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Abstract This paper offers a probabilistic treatment of the conditions for argument
cogency as endorsed in informal logic: acceptability, relevance, and sufficiency (RSA).
Treating a natural language argument as a reason-claim-complex, our analysis iden-
tifies content features of defeasible argument on which the RSA conditions depend,
namely: (1) change in the commitment to the reason, (2) the reason’s sensitivity and
selectivity to the claim, (3) one’s prior commitment to the claim, and (4) the contextu-
ally determined thresholds of acceptability for reasons and for claims. Results contrast
with, and may indeed serve to correct, the informal understanding and applications of
the RSA criteria concerning their conceptual (in)dependence, their function as update-
thresholds, and their status as obligatory rather than permissive norms, but also show
how these formal and informal normative approachs can in fact align.
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1 Introduction

As John Woods (2000, p. 15) put it: “Formal logic is a theory of logical forms; and
informal logic is all the rest.” Informal logicians tend to view “all the rest” as shoul-
dering the real work in the analysis and evaluation of natural language argumentation.
Indeed, many reject formal methods. In place of the proof techniques of the truth-
functional calculus, typical resources rather include argument diagrams, schemes,
and the fallacies. Similarly, rather than endorsing soundness (premise truth and deduc-
tive inferential validity) as a standard of good argument, informal logicians speak of
cogency (premise acceptability, relevance, and inferential sufficiency).

In the 1960s, this anti-formalist stance arose in reaction to the only widely available
formal apparatus, first-order deductive logic. The breadth of formal resources available
today, however, makes a continued disenchantment with them questionable. In fact,
their neglect deprives informal logicians of useful resources in appraising defeasible.
Our probabilistic analysis of argument cogency clarifies this core concept of informal
logic, provides important correctives to its usual applications, but also yields a sense in
which a formal and an informal normative approach align.1 Building on groundwork
by Oaksford and Hahn (2004) and Korb (2004), among others, this contributes to a
burgeoning area of research that successfully applies Bayesian reasoning to natural
language argumentation (see Sect. 2.3), and supplements recent work by Hahn and
Hornikx (2016), who show how to formalize argument schemes, like those proposed
by Walton et al. (2008), using a Bayesian approach.

Section 2 identifies the anti-formalist sentimentsmotivating informal logic, presents
cogency as a normative standard for defeasible argument, and briefly surveys recent
probabilistic treatments of argumentation. Section 3 introduces the probabilistic cal-
culus, seeking to make its resources more accessible to informal logicians. Section 4
then offers a probabilistic analysis of the informal notions acceptability, relevance,
and sufficiency. Section 5 discusses consequences of this analysis. Our conclusions
are offered in Sect. 6.

2 Background

2.1 Informal logic and formal methods

The development of informal logic is motivated by the pedagogical, the internal, and
the empirical critiques of deductive logic as an optimal, or even an apt, tool for the anal-
ysis and evaluation of ordinary reasoning and argument (Blair 2011; Johnson 2006;
Johnson and Blair 2002). Since commitments to reasons and claims in argumentative
contexts typically remain retractable, informal logicians favor acceptability over truth
as an evaluative standard for premises. Similarly, since ordinary reasoning and argu-
ment are typically defeasible, and since the quality of inferences typically depends

1 Similarly important are the notions of argument strengthening, rebuttal, and counter-rebuttal, which
however fall outside the scope of this paper.
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on matters of content rather than form, informal logicians (rightly) reject deductive
validity as a standard of inferential goodness (see Hertwig et al. 1997; Evans 2002).

Informal logicians have rather sought to develop non-formal tools by drawing upon
such adjacent fields as applied logic, applied epistemology, cognitive and social psy-
chology, dialogue and communication theory, linguistic pragmatics, dialectics, and
rhetoric. As Johnson and Blair state:

By ‘informal logic’, we mean to designate a branch of logic whose task is to
develop non-formal standards, criteria, and procedures for the analysis, inter-
pretation, evaluation, critique and construction of argumentation in everyday
discourse (Johnson and Blair 2002, p. 358; italics added).

Insofar as ‘formal’ denotes a regulated procedure, Johnson and Blair agree—indeed
presuppose—that reasoning and argumentation are rule-governed activities. But they
object to formalization being the proper aim in the analysis and appraisal of natural
language reasoning and argument (2002, p. 358 ff.), and had at least initially adopted
a “wait-and-see” approach regarding the applicability of formal methods.

There is nothing incompatible between the aims of informal logic, properly
understood, and the attempt to identify formal structures [e.g.,] in the so-called
informal fallacies. In calling for nomore precision than the subjectmatter allows,
we do not abandon the demand for as much precision as the subject matter
allows. […] Informal logic is not opposed to formal analysis; it is opposed to
the mistaken view that the [proper] subject matter of formal deductive logic is
[natural language] argument (Blair and Johnson 1987, p. 148).

As the informal logic program developed, however, it was increasingly characterized
as a reaction to the use of formal methods in the study of reasoning and argument:
“informal logic is informal because it abandons the notion of logical form as the key to
understanding the structure of argument. …What we reject is the view that (with rare
exceptions) the salient criteria for evaluating arguments are a function of their logical
form” (Johnson and Blair 2002, p. 359). Describing the eventual maturation of their
program, Johnson (2011) states: “As these projects [of informal logic] were pursued,
it became ever clearer that we were involved in a logic (taking the central task of logic
to be the development of norms for reasoning) that was irretrievably informal” (2011,
p. 29; emphasis added).2

2.2 Cogency

In place of soundness, informal logic offers cogency as the standard of good argument,
where ‘cogent’ broadly means well-reasoned: a cogent argument meets a situationally
appropriate standard of reason-giving that can be variously explained (e.g., epistemi-
cally, dialectically, virtue-theoretically, etc). Viewing arguments as abstract inferential
objects whose instances arguers transact in acts of arguing, product-centric approaches

2 Recent work nevertheless applies such formal methods as computer models of defeasible inference to
reasoning and argument (e.g., Walton and Gordon 2015).
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treat cogency as a normative property of argument-products. Of course, dialectical or
rhetorical considerations bear on the evaluation of such acts. Nevertheless, arguing
well centrally involves deploying good arguments, and good arguers do this well.

Informal logicians broadly agree that the goodness of an argument is a function
of, on one hand, the adequacy of reasons (premises), and the quality of the inferential
link between reasons and claim (conclusion), on the other. This gives rise to the
relevance, sufficiency, acceptability (RSA) account of cogency (Johnson and Blair
2002, p. 369ff.; Blair 2012; van Eemeren et al. 2014, pp. 381–384), where the RSA
criteria explain other normative qualities of argument.3 Logical validity, for example, is
one among other possible standards of inferential sufficiency; probability-raising may
serve as a standard of premise relevance; truth may serve as a standard for premise
acceptability. Fallacies are often explained in terms of some characteristic failure
to meet one or more of the RSA criteria. And, expanding the sufficiency criterion
leads to including considerations of dialectical adequacy (e.g., successfully answering
pertinent criticisms or objections).

In defeasible arguments, of course, both evaluative factors (premise adequacy and
inferential connection) are subject toweakening, strengthening, and defeat, upon intro-
ducing new information. Inductive logic is the branch of formal logic dealing with
inferences whose validity is sensitive to such dynamics. Yet, having rejected deductive
logic in favor of a non-formal approach to argument analysis and appraisal, informal
logicians have typically neglected the formal tools provided by inductive logic.

Following Spohn (2012), here we take inductive logic to include all non-deductive
logics, includingdefault, non-monotonic, belief-revision, auto-epistemic, agent-based,
modal logic, etc. For all these logics concern the support relation holding, or not,
between information states A, B, C, D, where A might provide (some) support for D,
while A&B might fail to support D, but perhaps support not-D, and A&B&C could
support D more, or less, than A alone did, etc. Probability theory (see Sect. 3) thus
makes for a quantitative variant of inductive logic.4

2.3 The probabilistic approach to argumentation

Applying probability theory to natural language argument requires extending the
notions of evidence and hypothesis to, respectively, reasons and claims, yielding a

3 Following the introduction of the RSA criteria by Johnson and Blair in 1977 (Johnson and Blair 2006,
p. 55), many informalists have adopted, modified, or augmented them (see Johnson and Blair 2002, p.
370). For instance, Govier (2010, p. 87ff.) calls sufficiency good grounds; Johnson (2000, p. 189ff.) added
premise truth as a fourth criterion, situating this together with adequacy at the “dialectical tier;” Vorobej
(2006, p. 49ff.) replaced acceptability with truth and added compactness as a fourth criterion to stipulate
the absence of irrelevant premises.
4 Spohn’s own ranking theory (Spohn 2012) also qualifies as an inductive logic. Pursuing a Baconian
approach to probability, his theory is more general than the Pascalian approach we rely on. (For these
terms, see Cohen 1989.) Ranking theory models the differential retractability of full rather than graded
propositions, interpreted as belief-contents. By contrast, we speak of graded commitments to reasons or
claims.
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model of the probative impact of reasons onto claims.5 One assumes that an agent
responds to a reason by updating her prior belief in—or as we prefer to say: com-
mitment to—a claim, in order to form a posterior commitment by conditionalizing
on the reason (see Godden 2010). The support that a reason R offers to a claim C
(see Howson and Urbach 2006, p. 92) provides a measure of argument force. It can
be expressed as the difference between the prior probability of C independently of
the reason, P(C), and the posterior, or final ( f ), probability of C conditional on the
reason, Pf (C) = P(C |R), i.e., Pf (C)−P(C) (see Korb 2004, p. 44). Other measures
remain possible (see Fitelson 2001; Pfeifer 2013, p. 187ff.). Moreover, the value to
which Pf (C) is set upon the uptake of R measures argument strength, such that:

Argument strength, then, on this [probabilistic] account is a function of the
degree of prior conviction, P(C), and the relationship between the conclusion
and the evidence, in particular how much more likely the evidence would be if
the conclusion were true, P(R|C) (Hahn and Oaksford 2007, p. 707; notation
adapted).

To a normative account that views argument primarily as an abstract inferential object,
rather than as a process of dialectical exchange, the central research question is: “How
much change in existing beliefs should new evidence [in the form of reasons] bring
about?” (Corner and Hahn 2013, p. 3586, italics added).6 Of course, one cannot prop-
erly assess a particular saturation of an argument scheme by considering the scheme’s
structural properties (i.e., the argument form) alone, but must also engage with its
semantic content. The probabilistic [0,1]-interval now provides the nuances to express
that speakers and audiences may accept the contents of reasons, claims, and inferential
links but to a matter of degree.

Recent work has provided probabilistic analyses of various classical fallacies,
including: appeal to popularity (ad populum) (Korb 2004), arguments against the per-
son (ad hominem) (Korb 2004), the ‘causal’ fallacy (post hoc ergo propter hoc) (Korb
2004), arguments from ignorance (argumentum ad ignorantiam) (Hahn and Oaksford
2006a;Hahn et al. 2005;Oaksford andHahn2004), circular reasoning (petitio principii
or begging the question) (Hahn et al. 2005), slippery slope arguments (Corner et al.

5 The more common interpretation—‘the probability of a hypothesis, H , given evidence, E’—reflects the
role of the probability calculus for the empirical sciences when gauging the (dis-)confirmatory effect of
evidence on hypotheses, calculation of which relies on Bayes’ theorem. Several differences arise in con-
texts of defeasible inference and argumentation: First, scientific hypotheses typically have a predictive or
explanatory relationship to the evidence. Second, the evidence here typically accumulates through indepen-
dent instances (e.g., observations or test results), making the reliability of evidence expressible as long-run
frequencies. Neither feature need hold between a claim and the reasons offered in its support. Finally, as
Strevens (Strevens 2012, p. 23; notation adapted) writes: “a Bayesian conditionalizes on [some evidence]
E—that is, applies Bayes’ rule to E—just when they ‘learn that E has occurred.’ In classical Bayesianism,
to learn E is to have one’s subjective probability for E go to one [i.e., a probability value of 1, denoting
certainty] as the result of some kind of observation.” By contrast, reasons appearing as premises of an
argument need not be certain or unretractable (see Sect. 3.8). Rather defeasible reasoning and argument
involves making judgements about the acceptability of one’s premises. Sometimes an update will occur
when a reasoner comes to find their reasons are more (or less) acceptable than they did previously.
6 As Hahn and Oaksford (2006b, p. 3) acknowledge, rule-based procedural accounts of argumentation are
nonetheless required for the stronger argument (as identified) to in fact “carry through” to the discussion
outcome.

123



1720 Synthese (2018) 195:1715–1740

2006), and denying the antecedent and affirming the consequent (Korb 2004; Godden
and Zenker 2015). (For an overview, see Korb 2004; Zenker 2013.) Hahn and Oaks-
ford (2006a, 2007) argue that a probabilistic approach makes significant progress
towards a unified epistemic treatment of the fallacies (Ikuenobe 2004). Corner and
Hahn (2013) make the case for the general suitability of a probabilistic approach to
argumentative norms. Most recently, Hahn and Hornikx (2016) have analyzed three
argument schemes in the sense of Walton et al. (2008): the argument from sign, and
two arguments from testimony, namely the argument from expert opinion (appeal to
authority or argumentum ad verecundiam) and appeal to popular opinion (argumentum
ad populum).

The Bayesian approach to argumentation retains the insight that, independently
of contextual considerations, defeasible arguments, including virtually all fallacies,
vary in strength as a function of their content. Since argument evaluation pertains to
whether a particular saturation of an argument form should be (perceived as) stronger
or weaker than another saturation of the same form, the normative yardstick of the
probabilisticmachinerydelivers the verdict sought, given assumptions.Moreover, such
predictions have been subject to empirical parameter-estimation which demonstrate—
pace the caveats of empirical research—that humans are sensitive to experimental
manipulations of argument strength, and that their sensitivity can mirror what the
probability calculus prescribes (e.g., Harris et al. 2015).

3 The probabilistic framework

3.1 Overview

Largely following the introduction by Strevens (2012), this section outlines the basics
of Pascalian probability (3.2), its interpretation (3.3), addresses dynamic consider-
ations (3.4), introduces Bayes’ theorem (3.5), the notion of impact (3.6) and its
interpretation (3.7), and finally turns to Jeffrey conditionalization (3.8), which Sect. 4
applies to a probabilistic analysis of argument cogency.

3.2 Basics of Pascalian probability

Probability theory quantitatively represents the chances assigned to events in a space
closed under union (disjunction), intersection (conjunction), and complement (nega-
tion). The axioms of probability—whether they are Cox’s (1946, 1961) postulates
or Kolmogorov’s (1933), used below—also formalize how new information should
affect the probability for these events. The rationale for ascribing normative status to
probability theory is that “bending” to these axioms guarantees avoiding sure losses in
betting games known as Dutch book-scenarios (Hahn 2014; Hajek 2008; cf. Douven
and Schupbach 2015).

On the assumption that the probability of at least one event in an event space
occurring is 1, a probability function P(φ) assigns to any other event φ a value from
the [0,1] interval. Hence, 0 ≤ P(φ) ≤ 1, where the initial or unconditional probability
P(φ) takes into account all the background information available to an agent at the
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time. In a finitely additive space such as Kolmogorov presupposed, moreover, it holds
for mutually incompatible events, A and B, that the probability of their disjunction is
the sum of their individual probabilities:7

P(A ∨ B) = P(A) + P(B) [Law of addition] (1)

A consequence is that the probability of an event and the probability of its negation
sum to one. For example, since (A∨ ∼A) is a logical truth, its probability is 1. Thus,

P(∼A) = 1 − P(A) [Complement rule] (2)

3.3 Interpreting probability in contexts of natural language argument

For this machinery to apply to natural language argument, we rely on these definitions:

C = claim, conclusion, or standpoint
R = reason, or the set of conjoined premises {R1&R2&. . .&Rn}8
P = probability (a measure of credence, subjective belief, or committment)
P(C |R)= probability of claim given reason
t = an arbitrary threshold value

When interpreted subjectively, probability values represent degrees of belief, i.e., cre-
dences, or graded commitments in reasons and claims, rather than objective chances
of events. It makes for a regular objection that ordinary reasoners do not experience
or treat their own doxastic or dialectic attitudes as allocations of precise numeric
values. How, then, shall one understand probability values? Theorists have offered a
behavioral or dispositional explanation in terms of an agent’s practical judgements
and activities. Ramsey (1931), for instance, explained partial commitment to a claim
in terms of the odds at which one would accept a bet that the claim is true.

Argumentation theorists can perhaps best interpret probability values as a measure
of retractability. Reasons or claims to which one assigns the extremal values 1 or 0 are
unrevisably true or false—one’s commitment here is unretractable. However, even a
practical or moral certainty in a claim (that one would unconditionally act on) need not
entail that onenever retracts it; rather, one does not envision circumstances underwhich
one would. Therefore, commitments can well approach 1, but still remain open to
revision. Similarly, only claims categorically inconsistentwith knownevidence receive
a probability of 0—commitment being again unretractable. Finally, commitment for
exceptionally improbable claims (e.g., skeptical scenarios) can approach 0, thus failing
to merit consideration in practical circumstances, but remain open to revision.

Within the revisability range 0 < P(φ) < 1, then, probability values express
retractability judgements for reasons or claims, and their contradictories or contraries.
This allocation needn’t be numerically precise, only as precise as the situation calls
for. For some purposes imprecise probabilities (Bradley 2015) can be used, while for

7 For mutually consistent events, the law is: P(A ∨ B) = P(A) + P(B) − P(A&B).

8 We use ‘R’ and ‘the / a reason’ to indicate the conjunction of all the articulated premises of an argument
or piece of reasoning.
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others a rough-hewn allocation in qualitative terms (e.g., highly unlikely, more likely
than not, doubtful)maywell do, particularlywhen natural language qualifiers are taken
to express modifications to an unqualified commitment. In the following, however, we
assume that a precise probability value is available.

The above constraints and their consequences guarantee a synchronically consistent
distribution of probability values across one’s commitments.Wenow turn to diachronic
constraints, i.e., update-rules.

3.4 Conditionalization

Changes in subjective probability can occur inferentially or non-inferentially. Non-
inferentially, for instance, onemay update one’s commitment in a claim as the result of
an observation (verdical or not). Besides the rules in Sect. 3.2, however, the probability
calculus does not provide constraints for a non-inferential update of probabilities. It
is rather assumed that agents who learn new information set a probability value for it,
typically updating to a final probability of nearly 1.

When representing an inferential update via conditionalization on new information
(gained inferentially or non-inferentially) as: 9

P(A|B) = P(A&B)

P(B)
[Def ini tion of conditional probabili t y] (3)

one can model the effects of reason-giving typical in contexts of natural language
argumentation as a commitment-update on the exclusive basis of premissory infor-
mation. Expressing the support offered by a reason R to a claim C as the conditional
probability ofC given R, i.e., P(C |R), the final, or posterior, probability ofC, Pf (C),
is then given as:

Pf (C) = P(C |R) [Bayes′ Rule] (4)

whichonemay compare to the initial, or prior, probability ofC irrespective of R, P(C).
Whether and how accepting R at some positive credence, Pf (R) > 0, should affect

one’s commitment to C, P(C), now depends on factors discussed below.

3.5 Bayes’ Theorem

Equation (3) defined the posterior probability of a claim C given a reason R as the
probability of the claim and the reason, divided by the probability of the reason irre-

9 (3) says that the probability of event A occurring, given some other event B does, equals the probability
of both events occurring, divided by the probability that event B occurs anyways. Since the probability
of any two events occurring is never greater than the probability of either event occurring individually,
P(A&B) ≤ P(B) holds. This guarantees a probability value in the range 0 ≤ P(A|B) ≤ 1, so long as
P(B) < 0. If P(B) = 0 then P(A|B) is undefined.
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spective of the claim—here repeated, with adapted notation, as (5):

P(C |R) = P(C&R)

P(R)
(5)

Now the probability of two events, A and B, both occurring is the probability that
one of them, A, occurs if the other, B, does, times the probability that B occurs, as in
(6):10

P(A&B) = P(A|B) × P(B) (6)

Since conjunction is commutative (i.e., ‘A&B’ and ‘B&A’ state logically equivalent
contents), we may now derive Bayes’ Theorem (BT) (Bayes 1763) by substituting,
notation adapted, the right hand side of (6) into the numerator of (5):

P(C |R) = P(R|C) × P(C)

P(R)
[Bayes′ Theorem (BT )] (7)

(8) simply separates the prior probability of the claim, P(C), from the numerator in
(7):11

P(C |R) = P(C) × P(R|C)

P(R)
[BT ] (8)

This provides a perhaps more intuitive way of understanding how, in generating the
conditional probability, the reason has impact upon the prior probability of the claim,
to which we now turn.

3.6 The impact term in Bayes’ Theorem

The factor by which the prior probability of a claim C is to be multiplied in order to
yield the posterior probability of C conditional on the reason R, we call the impact of
the reason, i :12

i = P(R|C)

P(R)
[Impact term] (9)

(9) states the impact term as the ratio of how probable the reason is given the claim,
to how probable the reason is irrespective of the claim. This “reason ratio” expresses

10 In cases where A and B are independent, such that there is no systematic positive or negative correlation
between them, it holds that: P(A|B) = P(A) and P(B|A) = P(B).
11 (8) states that the posterior probability of C given R is the prior probability of C times the likelihood of
the reason given the claim, P(R|C), over the probability of the reason, P(R). (The notion of likelihood is
introduced in Sect. 3.7.)
12 Joyce (2009, p. 5) notes that Carnap (1962, p. 466) identified i as the relevance quotient, or the probability
ratio; Strevens (2012, p. 30) calls i the Bayes multiplier.
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a conditional expectation of the reason, namely an expectation of the reason if the
claim holds as against a prior expectation on the reason regardless. (We return to this
ratio in Sect. 4.) Thus, the posterior probability of a claim is the probability of the
claim conditional on the reason, which is its prior probability times the impact of the
reason:

Pf (C) = P(C |R) = P(C) × i [BT wi th impact term] (10)

Applying the law of total probability:13

P(A) = P(A|B) × P(B) + P(A|∼B) × P(∼B) [Law of T otal Probabili t y]
(11)

to the denominator of i , in (9), yields, notation adapted, the “long version” of BT:14

P(C |R) = P(C) × P(R|C)

P(R|C) × P(C) + P(R|∼C) × P(∼C)
[BT ] (12)

which allows (see Howson and Urbach 2006, p. 97; Korb 2004, p. 44) expressing the
impact term i as:

i = P(R|C)

P(R|C) × P(C) + P(R|∼C) × P(∼C)
(13)

So far, we havemainly sought tomake textbook-knowledgemore palatable to the tastes
of informal logicians. In (13) the priors P(C) and P(∼C) report prior commitments
to the truth or falsity ofC , given background information, where P(∼C) = 1− P(C).
However, suitably interpreting the remaining two terms of (13), which both express
likelihoods, is more challenging.

3.7 Interpreting the impact term

Likelihoods express prior judgements about the probative value of reasons, subject to
the constraints: P(R|C) = 1 − P(∼R|C), and P(R|∼C) = 1 − P(∼R|∼C).15 The
first likelihood term, P(R|C), expresses the sensitivity of the reason to the claim.When
evaluating the reliability of an empirical test, for instance, and given that ‘hypothesis
(H)’ replaces ‘claim’ and ‘evidence (E)’ replaces ‘reason’, this same term reports the

13 (11) states the chance of event A occurring as the chance that A occurs given another event B does,
times the chance that B occurs, plus the chance that A occurs given B fails to occur, times the chance that
B fails to occur. The law presupposes conditionalization on exhaustive alternatives, which any claim B and
its negation ∼B of course are.
14 (12) says that the posterior probability of a claim C given a reason R is the prior probability of C times
the likelihood of R given C , divided by the sum of the likelihood of R given C times the probability of C ,
and the likelihood of R given not C times the probability of not C.
15 While Eq. (2) was a consequence of the logical truth (A∨ ∼A), these two constraints are consequences
of the metaphysical truth that, given event B occurs, any other event A will either occur, or not.
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true positive rate (i.e., the ratio of correct positive test-results over all test-results).
The second likelihood term, P(R|∼C), expresses the complement of the specificity
of the reason to the claim.16 Also called the false positive rate of a test, it reports the
ratio of incorrect positive test-results over all test-results. Considered together, both
likelihood terms express how well R correlates with C . For example, if C entails R,
then P(R|C) = 1; if no correlation obtains, then P(R|C) = P(R|∼C) = P(R) (see
Sect. 4.2).

Sensitivity and specificity are readily meaningful for long-run frequencies of event
tokens. However, as Hahn and Oaksford (2007, p. 714; italics added) rightly note,

much of the evidence adduced in an everyday argument will relate to singular
events. For example, an argument over who killed Kennedy will have to appeal
to many events that can also have happened only once, for example, what is the
probability that Oswald was hired by theMafia? Consequently, to provide a gen-
eral probabilistic account of argument strength requires assigning single event
probabilities, which only makes sense from a Bayesian subjective perspective.
Single event probabilities cannot, by definition, be affected by the amount of
evidence in the sense of a simple enumeration of positive instances.

Of course, both likelihood terms must remain meaningful if reasons shall provide
support for claims irrespective of frequency considerations.

Rather than opt for frequencies, the following interpretation is more useful in
contexts of natural language argumentation: reason R is sensitive to claim C to
the extent that R supports C more than R supports any other claim, C∗, that itself
entails ∼C , i.e., P(C |R) > 0.5 > P(∼C |R). And R is specific to C to the
extent that R rather than any other reason, R∗, itself entailing ∼R, supports C , i.e.,
P(C |∼R) < 0.5 < P(∼C |∼R). Drawing considerations of sensitivity and speci-
ficity together, the support that R generates for C thus depends on the extent to which
the C-supporting-reason R fails to support ∼C , on one hand, and on the extent to
which argumentative support for C cannot be generated by reasons besides R, on the
other. In the extremal cases P(C |R) = 1 and P(C |R) = 0, support is thus strongest
where R is an exclusive and decisive supporting reason-for-C, and weakest where R
is a common and indecisive supporting reason-for-C.

This should become clearer below. Presently, consider as an example of an exclusive
and decisive supporting reason (outside the argumentative domain), a modern litmus
test in the form of a universal pH-indicator (hydrogen ion), where the red coloring
of the indicator paper is a causal effect of a solution’s hydrogen ion concentration.
Assume, unrealistically, that the test is perfectly sensitive, i.e., P(R|C) = 1, since
any pH-level below 3 always causes the indicator paper to turn red, and also perfectly
specific, i.e., P(C |∼R) = 0, since other pH-levels always color the paper non-red.
Equally unrealistically, assume that no other test for the samepurpose is available.Now
the paper’s not turning red decisively indicates that the solution is not strongly acidic,
so P(∼R|∼C) = 1 − P(R|∼C) = 1—and exclusively, too, since (by assumption)

16 Notice that, since P(R|∼C) = 1−P(∼R|∼C), rather than using ‘the logical complement of specificity’
in order to refer to P(R|∼C), we use the term ‘specificity’ alone.
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no other test can. In this case, from Eq. 13, i = 1/P(C); and thus BT (Eq. 12) reports
P(C |R) = 1.

As an example of a common indecisive supporting reason, consider using the results
of a fair coin toss as a reason—say, taking a coin’s landing heads as a reason for the
claim that the time at which the coin lands (to the 100th of a second), is an even
number. Assume, this time realistically, that no correlation holds, so that the “test” is
perfectly insensitive, the coin landing heads if the time is even thus being as probable
as it landing tails. Hence, P(R|C) = 1 − P(∼R|C) = 0.5. Likewise, the test is
perfectly unspecific: when the number is even, then the chances are the same that the
coin lands tails as that it lands heads. Hence, P(∼R|∼C) = P(R|∼C) = 0.5. In this
case, from (13), i = 1, and thus BT (Eq. 12) reports P(C |R) = P(C).

3.8 Jeffrey conditionalization

So far, conditional update has been explained on the assumption that the reason is
accepted as unretractably true, i.e, Pf (R) = 1. BT operationalizes conditionalization
on the assumption that “one acquired new evidence which can be represented as
becoming certain of an evidentiary statement E[read: reason R]” (Talbot 2011, p. 3).
Ordinary reasoning and argument can satisfy this assumption (e.g., when learning new
information through perceptual experience, from a testimonial report, test result, or
instrument reading). In other cases, however, arguers accept reasons—their own or
others’—not without qualification, but place some graded measure of commitment in
them.Hence, commitment-update should occur proportionally to partial commitment.

Jeffrey Conditionalization (JC) (Jeffrey 1983) allows conditionalizing on a partial
commitment in a reason. When updating from P(R) to Pf (R), JC prescribes that one
conditionalize as follows:17

Pf (C) = P(C |R) × Pf (R) + P(C |∼R) × Pf (∼R) [JC] (14)

Notice that, if Pf (R) = 1, then Pf (∼R) = 0, so that (14) reduces to its left summand,
yielding Bayes’ Rule (see Eq. 4). Now substituting BT (Eq. 8) for the conditionalized
probabilities P(C |R) and P(C |∼R) in JC yields:

Pf (C) = P(R|C)

P(R)
× P(C) × Pf (R) + P(∼R|C)

P(∼R)
× P(C) × Pf (∼R) (15)

Further, isolating P(C) from each summand in (15) yields:

Pf (C) = P(C) ×
[
P(R|C)

P(R)
× Pf (R) + P(∼R|C)

P(∼R)
× Pf (∼R)

]
(16)

17 (14) says that the final commitment in C, updated on a partial commitment in R, is the commitment in
C given R, times the final commitment in R, plus the commitment in C conditional on ∼R, times the final
commitment in ∼R. When conditionalizing on a partial commitment in order to update, JC thus recognizes
that a partial commitment in R is a partial commitment in ∼R, which together sum to one.
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which is equivalent to:18

Pf (C) = P(C) ×
[
P(R|C) × Pf (R)

P(R)
+ P(∼R|C)

Pf (∼R)

P(∼R)

]
(17)

Hence, from (16), when updating on a partial commitment, the impact term i becomes:

i =
[
P(R|C)

P(R)
× Pf (R) + P(∼R|C)

P(∼R)
× Pf (∼R)

]
(18)

or, rewritten, from (17):

i =
[
P(R|C) × Pf (R)

P(R)
+ P(∼R|C)

Pf (∼R)

P(∼R)

]
(19)

Notice, most obviously in (18), that the JC-impact term is equivalent to the impact
term in BT if Pf (R) = 1, since the right hand summand of (18) then goes to zero.

This in place, we now apply the forgoing to give an analysis of cogency in the
evaluation of natural language argumentation.

4 Cogency

4.1 The RSA criteria

Informal logicians analyze argument cogency as three individually necessary and
jointly sufficient conditions: acceptability, relevance, and inferential sufficiency. This
section provides a probabilistic view upon each condition, starting with relevance
(4.2), then treats sufficiency (4.3), comparing it with informal accounts (4.4), and
finally turns to acceptability (4.5).

4.2 Relevance

Relevance standardly counts as an independent criterion of cogency.19 The basic idea
is that a relevant reason provides some support for a claim. As Govier (2010, p. 148;

18 (17) states that one’s final commitment in C conditionalized on one’s final commitment in R, where
0 < Pf (R) < 1, is one’s initial commitment in C , times the sum of the likelihoods that R given C ,
multiplied by the ratio of one’s final commitment to the reason over one’s initial commitment to it, and
the likelihood of ∼R given C , multiplied by the ratio of one’s final commitment that ∼R over one’s initial
commitment to it.
19 Granted that sufficiency presupposes relevance, reasons by contrast can be relevant without being suf-
ficient. Indeed, distinct relevance-based failures of arguments are identified by the fallacies of relevance
(Johnson and Blair 2002, p. 370). Johnson (2000, p. 200) claims that the notion of relevance it itself “basic”
and “a ground-floor notion that a reasoner must grasp.” See Powers (1995) for the view that all fallacies
allegedly are nothing but relevance problems. Zenker (2016) provides an overview of what currently does
(not) count as a fallacy.
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notation adapted) puts it “[a] statement R is positively relevant to another statement
C , if and only if the truth of R counts in favor of the truth of C .” Hence, C given R
must be more probable than otherwise, i.e., P(C |R) > P(C), yielding a spectrum of
relevance:

P(C |R)

⎧⎨
⎩

> P(C) [R is posi tively relevant to C]
= P(C) [R is irrelevant to C]
< P(C) [R is negatively relevant to C]

(20)

An equivalent measure, as we saw in Eq. 10, is:

P(C |R) = P(C) × i (21)

which expresses relevance in terms of the impact term i , where (from Eq. 18) we know
that i = [ P(R|C)

P(R)
× Pf (R) + P(∼R|C)

P(∼R)
× Pf (∼R)], such that:

i

⎧⎨
⎩

> 1 [R is posi tively relevant to C]
= 1 [R is irrelevant to C]
< 1 [R is negatively relevant to C]

(22)

Defining relevance via the impact term makes relevance a function of the priors in the
expectation of the reason (see Sect. 3.6), which onemay calculate prior to update. This
operationalizes an intuitive notion of relevance: if R is just as probable whether or not
C—for which R is putatively a reason—then R is neither positively nor negatively
correlated to C. Hence, R is irrelevant to C .

This explains why random information, where Pf (R) = 1, (e.g., the result of a
fair coin toss) cannot supply a relevant reason (see the example in Sect. 3.7). In such
cases P(R|C) = P(R); hence i = 1.20 Likewise for logically true reasons (e.g.,
tautologies): if P(R) = 1, then by preservation of certainties (Joyce 2009, p. 2) we
have it that P(R|C) = 1. We can similarly explain the relevance problem of ex falso
quod libet (“from a contradiction anything follows”): while one cannot conditionalize
on a reason of probability zero, one can recognize that a contradiction is equally
improbable in cases where the claim at issue obtains as otherwise. In all these cases,
the putative reason does not correlate with the claim. Hence, if i = 1, then R has no
impact on C , i.e.,

(i = 1) → [P(C |R) = P(C)] (23)

20 In cases of irrelevance, both the impact term and the likelihood ratio, P(R|C)/P(R|∼C) equals 1 (see
Korb 2004, p. 44; Hahn and Hornikx 2016, p. 1838). Where i = 1, it follows that P(R|C) = P(R); so by
the law of total probability (Eq. 11): P(R|C) = P(R|∼C).
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4.3 Inferential sufficiency

Informal logicians contend that a reason provides sufficient support to a claim C if,
and only if, the probability of the claim meets or exceeds a threshold, tS , when one
accepts C because of R. Initially, we can define sufficiency as:21

Pf (C) = P(C |R) ≥ ts > P(C) [in f erential su f f iciency] (24)

The latter condition, tS > P(C), is significant since sufficiency measures whether the
claim is acceptable on the basis of the reason provided in the argument, rather than
otherwise, e.g., when the claim is already acceptable independently.

Though the exact value of tS ever depends on context, it nevertheless generally
holds that 0 < tS < 1, for a claim certainly known to be false, i.e., Pf (C) = 0, ought
not to be accepted, while a claim certainly known to be true, i.e., Pf (C) = 1, ought
not to be rejected. Next, if a reason deductively entails a claim, i.e., R	C , and if R
is known to be true, i.e., Pf (R) = 1, then Pf (C) = 1 (see Joyce 2009, p. 2).22 If R
entails C , yet the commitment to R is uncertain, i.e., 0 < Pf (R) < 1, one might think
that Pf (C) = Pf (R). But as JC (see Eq. 14) shows, this need not hold, for Pf (C)

depends on both Pf (R) as well as on the extent to which C is supported or refuted by
∼R, i.e., P(C |∼R) and Pf (∼R).

One might further expect that sufficient reasons should normally make claims more
probable than not, such that 1 > Pf (C) ≥ tS > 0.5, that is, sufficient reasons
shouldmake claims acceptable on balance of probabilities. On a balance of probability
threshold, tS = 0.5 + ε, where ε is some arbitrarily small quantity. But it is easy to
conceive of situations where tS exceeds 0.5 + ε (e.g., ‘is highly probable’, or ‘to a
moral certainty’, or ‘beyond reasonable doubt’, etc.), or where tS falls below 0.5 + ε

(e.g., when a precautionary principle prompts considering the significant disutility of
an otherwise improbable claim).

In (24) inferential sufficiency is defined as a minimum acceptability threshold, tS ,
for Pf (C) = P(C |R). BT (Eq. 10) tells us that P(C |R) can be equivalently expressed
as P(C) × i , such that, in cases of inferential sufficiency:

P(C) × i ≥ ts > P(C) (25)

Since (25) stipulates that:

P(C) × i > P(C) (26)

sufficiency entails that:

i > 1 (27)

21 (24) says that the final probability ofC is the posterior probability ofC given R, which meets or exceeds
the threshold, ts , and exceeds the prior probability of C .
22 After all, if R entails C , then P(C&R) = P(R), and given the definition of conditional probability (Eq.
3), we have it that P(C |R) = 1.
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Hence, sufficiency entails, and so is a logically stronger condition than, positive rele-
vance.

Furthermore, like relevance, one can define inferential sufficiency in terms of
impact, i . Dividing each term in (25) by P(C) yields:

i ≥ ts
P(C)

> 1 [Su f f iciency de f ined in terms of impact] (28)

and so gives the following spectrum of inferential sufficiency:

i

⎧⎪⎨
⎪⎩

> ts
P(C)

[R is a supererogatory reason for C relative to ts]
= ts

P(C)
[R is a su f f icient reason for C relative to ts]

< ts
P(C)

[R is an insu f f icient reason for C relative to ts]
(29)

As a special case of an insufficient reason, consider that R is a necessary reason-for-C
whenever some reason-for-C, Q, in fact provides no support to C—so Pf (C |Q) =
P(C)—unless P(R) = 1, that is, 1 = P(R) ≥ Pf (C |Q&R) ≥ ts > Pf (C |R) ≥
Pf (C |Q) = P(C) ≥ 0. Where R is a sine qua non reason-for-C, moreover, we also
have it that Pf (C |∼R) = 0. (Compare Spohn 2012: sect. 6.1, p. 104 ff.).

4.4 A probabilistic corrective on threshold applications of sufficiency

In (24) tS is expressed as a minimum threshold value for the acceptability of a claim.
Since informal logicians treat inferential sufficiency as a necessary condition for
cogency, arguments citing insufficient reasons for their conclusions are non-cogent,
and ought not to be accepted. Yet, what ‘accepting an argument’ means or amounts to
is not entirely clear.

On one reading, ‘accept’ refers to the correct prescription that one ought not to
endorse an insufficiently supported claim. By contrast, those who understand offering
arguments as the issuing of “invitations to inference” (Pinto 2001, pp. 36–37) can
interpret the sufficiency criterion as prohibiting any inferential use of reasons failing
the threshold. On this other reading, one should not update inferentially unless the
sufficiency condition (e.g., as given in Eq. 28) is satisfied.

Call this restriction a threshold application of inferential sufficiency. Indeed, if one
should only act inferentially on reasons if they satisfy the sufficiency condition (and,
a fortiori, the relevance condition), then a sufficiency condition acts as an inference
gate: what meets or exceeds the threshold should occasion inferences, but not the rest.
So inference gates exclude information. Yet, this could be a mistake.

To see this, consider—as Example 1—a situation where one is successively pre-
sented with several independent and individually insufficient reasons for a claim.
Assume a balance-of-probability sufficiency threshold of tS = 0.5+ ε (see Sect. 4.3).
Suppose that initial commitment to the claim is quite low, P(C) = 0.17, as are commit-
ments to a set R = {R1, R2, R3, R4} of four logically independent reasons, such that
P(R1) = P(R2) = P(R3) = P(R4). (Recall from Sect. 3.3 that ‘R’ (‘the reason’)
indicates the set of conjoined premises of some argument.) Further, suppose each rea-
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son in R is equally weakly indicative of the claim, say P(Rn|C) = 0.25, and that each
reason’s false positive rate is quite low, say P(Rn|∼C) = 0.15. The law of total proba-
bility (Eq. 11) nowyields the initial probability of any reason inR as P(Rn) = 0.167.23

Upon learning that any one of the reasons R1 to R4 (say R1) obtains, according to BT
(Eq. 8) our commitment inC should change—from P(C) = 0.17 to P1(C) = 0.2545,
where ‘Pn(φ)’ denotes the nth revision of P(φ). Yet, since P1(C) < 0.5 + ε, the
updated commitment still fails to satisfy the sufficiency threshold. So, if Eq. 28 states an
inference gate, then although each reason by itself is relevant (since iR1 = 1.497 > 1),
we should nevertheless not act inferentially because by itself any reason Rn in R fails
to satisfy the sufficiency condition, since i < tS/P(C) = 2.942.

According to BT, however, updating on the four reasons in succession results in
a final credence of 0.6093, which is above the threshold. To see this, following an
initial update on R1, the priors on each of the remaining reasons, R2 to R4, can be
recalculated—by applying the law of total probability on the updated value of P1(C)—
to yield a newprior P1(R2) = 0.1755.A second update, on R2, similarly fails to satisfy
the sufficiency condition, since BT here yields P2(C) = 0.3625, where i = 1.425 and
tS/P1(C) = 1.965. Since it remains the case that i < tS/P1(C), the successive reasons
R1 and R2 combined thus still insufficiently support the claim. Hence, the successive
arguments ‘R1, ergo C’ and ‘R2, ergo C’ are non-cogent; a threshold application of
sufficiency would prohibit inferential action. Similarly with a third update, where the
values are: P2(R3) = 0.1875; P3(C) = 0.4833; i = 1.333; tS/P2(C) = 1.379.
Yet, by the fourth update the sufficiency condition is met, for the values are:
P3(R4) = 0.1983; P4(C) = 0.6093; i = 1.26; and tS/P3(C) = 1.035. Hence,
Pf (C) ≥ tS (where tS = 0.5 + ε), and i ≥ tS/P3(C). Notice that, on a threshold
application of sufficiency only the fourth update is permitted—and onlywhen the first
three have already (but impermissibly) occurred. Yet had one withheld from making
initial or intermediate inferential updates—on the ground that each individual reason
fails the sufficiency condition—one would have failed to recognize that individu-
ally weak reasons can successively accumulate probative force, and thereby achieve
sufficiency. 24 Applying a sufficiency threshold as a necessary precondition of infer-

23 For all calculations in Example 1, see the “Appendix”.
24 As an anonymous reviewer has rightly pointed out, an informal logician might respond that a set
of individually weakly supporting reasons-for-C can, when taken together, provide sufficient convergent
support—i.e., individually insufficient but jointly sufficient reasons—to the claim. This might be thought
to provide an answer to the challenge to a threshold approach to sufficiency posed by Example 1.

Yet, on standard accounts, this requires (somehow) taking the independent reasons together all at once,
rather than separately in succession. Example 1 shows that, on a probabilistic understanding of inferential
sufficiency, this combining of reasons is not required. Rather, the probabilistic calculus offers a formal
understanding of how sufficient support can incrementally accrue via a succession of individually insuffi-
cient arguments, and so obviously contradicts the “weakest link-principle,” also known as Theophrastus’
rule (see Hahn and Oaksford 2006a, b, p. 15).

Moreover, since we operationalize inferential sufficiency as an acceptability threshold on the probabil-
ity of the claim conditional on a reason, P(C |R), further issues arise with a similar threshold approach to
acceptability that result from interpreting a threshold application of inferential sufficiency as an inference
gate (see Examples 2 and 3; Sect. 4.5). For instance, suppose that the claim in Example 1, now abbre-
viated as C1, does itself provide a reason for another claim, C2. As Example 3 will show, even a small
sub-threshold change in the acceptability of C1 could push C2 above a sufficiency threshold when C2 is
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ential update can therefore mistakenly prevent the update of one’s commitments even
in cases where, following updates on individually insufficient reasons, a final commit-
ment in the claim satisfies the sufficiency condition.

4.5 Premise acceptability

Premise acceptability appears to be themost straightforward of the cogency conditions
to define probabilistically. The basic idea, again, is that acceptable reasons meet or
exceed a threshold, ta , such that:

Pf (R) ≥ ta (30)

where ta may, though it need not, also serve as the acceptability threshold for a proper
subset of the set of conjoined premises R.25 Similar to threshold applications of suffi-
ciency, and facing similar problems, call this a threshold application of acceptability.
As with claims, reasons certainly known to be false, i.e., Pf (R) = 0, ought not to be
accepted, and reasons certainly known to be true, i.e., Pf (R) = 1, ought to be rejected.

When the acceptability of a reason falls between 0 and 1, one should of course
consider all the evidence at hand. Moreover, one should update by conditionalizing
on a reason so long as this has positive or negative bearing on a claim. But, again, if
one should only act inferentially on reasons that meet a standard of acceptability, then
this standard, too, acts as a commitment gate, for it excludes information falling below
the threshold. For example, describing the proper application of the cogency criteria,
Johnson (2000, p. 343; emphasis added) writes:

Suppose, for example, that [premise]P1 is irrelevant (or untrue, orunacceptable)—
then P1 won’t be allowed in the premise-set that I check for sufficiency. …
[B]ecause sufficiency is a global requirement, applying to all the premises taken
together, it should not be applied until the premise-set is stabilized; that is, the
set will have been inspected already for acceptability, truth, and relevance.

Footnote 24 continued
subsequently conditionalized on C1. So rather than immediately update on each individually insufficient
reason the moment the reason “comes in,” to instead collect several weakly supporting reasons-for-C1—as
if holding these in memory until they (somehow) jointly meet a sufficiency threshold—could preclude a
commitment-update in C2 under some conditions, although a sufficiency threshold would have been met
if the acceptability of C1 had been updated earlier.
Future work should provide a probabilistic analysis of the linked vs. convergent support-distinction in

informal logic, which we cannot provide here. One possible result pertains to the identity conditions of
reasons and premises. For some natural language material may well be discernable as a distinct premise but
not count as a distinct reason, namely if offering (or receiving) that premise to support the claim C would,
by itself, fail to render P(C |R) > P(C). The inferential effect of R on P(C), or the lack thereof, could
thus become a criterion for a premise to in fact act as a reason. Hence, the identity conditions of reasons
and premises in the probabilistic and the informal logic approach might be the same, while their functional
properties could diverge.
25 The acceptability of a set of reasons is some function of the acceptability of constituent reasons. Those
considering the acceptability of individual and conjoint reasons may find that different acceptability stan-
dards are in effect (e.g., a higher threshold for the deliverances of reason and sensation than for memory or
testimony).
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This, too, can be a mistake. To see this, recall JC (Eq. 17; see Sect. 3.8):

Pf (C) = P(C) ×
[
P(R|C) × Pf (R)

P(R)
+ P(∼R|C)

Pf (∼R)

P(∼R)

]
(31)

When commitments change, but one nevertheless withholds full commitment to some
reason, then—since a partial commitment to R is a partial commitment in ∼R—JC
prescribes that one conditionalize on both R and ∼R accordingly. But this does not
readily fit with a threshold application of acceptability.

For instance, consider—asExample 2—an acceptability threshold of ta ≥ 0.85, and
set prior commitments to: P(R) = 1−P(∼R) = 0.2; P(C) = 1−P(∼C) = 0.3; and
P(R|C) = 1−P(∼R|C) = 0.8. Since no prior (including priors on the complements)
meets the acceptability threshold, none of these elements count as accepted. Now
suppose new information prompts a revision to P1(R) = 1 − P1(∼R) = 0.5, where,
as before, ‘Pn(φ)’ denotes the nth revision of P(φ). A threshold application still
instructs withholding commitment from both R and ∼R, and therefore to not act
inferentially on either. According to JC, however, commitment in the claim should
change, from P(C) = 0.3 to P1(C) = 0.675, rendering one’s commitment about twice
as strong, although still below the acceptability threshold. Now iterate, by updating to
P2(R) = 1− P2(∼R) = 0.8, and the threshold application still requires withholding
commitment, so one is not to act inferentially on either R or ∼R. But JC now reports
P2(C) = 0.867, which exceeds the acceptability threshold.

Finally consider—as Example 3—that the same effects of relevance and sufficiency
can be achieved with only a single, small sub-threshold change in one’s commitment
to a reason, so long as the reason’s link to a claim is strong enough (because the reason
is highly sensitive, or its negation highly selective to the claim). In case commitment in
a reason changes from P(R) = 0.2 to Pf (R) = 0.4, where R is highly sensitive to C ,
i.e., P(R|C) = 0.8, and where ∼R is quite selective for ∼C , i.e., P(∼R|∼C) = 0.6,
then although a balance of considerations acceptability threshold on R having not
been met after update, R is nevertheless relevant since i = 1.9 (by Eq. 19). Further,
assuming a sufficiency threshold, ts = 0.9, and an indifferent (or uninformative) prior
on C , i.e., P(C) = 0.5, we have it that ts/P(C) = 1.8. Since i ≥ tS/P(C) (Eq. 29),
R meets the sufficiency criterion, and JC yields a final probability Pf (C) = 0.95 ≥
tS .

Thus, applying acceptability thresholds interpreted as necessary preconditions for
inferential update would prevent an update of commitments, even though the final
commitment in the claim permits acceptance.

5 Discussion

5.1 The RSA conditions

On the above analysis, relevance, sufficiency and acceptability are neither conceptually
primitive nor conceptually independent. Rather, they each depend on a common set of
factors. Analyzed in terms of impact (Eqs. 9 and 18), relevance (Eq. 22) is a function
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of the change in the acceptability of a reason, together with its sensitivity to, and
its selectivity for, the claim. Sufficiency (Eq. 29) is determined not by changes in the
acceptability of the reason and its connection to the claim alone, but also by one’s prior
commitment to the claim, and the threshold of acceptability required of the claim. And
by the law of total probability (Eq. 11), the acceptability of a relevant reason changes
according to the updated, final probability of a claim.

As an item of potentially good news for informal logicians, our analysis suggests
that properly applying the RSA criteria tracks the underlying features of argument
cogency just mentioned. But, at best, this indicates a loose affinity between informal
and probabilistic approaches to argumentative norms (see Sect. 5.3). After all, if our
analysis is any good, then a probabilistic approach also offers an important corrective
to typical informalist applications of these criteria.

5.2 Applying the RSA conditions

Informal logicians who pursue a criterial approach to argument appraisal view argu-
mentative norms as permissive norms. On this approach, the RSA criteria specify
individually necessary and jointly sufficient conditions of cogency. Good, or cogent,
arguments feature reasons that sufficiently support their conclusions, thereby permit-
ting arguers to accept conclusions on the basis of such reasons.

As we saw in Sect. 4, a criterial approach readily lends itself to a threshold applica-
tion, whereby standards of relevance, acceptability, and inferential sufficiency become
necessary conditions for inferential update. Since audiences should decline an “invi-
tation to inference” issued in the form of non-cogent arguments, they should not
inferentially act upon such arguments. For example, if reasons falling below the accept-
ability threshold cannot be positively or negatively relevant to a claim—compare
Johnson (2000, pp. 342–343) prescribing the application of the acceptability criterion
prior to checking an argument for relevance—then unacceptable reasons are impotent
in generating support for or against a claim.

However, our analysis suggests that informal logicians commit to important differ-
ences concerning the application of the cogency conditions as conditions for inferential
update, by comparison to the standards offered by a probabilistic construal of argu-
ment cogency. A threshold application for the acceptability of inferential sufficiency
of reasons, whereby one ought not to act inferentially upon information that fails
to meet some threshold, may lead to mistakes (see Example 1). Relatedly, using the
satisfaction of some condition, say acceptability, as a precondition for the testing, or
satisfaction, of some other condition, say relevance or sufficiency, can likewise lead
to mistakes (see Examples 2, 3).

Generally, then, a criterial approach to the cogency conditions, and thereby to
argumentation evaluation, can lead to mistakes. More generally yet, when cogency
standards are informally interpreted as permissive norms, they license the acceptance
of reasons or permit inferences where these norms are satisfied. On our analysis,
by contrast, cogency conditions are not merely entitlement establishing. Rather, they
amount to constraints on commitment and its dynamics. That is, satisfying them can
be obligatory in view of the probabilistic calculus.
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5.3 Argument appraisal

Section 2.3 had noted probabilistic analyses for a range of commonplace defeasible
arguments and their schemes, including those standardly identified as fallacious and
as presumptive. The account of argument cogency offered here complements this
work, and contributes to the cohesion and completeness of a probabilistic account of
argumentative norms.

Hamblin (1970) argued that fallaciousness is a dialectical rather than a logical or
epistemic feature of argument. In this context, the Woods-Walton (Woods and Walton
2007) approach to the fallacies held that instances of the same argumentative structure
could be cogent, or fallacious, depending on context. By contrast, a probabilistic
account (e.g., Hahn and Oaksford 2007) shows that fallaciousness cannot merely be a
dialectical or contextual feature, but that content features—particularly those identified
above—are determinative. Importantly, informal logicians came to reject fallacy-based
approaches to argument appraisal, on which “[a] good argument will be one that is
free of fallacy, and the presence of a fallacy is a prima facie weakness, if not a fatal
flaw, in the argument” (Johnson and Blair 2002, p. 369). Instead, Johnson and Blair
(2002, p. 370) argued that fallacies are recognizable and stereotypical failures of the
RSA cogency conditions: “[a] fallacy is … a violation of one or more of the criteria of
acceptability, relevance and sufficiency.” If so, then some analysis like the one offered
here should be welcome. Indeed, if probability theory can account for fallacies, on
one hand, but fallacies can also be explained by recourse to the RSA conditions for
argument cogency, on the other, then to demonstrate the possibility of a probabilistic
analysis of cogency would be an expectable result. In fact, this is just what we have
provided.

A similar result holds with argumentation schemes (Walton et al. 2008). Just as
the study of the fallacies aims at cataloguing stereotypical ways for arguments to fail,
so argumentation schemes seek to provide an inventory of commonplace forms of
defeasible, presumptive argument. Informal logicians test and explain the presumptive
nature, or probative merit, of instances of such schemes by their satisfaction of the
RSA cogency conditions. Similarly with the critical questions—the usual evaluation
tools for schematic arguments. For example, Godden andWalton (2007, p. 269) claim
that: “[t]he function of a critical question is to test a typical or common way in which
an argument of a certain schematic type can fail to meet one (or more) of the RSA
criteria.”

Recently, Hahn and Hornikx (2016), having provided a probabilistic account of
three argumentation schemes, conclude that “a Bayesian perspective on the cata-
logue of argumentation schemes, once systematically applied across the catalogue,will
deliver, we think, a comprehensive theory of informal argument” (Hahn and Hornikx
2016, p. 1868f.). Thus, again, if the goodness of schematic arguments is explained—as
the informalists claim—by their satisfaction of the RSA cogency conditions, and—as
probability theorists claim—by their satisfaction of certain conditions identified in
the theory of probability, then theorists should hope to find some probabilistic anal-
ysis of the cogency conditions, of the sort offered here. Hahn and Hornikx (2016:
p. 1869) claim that “it is Bayesianism [i.e., probability theory] that carries the nor-
mative weight.” If so, then the normative success of informal approaches to argument
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appraisal prior to probabilistic analysis requires some explanation. The explanation
our analysis suggests is that the RSA conditions, when applied correctly, track content
features of arguments on which their inductive strength depends.

6 Conclusion

This paper has provided a probabilistic analysis for the standard informal conditions
of argument cogency: acceptability, relevance, and inferential sufficiency (RSA). We
have identified content features of defeasible argument on which the cogency condi-
tions depend, namely (1) the change in the acceptability of the reason; (2) the reason’s
sensitivity and selectivity to the claim, and (3) one’s prior credence in the claim itself,
together with (4) the contextually determined thresholds of acceptability for reasons
and for claims (i.e., inferential sufficiency).

A probabilistic analysis of the RSA conditions contrast with, and may indeed serve
to correct, their orthodox informal understanding and application, for it shows that a
threshold application of the orthodox RSA criteria as update-gates can lead to what on
a probabilistic construal are mistakes. Moreover, while satisfying the cogency condi-
tions is entitlement establishing, on this analysis cogency is nevertheless an obligatory
norm, rather than a permissive one. Finally, our analysis advances the probabilis-
tic approach to argumentation particularly regarding the fallacies and argumentation
schemes.

A probabilistic analysis of argument cogency particularly shows how the informal
treatment of schemes and fallacies as situated successes or failures to meet the RSA
cogency conditions coheres with a probabilistic appraisal of schemes and fallacies.
This explains how these two normative theories can in principle, if not in fact, agree,
and so contributes to the cohesion and completeness of an account of argumentative
norms.
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Appendix: Calculations for Example 1 (Sect. 4.4)

The law of total probability (Eq. 11) serves to calculate the initial priors on each of
the reasons as follows:

P(Rn) = P(Rn|C) × P(C) + P(Rn|∼C) × P(∼C)

= 0.25 × 0.17 + 0.15 × 0.83

= 0.167

123



Synthese (2018) 195:1715–1740 1737

Using BT (Eq. 8) to successively update on each reason, R1 to R4, for the first update:

Pf (C) = P(R1|C)

P(R1)
× P(C)

= 0.25

0.167
× 0.17

= 0.2545

Update 1 fails to satisfy Eq. 28, since

P(R1|C)

P(R1)
<

tS
P(C)

= 0.25

0.167
<

0.5001

0.17
= 1.497 < 2.492

Given the updated value for P(C), we then recalculate the prior on each remaining
reason:

P(Rn) = P(Rn|C) × P(C) + P(Rn|∼C) × P(∼C)

= 0.25 × 0.2545 + 0.15 × 0.7455

= 0.1755

For the second update, on R2, we find:

Pf (C) = P(R2|C)

P(R2)
× P(C)

= 0.25

0.1755
× 0.2545

= 0.3625

So also the second update fails to satisfy Eq. 28, since

P(R2|C)

P(R2)
<

tS
P(C)

= 0.25

0.1755
<

0.5001

0.12545
= 1.425 < 1.965

Again recalculating the priors on the remaining reasons:

P(Rn) = P(Rn|C) × P(C) + P(Rn|∼C) × P(∼C)

= 0.25 × 0.3625 + 0.15 × 0.6375

= 0.1875

We find for the third update, on R3:

Pf (C) = P(R3|C)

P(R3)
× P(C)

= 0.25

0.1875
× 0.3625

= 0.4833
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So that also the third update fails to satisfy Eq. 28, since

P(R3|C)

P(R3)
<

tS
P(C)

= 0.25

0.1875
<

0.5001

0.3625
= 1.333 < 1.379

Finally recalculating the prior on the remaining reason, R4:

P(Rn) = P(Rn|C) × P(C) + P(Rn|∼C) × P(∼C)

= 0.25 × 0.4833 + 0.15 × 0.6167

= 0.1983

For the fourth update we find:

Pf (C) = P(R4|C)

P(R4)
× P(C)

= 0.25

0.1983
× 0.4833

= 0.6093

Therefore, had the first three updates already taken place, then a threshold application
of sufficiency would permit the fourth update, since

P(R4|C)

P(R4)
≥ tS

P(C)
= 0.25

0.1983
≥ 0.5001

0.4833
= 1.26 ≥ 1.035
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