

This proposal has the merit of focusing not just on the model’s predictive accuracy
with respect to input, but on the probabilities of the various hypotheses conditional
on the sensory input. Elsewhere, Hinton and Sejnowski take the same divergence to
be a measure of “the difficulty of performing inference with the model” (Hinton and
Sejnowski 1999: xiv). Crucially, since conditional dependencies among hypotheses
determine the structure of the model, this measure also tracks degree of structural
representation, and therefore dovetails with the account of representation outlined
earlier.

There is further work to be done to show that this a satisfactory account of misrep-
resentation, however. As noted in Sect. 3.3, representations can be assessed for error in
at least two ways: by comparison with other representations or by comparison with the
thing represented. The notion of structural representation by statistical models can in
principle accommodate both of these: models may be structurally compared both with
other models and with the modeled phenomenon. Thus, KL(q(h)||p(h|e)) compares,
in effect, the recognition model and generative model. So, the proposal thus far would
be that a comparison, using the KL divergence, of generative and recognition models
suffices as an account of misrepresentation.

There may seem to be a problem with this proposal, in that the generative model
is implemented by “backward” (top-down) synaptic connections and the recognition
model is implemented by “forward” (bottom-up) connections (in addition to the lateral
connections shared by both in Friston’s (2005) model). If distinct structures (captured
in terms of graphical models) determine distinct contents, the two models would then
seem to represent very different things. But the fact that the recognition model is
the inverse of the generative model (i.e. a mapping from sensory states to causes)
ensures that, in a well-trained system that minimizes prediction error, these models
will share structure despite the inversion (similarly, perhaps, my visible surface and
that of my mirror-image share structure despite the latter’s being reflected around the
vertical axis).16 Though the two models factor the joint distribution over hypotheses
and evidence differently, they can still be expected to share structure to the extent that
these joint distributions converge.

Consider next that minimizing KL(q(h)||p(h|e)) guarantees at best that no mis-
representation occurs in a relative sense: q(h) does not misrepresent the world as it
is represented by p(h|e) (or, q(h) does not misrepresent the hypothetical world rep-
resented by p(h|e)). To the extent that the probability of the hypotheses under the
models differ, the mapping defined by the recognition model will fail to invert the
generative model, so prediction error and thus relative misrepresentation are more
likely. But with respect to the external world, this accuracy of representation is only
as valuable as the accuracy of the posterior distribution under the generative model
itself, which will be improved over the course of learning using empirical Bayes.

16 In Friston’s model (2005), only the top-down connections introduce nonlinearities, but this is just a
further way in which the two models diverge while still sharing structure. The whole point, of course, is
that the recognition model is a (to some degree crude) approximation of the posterior under the generative
model.
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A true measure of accurate structural representation of an environment would of
course compare the structure of causes of sensory input in the generative model with
the actual structure of environmental causes. Assuming that real-world causal relations
can be understood probabilistically, we could measure the true degree of misrepresen-
tation by measuring the difference between the actual conditional distributions that
environmental causes determine over one another (including sensory input states), call
this c(h), and the generative distribution p(h|e). KL(p(h|e)||c(h)) is thus a promising
measure of objective misrepresentation.17

Of course, from a Bayesian perspective, uncertainty is ineliminable, and even the
most likely hypotheses may on some occasions turn out to be false. There presumably
will have been some determinate set of causes that actually contributed to producing
sensory evidence on any given occasion, and the model only avoids misrepresent-
ing the world if inference selects the corresponding hypotheses, which it can be only
asymptotically likely to do as probabilities assigned to actually true and false hypothe-
ses approach 1 and 0, respectively. The best we can hope for is a generative model
that assigns high probability to the true causes most of the time.

But note that because the internal model is “calibrated” to the environment at the
sensory periphery, amodel that avoids structuralmisrepresentation is also highly likely
to avoid misrepresentation of the second type discussed earlier, which occurs, simply,
when hypotheses are selected whose truth-conditions are not in fact satisfied. Thus
in the case of pairs of generative and recognition models, a measure of structural
misrepresentation serves also as a measure of average misrepresentation in the sense
of false hypothesis selection.

The upshot is that we have two measures of (average) misrepresentation. The first
is a direct, “external” measure KL(p(h|e)||c(h)), which an outside observer could
in principle determine but which may not be very useful in practice due to the diffi-
culty of determining c. The second, KL(q(h)||p(h|e)), measures relative, “internal”
misrepresentation. Unlike the external measure, it is accessible from the “animal’s
perspective” and so can be exploited in learning. As we have shown above, learning
is supervised by the world—by the truth—and therefore this internal measure is very
likely over time to track the external one.

We therefore propose that PEM comfortably allows a new and coherent account of
misrepresentation that fits well both with an intuitive functional-role account and with
the notion of representation as exploitable structural similarity. The current recog-
nition model, q(h), assigns probability to various contentful hypotheses, and is an
approximate inversion of the generative model p(h|e). The divergence between these
twomodels measures misrepresentation. The accuracy of the generativemodel is mea-
sured in terms of a KL divergence between it and the true states of affairs, c(h). This
proposal has the advantage of showing how a structural, functional-role account of
representational content can capture the requirement that misrepresentation be rela-
tive to actual represented states of affairs, while also showing how the system can

17 The distribution c of course specifies the relevant natural scene statistics. NSS are therefore important in
principle to understanding Bayesian models of perception, as Orlandi claims (see discussion in Sect. 2.3),
even if such models are interpreted in representational terms.
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avoid misrepresentation without the need for supervised learning, by improving the
generative model via hierarchical inference.

5.2 Misrepresentation, ignorance, and model fitting

The foregoing account of misrepresentation in PEM systems and related systems that
implement unsupervised learning seems to us to amount to real progress on the problem
of content andmisrepresentation, on the assumption thatwe are such systems.Nodoubt
there are objections and opportunities for refinement of the proposal as presented here,
but it seems to us sufficient to establish a serious representationalist interpretation of
the PEM framework. In this section we seek to defend and elucidate the proposal by
considering the sense in which overfitted and underfitted models misrepresent, and
how this issue interacts with learning.

A potential issue with our proposal is that models are refined during learning, and
are necessarily underfitted to the data early on. Assuming we start from scratch or
from a minimal set of evolutionarily endowed priors, neither the recognition nor the
generative model will really earn their names at the very earliest stages, since on the
S-representation account adopted here, world-related contents only emerge once a
system of largely veridical representations arises, which in PEM systems occurs once
the system has been refined significantly via (approximate) inference.

Relatedly, traditional accounts of learning that appeal to hypothesis-testing (Fodor
1975) encounter difficulty in explaining where the hypotheses come from. PEM solves
this by supplementing the hypothesis-testing storywith themachinery of unsupervised
representation learning. In effect, there is a smooth transition between early learning
that defines the hypothesis space and subsequent learning that refines themodel. Rather
than an innate stock of concepts, we need only the innate representational capacity
of a statistical model. The blurred distinction between constructing the hypothesis
space and refining the probabilities of various hypotheses in light of evidence may
seem philosophically troubling, but it is coherent given that structural resemblance is
a graded notion. We may suppose that any model trained via causal interaction with
the world begins by representing it rather indefinitely, and ends with a set of relatively
determinate hypotheses.

This graded transition between inchoate representation at the earliest stages and
fairly determinate content at the later stages suggests that the processes of representa-
tion learning (i.e. development of representations of sensory causes) and learning in
the ordinary sense (i.e. learning what is true about the world) are not fundamentally
distinct in kind. This is perhaps surprising, because the latter involves updating one’s
model in light of error, and one is tempted to say that at early stages, models do not
misrepresent the world in the sense of inaccurately representing it, but only fail to
represent it as determinately as could be done. This seems to amount merely to igno-
rance (or agnosticism), and intuitively there is a distinction between ignorance and
misrepresentation (e.g. false belief).

The intuitive distinction between ignorance and misrepresentation seems to be
at play in framing the disjunction problem for causal theories of content. Standard
treatments of this problemassume that, for example, a ‘dog-or-sheep’ hypothesis is true
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of a sheep (since a sheep is either a dog or a sheep), while the ‘dog’ hypothesis is not.
Though the disjunction problem as such does not arise for the structural representation
proposal, simple models may lack the structure to mark such distinctions as that
between dogs and sheep and may invoke the same hypothesis to explain sensory
input caused by both. We may thus consider what our proposal entails about such
“disjunctive” hypotheses. There turn out to be reasons to suppose that from a global
perspective, the application of disjunctive contents implies error.

Consider first that in viewing a sheep under degraded perceptual conditions, the
’dog-or-sheep’ hypothesis is likely to minimize prediction error just as well as the
’sheep’ hypothesis. It thus seems that they should involve the same degree of mis-
representation, measured in terms of KL divergence. However, this is true only when
considered in the short-term perspective. Whereas both hypotheses explain away the
current evidence, theremay be a difference in long-term prediction errorminimization.
In particular, having the ability to represent dogs and sheep rather than dogs-or-sheep
will help explain away non-linear evolutions of the sensory input due to interactions
between causes.

This point can be seen more intuitively from the perspective of model-fitting. The
model harbouring the disjunctive hypothesis rather than distinct ‘dog’ and ‘sheep’
hypotheses ignores some of the genuine causal structure of the world and therefore
can be said to be underfitted—it averages out differences between dogs and sheep and
thereby underestimates the precision of the sensory input, because it fails to model
a modulating cause (the deteriorating viewing conditions). This makes it a case of
ignorance, since the model is as yet unable to model the relevant full, deep hierarchical
structure of the causes of its sensory input.

The contrast here is overfitting, in which parameters are fitted to noise, as would
happen in a (counterfactual) world in which a distinction between dogs and sheep does
not reflect any genuine underlying causal structure, but spurious regularities happened
to occur in the sample on which learning was based. Crucially, both underfitted and
overfitted models will fail to predict the sensory input as well as an optimally fitted
model, and thus will on average increase their (internal and external) KL divergences
relative to the optimal case, even if this difference is temporarily obscured in degraded
perceptual conditions.

Thus, if we take the KL divergence proposal as a guide, we should in fact expect
that there is no deep difference between ignorance and (structural) misrepresentation.
Deploying the ’dog-or-sheep’ hypothesis will after all involve misrepresentation. On
reflection, this is not surprising given a structural account of representation: on that
account, as stressed earlier, content is determined holistically for all representations
in the system, and while it is accurate to classify a dog as either a dog or a sheep, it is
to some extent inaccurate to classify anything as a dog-or-sheep, at least in our world,
because the latter implies a conceptual scheme that takes the world to be simpler than
it is (at a particular level of abstraction) and thus misrepresents it.

This can be seen inmore detail by considering the probability of somevisible feature
f (for example, size or face shape) conditional on various hypotheses. The likelihood,
p( f |dog)will of course differ from p( f |sheep) formost features.Wemay suppose for
the sake of argument that the objective probability of f taking on a certain value given
that the thing in the environment is either a dog or a sheep, p( f |dog or sheep), is a
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bimodal distribution. A system that harbors both the ‘dog’ and ‘sheep’ hypothesesmay
in principle accurately represent this distribution, though in perceptual inference the
disjunction of hypotheses would not be selected because hyperpriors, we may assume,
dictate that animals in the environment are determinately members of one species or
another. But a system that instead harbored a ‘dog-or-sheep’ hypothesis would, at least
on the PEM account sketched above, attempt to model this bimodal distribution using
a single Gaussian (perhaps as geologists did for jade before leaning that jade is either
jadeite or nephrite). This would necessarily lead to a misrepresentation of the true
probabilities for f given the disjunction of hypotheses. In short, systems that entertain
disjunctive hypotheses are not equivalent to systems that are capable of entertaining
disjunctions between hypotheses.

There is less to be said about overfitting, because it seems a straightforward case
of imputing causes in the world where none exist. It is similar to a case in which ink
is spilled on a map used to navigate an environment, introducing spurious represented
features that don’t correspond to anything in the modeled structure.

6 Concluding remarks

In this paper, we have defended a proposal for understanding the representational con-
tents of mental states implemented by statistical models that is functionalist in spirit,
but that relies also on the notion of structural representation and recasts traditional
functional-role approaches in precise terms derived from the theory of variational
Bayesian inference. As we have indicated throughout, this proposal is one way of
developing existing work on structural representations within the PEM framework.

To recap, we have first argued on conceptual grounds for a marriage of struc-
tural and functional-role approaches to content. We then argued that well-known
anti-representationalist criticisms have missed this sort of proposal, and further moti-
vated the approach by arguing that it is consistent with approaches to content implicit
in theories of unsupervised learning in neural networks. In the remainder of the paper,
we described the prediction error minimization (PEM) framework for approximate
Bayesian inference in some detail, and discussed how representations arise within
Bayesian hierarchies.After explicating the notion of variational inference,we appealed
to the KL divergence between posterior generative and approximate recognition den-
sities in a hierarchical Bayesian network to define a subjectively accessible measure of
misrepresentation, and showed how thismeasure relates to objectivemisrepresentation
in terms of correspondence with the facts.
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