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Abstract We study the Johansen–Ledoit–Sornette (JLS) model of financial market
crashes (Johansen et al. in Int J Theor Appl Financ 3(2):219–255, 2000). On our
view, the JLS model is a curious case from the perspective of the recent philosophy of
science literature, as it is naturally construed as a “minimal model” in the sense of Bat-
terman and Rice (Philos Sci 81(3):349–376, 2014) that nonetheless provides a causal
explanation of market crashes, in the sense of Woodward’s interventionist account
of causation (Woodward in Making things happen: a theory of causal explanation.
Oxford University Press, Oxford, 2003).

Keywords Johansen–Ledoit–Sornette model · Econophysics · Renormalization
group · Minimal models · Explanation · Universality · Infinite idealization

1 Introduction

Mainstream economic models of financial markets have long been criticized on the
grounds that they fail to accurately account for the frequency of extreme events, includ-
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ing market crashes. Mandelbrot and Hudson (2004) put the point starkly in their
discussion of the August 1998 crash: “By the conventional wisdom, August 1998
simply should never have happened. The standard theories estimate the odds of that
final, August 31, collapse, at one in 20 million, an event that, if you traded daily for
nearly 100,000 years, you would not expect to see even once. The odds of getting
three such declines in the same month were even more minute: about one in 500
billion” (p. 4). Similar critiques have been mounted in connection with the October
1987 “BlackMonday” crash and the October 1997 “mini-crash”, as well as other large
drawdowns over the last thirty years. By the lights of ordinary economic reasoning,
such events simply should not occur.

Motivated in part by the October 1987 crash, and in part by new interdisciplinary
initiatives in nonlinear dynamics during the late 1980s, the last thirty years have seen
an upswell in alternative approaches to economic modeling, many of which have been
inspired by analogies with statistical physics. Work in this tradition has come to be
known as econophysics, a term coined by H. Eugene Stanley in 1996.1 One goal of
econophysics has been to develop new financial models that can accurately describe,
and perhaps even predict, extreme events such as financial crises.

Despite the apparent empirical successes of somemodels in econophysics, the field
has not been widely embraced by economists. The few who have engaged have been
strongly critical. For example, Lo and Mueller (2010) have argued that econophysics
is doomed because “human behavior is not nearly as stable and predictable as physical
phenomena” (1), and thus the strategies available in physics are not at all suitable for
dealing with economic phenomena.2 Similarly, Gallegati et al. (2006) express skep-
ticism about the assumption—essential for econophysics—that “universal empirical
regularities” (1) of a sort amenable to predictivemathematicalmodeling are to be found
outside of narrowly isolated subfields in economics.3 Worse, they argue, the models of
statistical physics that econophysics draws on tend to have conserved quantities, such
as energy, that are exchanged in interactions; in economics, by contrast, it is precisely
the quantities of exchange, such as money, that are not conserved. Thus, one of the
central “idealizing assumptions” of (some) econophysics models seems to be strongly
contradicted by basic facts of economic life. Finally, they accuse econophysicists of
using unrigorous statistical methods to identify patterns that are not really there.

In this paper, we make the case that econophysics deserves more credit than these
critiques give it, as an enterprise that is at least sometimes successful in its main goals
of predicting and explaining economic phenomena of certain kinds. Our strategy will
not be to address the general criticisms just described head-on, and we do not mean to

1 For more on the relationship between physics, finance, and econophysics, see Weatherall (2013); for
further technical details and overviews of recent work, seeMantegna and Stanley (1999), McCauley (2004),
and Cottrell et al. (2009). There is also a small literature in philosophy of science dealing with econophysics,
including Rickles (2007) and Thébault et al. (2017).
2 Despite the prevalence of this sort of criticism, it is far from clear that physics is more guilty of oversim-
plification than economics when it is applied to economic facts.
3 Gallegati et al. (2006) has sparked a small debate, with responses by McCauley (2006) and Rosser Jr.
(2008) among others. It is worth noting that financial markets, which are the focus of the present paper,
are one of the areas of economic activity that Gallegati et al. seem to think are amenable to the methods of
econophysics, and so it is not clear that the model we consider here is touched by these criticisms.
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argue that all models from econophysics, or evenmost or manymodels, are successful.
Instead,wewill focus on just onemodel that, wewill argue, has two features of interest:
it (1) draws on a significant analogy with statistical physics, in a way that goes beyond
standard modeling methods in economics; and (2) has real explanatory, and possibly
predictive, power. Our principal goal is to elaborate and defend howwe take the model
to work, including where and how the analogy with statistical physics enters, and to
articulate what sorts of novel insights into market behavior we believe it offers. In this
sense, we take the model we consider as “proof of concept”, while simultaneously
providing a case-study for the sorts of explanatory goals that arise in econophysics.

The model we consider is the Johansen–Ledoit–Sornette (JLS) model of “critical”
market crashes (Johansen et al. 2000), which uses methods from the theory of critical
phase transitions in physics to provide a predictive framework for financial market
crashes.4 This model is of particular interest because it aims both to predict and
describe market-level phenomena—crashes—and to provide microscopic foundations
that explain how that behavior can result from interactions between individual agents.
More specifically, in addition to its predictive role, the JLS model aims to explain
two “stylized facts” associated market crashes.5 The first is the fact that stock market
returns seem to exhibit power law behavior in the vicinity of a crash, and the second
is so-called volatility clustering, which is the fact that market returns seem to exhibit
dramatic, oscillating behavior before crashes, with large changes followed by other
large changes.6

The plan of the paper is as follows. In Sect. 2, we will present some (limited)
background on mainstream modeling in financial economics that will help place the
JLS model in context.7 In Sect. 3, we will introduce the model itself, focusing on the
role the analogy with critical phase transitions plays in the model. Then, in Sect. 4
we will argue against one tempting way of understanding how the model works, and
instead defend a somewhat different understanding. On the view we will defend, the
principal achievements of the model are to explain why crashes occur endogenously
in markets and to provide a possibly predictive signature for impending crashes.

Central to our argument in Sect. 4 will be the observation that although the analogy
with critical phase transitions is crucial in motivating and developing the model, in
the end the analogy is only partial. In particular, although the model fruitfully draws
on the renormalization group theory of critical exponents, financial crashes do not
seem to constitute a universality class in the strict sense that one encounters in that
area of physics. Nonetheless, we argue, there is a weaker sense in which crashes
exhibit universal features. This weaker notion of universality allows one to draw novel
inferences about the microscopic mechanisms that might underlie crashes. Since the

4 For more on this model and related ideas, see especially Sornette (2003) and references therein. The
model has since been elaborated and widely discussed; a recent discussion of criticisms and replies is given
by Sornette et al. (2013).
5 These stylized facts are often treated as qualitative laws or as descriptions of lawlike behavior, capturing
“set[s] of properties, common across many instruments, markets, and time periods” (Cont 2001, p. 223).
6 This has also been noted by Mandelbrot (1963, p. 418).
7 For more on how the JLS model fits into mainstream financial modeling, see Sornette (2003); for back-
ground on mathematical methods in finance more generally, see for instance, Joshi (2008).
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model helps make salient the possible microscopic mechanisms that could explain the
occurrence of a crash, we claim that the model provides an explanation of crashes that
is both causal (in the sense of Woodward (2003)) and reductive.

In Sect. 5 of the paper, we will explore how the argument just sketched relates
to recent debates in philosophy of science concerning explanatory uses of idealized
models.Wewill argue that the JLSmodel is naturally understood as a “minimalmodel”
in the sense of Batterman and Rice (2014) (see also Batterman 2002, 2005, 2009).
Nonetheless, we claim, (apparently) contra Batterman and Rice, that it provides both
a causal and reductive explanation of market crashes. As we will argue, this shows
that the same mathematical methods may be used for multiple explanatory purposes,
and that to understand explanatory strategies in the context even of minimal models,
one needs to pay careful attention to the salient why questions.8

We conclude with some remarks about possible policy consequences. In particular,
we argue that our interpretation of the JLSmodel as one that yields causal explanations
suggests methods by which policymakers could intervene on the economy in order to
prevent crashes or to halt the spread of one. The JLS model, we argue, may be used
as a diagnostic tool, allowing economists and regulators to formulate new measures
or to assess the performance of ones are already in place.

2 Some financial and economic background to the JLS model

Although the JLS model draws extensively on methods and ideas from the theory of
critical phenomena in physics, it also builds on a long, mainstream tradition of market
modeling in financial economics.Moreover, Sornette and collaborators emphasize this
continuity with early work in financial modeling. In the course of analyzing work in
econophysics, it seems particularly important to be clear about just where this work
diverges from more traditional modeling. And so in this section we will provide some
minimal background onmethods and ideas fromfinancialmodeling that the JLSmodel
builds on.

The JLS model may be broadly located in a tradition of modeling markets as
stochastic processes. This tradition originated with groundbreaking work in 1900 by
French mathematician Louis Bachelier, who first proposed treating price changes as
a random walk and built an options model on this basis (Bachelier and Samuelson
2011). Bachelier’s work went largely unnoticed, however, until re-discovered by J.
L. Savage and Paul Samuelson in the early 1950s. Independently, in 1959 a physicist
named M.F.M. Osborne proposed modeling market returns as undergoing Brownian
motion (Osborne 1959). Osborne provided his own empirical support for this model,
though it was largely consistent with earlier empirical work on market time series by
the Cowles Commission (1933) and by Kendall (1953).

8 As we hope will be clear in what follows, we do not mean to disagree with Batterman (2000, 2002) and
others, such as Reutlinger (2014), who have argued that explanations of why universal phenomena occur
that draw on RGmethods are generally non-causal. Instead, wemean to argue that RGmethods may be used
for multiple purposes, and that in the present case, the salient explanations have a different character than
in the case of statistical physics. The explanandum is not the existence of universality, and the explanation
is causal.
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Later, Samuelson (1965); Fama (1965); Malkiel and Fama (1970) explicitly con-
nected the random-walk hypothesis to the efficient markets hypothesis (EMH).9 The
EMH is the claim that markets are informationally efficient and asset prices reflect (all)
available information. The EMH is consistent with, and indeed implies, market ran-
domness. This is because if markets are assumed to assimilate information efficiently,
then any information available to market participants at a given time will already be
factored into the price at that time.10 Thus only (unaccounted for) news, which is ran-
dom, changes prices, meaning that changes in stock option prices themselves must be
random. Persistent exceptions to this rule, it is argued, are impossible, since if traders
were to observe a pattern in asset price time series that could be exploited, they will
exploit it, which would tend to wash out the pattern.

More formally, in efficient markets prices follow a martingale process, which is a
general stochastic process where the conditional expectation of the next value, given
past history and current value, is precisely the current value. That is,

E
(
pt+1 − pt|�t

) = 0, where �t = (
p1, p1, . . . pt

)
the history up till time t.

Here E(pt+1 − pt|�t) = 0 is the expectation value of the change in price in a given
time-step. Thus, for an asset that pays no dividends, one should expect the future price
to hover around the current value, all other things being equal.

Et[p(t′)] = p(t), for all t′ > t

In other words, we could say that the prices of stocks do not depart from their fun-
damental or intrinsic value in a way that an investor could systematically predict or
exploit to make a profit in the long run. In this sense, the EMH implies that the market
will behave unpredictably.

The market models just described have some well-known limitations. For instance,
if returns are modeled as a random walk, as Osborne and others proposed, one would
generally expect returns to be normally distributed. In fact, however, market returns
tend to be “fat-tailed”.11 This means that we see extreme events more often than one
would expect if returns were normally distributed. In addition, treating markets as a
martingale process leaves out a number of features that appear to be good indicators

9 The EMH has been a topic of considerable controversy. For instance, Shiller (1984) has argued that the
argument behind the EMH is invalid. The main worry is that current models neglect (i) agent psychology
and (ii) interactions amongst agents as key causal and explanatory features of asset price variations. Once
these factors are considered, it seems markets may well be random irrespective of how efficiently markets
process information or how accurately prices reflect fundamental values. Meanwhile, as Ball (2009) and
others have argued, over-reliance on the assumption of efficiency may affect how market participants
synthesize information regarding possible asset bubbles. But we will not weigh in on such controversies;
our purpose here is not to endorse the EMH, but rather to describe the context of the JLS model and to
emphasize its continuity with mainstream economic modeling methods.
10 Note that this argument appears to suppose that news that will positively affect price is equally likely as
news that will negatively affect price. But if there were any information available that would indicate that
positive (resp. negative) news was more likely, then that fact alone would count as tradeable information
that would affect price.
11 See, for instance, Mandelbrot (1963) and Cont (2001).
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of crises, such as volatility clustering (where large changes in price are followed by
further large changes in price).

That said, neither the martingale condition nor the EMH is in and of itself incon-
sistent with fat-tailed distributions or with large asset price changes. Indeed, there
is a tradition in economics of modeling rational bubbles, which are deviations from
fundamental values that are compatible with the martingale condition and the EMH
(Blanchard 1979; Blanchard and Watson 1982; Allen and Gorton 1993; Santos and
Woodford 1997; Sornette and Malevergne 2001) The idea is that under some circum-
stances markets enter a “speculative regime” in which it is rational to hold onto an
asset in anticipation of growing future returns, even though one believes that the cur-
rent price is not the fundamental price. Here, markets may still be understood to be
processing information efficiently—and thus the EMH may be taken to hold—since
the endogenous facts about the speculative regime are themselves information bearing
on future prices. In this regime, an asset’s value grows indefinitely, which itself is not
realistic but may be a suitable modeling assumption if persistent increase in value is
anticipated over the timescale of interest.

Still, rational bubbles models of the sort just described provide no insight into the
circumstances under which the speculative regime ends and markets crash. The JLS
model is intended to extend rational bubbles models in order to explain and predict
market crashes in the speculative regime. The basic proposal is that financial bubbles
and subsequent crashes are much like the development of sudden, spontaneous, and
drastic behavior in physical systems such as magnets. Like earlier rational bubbles
models, the JLS model treats bubbles and crashes without rejecting the EMH. Instead,
as we will see in the next section, it attempts to reconcile the EMH with a story about
the behavior of interacting traders.

3 The JLS model

Important stock market crashes of the twentieth century, including the US crashes of
1929 and 1987 and theHong-Kong crash of 1997, have been the result of the action of a
large group of traders placing sell orders simultaneously. Curiously, this synchronized
“herding” behavior seems to arise endogenously, rather than from outside instruction
or the influence of communication media. Traders, who are geographically apart and
generally disagree with each other, seem to organize themselves to place the same
order at the same time. The JLS model concerns the character and dynamics of this
self organization between traders.12

In physics, critical phase transitions constitute an important class of phenomena that
likewise exhibit “self organization”. A paradigm example of these kinds of transitions
is the paramagnetic-ferromagnetic transition inmagnetic materials. In this transition, a
large group of spins that are generally pointing in different directions align themselves
in the same direction simultaneously, so that the system undergoes spontaneous mag-

12 Note thatwemean “self-organization” in the informal sense of coordinated action between agentswithout
any apparent external mechanism. We do not intend to invoke any specific theories of self-organization or
self-organized criticality.
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netization. This suggests a potentially useful analogy between critical phase transitions
and stock market crashes.

Motivated by this analogy, Johansen et al. (2000) propose a model (henceforth
the JLS model) that elaborates on the rational bubbles models noted in the previ-
ous section and other work in econophysics (e.g. Sornette et al. 1996; Sornette and
Johansen 1997). The main hypothesis underlying this model is that market crashes
may be understood as a “critical phenomenon” strongly analogous to critical phase
transitions. This hypothesis is made precise by postulating a correspondence between
the quantities that are used to describe financial crashes and the physical quantities
that describe critical phase transitions. This correspondence then allows one to draw
inferences concerning various quantities of interest, including the probability of a
crash occurring under various circumstances.

In more detail, on the JLS model a stock market crash occurs when the system
transitions between two phases: a phase prior to the crash and a phase after the crash.
This transition point is analogous to the critical point for physical systems, and in
the present context corresponds to the time at which a stock market crash is most
likely to occur. In this model, there are two quantities that are relevant for capturing
this behavior of interest. The first is known as the hazard rate, h(t). The hazard rate
measures the instantaneous rate of change of the probability of the event occurring at
time t , given that it has not yet occurred by t . The larger the hazard rate, the more
rapidly the probability of an impending crash is increasing, given that the crash has
not yet occurred.13 It may be thought of as the instantaneous rate at which crashes
should be expected to occur, if only crashes were repeatable. The second quantity is
the price of some asset as a function of time, p (t). These two quantities determine the
dynamic equation that will be used to predict future crashes and provide a framework
for the underlying microfoundational story.

The model begins with a general form for the price dynamics for a time prior to a
crash. These dynamics are given by:

log
p (t)

p (t0)
= k

∫ t

t0
h (τ ) dτ, (1)

where p(t0) is the price at some initial time t0, p(t) is the price at a subsequent time
t , k is a constant, and h(t) is the hazard rate. Note that the hazard rate determines the
price.14 This means: the higher the hazard rate, the faster the price of an asset will
rise. In other words, the more risky the asset is, the more the trader expects to receive
in the future as compensation for taking on that risk.

13 More precisely, if F (t) is the cumulative distribution function of a crash occurring at or before time t ,
then h (t) = F ′ (t) / (1 − F (t)), where F ′′ is the probability density function. Conversely, one can define
a cumulative probability function from a hazard rate by integrating both sides of this equation with respect
to t . See, for instance, (Cleves et al. 2004, Ch. 2) for further details on interpreting hazard rates.
14 It is tempting to interpret the right hand side of Eq. (1) as representing the probability of a crash occurring
during the period from t0 to t , but this would be incorrect: the integral of h (t) dt does not yield a probability.
(For instance, it may exceed 1.) Instead, this quantity should be understood as a measure of accumulated
risk, in the sense that it represents the total number of times you should have experienced a crash during
this period, supposing the crash were repeatable. Once again, see Cleves et al (2004, Ch. 2).
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Note that these dynamics are consistent with the standard financial modeling
assumptions described above. In particular, in the special case where the hazard rate
vanishes, the expected change in price over any given time interval vanishes, just as one
would expect from the martingale condition discussed in Sect. 2 for a stock that does
not pay dividends. Following JLS, we call this the “fundamental regime”. When the
hazard rate is positive, meanwhile—the so-called “bubble regime”—one expects price
to increase exponentially over time. In this regime, the increase in price is driven up by
the accumulated risk involved in holding the asset during a period in which a crash is
deemedpossible. Investors arewilling to pay ever higher prices on the grounds that they
expect price to continue to increase without bound, as long as a crash does not occur.

In this general form, these dynamics do not give an account of stylized facts such
as the power law behavior we observe in financial time series, nor do they tell us
anything about the microscopic mechanism underlying the occurrence of a crash. It is
to get these further results that one introduces the qualitative analogy to critical phase
transitions. (Up to this point, no such analogy has been invoked.)

To begin, we suppose that markets consist of populations of two types of traders,
which JLS call “rational” and “noise” traders. (It is not essential that these populations
be distinct; particular traders may sometimes be noise traders and sometimes rational
traders.) The rational traders are assumed to trade on the basis of market fundamentals;
noise traders, meanwhile, are assumed to base their decisions on trends, imitate others
around them, etc. rather than investigating market fundamentals (Kyle 1985; Black
1986).

The model then assumes that traders are situated in a lattice network, analogous
to the lattice of the Ising model, the most important model in the study of phase
transitions, including the paramagnetic- ferromagnetic transition mentioned above.
(Note, however, that the specific lattice structure will turn out to be distinct from the
Isingmodel.) Agents in this networkmay be in one of two possible states: a “buy” state
or a “sell” state, just as spins in an Isingmodel may be either “up” or “down.” Also like
in an Ising model, agents are assumed to imitate their nearest neighbors, so that if a
given agent is in a different state from the average of her neighbors, there will be a non-
zero probability that the agentwill change states.A crash on thismodel is understood as
amoment inwhich a large group of traders are suddenly in the “sell” state.15 Therefore,
in this model a crash is caused (at the microscopic level) by self-reinforcing imitative
behavior between traders. This behavior is analogous to a phase transition, during
which a large number of nodes in the Ising model adopt the same state.

In statistical mechanics, the quantity that best describes the tendency of particles
to imitate one another is the susceptibility of the system. In the ferromagnetic-
paramagnetic transition mentioned above, this quantity corresponds to the magnetic
susceptibility χ , which is governed by the following power law near the transition
point:

χ ≈ A|T − TC |−γ (2)

15 Sornette (2003) also considers the possibilities of “anti-crashes”, wherein a large number of traders
suddenly transition to “buy” states; these are taken to be the ends of “anti-bubble” regimes. However, it is
important to note that neither Sornette (2003) nor Johansen et al. (2000) explain the fact that crashes are
generally caused by “sell” states instead of “buy” states.
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where A is a positive constant, TC corresponds to the critical temperature, and γ is
known as the critical exponent. Informally, the susceptibility of the system charac-
terizes the tendency of the system’s average magnetization (which is related with the
number of spins in the same state) to change due to the influence of a small exter-
nal field. One consequence of the power law is that at the critical point, T = TC, χ

diverges. The divergence of the magnetic susceptibility implies the divergence of the
correlation length, a quantity that measures the average distance over which particles
in the system interact. It is due to the divergence of the correlation length at the critical
point that distant particles are likely to be mostly in the same state at the same time.16

The JLS model posits that the hazard rate h(t) has the same general form as the
magnetic susceptibility

h (t) ≈ B |t − tc|−α (3)

where tc is the most probable time for the crash, B is a positive constant, and α is
a critical exponent that is assumed to have values between zero and one. Note that
attributing this form to the hazard rate is really an ansatz: no claim has been made
to have derived this power law behavior from any microscopic model (or family of
models). Instead, we have made two independent assumptions: the first is that traders
may be modeled as agents on a lattice with two states, without specifying any details
of the lattice or interactions between agents; and the second is that the hazard rate has
a particular form analogous to the magnetic susceptibility. The idea that the hazard
rate should be analogous to susceptibility is motivated by the idea that a crash should
correspond to large correlation lengths, but this does not fix the form of Eq. (3).

The final ingredient of the model is phenomenological. Observing the stylized fact
that prices exhibit accelerating oscillations in the lead up to a crash, one infers that the
critical exponent α in Eq. (3) is complex.17 A complex critical exponent modifies the
power law to include periodic oscillations in time known as log-periodic oscillations.18

JLS argue that, to leading order in a Fourier expansion near tc, the general solution
for h(t) is given by:

16 For more details on the logic of critical phenomena in physics, seeWilson and Kogut (1974), Goldenfeld
(1992), Cardy (1996), Fisher (1998), Kadanoff (2000), Sornette (2006), and Zinn-Justin (2007); for a more
philosophical take, see Batterman (2002) and Butterfield andNazim (2015).
17 The argument here is subtle. JLS first present their model generically, without making any assumptions
about the details of the network. They then observe that if the network has certain features—in particular, if
it is hierarchical in a sense to be explained in Sect. 4.2—then it will exhibit complex critical exponents, and
hence log-periodic oscillations near criticality. They give some plausibility argument for considering hierar-
chical lattices, but leave the actual lattice structure open until they consider historical data—at which point
they conclude that, given the presence of oscillations, the network must be approximately hierarchical and
the critical exponentsmust be complex. It is in this sense that introducing complex critical exponents is “phe-
nomenological”. One can also run the argument in the other direction, however, and argue that on the basis of
a plausible assumption concerning the hierarchical nature of trader networks, the critical exponents should
be expected to be complex; at times, Sornette and collaborators appear to prefer this version of the argument.
18 An early discussion of log-periodicity and self-similarity is given by Barenblatt and Zel’dovich (1972).
Extensivework on the existence of complex critical exponentswith log-periodic oscillations has been carried
out by Sornette and his collaborators (e.g. Sornette 1998; Arnéodo et al. 1998; Gluzman and Sornette 2002;
Zhou et al. 2005; Sornette 2006).
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h (t) ≈ B0 |tc − t |−α′ |tc − t |−α′′
log |tc − t | + ψ (4)

where B0, B1, andψ are real constants, α′ is the real part of α, and α′′ is the imaginary
part of α.

Having identified this form for the hazard rate, one then plugs h (t) from Eq. 4
back into the general dynamic equation (1) to obtain an expression that describes the
behavior of price as a function of time given this hazard rate, to obtain:

log [p(t)] ≈ log [pc] − k

β

{
B0 (tc − t)β + B1 (tc − t)β cos

[
ω log (tc − t) + φ

]}
,

(5)
where β = 1−α′ ∈ (0, 1), pc = p (tc) is the price at the critical time, and φ is another
constant.

Equation 5 succeeds in capturing the stylized facts observed in the occurrence of
extreme events, including volatility clustering and accelerating oscillations (Yalamova
andMcKelvey 2011).Moreover, as wewill elaborate below, it provides an explanation
of these observed phenomena—and indeed, of crashes themselves—that appeals to
the existence of self-reinforcing imitative behavior between traders. Finally, the model
aims to be predictive by providing the tools to anticipate the occurrence of crashes
that arise due to endogenous herding behavior, such as panics, by describing a specific
form of accelerating oscillations—namely log periodic oscillations—that provide a
signature of approaching criticality.

Note that although volatility clustering and accelerating oscillations are taken as
stylized facts that are “inputs” for the model that are used to establish that the complex
exponent in Eq. (3) is complex, the specific form of Eq. (5) should be taken as an
output of the model. As such, it can be back-tested to provide empirical support for
the model as a whole, and specifically for the claim that crashes may be understood
as critical phenomena. The results of these tests have been reported in several places
(Sornette et al. 1996; Sornette and Johansen 1997; Johansen et al. 2000; Sornette 2003;
Bothmer and Meister 2003; Calvet and Fisher 2008). The model has also been used to
provide real-time predictions of market crashes (Sornette et al. 2015). Perhaps most
remarkable is the crash of 1987, where the log-periodic oscillations are visible even
to the naked eye (Johansen et al. 2000).

4 The logic of the JLS model

The JLS model, and the analogy between crashes and critical phenomena on which it
is based, are highly suggestive. However, one needs to be careful about the limits of the
analogy.19 As we will presently argue, even if one accepts the arguments given in the
previous section, the logic of the model is importantly different from that of models

19 There are various criticisms of the JLS model that also stress the disanalogies between the JLS model of
financial crises and critical phase transitions. For example, Ilinski (1999) casts doubt on a main component
of the JLS model: crashes are principally caused by imitative dynamics between individual traders. He
objects that different market participants may act over different time horizons (e.g. minutes for speculators,
years for managers), so that the instantaneous long-range interactions between traders postulated by the
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from statistical physics on which it is based. First, we will argue that unlike critical
phase transitions, “critical” market crashes do not form a universality class in the sense
of renormalization group (RG) physics. It follows that explanatory strategies familiar
from applications of the RG in physics do not carry over directly to this model. We
will then present a different analysis of the logic of the JLS model, emphasizing what
sort of explanations we think the model can provide. We will conclude by observing
that although the mathematical methods used in the JLS model are similar to those
from physics the role that these methods play in application are different.

4.1 Do market crashes constitute a universality class?

To evaluate the analogy betweenmarket crashes in the JLSmodel and critical phenom-
ena in physics, we will begin by describing the situation in physics in some further
detail. As noted above, when a system undergoes a critical phase transition, some
important physical quantities diverge. For instance, in the ferromagnetic-paramagnetic
transition described in Sect. 3, the divergent quantities are the magnetic susceptibility,
the specific heat, and the correlation length. The divergence of the correlation length
implies that all spins are correlated at the transition point regardless of the distance
between them. That is, the measuring distance unit is no longer important. When this
happens, the system is said to be scale invariant.

Scale invariance is consistentwith the observation of power lawbehavior of physical
quantities near a critical point. The exponents appearing in these power laws—called
critical exponents—wereoriginally determined experimentally. Surprisingly, radically
different systems, such as fluids and ferromagnets, were found to have exactly the same
values for their critical exponents. This was particularly striking because the exponents
were deemed anomalous, which is to say that they were not whole numbers or simple
fractions. Systems having the same values of their critical exponents are said to belong
to the same universality class.20 One of the great achievements in the theory of phase
transitions was the development of RGmethods to explain how this universal behavior
comes about—i.e., to explain why apparently different systems have the same scaling
behavior near criticality.

RG methods consist, roughly, in a set of transformations by which one replaces
a set of variables by another set of—generally coarse-grained—variables without
changing the essential physical properties of a system. The (infinite) iteration of these
transformations in a space of Hamiltonians enables one to find so-called fixed points
of the transformation, which are Hamiltonians that represent the (coarse-grained)

Footnote 19 continued
JLS model are implausible. We will not engage with this criticism or others; instead, we want to see how
far the analogy goes if we assume that the model is well-motivated and well-supported empirically.
20 As will become clear in what follows, by “universality class” we mean the basin of attraction of a
given non-trivial fixed point under some RG flow. In cases of critical phase transitions, these correspond to
systems with the same critical exponent near the transition point, though RGmethods may be applied more
generally. Batterman and Rice (2014) suggest a still-broader definition of “universality class” that applies
to systems outside of physics where the RG does not apply; as we will see below, market crashes will turn
out to form a universality class in this more general sense, but one needs to be careful about the role that
the RG plays in the argument for this.
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dynamics of a system near a transition point.21 This procedure is taken to explain
universality, as it has been shown that systems in the same universality class flow to the
same fixed points, and thus the systems in a given universality class should be expected
to have the same dynamical properties near the transition point. The existence of non-
trivial fixed points is generally taken to show that a system’s microscopic details are
irrelevant to its behavior near criticality. In addition, RGmethods provide an argument
for the use of highly idealized models in the explanation of radically different systems.
For instance, by showing that both ferromagnets and fluids are in the same universality
class as the Ising model, RG methods justify the use of the Ising model for the study
of both systems.

Thus, in physics, the logic of universality arguments goes as follows. One begins
with the empirical observation that certain systems exhibit the same behavior—i.e.,
have the same critical exponents—near criticality. One then shows that those that
systems flow to the same fixed point by iterated application of an RG transformation,
thus explaining their observed similarity by establishing that, at a certain level of
coarse-graining, these systems have the same dynamical properties. In other words,
the thing one is ultimately trying to explain is why a range of apparently different
systems are all saliently the same, and the explanation proceeds by showing that the
microscopic details of the systems do not matter to the phenomenon in question.22

Is the same reasoning applied in the JLS model? It would seem not. In particular,
the first step does not work. While data-fitting supports the idea that the relationship
between price returns and hazard can be captured via a power-law (e.g. Johansen et al.
1999), analysis of past crashes does not support the hypothesis that crashes constitute
a universality class in the sense of all corresponding to the same non-trivial fixed point
of some RG flow. This is because crashes do not all exhibit the same critical exponent.
Via curve-fitting, Bothmer and Meister (2003) show that in 88 years of Dow-Jones-
Data there actually are no characteristic peaks in the critical exponent β of equation
5. Although JLS showed that the exponent of the crash in 1987 and the crash in 1997
differ by less 5%, Sornette et al. (1996) show that the value of that exponent differs
substantially from other important crashes such as the crash in 1929. The fact that that
there is no characteristic peak in the exponent β has the following consequence. Stock
market crashes are neither in the same universality class as the Ising model (or any
previously solved model) nor do they constitute a universality class themselves.

One might think, as Sornette and collaborators themselves seem argue to in at least
some places, that the fact that crashes do not constitute a universality class entirely
undermines the analogy between crashes and critical phenomena.

If we believe that large crashes can be described as critical points and hence
have the same background, then β, ω and � t should have values which are
comparable. (Johansen et al. 2000, p. 2397)

21 Note that our description of RGmethods here follows the “field space” approach, in the sense of Franklin
(2017).
22 Note that it is not essential, here, to begin with an empirical observation—though that is what happened
in the physics of phase transitions. In principle, one can demonstrate that two systems are in the same
universality class and thereby predict their behavior near critical points.
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As we will argue below, however, we do not think that the failure of crashes to
constitute a universality class is a major problem for the model.23 But it does mean
that the logic of the model, and the sorts of explanations we can expect from it, are
importantly different from in physics. If we cannot expect crashes to constitute a
universality class, then the RG story cannot be applied either for the calculation of
critical exponents or for the explanation of the universal behavior observed in crashes
(or not observed, as it happens). In other words, if there is universal behavior in stock
market crashes, this is not the kind of universal behavior that can be explained via RG
methods alone.24

4.2 On the explanatory character of the JLS model

We saw above that the JLS model apparently does not work by establishing that
market crashes form a universality class. This means that one cannot apply the same
reasoning as in physics to argue that large-scale market behavior near transition points
(i.e., crashes) is independent of the microscopic details of market dynamics. It thus
seems that insofar as the JLS model is successful, it must function differently. In this
section we will develop a positive account of the logic of the JLS model, describing
what we take the model to explain and how. We will argue that the JLS model relies
on a subtle interplay between microscopic and macroscopic considerations, by which
known mathematical facts familiar from statistical physics are used, in conjunction
with empirical considerations, to draw inferences in both directions.

Recall that, whereas the arguments from statistical physics sketched above began
with a brute empirical claim—many systems appear to have the same critical
exponents—the JLS model began with two separate ingredients. The first, Eq. (1),
was taken from mainstream economics—or at least, from the theory of rational bub-
bles. The second, Eq. (3), was a bare ansatz, inspired by statistical physics but in no
sense justified by it. In other words, one begins by considering what market dynamics
would look like if the hazard rate were governed by a power law near crashes, sim-
ilarly to how the magnetic susceptibility behaves. These two ingredients, along with
the further specification that the exponent in Eq. (3) is complex, then lead to Eq. (5),
concerning the logarithm of market prices near a crash. It is this equation that is the
principal predictive output of the model, and also the means by which the model is
both calibrated and tested against historical data.

But this is not the whole model. To motivate the ansatz that the hazard rate satisfies
Eq. (3) near crashes, JLS include a third ingredient, which is that microscopic mar-
ket dynamics may be modeled as a network of agents, interacting with their nearest

23 In addition to what we argue in what follows, Sornette (personal correspondence) points out that market
crashes should be understood as dynamical (i.e., non-equilibrium) phase transitions, wherein a parameter
diverges at a critical time. In these systems, one generally finds universality to be much weaker than in
equilibrium systems.
24 Note however that this does not mean that RG methods cannot be applied at all in the context of the
JLS model. Zhou et al. (2003), for instance, use renormalization group methods to obtain an extension of
Eq. 5 that gives an account of larger time scales. Moreover, as we will see, RG methods will reappear in
our analysis below, although they will play a different role than in statistical physics.
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neighbors via imitation, and that the hazard rate may be interpreted, much like the
magnetic susceptibility, as a measure of the characteristic distance scale of correla-
tions between agents. The proposal that market participants form some sort of network
of influence is taken as prima facie plausible, and no particular evidence is offered for
it; at this stage, no claims are made about the details of the network structure. Drawing
on known results from statistical physics, JLS then observe that networks of this sort
are very often associated with power laws near criticality for the parameter that is now
being interpreted as hazard rate, thereby linking Eq. (3) with a class of microscopic
models.

One then argues that insofar as Eq. (5) is successful, this relationship between
network models and power laws lends further plausibility to treating market micrody-
namics with a network model of this sort, and also that spontaneous herding, which
now is understood to correspond to long-distance correlations in a network, explains
endogenous market crashes. In particular, the divergence of the hazard rate at the crit-
ical point implies the divergence of the correlation length, i.e. the range of interaction
between traders.

Aswe noted above, if the correlation length in a networkmodel of this sort diverges,
the system becomes scale invariant. It is under these circumstances that the system is
successfully described by power laws. Scale invariance means that, near the critical
point, market dynamics are self-similar across scales. In other words, as traders imitate
their neighbors, they aggregate into clusters (e.g. companies) that act as individual
traders imitating their neighbor companies, and so on, to higher and higher scales. This
imitation procedure across different scales accounts for how information propagates
so quickly before a crash: “…critical self-similarity is why local imitation cascades
through the scales into global coordination” (p. 32).

But now, recall that the critical exponents in the JLS model were determined to
be complex, and that the associated power laws exhibited log-periodic oscillations.
Not all network models lead to log-periodic power laws (LPPLs); they typically arise
(only) when the underlying network model exhibits discrete scale invariance. Discrete
scale invariance means that the system is scale invariant only under special discrete
magnification factors; this, in turn, implies that the system and the underlying physical
mechanisms have characteristic length scales. As Sornette (1998) points out, this
provides important constraints on the underlying dynamics. In particular, it suggests
that traders are arranged on a hierarchical lattice, which is a lattice in which, by virtue
of the network structure, some nodes (traders) have greater influence than others
(still via nearest-neighbor interaction).25 Examples of hierarchical networks such as
the Bethe lattice, a fractal tree, or hierarchical diamond lattice. These hierarchical
networks tell us not only how information propagates through scales but also how
information propagates within the same scale. In Fig. 1, for instance, one can see that
in the Bethe lattice information that starts by one agent propagates within the same
scale faster than exponentially.

Sornette has argued that it is plausible to model the propagation of information in
social structures using hierarchical lattices, and also that there is independent empirical

25 For a general overview of hierarchical lattices and a discussion of their properties, see, for instance,
Griffiths and Kaufman (1982) and Melrose (1983).
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Fig. 1 Illustration of a Bethe Lattice, one of the possible network structures underlying the occurrence of
a crash according to the JLS model. The point in the center of the figure represents a trader who is source of
opinion. The first ring represents the neighbors, who tend to imitate the opinion of the trader at the center.
The second ring represents their neighbors, who are indirectly influenced by the opinion of the first trader,
and so on. This aims to illustrate how imitation could possibly propagate resulting into global coordination

support for doing so (Sornette 2003, Ch. 4). But it is not claimed—nor is it neces-
sary to claim—that under general circumstances, the network of traders is fractal, or
that it corresponds to some exact hierarchical lattice. Instead, what is claimed is that
under general circumstances, the network of traders lies in the basin of attraction of a
hierarchical model under RG transformations, so that its critical behavior is the same
as that of a hierarchical network, i.e., so that near a crash markets exhibit LPPLs. In
other words, interactions between traders must be “approximately” hierarchical, in
the sense of lying in the same universality class as some hierarchical network (with
imitative dynamics). It is here that RG methods enter explicitly into the JLS model.
One might think of the role played by RG methods here as establishing that crashes
form a universality class in a more general sense than that discussed above, namely by
showing how awide range of systems flow to fixed points characterized by hierarchical
networks of one sort or another. (We will return to this idea below.)

We claim that it is the inference from observed LPPLs to discrete scale invariance
of an underlying network structure (or, more generally, from power laws of any kind
to scale invariance) that forms the explanatory core of the JLS model. In more detail,
what we find here is an explanation of (endogenous) market crashes as arising from
the structure of the network of traders at the time the crash occurs. Markets crash
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in the absence of any external, coordinating event because the network of traders
can spontaneously evolve into states that are (discretely) scale invariant, i.e., which
have long correlation lengths, so that small, essentially arbitrary perturbations, can
propagate rapidly across scales.26

Perhaps surprisingly given the literature on universality and explanation, this expla-
nation, as we understand it, is causal, in the sense of Woodward’s interventionist
account of causation (Woodward 2003).27 On Woodward’s account, causes are vari-
ables that one could intervene on in order to reliably influence a system.More precisely,
one says that A causes B if (given some background conditions) there is a conditional
of the form “if A, then (likely) B”, where A can be understood as a single variable
that one could, in principle, manipulate. On this account of causation, a relationship
such as the one between LPPLs, discrete scale invariance, and transitions, which holds
across a range of different condition, can serve as a guide to identifying causal rela-
tions. As Woodward puts it, “When a relationship is invariant under at least some
interventions…it is potentially usable in the sense that…if an intervention on X were
to occur, this would be a way of manipulating or controlling the value of Y” (p. 16).

We take it that the moral of the JLS model in its most general form is as follows:
if the network of agents participating in a market approaches a (discretely) scale-
invariant state, as signaled by the appearance of LPPLs in price, then (it is likely that)
a crash will occur. In other words, the model says that crashes occur in many differ-
ent systems precisely when their (coarse-grained) dynamics become approximately
discretely scale invariant. And so, it is the emergence of discrete scale invariance (or,
perhaps, scale invariance more generally) that should be identified as the proper cause
of the crash.

On this view, it is the state of the network as a whole that should be understood as
the cause of the crash. But one might worry that this is not an “event” or “variable” of
the sort that one can intervene on. We believe it is. First, observe that on Woodward’s
account, it need not be possible to actuallymanipulate the variable; it need only be the
case that one could imagine, within the model, changing just this feature. And indeed,

26 Note that, while he continues to argue that DSI and LPPLs are important features of crashes that signal
the end of bubble regimes, in more recent work Sornette has suggested that both of these may be secondary,
with the fundamental signature of a crash instead being positive feedbacks, leading to power law singular
behavior (of some sort or other) (Sornette 2015b; Sornette and Cauwels 2015a; Leiss et al. 2015). These
arguments seem to us to move beyond the JLS model as we have presented it, though we take it they are
broadly compatible with the picture we sketch here of the sort of explanation these models seek to give.
In particular, on this alternative view it would be the inference from LPPLs to positive feedback loops that
forms the explanatory core of the model. We are grateful to Didier Sornette for drawing our attention to
these more recent arguments.
27 Sornette also speaks of this explanation as “causal”, for instance, when he writes “…the market antici-
pates the crash in a subtle self-organized and cooperative fashion, hence releasing precursory “fingerprints”
observable in the stock market prices…. we propose that the underlying cause of the crash must be searched
years before it in the progressive accelerating ascent of the market price, reflecting an increasing build-up of
the market cooperativity” (Sornette 2003, p. 279). As we noted in footnote 8, we do not take the claim that
this explanation is causal to be in conflict with the views defended by Batterman (2000, 2002), Reutlinger
(2014), or others. The claim is not that there is an explanation of universality in this model that is causal.
Rather, the claim is that the explanation of a given crash, or even crashes in general, is causal, because the
JLS model identifies how to intervene to produce a crash, or to prevent one—namely, by changing network
structure.
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in the present case, one certainly can change the state of the network so that it is no
longer scale invariant (discretely or otherwise), and in doing so, one ipso factomoves
away from the transition point. This is precisely what is needed.

More can be said on this point, however. As we will explore in the final section
of the paper, we believe there are mechanisms by which an agent—say, a regulatory
body—can in fact intervene on the network structure of market participants in order
to disrupt scale invariance. If this is possible, then the conditional above not only
bears a clear causal interpretation, but in fact has policy implications regarding how
to deal with an impending market crash. Before turning to this point, however, we
will consider how the analysis of both the logic of the JLS model and its explanatory
properties that we have just provided bears on recent debates concerning explanation
and universality in the philosophy of science literature.

5 Infinite idealizations, universality, and explanation in the JLS model

In the last section, we argued that the JLS model, though bearing important rela-
tionships to models of phase transitions in physics, relied on an argument that was
importantly different, both in the sense of “universality” at play and in how inferences
are drawn about the micro- and macrodynamics of markets. We also presented a pos-
itive account of both the logic of the model and the character of the explanation it
offers of market crashes. As we argued, this explanation is best construed as causal,
in the interventionist sense of Woodward (2003).

Wemade these arguments largely independently of the recent literature on the char-
acter of explanations in statistical physics that make use of the methods the JLS model
borrows. There was good reason for this: our main contention above was that the logic
of the JLS model is different from that of the models of phase transitions on which
it is based. That said, there are some features of the JLS model that make it salient
from the perspective of recent debates on explanation in philosophy of science. In
particular, the JLS model is arguably a minimal model in the sense of Batterman and
Rice (2014).28 A minimal model, according to Batterman and Rice, is one that “…is
used to explain patterns of macroscopic behavior across systems that are heteroge-
neous at small scales” (p. 349).More importantly, minimalmodels are “thoroughgoing
caricatures of real systems” whose explanatory power does not depend on their “rep-
resentational accuracy” (p. 350). Instead, the key feature of a minimal model is that it
allows us to say why many different systems turn out to be saliently similar, despite
their significant differences at a microscopic level.

28 See Lange (2015) for a different critique of Batterman and Rice (2014) than we give here. Lange argues
that Batterman and Rice cannot sustain the distinction they draw between their account and “common
feature” accounts such as Weisberg’s (discussed below). We take it that one can sustain a distinction
between different explanatory goals, one of which might well be to explain why many different systems
should be expected to be saliently similar to some highly idealized model, and we think that Batterman and
Rice do an adequate job of explaining both how that explanatory goal can be met, and why the strategies
for meeting it do not look like they are appealing to common features of a model and a target system. That
said, as we will argue, in some cases a single model, including the JLS model, can be used to achieve more
than one explanatory goal.
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The model of critical phase transitions discussed above is a paradigm example of
a minimal model in the Batterman and Rice sense. There, the goal is to explain why
many different systems have the same behavior near transition points, and moreover,
to show why highly idealized models, such as the Ising model, capture the essential
behavior of all of these different systems. The RG played an essential role in this story.
But Batterman and Rice are clear that it is not only models that use the RG in this way
that are to count as minimal models: they also describe an example from biology—the
Fisher sex ratio model—and argue that it is a minimal model as well. The essential
feature in both cases is that one has a universality class, in the general sense of a
collection of models that are all similar in some salient way, and an explanation of
why all of the systems in question fall into that universality class.

We argued above that even though the RG plays a different role in the JLS model
than inmodels of critical phase transitions, there is still a sense inwhichmarket crashes
form a universality class, according to the JLS model. This universality class does not
correspond to the basin of attraction of a single non-trivial fixed point under iterated
applications of an RG transformation. Instead, it is a collection of systems that are all
saliently similar, in the sense that they exhibit LPPLs.

Still, one can explainwhy awide range of systems exhibit this sameuniversal behav-
ior: they all exhibit discrete scale invariance near their transition points. Moreover, RG
methods play an important role in this argument. Although RG transformations do not
take all of the relevant similar systems to the same non-trivial fixed point, they do
take such systems to non-trivial fixed points with complex critical exponents, and
thus LPPLs. So in this sense, the RG establishes the universality class in the salient
(generalized) sense. Finally, although one cannot show that there is some idealized
model that has the same critical exponent as every market crash—since not all market
crashes have the same critical exponent!—one can show that there are highly idealized
models, each exhibiting discrete scale invariance near transition points, that give rise
to LPPLs near their transition points. It is on these grounds that we take the JLS model
to be a minimal model in the Batterman–Rice sense.

The JLSmodel also has another feature that, though not part of the official definition
of minimal models, seems characteristic of them (Batterman 2005, 2009): the JLS
model relies on an infinite idealization. (This provides one sense in which the model
“caricatures” real markets.) That is, the JLSmodel assumes that the network of market
participants includes infinitely many agents. Moreover, this feature is necessary for
the model as we have described it, and it is assumed in all versions of the model we
know of in the literature. The reason it is necessary is that scale invariance, including
discrete scale invariance, means that some property of the model must hold—i.e., be
“invariant”—at all scales, no matter how large. Thus only an infinite model may be
truly scale invariant. Likewise, only an infinite model can exhibit the sort of infinite
correlation lengths that we identify with a transition point.29

29 This is not to say that the model could not be reconfigured as one that is invariant across some scales,
but not under arbitrary scale transformations. In other words, we do not mean to deny what is sometimes
known as “Earman’s principle”, that idealized models can only be explanatory if one can imagine removing
the idealization and still being able to explain the same phenomenon (Earman 2004; Butterfield 2011). But
doing so would require substantial changes in the analysis, and would effectively produce a different model
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These features of the JLSmodel, and especially the role that the infinite idealization
plays in establishing scale invariance near the critical point, are common across appli-
cations of the RG methods. And Batterman puts considerable weight on the infinities
that arise in models that use these methods: rather than anomalies to be avoided or
removed, they are sources of important information.

I’m suggesting that an important lesson from the renormalization group suc-
cesses is that we rethink the use ofmodels in physics. If we includemathematical
features as essential parts of physical modeling then we will see that blowups or
singularities are often sources of information. (Batterman 2009, p. 11)

It seems that something similar is going on in the JLS model: there, too, one encoun-
ters not only infinite systems, but also divergent quantities—including both the hazard
rate and the correlation length between traders. And it is these blowups that sig-
nal that a crash is impending. This singular behavior is at the very core of the
model.

So it seems that the JLS model has the hallmarks of a minimal model. But if so,
there is a tension between what we say above and Batterman and Rice’s account of
how minimal models explain. In particular, Batterman and Rice emphasize that the
sorts of explanations they consider are non-causal and non-reductive.30 Moreover,
they argue minimal models are not representational, in the sense that their success
does not depend on “some kind of accurate mirroring, or mapping, or representation
relation between model and target” (351). On our view, however, the JLS model does
provide a causal explanation; moreover, this explanation is arguably both reductive
and representational.

We have already seen the sense in which the JLS model provides a causal explana-
tion: it may be understood to yield a conditional statement, the antecedent of which
is a variable on which one can, in principle, intervene. Thus, on an interventionist
account of causal explanation, the model appears to allow us to say that it is (discrete)
scale invariance that causes market crashes—or, to put it in more evocative terms, it
is herding at all scales that causes market crashes.

Some readers will balk at this claim: after all, as just noted, only infinite systems can
be truly scale invariant, and realistic markets are not infinite. So, in what sense could
a feature that no actual market could have cause a behavior that realistic markets
exhibit? Or to put it another way, how could actual market crashes be caused by
scale invariance? The answer, as we see it, is that the JLS model explains crashes
by showing that in some networks, correlation lengths can become long, relative to
the overall size of the network, and that when this happens, crashes become likely.
It is the infinite idealization that allows one to precisely characterize the relationship
between long correlation lengths, scale invariance, and crashes, and it is not clear
that one could establish this relationship as neatly in a finite system as one can in
the infinite system. But what the infinite system is ultimately telling us is something

Footnote 29 continued
from the one under consideration. Our interest is in the explanatory role of the infinite idealization in the
present version of the model.
30 See also Morrison (2006) for a related point.

123



4496 Synthese (2018) 195:4477–4505

about the causal relationship between correlations between traders and market-wide
crashes.31

We should emphasize that, although we take this explanation to be causal, it is
only on a particular account of causation (i.e., the Woodward (2003) account). Of
course, there are many other analyses of causation on which this may well not be
a causal explanation (Salmon 1984; Strevens 2008). More importantly, we do not
claim that crashes are being explained, here, by appeal to particular details concerning
interactions between individual agents. In this sense, it is not a “causal-mechanical”
or “mechanistic” explanation (Craver 2006; Kaplan 2011; Kaplan and Craver 2011).
Indeed, the model is not committed to any particular network model at the microscale,
just a class of models that exhibit discrete scale invariance. Sornette puts the point as
follows.

It turns out that there is not a unique cause but several mechanisms may lead
to DSI. Since DSI is a partial breaking of a continuous symmetry, this is hardly
surprising as there are many ways to break down a symmetry. We describe the
mechanisms that have been studied and are still under investigation. The list of
mechanisms is by nomean exhaustive and othermechanismsmay exist. (Sornette
1998, p. 247)

Thus, the model does not even include a specific account of how agents interact
with one another. It is rather a generic feature of a range of possible networks that
plays the causal role.

This last point is also closely related to the senses in whichwe take the JLSmodel to
be reductive and representational. The antecedent of the conditional described above
refers to the micro-constituents of the market. It is in this sense that we take the expla-
nation to be reductive: it explains a phenomenon by appealing to relations between
the parts of a system—in this case, interactions that occur between agents in a net-
work.32 But it does not follow that the model supposes an atomistic conception of the
economy, i.e. it does not determine the law governing the behavior of any arbitrary
agent. Given some behavioral assumptions, it does constrain the kinds of structures
they might reside in. In this case: hierarchical structures that (sometimes) exhibit dis-
crete scale invariance. This does not require any particular arrangement of individuals
because those particular details are in some sense irrelevant; what does matter are
these structural details.

31 Here there is a relationship both to “Earman’s principle”, as noted in footnote 29, and also to Butterfield
(2011), who argues that in cases where one takes an unrealistic infinite limit, one should expect to see the
qualitative behavior that arises in the limit appearing already on the way to the limit.
32 Of course, one might consider stronger senses in which an explanation could be reductive. For instance,
onemight require that a reductive explanation gives us information about the details concerning the behavior
of themicro-constituents of the system, or that a reductive explanation elucidate why themicroscopic details
are causally relevant for the phenomena under study. One might even insist that an explanation is reductive
only if it appeals to fundamental physics—in which case, no explanation in the social sciences, and few in
biology, chemistry, or even physics could ever be reductive. As we hope is clear from the text, we have in
mind a weaker sense of an explanation being “reductive”; it is not essential to our purposes that this sense
of reductive contravene Batterman and Rice. We are grateful to an anonymous referee for pushing us on
this point.
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Likewise, the model is representational in the sense that its success depends on the
fact that it represents certain stylized facts about market participants: they influence
one another, at least sometimes, by imitation, and their interactions are hierarchical,
in the sense that some traders are able to influence larger groups than other traders. Of
course, this is far from a complete or accurate representation of market participants.
But if actualmarket participants do not bear relations to one another that are adequately
represented by a networkwith these features—or if markets are not discretely invariant
across at least some scales—then the JLS model would fail to support the causal
explanationwehave described here.And so, it seems that the success of the explanation
does depend on the representational accuracy of themodel, at least with regard to these
particular features.

This weak sense of being “representational” indicates that the JLS model may
(also) be understood as an example of what Weisberg (2007, 2012) calls “minimalist
models”: “[A] minimalist model contains only those factors that make a difference to
the occurrence and essential character of the phenomenon inquestion” (Weisberg2007,
p. 642). It also invokes Strevens’ (2008) account of idealized models: “the content of
an idealized model, then, can be divided into two parts. The first part contains the
difference-makers for the explanatory target… The second part is all idealization; its
overt claims are false but its role is to point to parts of the actual world that do not
make a difference to the explanatory target” (p. 318). Strevens, too, argues that this
sort of idealization is compatible with causal explanation.

Of course, Batterman and Rice’s minimal models and Weisberg’s minimalist mod-
els are supposed to be fundamentally different; worse, those philosophers who have
mistaken minimal models for minimalist models have “almost universally misunder-
stood” the explanatory structure of these models (Batterman and Rice 2014, p. 349).
And yet, it would seem that the JLS model is an example of both. How could this be?

The tension can be resolved if one distinguishes between, on the one hand, features
of amodel—what sorts of idealizations it involves; inwhat senses, if any, it is represen-
tational; what sorts of mathematical relationships and methods it relies on—from the
sorts of explanations one can give by appealing to the model—i.e., the why questions
one is able to answer (Van Fraassen’s 1980).33 Batterman and Rice define minimal
models as models used to give certain sorts of explanations involving universality
classes. Since the JLS model can be used to explain why market crashes form a uni-
versality class (in the broad sense), the JLS model counts as a minimal model. These
explanations, they argue, are neither causal nor reductive, and their success does not
depend on the accuracy with which the models represent target systems; using the JLS
model to explain the universal behaviors associated with crashes (namely, LPPLs, dis-
crete scale invariance, etc.) is presumably also non-causal, at least insofar as Batterman
and Rice’s arguments are convincing.34

33 This point mirrors one made by O’Connor and Weatherall (2016): there are many different purposes
for which models may be constructed, and to which they may be put. This includes different explanatory
purposes, and so one should be cautious about attempts to classify or taxonomize models on the basis of
how they may be used to explain.
34 We tend to think that they are convincing, or at least, we agree that explanations of universality of the sort
Batterman and Rice discuss are non-causal. (See also Reutlinger 2014 for a different argument concerning
why these explanations are non-causal.)
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But the fact that the JLS model can be used for this sort of explanation does not
bear on whether one can also use it to provide other explanations; nor does it bear
on which explanations seem most salient in the context in which the JLS model was
developed.35

In other words, we claim that the JLS model may be used to answer the question,
“Why do markets generically exhibit volatility clustering, log-periodic oscillations,
etc. nearmarket crashes, even thoughmarket conditions otherwise vary dramatically?”
To do so, one usesRGmethods to show that a large variety of different networks exhibit
discrete scale invariance and satisfy LPPLs near transitions points. In answering this
question, we give the sort of explanation that Batterman and Rice are pointing to, and
it is for this reason that the JLS model is a minimal model.

But we claim that we can also use the JLS model to answer the question, “Why
do stock markets crash?”, where this question is understood to be about the causes
of crashes. And in this case, the answer is: because hierarchical networks can spon-
taneously evolve into states featuring discrete scale invariance, and scale invariance
of any sort allows vanishingly small perturbations to cascade across scales.36 It is
in answering this question that the Woodwardian conditional described above is cru-
cially invoked. And it is in answering this question that the minimalist representational
features of the JLS model matter.

There are several points to emphasize here. The first is just to clarify our argument,
lest our claims above be misconstrued: As should now be clear, when we argued
above that the JLS model provides a causal explanation, we did not mean to imply
that the explanation one can give for why market crashes form a universality class is a
causal explanation (contra Batterman and Rice), nor (ipso facto) that all explanations
are causal.37 The point is rather that the JLS model, despite having the characteristic
features of a minimal model, may nonetheless be used to give causal explanations (in
addition tominimalmodel explanations). And pulling apart these different explanatory
tasks requires careful attention to precisely what question one is trying to answer.

A second point to emphasize is that, even though the why questions described
above are distinct, there is a subtle interplay between them. It is precisely because
the JLS model can be used to explain why market crashes form a universality class in
the relevant sense that it can (also) be used to provide a certain kind of causal expla-
nation of market crashes, since it is the relationship picked out by this universality

35 We should emphasize that we do not take the claim that different questions call for different kinds of
explanation to be in tension with Batterman and Rice’s view. Our point, rather, is to resolve the apparent
tension between our arguments and Batterman and Rice’s view by distinguishing the why questions at issue.
We are grateful to an anonymous referee for encouraging us to clarify this.
36 Note that there is another interpretation of “Why do stock markets crash?” that does not demand a
causal explanation, but rather another minimal model explanation: namely, “Why do markets fall into a
universality class of systems that exhibit crashes, as opposed to tamer sorts of transitions?” Of course, this is
a legitimate explanatory demand, and the answer, invoking the JLS model, would look more like the answer
to the first question than the second. The difference between these two understandings of the question “Why
do stock market crash?” invokes Van Fraassen’s (1980) analysis of the logic of why questions. Explanatory
demands, van Fraassen convincingly argues, involve, in addition to the explinandum, both a contrast class
and a relevance relation.
37 For other examples of explanations that seem to be even more clearly non-causal, see Weatherall (2011,
2017).
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class, between discrete scale invariance and LPPLs near transition points, that makes
true the conditional that forms the basis of the causal explanation. More, for pre-
cisely the same reason, the infinite idealization in the JLS model is essential precisely
because it helps one identify the common mechanism underlying the phenomenon of
interest—and thus, it is the infinite idealization that permits the causal explanation.
Conversely, it is precisely because the relationship encoded by the Woodwardian con-
dition holds that market crashes fall in a universality class (in the broad sense) in the
first place.

This situation raises a question. If the JLS model can be both a minimal model
and also a minimalist model, can we understand the other models that Batterman
and Rice discuss, including models of critical phase transitions, as also providing
interventionist causal explanations (in addition to minimal model explanations)? In
a sense, the answer must be “yes”, at least if what we argue above is correct. For
instance, in the phase transition case, one can use the Ising model to answer the
question, “Why do critical phase transitions occur?”, construed causally, by showing
that the Ising model, and a wide range of other models in its universality class, can
evolve into states that are (approximately) scale invariant, and thus vanishingly small
perturbations can cascade across scales. This explanation is causal in just the same
sense that the corresponding explanation invoking the JLS model is. Once again, there
is a subtle interplay between this explanation and theminimalmodel explanation using
the same model, since the fact that real systems are in the same universality class as
the Ising model is precisely what isolates scale invariance as the difference-maker (or,
perhaps better, the manipulable variable).

All that said, there is still a difference between the JLS model and critical phase
transitions in this regard. It concerns which explanatory demands seem most salient.
As we noted above, one of the most striking features of critical phase transitions is the
fact that many different systems have the same critical exponents. The salient issue
is not to explain why transitions occur at all, but rather to explain why transitions in
different systems are so similar. Of course, this does not prohibit one from asking
the other question; it is just a matter of emphasis. (Besides, background theory, such
as mean field theory, seems to explain this well, without explaining universality.) In
the case of financial markets, the situation seems to be reversed: there, one wants to
explain why (endogenous) market crashes occur at all, particularly given that crashes
are often taken to be in tension with the EMH and other standard market modeling
assumptions. And for this reason, it is the causal explanation using the JLS model that
seems to be the salient one.

6 Policy implications

We argued above, particularly in Sect. 4.2, that the sense in which we take the JLS
model to provide a causal explanation is interventionist: it depends on identifying a
potential conditional relationship, the antecedent of which can be understood as a vari-
able that can be manipulated, at least in principle. Moreover, the JLS model provides
an observable signal of when that antecedent obtains. But having identified such a
variable means that we have also identified a potential target for policy intervention. If
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we accept the JLSmodel, howmight a regulatory agency intervene to prevent crashes?
The answer is to disrupt the network structure on which traders reside.

How might one do this? One possibility would be through structural changes.
Hierarchical networks have interesting dynamical properties because their inhabitants
tend to cluster together and thus disseminate risk in particular ways.

…hierarchical networks are resilient to peripheral crises, but very fragile in the
face of crises in the center. In these systems, the risk of contagion falls as the
system integrates around the center. (Oatley et al. 2013, p. 135)

Thus, one possible intervention would be to try to identify regions of the network that
are peripheral, and try to introduce further connections—i.e., increase integration—
between them, as this can make hierarchical networks more resilient to contagion.

It is not clear that this sort of proposal could serve as a response to an impending
crash, however. Another proposal that might be more effective in this regard is given
by Holme et al. (2002). They borrow from computer science to suggest that sometimes
the performance of a system can be improved by selectively deleting vertices and edges
in a network (i.e. the relationships between nodes/agents):

If one wants to protect the network by guarding or by a temporary isolation of
some vertices (edges), the most important vertices (edges), breaking of which
makes the whole network malfunctioning, should be identified. (p. 1)

Here the suggestion would be to identify, in advance, particular relationships—say,
relationships between major banks, or within banks—and intervene on them when
LPPLs appear in market data, perhaps by blocking information from being exchanged
between particular actors.

The JLSmodel can also be used as a diagnostic tool for evaluating current regulatory
tools. For instance, one typeof intervention that is actually used as afinancial regulatory
tool is the “trading curb”. A trading curb works by temporarily halting activity if a
very large, sudden drop occurs in the stock market. For instance, the New York Stock
Exchange (NYSE) currently has in place several “circuit breakers,” which kick in
depending on how much the Dow Jones Industrial Average (DJIA) has moved within
a short period of time, with longer time-out periods for larger sudden drops.38

[T]he circuit-breaker halt for a Level 1 (7%) or Level 2 (13%) decline occurring
after 9:30 a.m. Eastern and up to and including 3:25 p.m. Eastern, or in the case
of an early scheduled close, 12:25 p.m. Eastern, would result in a trading halt
in all stocks for 15 minutes. If the market declined by 20%, triggering a Level
3 circuit-breaker, at any time, trading would be halted for the remainder of the
day. (NYSE: NYSE Trading Information 2016)

Circuit breakers may also be assigned to a particular stock, rather than to the market
as a whole. For instance, “limit up, limit down” measures employed in some markets
prevent a stock from being traded outside a certain price band for a fewminutes (Pisani

38 Other exchanges, e.g. the Chicago mercantile exchange, have similar measures in place.
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2013). For instance, a 5% movement within 5min (e.g. say a stock drops to $5 at that
time) would mean that for 15min, it would not be allowed to trade for less than $5.39

One motivation behind trading curbs is that in the period during the halt, investors
will “calm down,” i.e. behave more rationally rather than contributing further to a
bubble of irrational exuberance (or pessimism). Unfortunately, some studies indicate
that curbs can actually encourage such behavior, especially if agents know what the
trading curbs are and whether the relevant limits are being approached (Goldstein and
Kavajecz 2004). The JLS model provides some insight into why this might be. In
particular, if stock markets crash because of long-range correlations between traders,
then a trading curb merely slows down trading, without disrupting the underlying
network state that causes the crash. Worse, the trading curb itself can serve as a
coordinating signal to the entire network that the market is in a precarious state, in a
way that actually increases correlations.

7 Conclusion

In the foregoing, we have argued that the JLS model provides a compelling causal
explanation ofmarket crashes, with potential predictive power. Themodel is consistent
with mainstream models in financial economics, but clearly goes beyond them—and
does so by exploiting an analogy with physics. As noted in the introduction, we take
this as a proof of concept: econophysics at least has the capacity to contribute to
our understanding of economic phenomena, even while remaining within the general
realm of mainstream economic thought.

We have also used the JLS model to explore how idealized models may be used to
explain. We argue that the JLSmodel may be understood as both a minimal model and
a minimalist model, and that the apparent tension between these accounts dissolves
once one recognizes the different explanatory demands that a single model may be
used to answer. The JLS model offers a causal explanation of why markets crash:
namely, they crash because markets can evolve into states that are approximately
discretely scale invariant, with long correlation lengths, such that small perturbations
can have outsized effects. But this is not the only explanation one can give using
the JLS model; one can also explain why crashes generically exhibit certain features,
such as volatility clustering, by showing that crashes lie in a universality class, in the
generalized sense described in the paper. That the same model may be used to offer
two different explanations—one causal, and one, presumably, non-causal—points to
the importance of separating questions concerning the explanatory purposes to which
a model can be put from attempts to classify or characterize models themselves.
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