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Abstract A lot of research has recently been done on the topic of ground, and in
particular on the logic of ground. According to a broad consensus in that debate,
ground is hyperintensional in the sense that even logically equivalent truths may differ
with respect to what grounds them, and what they ground. This renders pressing the
question of what we may take to be the ground-theoretic content of a true statement,
i.e. that aspect of the statement’s overall content to which ground is sensitive. I propose
a novel answer to this question, namely that ground tracks how, rather than just by
what, a statement is made true. I develop that answer in the form of a formal theory
of ground-theoretic content and show how the resulting framework may be used to
articulate plausible theories of ground, including in particular a popular account of the
grounds of truth-functionally complex truths that has proved difficult to accommodate
on alternative views of content.

Keywords Ground · Content · Logic of ground · Truthmaking

1 Introduction

Recently a lot of research has been devoted to ground—the relation, as Kit Fine has
put it, ‘of one truth holding in virtue of others’ (Fine 2012c, p. 1)—and in particular
to the broadly logical features of ground.1 A distinctive feature of ground, according

1 The pioneering contributions initiating this debate were Batchelor (2010), Correia (2010, 2014a),
Fine (2010, 2012c, b), Rosen (2010) and Schnieder (2011).More recent work includes Correia (2014b),
deRosset (2013), deRosset (2014),Krämer (2013),Krämer andRoski (2015),Krämer andRoski (2016),
Litland (2013, 2016a) and Poggiolesi (2015).
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to current consensus, is that it is hyperintensional in the sense that even logically
equivalent truths may differ with respect to what grounds them and what they ground
(cf. Correia and Schnieder 2012, p. 14). For instance, the truth that snow is white is
taken to ground the truth that snow is white or snow is not white, but not the logically
equivalent truth that grass is green or grass is not green. And the truth that snow is
white or snow is not white in turn grounds the truth obtained by adding as a further
disjunct the proposition that 2+2=5, which is not grounded by the logically equivalent
truth that grass is green or grass is not green.

Ground is accordingly sensitive to features of a truth that go beyond its logical
profile, and in particular beyond the matter of what possible worlds the truth obtains
in. One pressing question in the development of the theory of ground is therefore
just what the features of a truth are that are tracked by ground. For once we have
an answer to this question, we may form a notion of ground-theoretic content by
abstracting from those features of a truth to which ground is blind. We can then go
on to construct a mathematical representation of ground-theoretic content, which may
serve as a common framework within which to formally articulate, study, and compare
the various competing views of ground.

In this paper I propose and defend a novel answer to the question what ground is
sensitive to. My proposal builds on, and modifies, the view implicit in the semantics of
ground that Fine has developed in his influential papers ‘The Pure Logic of Ground’
and ‘Guide to Ground’ (Fine 2012b, c). Central to this view is the notion of a fact –
roughly, a proper or improper part of the actual world – verifying a truth. The view then
presents the relationship of ground as sensitive purely to mereological relationships
between the facts that verify the relevant truths. Unfortunately, as Fine concedes, the
view is limited in its capability to serve as a framework for the articulation of plausible
theories of ground. For it cannot accommodate certain widely held principles about the
interaction of ground with the truth-functional operations of conjunction, disjunction,
and negation.

I argue thatwe canovercome this problembymeans of a very naturalmodification of
Fine’s approach. The key element ofmyproposal is the notion of amode of verification,
which corresponds to a certain kind of answer to the question how a truth is verified by
a fact. A disjunction P∨Q, for example, may plausibly be verified either by verifying
its first disjunct P , or by verifying its second disjunct Q, and if P and Q are distinct
propositions, then these modes of verifying P ∨ Q will be distinct as well. I suggest
that it is these features of a truth, the modes in which it is verified, that ground tracks.
In particular, I take some truths P1, P2, . . . to ground a truth Q just in case Q is verified
by verifying P1, P2, . . .2

The plan for the paper is as follows. Section 2 clarifies and motivates the project of
the paper. Section 3 briefly describes Fine’s proposal and its limitations. In Sect. 4 I
informally introduce the notion of a mode of verification. I go on to show how a plau-
sible account of how conjunctions, disjunctions, and negations are verified combines
with the proposed view of ground to validate the principles that Fine was unable to

2 A word on notation. I shall be somewhat sloppy in my use of the letters ‘P’, ‘Q’, etc., in that I sometimes
use them as schematic sentence letters, and sometimes as variables ranging over contents that may be
assigned to sentences.
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accommodate. This constitutes a partial vindication of my proposal. A long penulti-
mate Sect. 5 describes a mathematical representation of ground-theoretic content to
serve as a formal framework for developing the theory of ground. I then use the frame-
work to define a relation of ground and operations of conjunction, disjunction, and
negation. The emerging view is again shown to validate the principles linking ground
and the truth-functions that are invalid on Fine’s account. Finally, I show how various
competing views of the structural principles of ground, as well as of ground-theoretic
equivalence, may be implemented within my formal framework. Section 6 concludes.

2 Preliminaries

Following Fine, I have informally spoken of ground as a relation between truths. It is
controversial, however,whether this is the best,most perspicuous, ormost fundamental
way of speaking about ground. There are twoworries about this, one targeting the term
‘relation’, one concerning the term ‘truths’. I discuss them in turn.

A number of authors prefer to use a sentential operator to express ground, rather
than a relational predicate such as ‘ground(s)’.3 Using < as the symbol for ground,
they would therefore write ‘the ball is round< the ball is red or round’ rather than ‘the
truth that the ball is round grounds the truth that the ball is red or round’. Speaking
in this way, it may be argued, no more commits one to a relation of ground holding
between some truths than the use of ‘if and only if’ commits one to a relation of
equivalence holding between some propositions.

However, evenon this view, it is highly desirable to have a theoryof ground-theoretic
content of the kind I am after. Let it be granted that there is a legitimate notion of the
overall content of a sentence. Then wemay ask with respect to this notion which of the
features of a sentence’s content the grounding operator < is sensitive to in the sense
that sameness with respect to these features of content guarantees that two sentences
may replace one another within the scope of < without changing the truth value.4

Abstracting again from any other features of a sentence’s content, we get our notion
of ground-theoretic content. The ground-theoretic content of a sentence will then be
exactly what is suited to play the role of a sentence’s semantic value in formulating
a semantics for ground. A formal framework within which to theorize about ground-

3 The operator option is chosen, for example, by Fine (2012b), Correia (2010) and Schnieder (2011). The
predicate option is preferred by Rosen (2010), as well as Schaffer (2009). (The latter is something of an
outlier in the current debate, though, in that he takes ground to relate not just truths, but objects of any kind.
His conception of ground will not be canvassed in this paper.)
4 I assume here that ground is sensitive only to differences between sentences that concern content. This
is not obvious prior to investigation; it may be that the best account of the distinctions drawn by ground
sees (some of) them as purely syntactic. For the purposes of this paper, the assumption has the status
of a working hypothesis. That is, I propose that we try and see if we can make sufficiently fine-grained
distinctions pertaining to content to capture the distinctions drawn by ground. (One potentially problematic
kind of case arises in connection with conceptual analyses. It might be suggested that if Alice is a vixen, say,
then this is so becauseAlice is a female fox, where the ‘because’ indicates grounding, and that nevertheless
‘Alice is a vixen’ and ‘Alice is a female fox’ are exactly alike in content. For discussion, see Schnieder
(2010). Thanks to an anonymous referee for highlighting the relevance of these cases.)
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theoretic content thus provides a framework for the development of semantic theories
of ground.

We turn to the second worry concerning the talk of ground as a relation between
truths, targeting the use of the term ‘truth’. A truth, presumably, is some kind of
(accurate) representation of the world, and so ground, if it is a relation between
truths, would appear to be a meta-representational relation. A number of authors
however prefer to see ground as a relation between worldly items rather than repre-
sentational ones, for which the term ‘fact’ would then appear more appropriate than
‘truth’ (cf. Correia 2010, p. 258f). An alternative option, preferred by Correia in later
work, is to simply distinguish two legitimate notions of ground, one worldly, one
representational (cf. Correia 2014a, Sect. 5, 2014b, p. 36).5 I myself do not find the
worldly/representational distinction very helpful or clear. It should be noted, though,
that nothing in the way I have introduced the notion of ground-theoretic content hinges
on the use of the term ‘truth’ rather than ‘fact’, or on taking the relata of ground to be
representational entities.6 So even if the only legitimate notion of ground is somehow
worldly, this by itself threatens neither interest nor feasibility of my project.

A clearer distinction than that between worldly and representational items obtains
between two alternative kinds of views on the logical principles for groundwhich Cor-
reia takes to be characteristic of worldly and representational conceptions of ground.
On one kind of view, the following introduction principles for ground are taken to
hold without restriction:7

(<I∨) If P then P < P ∨ Q and P < Q ∨ P
(<I∧) If P, Q then P, Q < P ∧ Q
(<I¬∧) If ¬P then ¬P < ¬(P ∧ Q) and ¬P < ¬(Q ∧ P)

(<I¬∨) If ¬P, ¬Q then ¬P, ¬Q < ¬(P ∨ Q)

(<I¬¬) If P then P < ¬¬P

Now on all of the extant logics of ground, typical instances of the first four of these
principles are taken to hold. But opinions diverge with respect to some special kinds
of instances. Consider in particular the case in which P = Q. If the principles hold
even for this case, then for any truth or fact P , we have that P grounds P ∨ P as well
as that P grounds P ∧ P . Given the standard assumption that ground is not generally
reflexive, it follows that a distinction must be made between P on the one hand, and
P ∨ P as well as P ∧ P on the other hand. But such a distinction, Correia claims, is
only plausible given a conception of the relata of ground as representational entities,

5 Note that the distinction, if it can bemade, may also be transposed to the sentential-operator setting, where
it turns into a distinction between worldly and representational conceptions of ground-theoretic content; cf.
Correia (2010, p. 257).
6 It may be objected that I treat ground, in effect, as a relation between ground-theoretic contents, and
since contents are representational entities, this commits me to a representational conception of ground.
If this were so, the same reasoning would reveal Correia’s ostensively worldly conception of ground as
representational, for he, too, treats ground in effect as a relation between what he calls the worldly contents
of sentences. In his intended sense, then, a content may be worldly and thus non-representational. This is
one of the reasons why I do not find this way of making the distinction very helpful.
7 This kind of view is endorsed, for example, by Fine (2012b), and in related forms by Rosen (2010),
Schnieder (2011) and Correia (2014b).
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and he takes the same view with respect to the distinction required by the last principle
between a truth P and its double negation ¬¬P . On a worldly conception of ground,
he concludes, (<I¬¬) is to be rejected, and the other principles have to be restricted
to rule out, at least, the case of P = Q.8

So let us set aside theworldly/representational distinction and instead focus directly
on the introduction principles. Should we take them to hold in unrestricted form?
Or should they be restricted in some way? Or does it simply depend on which of
two equally legitimate notions of ground is at issue? Rather than try to decide the
issue in advance of developing a theory of ground-theoretic content, I suggest that
well-founded answers should be based in part on how the possible views can be
implemented within such a theory. And so the question arises whether each view can
be accommodated within an attractive theory of ground-theoretic content.

A partial answer to this question is contained in Fine’s work, which provides us
with an elegant theory of ground-theoretic content that naturally accommodates the
view that the introduction principles should be restricted. For on that account and
given Fine’s definition of ground, certain relatively natural restrictions of the intro-
duction principles turn out to hold. The question is then whether it is also possible to
formulate an alternative account that equally naturally accommodates the view that
the introduction principles should not be restricted; as Fine himself points out, his own
account cannot serve in this role. My aim in what follows is therefore to develop such
a theory of ground-theoretic content and thereby to establish a positive answer to this
second question.

3 The truthmaker conception of content

Fine (2012b) formulates a semantics for ground, and implicit in that semantics is,
firstly, an answer to the question to what features of a sentence’s content ground
is sensitive, and secondly, a theory of ground-theoretic content. This section briefly
summarizes Fine’s account and identifies its limitations hinted at above.

The semantics Fine proposes associates with each sentence A two sets of facts,
namely the set [A]+ of facts verifying the sentence and the set of facts [A]− falsifying
the sentence. Facts are described by Fine in comparison with possible worlds: they
are like possible worlds except in that they are all of them actual, and in that they
are generally incomplete in the sense that they leave open the truth-value of some
propositions. Moreover, it is assumed that facts may be fused, so that given any facts
s, t, u, . . ., we may form their fusion

⊔{s, t, u, . . .} = s� t �u� . . ., which contains
all of s, t, u as parts. For a sentence to be true is for it to be verified by some fact, and
for it to be false is for it to be falsified by some fact. So if we assume that no sentence
is both true and false and no sentence is neither true nor false, then for every sentence
A, exactly one of [A]+ and [A]− is empty.

A content P , on this view, may accordingly be identified with a pair 〈P+, P−〉 of
two sets of facts, where any member of P+ is a verifier of P , and any member of P−
is a falsifier of P . Fine assumes that any fusion of verifiers of a sentence also verifies

8 Cf. Correia (2010, p. 267f)—it is plausible that a number of other cases should then also be disallowed;
cf. ibid, p. 269.
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the sentence and similarly for falsifiers. So both components of a content are required
to be closed under fusion.

Fine then formulates semantic clauses for four distinct grounding operators; the
corresponding relations on contents may be defined as follows:9

P1, P2, . . . ≤ Q iff s1 � s2 � . . . ∈ Q+ whenever s1∈ P+
1 , s2 ∈ P+

2 , . . .

P 	 Q iff P, R1, R2, . . . ≤ Q for some R1, R2, . . .

P1, P2, . . . < Q iff P1, P2, . . . ≤ Q and Q � P1, Q � P2, . . .

P ≺ Q iff P 	 Q and Q � P

Somewhat curiously, the most basic notion of ground of the four is not the familiar
notion of ground but a reflexive notion that Fine calls weak full ground (≤). In terms
of this notion and its natural partial counterpart (	), Fine then defines an irreflexive
notion of strict full ground (<), as well as a notion of strict partial ground (≺).

Weak full ground, and thereby ultimately every notion of ground, is defined essen-
tially in terms of the notion of fusion and verification. Ground, on this picture, is
thus taken to track mereological relationships between the facts verifying the relevant
truths, and ground-theoretic content is accordingly taken to be a matter of which facts
verify a given truth.

Given this view of ground-theoretic content, however, it does not appear possible
to accommodate the unrestricted introduction principles. To see this, we need to ask
how the operations of conjunction, disjunction, and negation may be defined on Fine’s
contents. The view adopted in Fine (2012b) corresponds to these definitions:

(P ∧ Q)+ = {s � t : s ∈ P+ and t ∈ Q+}
(P ∧ Q)− = P− ∪ Q− ∪ {s � t : s ∈ P− and t ∈ Q−}
(P ∨ Q)+ = P+ ∪ Q+ ∪ {s � t : s ∈ P+ and t ∈ Q+}
(P ∨ Q)− = {s � t : s ∈ P− and t ∈ Q−}
(¬P)+ = P−
(¬P)− = P+

But this implies that for all P , P = P∧P = P∨P = ¬¬P , and accordinglywe never
have P < P ∧ P , P < P ∨ P , or P < ¬¬P . Moreover, even independently of these
specific clauses, it is hard to see how the problem could be solved within the present
framework. For there appears to be no plausible way to distinguish between a truth P
on the one hand and the corresponding truths P∨P , P∧P , or¬¬P on the other hand,
appealing only to the facts verifying them, and in such a way as to generally render
the relevant grounding claims true. The most obvious way to allow for some sort of
distinction between P and P ∨ P as well as P ∧ P would be to lift the requirement
that P be closed under fusion. But this would not help for the case of ¬¬P , and even
for P ∧ P and P ∨ P , it would of course help only in the special case where P is not
closed under fusion. If we wish to accommodate the envisaged introduction principles
in unrestricted form, we need to modify the Finean framework.10

9 Although Fine does not say so, the definitions should be read as restricted to truths, otherwise
P1, P2, . . . ≤ Q will vacuously hold whenever one of P1, P2, . . . is false.
10 Note that I am relying here on the assumption, noted in Footnote 4 above, that ground is sensitive only
to differences in content. If this assumption were given up, and ground seen as sensitive to the linguistic
guises of contents, then the above line of reasoning could be resisted. Thanks here to an anonymous referee.
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4 Introducing modes of verification

To see how a suitable conception of ground-theoretic content might be obtained, we
adopt for the moment an informal understanding of propositions and ask what distinc-
tions we can then draw between a proposition P and the corresponding disjunction
P ∨ P that might be tracked by the relation of ground.

Consider first the easier case of the disjunction P ∨ Q of the distinct propositions
P that Alice is smart and Q that Bob is tall. Suppose the fact s of Alice having an IQ
of 150 verifies P and the fact t that Bob is 6 foot tall verifies Q. Then both s and t
separately verify P∨Q. But it seems natural to think that there is a difference between
the verification of P ∨ Q by s and the verification of P ∨ Q by t , which we can bring
out by asking how the facts verify the proposition. The fact s verifies the proposition
P ∨ Q by verifying the disjunct P that Alice is smart. The fact t , in contrast, verifies
P ∨ Q by verifying its other disjunct Q that Bob is tall.

Thus attending to the ways, or modes, in which a proposition is verified by its
verifiers also enables us to distinguish between P and P ∨ P . For it is very natural to
say that s verifies P ∨ P just as it verifies P ∨ Q, by verifying P . At the same time,
it is not at all tempting to say that s verifies P itself by verifying P . I would suggest,
moreover, that it is this distinction which is tracked by the grounding relation. Roughly
speaking, P grounds P ∨ P precisely because P ∨ P may be verified by verifying P ,
whereas P does not ground P , since P may not be verified by verifying P .

Before we move on to consider the case of conjunction, a brief comment on my use
of ‘by’ is required to avoid misunderstanding. As used in ordinary language, a ‘by’-
statement can be true even if it provides only a partial answer to the corresponding
‘how’-question. For instance, wemay say that someone got into the house by breaking
awindowwithout thereby implying that breaking thewindowwas on its own sufficient
for the person to get into the house. Even if it was also required that the person climb
through the window, the ‘by’-statement may express a truth by ordinary language
standards. I wish to highlight, therefore, that the uses of ‘by’ I make in the formulation
of my proposal, in contrast, are to be understood as imposing the kind of fullness or
sufficiency condition that is lacking in the ordinary reading of ‘by’.11

We turn now to the case of P and P ∧ P . Again, we first consider the easier case
of the conjunction P ∧ Q of the distinct propositions P and Q. Since s verifies P and
t verifies Q, their fusion s � t verifies P ∧ Q. But how does s � t verify P ∧ Q? A
natural first thought is: by verifying P and Q. However, on the perhaps most natural,
distributive reading of that suggestion, it implies that s � t verifies each of these two
propositions. And this is typically not the case, for on the Finean view, a verifier of a
conjunction does not in general verify each, or even just one of the conjuncts.12 The
difficulty can be resolved by employing a non-distributive interpretation of the claim

11 Cf. Schnieder (2008, p. 665f). As Schnieder points out elsewhere (cf. his 2011, p. 450f) similar cautionary
remarks are in order when locutions such as ‘because’ are used to convey relationships of full ground.
12 This illustrates that Fine’s notion of verification is non-monotonic in the sense that a fact may fail to
verify a proposition even though it has a part which verifies the proposition. For this reason, Fine sometimes
describes this notion of verification, which he also calls exact verification, as imposing a requirement of
holistic relevance: for a fact to verify a given proposition, it must not contain any part which is irrelevant
to the truth of the proposition (cf. Fine 2012a, p. 234; 2014, p. 551f et passim).
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that the propositions P and Q are verified by a fact like s � t .13 The idea is that in
the relevant sense, the propositions P1, P2, . . . are verified by a fact iff the fact is the
fusion of some facts s1, s2, . . . verifying P1, P2, . . . respectively. Since s, t verify P
and Q, respectively, their fusion s � t verifies, in the non-distributive sense, P and Q.
Moreover, I claim that it is by verifying P and Q that s � t verifies P ∧ Q.14

So by taking into account the modes in which a proposition is verified, we are also
able to distinguish between P and P ∧ P . For while s verifies P ∧ P by verifying
P , it is not the case that s verifies P by verifying P . And as before, P may be taken
to ground P ∧ P on the strength of the fact that P ∧ P may be verified by verifying
P , whereas P does not ground P , since P may not be verified by verifying P . More
generally, the account of ground I propose may in a first approximation be stated thus:

(<) Q1, Q2, . . . < P iff
(i) P, Q1, Q2, . . . are true, and
(ii) every verifier of Q1, Q2, . . . verifies P by verifying Q1, Q2, . . .

Consider now finally the negative proposition ¬Q that it is not the case that Bob
is tall. How should we take it to be verified? Like Fine, I adopt a bilateral conception
of content to account for negation. On this conception, a content encodes information
concerning both how it is verified and how it is falsified. So in giving an account of
¬Q, we may appeal to both what verifies its negatum Q, and what falsifies it. Again
with Fine, I take it that ¬Q is verified by exactly those facts that falsify Q, and that
¬Q is falsified by exactly those facts that verify Q. For instance, the fact t ′ that Bob is
5 foot tall would plausibly falsify the proposition Q that Bob is tall, and hence verify
¬Q, whereas the fact t that Bob is 6 foot tall verifies Q, and therefore falsifies ¬Q.

We use again the +/−-notation to talk about bilateral contents and their compo-
nents. That is, for P a bilateral content, P+ is the positive component of P , and P− is
the negative component, so that P = 〈P+, P−〉. The notion of verification is applied
with harmless ambiguity to both bilateral contents and their (unilateral) positive and
negative components. Verification of a bilateral content P is defined as verification of
P+, and falsification of P as verification of P−.

In giving an account of negation, I now need to say how a negation is verified by
its verifiers, and falsified by its falsifiers. For each of these questions, two views are
prima facie possible. I call them the by-view and the identity-view, respectively. So we
have to consider four views with respect to ¬P:

(BV) The by-view of verification: ¬P is verified by falsifying P .
(BF) The by-view of falsification: ¬P is falsified by verifying P .
(IV) The identity-view of verification: ¬P is verified how P is falsified.

13 The non-distributive notion of verification has also been put to use in Litland (2016b) in developing a
logic of a many-many notion of grounding, on which what is grounded is irreducibly a collection of truths
or facts.
14 The case of conjunction makes especially clear why the ‘full’ interpretation of ‘by’ must be assumed.
For suppose that every fact s that verifies P also verifies Q and therefore P ∧ Q. By ordinary standards,
it might then be true to say that every verifier s of P verifies P ∧ Q by (among other things) verifying P .
But it would not therefore be true to say that P < P ∧ Q. We avoid this result if we read ‘by’ as requiring
fullness. For on such a reading, it is false that in general every verifier of P verifies P ∧ Q by verifying P ,
since verifying P is usually only part of what is required for verifying P ∧ Q.
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(IF) The identity-view of falsification: ¬P is falsified how P is verified.

For example, according to (BV), the fact t ′ would verify the proposition ¬Q that Bob
is not tall by falsifying its negatum Q, the proposition that Bob is tall. More generally,
any fact verifying Q−, by verifying Q−, verifies (¬Q)+. And according to (BF), the
state t that Bob is 6 foot tall falsifies ¬Q by verifying Q. More generally, any verifier
of Q+, by verifying Q+, verifies (¬Q)−. According to (IV), in contrast,¬Q is verified
in exactly the ways Q is falsified, so that (¬Q)+ = Q−. And on (IF), ¬Q is falsified
in exactly the ways Q is verified, so (¬Q)− = Q+.

In principle, any view of verification can be consistently combined with any view
of falsification, so we obtain a total of four possible views of how the bilateral content
of a negation is determined: (BV+BF), (BV+ IF), (IV+BF), and (IV+ IF). Some of
the views do not fit our desired principles for ground, though. Firstly, if we are to obtain
that P < ¬¬P , then it must hold that the double negation ¬¬P of a given content P
may be verified by verifying P . But this rules out (IV+ IF), since that view implies
P = ¬¬P . (IV+BF) and (BV+ IF), in contrast, directly imply this result. For assume
that s verifies P+. Suppose we accept (BV+ IF). By (IF), (¬P)− = P+, so s verifies
(¬P)− in whatever ways it verifies P+. By (BV), it follows that s verifies (¬¬P)+
by verifying (¬P)− = P+. But that just means that s verifies ¬¬P by verifying P ,
as desired. Now consider (IV+BF). By (BF), s verifies (¬P)− by verifying P+. By
(IV), (¬¬P)+ = (¬P)−, so it follows that s verifies (¬¬P)+ by verifying P+, and
thus s verifies ¬¬P by verifying P , as desired.

The situation is more complicated in the case of (BV+BF). Assume s verifies
P+. Then by (BF), s verifies (¬P)− by verifying P+. Moreover, by (BV), s verifies
(¬¬P)+ by verifying (¬P)−. Now, nothing we have said so far allows us to conclude
that s verifies (¬¬P)+ by verifying P+. Nevertheless, it seems plausible that ‘by’, at
least in its pertinent ‘full’ use, is transitive in the sense that if s φs by ψ ing, and ψs
by χ ing, then s φs by χ ing. If so, then we may still infer that s verifies (¬¬P)+ by
verifying P+. So it seems that all three remaining views will yield the desired mode
of verification for the double negation ¬¬P , and correspondingly that P < ¬¬P .

The differences between the views emerge more clearly with respect to the other
kinds of negative propositions, namely negations of conjunctions and disjunctions.
Recall the above introduction principles for ground governing these:

(<I¬∧) If ¬P then ¬P < ¬(P ∧ Q) and ¬P < ¬(Q ∧ P)

(<I¬∨) If ¬P,¬Q, then ¬P,¬Q < ¬(P ∨ Q)

If we are to accommodate them, we must have that ¬(P ∧ Q) may be verified by
verifying ¬P and by verifying ¬Q, and that ¬(P ∨ Q) may be verified by verifying
¬P, ¬Q. It turns out that this demand favours (IV+BF), the combination of the
identity-view of the verification of a negation with the by-view of its falsification.

To see this, we first need to look at how conjunctions and disjunctions are falsi-
fied. Note that on the truthmaker conception, there is a strong analogy between the
falsification of conjunctions and the verification of disjunctions, as well as between
the falsification of disjunctions and the verification of conjunctions. Specifically, the
negative content of a conjunction relates to the negative contents of its conjuncts like
the positive content of a disjunction relates to the positive contents of its disjuncts.
And similarly, the negative content of a disjunction relates to the negative contents of
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its disjuncts like the positive content of a conjunction relates to the positive contents
of its conjuncts. It is natural to continue the analogy from the case of what verifies or
falsifies to how it does so. In particular, just as (P ∨ Q)+ is verified via P+ and via
Q+, we shall take (P ∧ Q)− to be verified via P− and via Q−, and just as (P ∧ Q)+
is verified via P+, Q+, we shall take (P ∨ Q)− to be verified via P−, Q−.

Now consider the claim that every verifier of ¬P , by verifying ¬P , verifies ¬(P ∧
Q). First, we show that (IV+BF) implies this claim. Assume that s verifies ¬P . Then
s verifies P−, and so verifies (P ∧ Q)− by verifying P−. By (IV), (¬(P ∧ Q))+ =
(P ∧ Q)−, so it follows that s verifies (¬(P ∧ Q))+ by verifying P−. Moreover, we
have P− = (¬P)+, so it follows that s verifies (¬(P ∧ Q))+ by verifying (¬P)+,
as desired. But now consider (BV+IF). If s verifies (¬P)+, then s verifies P−, so
s verifies (P ∧ Q)− via P−. Given (BV), we have that s verifies (¬(P ∧ Q))+ via
(P ∧ Q)−. Assuming transitivity, we could infer that s verifies (¬(P ∧ Q))+ via P−,
but without the identity of P− and (¬P)+, there is no way we can then obtain the
conclusion that s verifies (¬(P ∧ Q))+ via (¬P)+. Moreover, as this case does not
involve the falsification of any negation, the situation is exactly the same for (BV+BF).

To validate all of the desired introduction principles for ground, we therefore have
to accept (IV+BF) as our account of negation. This account is striking in embodying
an asymmetric view of negation. It distinguishes between the falsification of a negation
and the verification of the negatum, but not between the verification of a negation and
the falsification of the negatum. In other words, the view is that to falsify a content is
to verify its negation, whereas it is not the case that to verify a content is to falsify its
negation. Rather, falsifying the negation is something achieved through, but distinct
from, the verification of the negatum.15

5 A mode-ified truthmaker theory of content

On the view I have proposed, the features of a truth to which ground is sensitive are
features concerning what facts verify the truth and how, i.e. in whatmodes they do so.
We therefore have to encode in (a mathematical representation of) a proposition both

15 That this kind of asymmetric account should be accepted is a surprising result; independently of the
connection to the introduction principles, it might have seemedmore natural to endorse one of the symmetric
accounts. So the question arises whether there might be independent philosophical reasons for endorsing
the asymmetric account. Although the matter calls for a much more extended discussion than I can offer
here, it may be worth mentioning one possible source of independent motivation. I have in mind the kind of
asymmetric account of truth and falsity that is endorsed, for example, by Williamson (1994, p. 188), which
can be captured by the following principles:

(T) If a proposition says that P , then it is true iff P .
(F) If a proposition says that P , then it is false iff ¬P .

This account immediately ties both the truth of a proposition saying that¬P and the falsity of a proposition
saying that P to the same thing: it being the case that ¬P . But it does not in the same way tie the falsity of
a proposition saying that ¬P and the truth of a proposition saying that P to the same thing. Rather, the first
is tied, in the first instance, to it being the case that ¬¬P , and the second to it being the case that P . This
asymmetry is at least strongly reminiscent of the identification of the falsification of P with the verification
of ¬P , in the absence of the identification of the verification of P with the falsification of ¬P . As such, it
may perhaps provide an independent basis for the latter.
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what facts verify or falsify it as well as in what modes they do so. The obvious idea
is to replace the sets of facts in Fine’s account by sets of pairs 〈s, m〉 of a fact s and
a mode m. The presence of 〈s, m〉 in P+ (P−) would then be taken to represent that
s verifies (falsifies) P in mode m. The limiting case of a state verifying a proposition
directly, as it were, i.e. not by verifying any propositions, may be represented bymeans
of a special mode m0 of directness. Any indirect mode m would be identified by the
propositions P1, P2, . . . in the verification of which it consists. The truths P1, P2, . . .
would be taken to ground a truth Q just in case for every fact s verifying P1, P2, . . .,
when m is the mode corresponding to P1, P2, . . ., 〈s, m〉 is a member of Q.

I shall however deviate from this proposal in two ways. Firstly, it turns out that
given our account of ground, we can work with a significantly simpler construction
than the one just described: we may replace Fine’s sets of facts simply with sets of
modes, counting facts as special, direct modes of verification.16 The presence of a fact
s in P+ represents that s verifies P directly, and the presence of an (indirect) mode m
in P+ represents that P is verified in modem, by every fact verifying the propositions
Q1, Q2, . . . corresponding to m. We may then take the propositions P1, P2, . . . to
ground a proposition Q just in case there is a mode of verification corresponding to
P1, P2, . . ., and it is a member of Q. It is straightforward to show that the relation of
ground holds according to the latter, simpler picture just in case it holds between the
corresponding contents on the former, more complicated picture.

The second deviation is motivated by a desire to accommodate a non-factive under-
standing of ground. Roughly speaking, some propositions P1, P2, . . . non-factively
ground a proposition Q iff they satisfy the conditions to ground Q, bar perhaps the
condition of being true. This means in particular that non-factive ground satisfies
unconditional versions of the introduction principles stated above, so that for example
P < P∨Q holds irrespective ofwhether P or Q are true.17 To characterize non-factive
ground, we move to a similarly non-factive conception of indirect modes of verifica-
tion.18 Mainly, this means that we do not demand that the propositions P1, P2, . . . be
true if they are to correspond to a mode of verification. We may then include in P ∨ Q
the mode of verifying via P , irrespective of whether P is true. We can then say that P
non-factively grounds P ∨ Q on the strength of the fact that P ∨ Q contains the mode

16 The possibility of this simplification was suggested to me by Kit Fine.
17 On the idea of a non-factive notion of ground, cf. e.g. Fine (2012b, p. 48ff) and Correia(2014b, p. 36).
18 A similar move may be considered for the direct modes. Specifically, we may follow (cf. Fine 2014,
p. 557f, 2016, p. 8), and replace the appeal to the notion of a fact by an appeal to a broader notion of a state,
which is like that of a fact except in that a state need not be actual, and indeed need not even be possible.
There is then no obstacle to assuming every proposition to have at least one verifier and at least one falsifier.
However, since ground, on my account, is determined purely by the presence or absence of indirect modes
in a given proposition, this extension of the conception of verifiers is not required for our construction to
work as intended. To the extent that non-actual and impossible modes are less problematic than non-actual
and impossible states, it is an advantage of my framework that it can accommodate non-factive ground
using less worrisome resources than are required on Fine’s approach. (It should be noted, though, that if
we do not allow non-actual and impossible states, then the presence of a mode m in a proposition P does
not in general represent exactly that every verifier of the propositions corresponding to m thereby verifies
P . For the latter condition will be vacuously satisfied for any non-actual mode. The presence of m in P
should then simply be understood to represent that verifying the propositions corresponding to m is a way
to verify P—though it may be logically impossible to verify P in this way.)
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of verifying via P . Given a suitable selection of modes as actual, we may then count
a proposition true just in case one of its modes of verification is actual, and factive
ground may be defined in the natural way in terms of truth and non-factive ground.
For simplicity, I shall henceforth focus exclusively on non-factive ground.

Our first task will be to describe the basic behaviour of modes; this is done in
Sect. 5.1. Section 5.2 defines notions of ground on our contents, and in Sect. 5.3 I then
define suitable notions of conjunction, disjunction, and negation, which are shown to
relate to ground in the desiredway. Section 5.4 identifies the constraints on our ground-
theoretic contents corresponding to the structural features ground is sometimes taken
to possess. In Sect. 5.5 I turn to the matter of the identity conditions on modes, and
explain how they bear on the question of equivalence in ground-theoretic content.

5.1 Modes

We shall begin by describing the basic behaviour of modes, leaving open their exact
nature and identity.

Firstly, any mode is either direct, which is to say that it is a fact, or it is indirect,
which is to say that there is some list of propositions P1, P2, . . . such that m is the
mode of verifying via P1, P2, . . . We will also call direct modes fundamental, and
indirect ones derivative. Given our informal account of the previous section, it is clear
that some lists of propositions determine a mode, i.e. that there are some derivative
modes. For instance, the verifiers of the conjunction P ∧ Q of truths P, Q verify the
conjunction by verifying P, Q. So there is a mode of verification corresponding to
the list of propositions P, Q.

There appears to be no motivation, intuitive or theoretical, for allowing distinct
modes to correspond to the same list of propositions. The mathematical structure
corresponding to a list is a sequence, so we may take there to be a function mapping
certain sequences of propositions to modes. We shall write this function V , alluding
to the fact that the mode in question will be the mode of verifing via the relevant
list of propositions. So when 〈P1, P2, . . .〉 is a suitable sequence of propositions,
V 〈P1, P2, . . .〉 is the mode of verifying via P1, P2, . . .

Thebasic structure thatwewillworkwith is amode-space,which is a pair 〈M, V 〉of
a non-empty set of modes M , and a via-function V . A maximally liberal conception of
propositions is obtained as follows.We call any subset P ofM a unilateral proposition,
which is verified in exactly the modes which are its members. And we call any pair
P = 〈P+, P−〉 of unilateral propositions a bilateral proposition, which is verified in
exactly the modes that are members of P+, and falsified in exactly the modes that are
members of P−. (Here and in what follows, I mark the unilateral/bilateral distinction
typographically by using boldface variables for bilateral propositions.) For now, we
may focus on unilateral propositions.

The function V is assumed to be a mapping from some set of sequences of propo-
sitions into M . It is not required that V be defined for every sequence of propositions,
or even that it be defined for every singleton sequence 〈P〉with P a proposition. Infor-
mally, that V is defined for some sequence of propositions 〈P1, P2, . . .〉 means that
there is such a thing as doing something by verifying P1, P2, . . . Correspondingly,
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if V is undefined for 〈P1, P2, . . .〉, this means that there is no such thing as doing
something by verifying P1, P2, . . . One reason for not requiring that V be defined for
all sequences of propositions is that such a requirement would be inconsistent with a
view of ground as irreflexive. To see this, note that M is itself a proposition, so V 〈P〉
should have to be defined for P = M . But then V 〈P〉 would have to a member of P ,
which is to say that verifying P is a way to verify P . Given the proposed account of
ground in terms of modes of verification, it would follow that P grounds itself.

We shall however take for granted that two natural closure principles hold for the
range of sequences on which V is defined. Firstly, if V is defined for a given sequence
〈P1, P2, . . .〉 then it is also defined for any non-empty subsequence. Secondly, if
V is defined for each of the sequences γ1, γ2, . . ., then V is also defined for their
concatenation γ1

�γ2
� . . .19 For simplicity, we require that V be undefined for the

empty sequence 〈〉.20
Note that V is not required to be one-to-one, but is allowed to map different

sequences to the same mode. We shall assume that the property of determin-
ing the same mode is preserved under concatenation of sequences. That is, if
V (γ1) = V (δ1), V (γ2) = V (δ2), . . ., then V (γ1

�γ2
� . . .) = V (δ�

1 δ�
2 . . .). If

m1 = V (γ1), m2 = V (γ2), . . ., we call V (γ1
�γ2

� . . .) a fusion of 〈m1, m2, . . .〉.
Given the previous constraints, any sequence of indirect modes 〈m1, m2, . . .〉 has a
unique fusion which we denote by

⊔〈m1, m2, . . .〉 or m1 � m2 � . . .

Whenever m = V 〈P1, P2, . . .〉, we call the set {P1, P2, . . .} a ground-set of m,
since {P1, P2, . . .}will ground a proposition Q ifm ∈ Q. Amode-space will be called
constrained iff: if V maps two sequences 〈P1, P2, . . .〉 and 〈Q1, Q2, . . .〉 of proposi-
tions to the same mode, then the corresponding sets {P1, P2, . . .} and {Q1, Q2, . . .}
are identical. In that case, any indirect mode m has a unique ground-set, which we
denote by |m|. We shall usually assume that we are working in a constrained mode-
space.21

Having described what modes are like, it is natural to ask what modes are. In view
of their intimate relationship with sequences of propositions, an obvious suggestion
is that perhaps modes may simply be identified with these sequences. With respect to
a large variety of mode-spaces, such an identification may indeed be carried through.
There are, however, interesting sorts of mode-spaces for which this is not possible. The
basic point is that sequences of propositions are set-theoretic constructions frompropo-
sitions, and propositions themselves are set-theoretic constructions from modes. As a
result, if modes are identified with sequences of propositions, the relation of ground

19 For present purposes, we may restrict attention to concatenations of an at most countable sequence of
sequences.
20 There may be purposes for which a putative ‘nullmode’ corresponding to 〈〉 may be useful. If a mode
is counted actual iff all propositions in the corresponding sequence are true, then the nullmode would
automatically be actual and hence every proposition containing it trivially true. It would thereby have a
similar profile to the nullfact (or nullstate) in Fine’s framework, which is the fusion of the empty set of
facts (or states), and part of every fact (state). The most obvious application of the nullmode would be to
capture Fine’s idea that some truths may be zero-grounded, where this is supposed to be distinct from being
ungrounded; cf. Fine (2012b, p. 47f).
21 Itmaybeworth pointing out that for cardinality reasons, in a constrainedmode-space,V will be undefined
for most sequences. Thanks here to an anonymous referee.
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will automatically inherit certain features of the membership-relation, in particular its
irreflexivity, its asymmetry, and its well-foundedness. So for any mode-spaces that
yield relationships of ground that violate these principles, the reduction of modes to
sequences, or other set-theoretic constructions, of propositions, cannot be carried out.
Whether a different useful kind of reduction is then possible, perhaps using non-well-
founded sets, is a question I shall leave for another occasion. At any rate, in devising
a framework for theorizing about ground, I believe we are well-advised first to try and
work out what sort of constraints different plausible theories of ground impose on the
modes and their structure. Once we understand this, wemay return to themetaphysical
question of what sorts of things modes may be taken to be on the various views. For
the time being, we shall therefore adopt towards modes the stance that Fine adopts
towards facts or states, and simply take them as given.

5.2 Ground

We first define notions of (non-factive) ground for unilateral contents. Given our
informal account of strict full ground above, we may define < and its partial cousin ≺
as follows. Let Γ be a non-empty set of (unilateral) contents and P and Q (unilateral)
contents. Then:

(<) Γ < P iff for some mode m ∈ P , Γ is a ground-set of m
(≺) P ≺ Q iff Δ, P < Q for some set of propositions Δ

Note that in contrast to Fine’s account above, strict ground is given a direct definition in
terms of modes of verification, and not defined via a reflexive notion of weak ground.
Nevertheless, we shall later have use for such a notion, and for a partial version of it,
which we define as follows:

(≤) Γ ≤ P iff Γ < P or Γ = {P} or ({P} ⊂ Γ and Γ \{P} < P)
(	) P 	 Q iff P = Q or P ≺ Q

The following principles are straightforward consequences of these definitions:22

Identity(≤) P ≤ P
Subsumption(</≺) If Γ, P < Q then P ≺ Q
Subsumption(</≤) If Γ < Q then Γ ≤ Q
Subsumption(≤/	) If Γ, P ≤ Q then P 	 Q
Subsumption(≺/	) If P ≺ Q then P 	 Q

The only non-trivial case is Sub(≤/	). But suppose Γ, P ≤ Q. There are three cases.
(i) Γ, P < Q. Then P ≺ Q and hence P 	 Q. (ii) Γ ∪ {P} = {Q}. Then P = Q
and hence P 	 Q. (iii) {Q} ⊂ Γ ∪{P} and (Γ ∪{P})\{Q} < Q. Then either P = Q
and hence again P 	 Q, or P ∈ (Γ ∪ {P})\{Q}, and hence P ≺ Q, and so P 	 Q.

We might also have defined weak partial ground as the partial version of weak full
ground rather than, as we have done above, as a weak version of strict partial ground.

22 I borrow the labels from the corresponding inference rules in Fine (2012c)’s pure logic of ground. –
Here and in what follows, I adopt the familiar convention of writing Γ ∪ {Q} as Γ, Q as well as Γ ∪ Δ as
Γ, Δ, and similarly in other cases.
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For given the other definitions, the condition that P ≺ Q or P = Q is equivalent to
the condition that for some Δ, we have Δ, P ≤ Q. The right-to-left direction was
just established. For the left-to-right direction, suppose first that P ≺ Q. Then for
some Δ, we have Δ, P < Q and hence Δ, P < Q. Suppose then that P = Q. Then
P ≤ Q, and hence again, for some Δ, we have Δ, P ≤ Q.

The extension of the four notions of ground to bilateral contents is done in the
simplest possible way. For a non-empty set Γ of bilateral contents, let Γ + = {P+ :
P ∈ Γ }. Then we define Γ < P by Γ + < P+, and likewise in the other cases.

5.3 The truth-functional operations

In this section I define truth-functional operations on our ground-theoretic contents.
They are shown to combine with the above account of ground to yield an attrac-
tive account of the grounds of truth-functionally complex contents, which includes
the unrestricted introduction principles for ground. We first define conjunction and
disjunction for unilateral contents. We then extend these operations to the case of
bilateral contents and define an operation of negation. We then establish general nec-
essary and sufficient conditions for some propositions to ground the various kinds of
truth-functionally complex propositions.

Recall the informal account given in the previous section of how disjunctions,
conjunctions, and negations are verified. With respect to disjunction, we said that any
verifier of P verifies P ∨ Q by verifying P , and any verifier of Q verifies P ∨ Q
by verifying Q. And with respect to conjunction, we said that any fusion s � t of
verifiers s of P and t of Q verifies P ∧ Q by verifying P, Q. It follows that given
any disjunction P ∨ Q, V must be defined for 〈P〉, and 〈Q〉, and P ∨ Q must include
both V 〈P〉 and V 〈Q〉. Likewise for any conjunction P ∧ Q, V must be defined for
〈P, Q〉, and P ∧ Q must include V 〈P, Q〉.

Plausibly, both conjunctions and disjunctions may also be verified in other ways.
Thus, suppose that P maybe verified by verifying some propositions R1, R2, . . .Then
it is natural to hold that P ∧ Q may also be verified by verifying R1, R2, . . . , Q.
Similarly, if Q may be verified by verifying R1, R2, . . ., it is natural to say that
P ∧ Q may also be verified by verifying P, R1, R2, . . . And finally, if P and Q may
be verified via R1, R2, . . . and S1, S2, . . ., respectively, P ∧ Q may be verified via
R1, R2, . . . , S1, S2, . . .

In the case of the disjunction P ∨ Q, it seems similarly plausible that it may be
verified not only via P and via Q, but also via R1, R2, . . . whenever either of P and
Q may be so verified. In addition, we shall suppose that every mode of verifying the
conjunction P ∧ Q is also automatically a mode of verifying P ∨ Q.23

We may usefully state this account of conjunction and disjunction more formally
in terms of three auxiliary operations on unilateral propositions. At certain key places,
we need to ensure that V is defined for 〈P〉. We shall say that a proposition P is

23 This parallels Fine’s account of the truthmakers of disjunctions which include not only the verifiers of
the disjuncts, but also any fusions of these.
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raisable exactly when this is the case. Then when P, Q are propositions including
only derivative modes, and when R is a raisable proposition:

(Df. �) P � Q := {m � n : m ∈ P and n ∈ Q}
(Df. +) P + Q := (P ∪ Q) ∪ (P � Q)

(Df. ↑) ↑R := {V 〈R〉} + {m ∈ R : m is derivative}
Note that there is a close correspondence between the operations � and+ on unilateral
contents and Fine’s operations of conjunction and disjunction, respectively. For the
way P �Q is obtained from P and Q is exactly analogous to how, one Fine’s view, the
positive content of a conjunction is obtained from that of its conjuncts. Likewise the
way P+Q is obtained from P and Q is analogous to how, one Fine’s view, the positive
content of a disjunction is obtained from that of its disjuncts. On the present account,
however, conjunction and disjunction are defined in terms of these operations and the
third one, which I call raising. Its effect is to produce a proposition ↑P just like its
argument P , except that it may be verified via P , and via P, R1, R2, . . . whenever P
may be verified via R1, R2, . . .

24 The following definitions of unilateral conjunction
and disjunction accord with our above account of what modes should be included in
P ∨ Q and P ∧ Q. For raisable propositions P, Q:

(Df. ∧U) P ∧ Q := ↑P� ↑Q
(Df. ∨U) P ∨ Q := ↑P+ ↑Q
Given our informal discussion of negation in the previous section, it is immediate how
conjunction, disjunction, and negation are now to be defined on bilateral contents. For
pairs of raisable unilateral propositions P, Q:

(Df. ¬B) ¬P := 〈P−, ↑P+〉
(Df. ∧B) P ∧ Q := 〈P+ ∧ Q+, P− ∨ Q−〉
(Df. ∨B) P ∨ Q := 〈P+ ∨ Q+, P− ∧ Q−〉
Note how the definition of ¬ reflects the asymmetric view of negation.

We may then establish substantive necessary and sufficient conditions for a set of
propositions Γ to ground any kind of truth-functionally complex proposition. To state
them concisely, we introduce some abbreviations. Let Γ ≤ {P1, P2, . . .} abbreviate:

24 Note that absent any assumptions to the effect that P cannot be verified in part by verifying P , there
is no guarantee that ↑P �= P . – One might wonder whether an argument is not needed for the claim that
there always exists such a proposition as ↑P . Formally, the assumption that P is raisable, in conjunction
with the closure of the set of modes under fusion, makes sure that a suitable proposition always exists.
But we may then ask for a defence of this assumption; what justifies disregarding propositions that are not
raisable? The simplest answer is perhaps this. For any legitimate proposition P, it should be possible to
form its double negation ¬¬P. Given the proposed account of ground and negation, (¬¬P)+ relates to
P+ exactly so that ↑(P+) = (¬¬P)+ (similarly for (¬¬P)−). So whenever ↑P does not exist, P cannot
occur within a legitimate bilateral content and may for that reason be discarded. We can perhaps also argue
for the raisability of legitimate propositions on independent grounds. For it seems that if P is a legitimate
(unilateral) proposition, then there is such a thing as (non-factively) verifying P – if no sense can bemade of
the idea of P being verified, there is something incoherent about P . But if there is such a thing as verifying
P , then it seems we can ask what can be done by verifying P . Now this question is about a way, or mode of
doing something, namely the mode of doing it by verifying P . So this mode should be taken to exist. But
since this mode is just the mode V 〈P〉, it follows that P is raisable.
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for some sets Γ 1, Γ 2, . . . with Γ = Γ 1 ∪ Γ 2 ∪ . . ., Γ 1 ≤ P1 and Γ 2 ≤ P2 and . . .

Then for raisable propositions P and Q and any set of raisable propositions Γ :25
(< ∧) Γ < P ∧ Q iff Γ ≤ {P, Q}
(< ∨) Γ < P ∨ Q iff Γ ≤ P or Γ ≤ Q or Γ ≤ {P, Q}
(< ¬¬) Γ < ¬¬P iff Γ ≤ P
(< ¬∧) Γ < ¬(P ∧ Q) iff Γ ≤ ¬P or Γ ≤ ¬Q or Γ ≤ {¬P, ¬Q}
(< ¬∨) Γ < ¬(P ∨ Q) iff Γ ≤ {¬P, ¬Q}
By the reflexivity of≤, the introduction principles for ground can be obtained from the
right-to-left directions of these biconditionals. For example, since P ≤ P and Q ≤ Q,
it follows that P, Q ≤ {P, Q}, and hence by the right-to-left direction of (< ∧),
P, Q < P ∧ Q. The left-to-right directions of the biconditionals in turn correspond
exactly to the elimination rules for ground proposed by Fine (2012b, pp. 63ff).26

A number of variations on the above definitions may be considered. For example,
we might not allow (unilateral) disjunctions P ∨ Q to be verified via P, Q, but only
via P and via Q, as well as perhaps in modes in which the latter are verified. The above
results would then still hold once we drop the third disjunct from the right-hand sides
of (< ∨) and (< ¬∧). It would also be very interesting to see exactly what logical
principles would hold on a symmetric account of negation.

What about views, like that proposed in Correia (2010), which impose substantive
restrictions evenon, say, the principle that P < P∨Q?Can they also be accommodated
within the present framework? There is no general reason why this should not be
possible. As long as the restrictions imposed can somehow be captured in terms of
the modes in which the component propositions are verified, we may simply exclude
the offending modes from the complex propositions as defined above. We might, for
example, stipulate that P ∨ Q is verified via V 〈P〉 and V 〈Q〉 only if P �= Q. This
would ensure that P �< P ∨ P .27

Note, however, that these sorts of moves cannot be motivated in the way in which
Correia argues for his favoured restrictions on the introduction principles. For as
we saw earlier, Correia appeals to a prior standard for the individuation of ground-
theoretic content on which P and P ∨ P are identified. But when ground-theoretic

25 A proof of this result is given in the Appendix.
26 The elimination rules are perhaps more controversial than the introduction rules; for instance, it might
be suggested that P ∨ ¬P is not only grounded by the weak grounds of its true disjunct, but also by the
laws of logic, on some suitable construal of that phrase (this idea is also mentioned, but not endorsed in
Schnieder 2011, p. 457f). So it may be worth noting that the elimination rules may be invalidated in a
natural way without the introduction rules thereby also becoming invalid. All we need to do is to drop the
requirement that the mode-space be constrained. (Whether and how the suggestion that the laws of logic
ground P ∨ ¬P could be implemented within the overall framework developed here is harder to answer,
and depends strongly on how exactly that view is spelt out.) Thanks here to an anonymous referee.
27 It might also be possible to achieve the same result not by changing the definition of disjunction, but
by revising the definition of grounding, giving up on the tight connection that every mode of verification
corresponds to an instance of grounding. – Note that the wish to reject P < P ∨ P is not the only possible
motivation for wanting to restrict the disjunction principle that P < P ∨ Q; some of the possible responses
to the puzzles of ground presented in Fine (2010) also involve such a restriction.With respect to these views,
the same comments apply: as long as the relevant restrictions can be captured within our framework, the
views can be accommodated. Thanks to an anonymous referee for bringing up the matter of the puzzles of
ground.
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content is conceived as on the present view as capturing in what modes a content is
verified, then the latter question needs to be answered independently of assumptions
concerning the identity and distinctness of the contents involved. I take this to provide
some additional support for Correia’s contention that the view of ground as satisfying
the unrestricted introduction principles targets a different notion of ground, sensitive
to different features of a sentence’s overall content, than the view on which only a
restricted version of the principles hold (cf. Correia 2010, pp. 256ff, 2014a, Sects. 3,
5, 2014b, p. 36).

5.4 Structural properties of ground

In this section we discuss some structural properties that ground may be taken to
possess, and how they may be captured within my framework. There is in principle
an unsurveyable number of such properties; my choice in which of them to discuss
has been guided in part by which look particularly natural from the perspective of my
framework, and by which of them are endorsed in the currently most well-developed
view on the matter, which is that of Fine (2012c).

It is often held that ground is irreflexive in the sense that nothing helps ground
itself.28 Given our definition of ground, this amounts to the claim that there is no
proposition P such that P is a member of a ground-set of some mode m ∈ P .29

Nothing we have said so far guarantees this. Specifically, given a proposition P ,
nothing we have said rules out that V maps 〈P〉 to a member of P , in which case
P < P .

Call a proposition P irreflexive iff P is not an element of any sequence γ with
V (γ ) ∈ P . If V 〈P1, P2, . . .〉 /∈ ⋃{P1, P2, . . .} for any propositions P1, P2, . . ., then
all propositions are irreflexive. For irreflexive propositions, and only for them, the
following principles hold:30

Irreflexivity(<) Γ, P �< P
Irreflexivity(≺) P ⊀ P

Irreflexive propositions also satisfy the following principle.31

Reverse Subsumption(≤/<) If Γ ≤ P and Q ≺ P for all Q ∈ Γ , then Γ < P

This principle corresponds to a basic rule of inference in Fine’s logic; it is closely
related to the characterization of strict full ground as ‘irreversible’ weak full ground,

28 Since this is the standard view, more interesting than listing sources for it is to give some sources where
the principle has been called into question. One context in which self-grounding has been considered a
possibility is that of the paradoxes of ground described in Fine (2010) and Krämer (2013); see in particular
(Correia 2014b, Sect. 7). Different kinds of doubts about irreflexivity are raised in Jenkins (2011).
29 Throughout this section, by ‘content’ and ‘proposition’ I shall mean unilateral content.
30 For the first principle, assume Γ, P < P . Then Γ, P is a ground-set of some derivative mode m ∈ P ,
so for some sequence of propositions γ with V (γ ) = m, Γ, P is the set underlying γ . But then P is an
element of γ , contrary to our assumption. The second principle follows by the definition of ≺. The other
directions are equally straightforward.
31 Assume Γ ≤ P and Q ≺ P for all Q ∈ Γ . Note that P /∈ Γ , for otherwise P ≺ P , contradicting
irreflexivity. But then neither Γ = {P} nor {P} ⊂ Γ , and therefore Γ < P .
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i.e. the equivalence of Γ < P to Γ ≤ P and P � Q for any Q ∈ Γ . The right-to-left
direction of this equivalence is ensured already by our definition of ≤. For suppose
Γ ≤ P and P � Q whenever Q ∈ Γ . Unless Γ < P , then from the definition of ≤
it follows immediately that P ∈ Γ . But since P 	 P , this contradicts the assumption
that P � Q whenever Q ∈ Γ .

The left-to-right direction of the equivalence holds whenever another commonly
accepted principle for ground holds, namely that ground is asymmetric in the sense
that if P helps ground Q, then Q does not help ground P . We may call a propo-
sition P asymmetric iff whenever V 〈Q1, Q2, . . .〉 ∈ P and V 〈R1, R2, . . .〉 ∈⋃{Q1, Q2, . . .}, then P is not among R1, R2, . . . It is straightforward to show that
for exactly the asymmetric propositions P:

Asymmetry(<) If Γ, Q < P , then Δ, P �< Q
Asymmetry(≺) If Q ≺ P , then P ⊀ Q

But now suppose Γ < P . Then, firstly, Γ ≤ P . Secondly, the relationship of weak
ground is irreversible. For suppose P 	 Q for some Q ∈ Γ . Then either P ≺
Q or P = Q. But since Q ≺ P , Asymmetry(≺) rules out both possibilities. So
strict full ground implies irreversible weak full ground for irreflexive and asymmetric
propositions.

I wish to briefly mention two further principles of interest related to those just
considered.

Redundancy(≤) If Γ, P ≤ P then Γ ≤ P
Reverse Subsumption(≺/=) If P 	 Q and Q 	 P , then P = Q

The first one follows from irreflexivity, the second from asymmetry.32

The principles are interesting in part because they do not hold in the logic of Fine
(2012c). To see this, let fact s be a proper part of fact t , i.e. t = t � s and t �= s.
Then consider P = {s, t} and Q = {t}. Evidently, P �= Q. But Q ⊆ P , so on Fine’s
account, Q ≤ P , and hence Q 	 P . Moreover, since s � t = t � t = t , every fusion
of verifiers of P and Q is a verifier of Q, so we have P, Q ≤ Q, and hence P 	 Q.
So P and Q are a counter-example to Reverse Subsumption(≺/=), and indeed to the
weaker claim that mutual weak full ground implies identity. Moreover, they also give
rise to a counter-example to Redundancy(≤), for as we saw, P, Q ≤ Q, whereas
P � Q. The differences between Fine’s approach to weak ground and ours thus
manifest themselves in significant differences concerning the structural properties of
weak ground.

It is also often maintained that ground is transitive.33 A number of different princi-
plesmay be subsumed under this heading. Relatively weak examples are that if P ≺ Q

32 For the first principle, assume Γ, P ≤ P for non-empty Γ . By irreflexivity, Γ, P �< P . There remain
two cases. (i) Γ ∪ {P} = {P}. Then Γ = {P}, and hence Γ ≤ P . (ii) (Γ ∪ {P})\{P} ≤ P . If P ∈ Γ , then
Γ ∪ {P} = Γ and hence by assumption Γ ≤ P . If P /∈ Γ , then (Γ ∪ {P})\{P} = Γ and hence again,
Γ ≤ P . The second principle is immediate given asymmetry and the definition of 	.
33 Again, it may be more interesting to mention dissenters. The most influential arguments against tran-
sitivity are perhaps those given in Schaffer (2012, p. 126ff). For replies, see Litland (2013), Raven (2013)
and Krämer and Roski (2016).
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and Q ≺ R, then P ≺ R, or that if Γ < P , and P < Q, then Γ < Q. A stronger
form of transitivity may be stated as follows:

Transitivity(<) If Γ < P and Δ, P < Q, then Γ, Δ < Q

This principle holds, for example, on the views of Fine (2012c, p. 5, 22) and Correia
(2010, p. 262).

Let us then consider what might be natural constraints of transitivity to impose on
our contents.Here is one obvious idea, corresponding to the secondweak interpretation
of transitivity above. Suppose Q contains V 〈P〉, and P contains V (γ ). Then it might
naturally be required that V (γ ) should also be contained in Q. This would ensure that
if Γ < P , and P < Q, then Γ < Q.

But consider now the case in which Q does not contain V 〈P〉, but contains some
mode V (δ) with P an element of δ. A natural suggestion is that transitivity requires
that Q also contain V (δγ/〈P〉) where δγ/〈P〉 results from systematically replacing 〈P〉
in δ by γ .34 This, however, is not sufficient for Transitivity(<). For let Γ be the set
corresponding to γ , so Γ < P . Now suppose Q contains V 〈P, R〉 with R �= P , so
P, R < Q. Now let Δ = {P, R}, and note that since Δ = Δ, P , it follows that
Δ, P < Q. So by Transitivity(<), Γ, Δ = Γ, P, R < Q. However, the envisaged
transitivity constraint on contents yields only that Q contains V (γ �〈R〉). The ground-
set of this mode is Γ, R which is distinct from Γ, P, R unless P ∈ Γ . So there is no
guarantee that Γ, P, R < Q.

The transitivity principle for ground validated by this constraint may instead be
stated thus:

Transitivity(<)* If Γ < P and Δ < Q, then ΔΓ/P < Q

where ΔΓ/P is (Δ\ {P}) ∪ Γ if P ∈ Δ and Δ otherwise. If, on the other hand,
we wish to ensure the stronger transitivity principle, we may impose the following
constraint: If Q contains a mode with ground-set Δ, P , then Q contains a mode with
ground-set Γ, Δ whenever P contains a mode with ground-set Γ .35 Put in terms of
corresponding via-sequences, we might say that if Q contains V (δ), P is an element
of δ, and P contains V (γ ), then Q contains V (δ′)whenever δ′ may be obtained from δ

by systematically replacing 〈P〉 in δ by either γ or 〈P〉�γ . However, from an intuitive
point of view, this seems to have a weaker claim than the previous constraint to amount
simply to a principle of transitivity concerning modes of verification.

The final structural principle I wish to consider here is the following principle of
amalgamation, which is derivable in Fine’s pure logic of ground (cf. Fine 2012c, p. 7):

Amalgamation(<) If Γ1 < P and Γ2 < P and . . ., then Γ1 ∪ Γ2 ∪ . . . < P

Like the previous principles, it does not hold for arbitrary contents. We may say that
a content is closed iff, whenever it contains modes with ground-sets Γ1, Γ2, . . ., it
also contains some mode with ground-set Γ1∪Γ2 ∪ . . . Then Amalgamation(<) holds
exactly for closed propositions P .

34 Wemight perhaps also consider allowing the replacement of only some occurrences of 〈P〉, which would
create some additional complications because what modes can be obtained by transitivity from a mode can
then not be read off from the corresponding ground-set.
35 It is immediate that Transitivity(<) will hold exactly for the propositions satisfying this constraint.
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Call a proposition normal iff it is closed, irreflexive, and satisfies the strong transi-
tivity constraint.Wemay then report twowelcome results about normal propositions.36

Firstly, normal propositions satisfy all the principles corresponding to the rules of the
pure logic of ground advocated in Fine (2012c, p. 5).37 Most of them have already
been stated, the remaining ones are principles of transitivity involving weak grounding
relationships:

Transitivity(≤/≤) If Γ ≤ P and Δ, P ≤ Q then Γ,Δ ≤ P
Transitivity(	/≺) If P 	 Q and Q ≺ R then P ≺ R
Transitivity(≺/	) If P ≺ Q and Q 	 R then P ≺ R
Transitivity(≺/≺) If P 	 Q and Q 	 R then P 	 R

Secondly, the property of normality is preserved under our truth-functional operations.
Our understanding of conjunction, disjunction, and negation therefore coheres with a
view of ground as satisfying the normality properties in the sense that if we start with
a range of normal propositions, application of our truth-functional operations to them
will never take us to non-normal propositions.38

5.5 Ground-theoretic equivalence and the individuation of modes

We have so far said very little about the conditions under which contents obtained
by application of truth-functional operations are identical. Closely related, but even
more important for the purposes of the theory of ground is the question under what
conditions they are ground-theoretically equivalent, where this term is understood in
accordance with the following definition:39

(≈) P is ground-theoretically equivalent to Q (P ≈ Q) iff
(i) for all Γ : Γ < P iff Γ < Q, and
(ii) for all Δ and R: Δ, P < R iff Δ, Q < R.

It is easily seen that ≈ is indeed an equivalence relation.
Ground-theoretic equivalence is closely related to identity on bilateral and unilateral

contents. Evidently, the identity of bilateral contents implies their (ground-theoretic)
equivalence. Indeed, because we have defined ground on bilateral contents without
regard to negative content, two propositions will be equivalent already if they have the
same positive content. This gives us a first substantive result about equivalence. For
the DeMorgan laws are easily shown to hold for identity of positive content, and they
therefore also hold for ≈:

36 The proofs are in the appendix.
37 As we have seen, however, they satisfy some additional principles as well.
38 Further structural principles about groundmight of course be considered, and implemented in the form of
suitable constraints on propositions. The most significant ones among them may be the various versions of
the claim that ground is well-founded. For an illuminating discussion of the various possible interpretations
of the claim, see Dixon (2016). See Litland (2016a) for an argument for an instance of non-well-founded
grounding.
39 I borrow the term from Fine (2012b, pp. 63, 67) who does not explicitly define it but seems to use it in
at least roughly the same sense.
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(DeMorgan 1) ¬(P ∧ Q) ≈ ¬P ∨ ¬Q
(DeMorgan 2) ¬(P ∨ Q) ≈ ¬P ∧ ¬Q

Assuming irreflexivity, the relation between identity of positive content and ≈ turns
out to be even tighter: ≈ is equivalent to identity of positive content.40

(≈-Equivalence) P ≈ Q iff P+ = Q+

Using this fact, it is easy to show that ≈ is preserved under ∧, ∨, and ¬¬:

(≈ ∧) If P ≈ Q then P ∧ R ≈ Q ∧ R and R ∧ P ≈ R ∧ Q
(≈ ∨) If P ≈ Q then P ∨ R ≈ Q ∨ R and R ∨ P ≈ R ∨ Q
(≈ ¬¬) If P ≈ Q then ¬¬P ≈ ¬¬Q

However, it can be shown that≈ is not preserved under¬. The DeMorgan equivalents
constitute a relatively simple counter-example. To get an idea why, note that although
¬(P ∧ Q) ≈ ¬P ∨ ¬Q, negating the right-hand side yields ¬(¬P ∨ ¬Q), which by
the other DeMorgan law is equivalent to¬¬P∧¬¬Q. This, however, is not in general
equivalent to ¬¬(P ∧ Q), that is, the negation of the left-hand side of the original
equivalence. For while the former is always grounded by ¬¬P, ¬¬Q, this is not in
general true of ¬¬(P ∧ Q).

We should also like to know under what conditions the various kinds of truth-
functionally complex propositions are equivalent to one another. The answer to this
depends on the general conditions under which V is taken to map two sequences to
the same mode. So far, we have committed to the thesis that given any sequence of
propositions, there is at most one mode of verifying via that sequence. So any mode
which is a mode of verifying via some sequence of propositions is uniquely identified
by that sequence. This puts an upper bound on the fineness of grain with which we
may individuate modes: they are at most as finely individuated as the corresponding
sequences of propositions.

We have also assumed that two sequences correspond to the same mode only if the
sequences correspond to the same set, i.e. if the same propositions belong to both. This
puts a lower bound on the fineness of grain with which we may individuate modes:
they are at least as finely individuated as the sets determined by their corresponding
sequences. There is at least one natural intermediate option, which is to abstract from
the order of the propositions in a sequence corresponding to a mode, but not from
repetitions. On this view, modes are exactly as finely individuated as the multi-sets
determined by their corresponding sequences.

We shall say that the via-function V is sequential iff: V (γ ) = V (δ) just in case γ =
δ; semi-extensional iff: V (γ ) = V (δ) just in case γ and δ determine the same multi-
set; and extensional iff: V (γ ) = V (δ) just in case γ and δ determine the same set. It is
beyond the scope of this paper to determine, in terms of the relationships between the
component propositions, the exact conditions under which truth-functionally complex
propositions will be equivalent under each of these views. I shall here confine myself
to some observations concerning the most distinctive features of the three approaches.

40 For assumeP ≈ Q. Note thatP < ¬¬P, soQ < ¬¬P, soQ ≤ P, and hence eitherQ < P orQ+ = P+.
So if Q+ �= P+, it follows that Q < P. By P ≈ Q, we may infer P < P, contrary to the assumption of
irreflexivity.
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If V is sequential, then it will not in general be the case that P ∧Q ≈ Q∧P, or that
P ∨ Q ≈ Q ∨ P. For suppose P and Q are fundamental propositions, i.e. propositions
whose positive components contain no derivative modes, and suppose P+ �= Q+.
For the case of conjunction, note that P+ ∧ Q+ and Q+ ∧ P+ will then each include
exactly one derivative mode, namely V 〈P+, Q+〉 and V 〈Q+, P+〉, respectively. Since
P �= Q, 〈P, Q〉 �= 〈Q, P〉. By sequentiality of V , V 〈P+, Q+〉 �= V 〈Q+, P+〉, and
hence P+ ∧ Q+ �= Q+ ∧ P+, so by (≈-Equivalence), P ∧ Q �≈ Q ∧ P. Similar
considerations establish the point for disjunction. However, if V is semi-extensional
or extensional, these equivalences will hold. We consider only conjunction. Every
mode in P+ ∧ Q+ may be written V (γ �δ) where V (γ ) ∈ P+ and V (δ) ∈ Q+.
But then Q+ ∧ P+ includes V (δ�γ ), and since γ �δ and δ�γ determine the same
multi-set, and therefore the same set, the modes are identical.

A distinctive feature of the extensional approach is that it yields some general
equivalences between the values of different truth-functional operations. In partic-
ular, for any closed P, we have P ∧ P ≈ P ∨ P ≈ ¬¬P. Indeed, the contents in
question will be fully identical.41 Now call a bilateral proposition conjunctive, dis-
junctive, or negative, according as it is the value of the operation of conjunction,
disjunction, or negation on bilateral contents. Our observation then shows that on
the extensional approach, there is no clear divide among the propositions that are
conjunctive, disjunctive, or negative, but that these categories overlap. This is sig-
nificant because it calls into question at least one interpretation of Correia’s claim
that the acceptance of the unrestricted introduction principles for ground commits
us to a conceptual, or representational conception of the relata of ground. For one
good sense we could give to the notion of a representational conception of con-
tent is that it applies just in case contents are individuated in terms of the concepts
invoked in expressing them. But this would appear to imply, at the very least,
that there is a mutually exclusive division into conjunctive and disjunctive con-
tents.

Another striking feature of the extensional approach is that, assuming a modest
form of the transitivity of ground, it allows us to characterize binary ground, weak
or strict, purely in terms of disjunction, equivalence, and inequivalence. For P < Q
is equivalent to P ≤ Q and P �≈ Q, and the condition that P ≤ Q now turns out
equivalent to the condition that P ∨ Q ≈ Q ∨ Q. To see this, note that the extensional
approach renders equivalent the propositions P, Q iff they have the same strict full
grounds, assuming they have some strict full grounds at all. Then given transitivity,
any strict full ground of P is a strict full ground of Q if P ≤ Q, and hence the
strict full grounds of P ∨ Q are exactly the same as the strict full grounds of Q ∨ Q.
This is significant in part because the very same equivalence holds on the Finean
truthmaker account of ground above, and in the logic of Correia (2010). Only on the
latter views, the equivalence can be further simplified, owing to the identification of
a proposition with its self-disjunction. So we see that on the extensional approach

41 The crucial observation is that if modes are extensional, the operation of fusion on the modes is idem-
potent, i.e. m �m = m. This renders the operations on closed contents of � and + idempotent, from which
the above identities follow straightforwardly.
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to modes, the view of ground that emerges stays remarkably close to the so-called
worldly accounts.

6 Conclusion

In this paper, I have proposed a novel answer to the question what features of a
sentence’s content the notion of ground tracks: it tracks in what modes a content is
verified. Roughly speaking, some truths Γ (strictly fully) ground a truth Q just in case
verifyingΓ is amodeof verifyingQ. Basedon this idea, I havepresented an elementary
formal theory of ground-theoretic content, on which a content encodes the information
in what modes it may be verified or falsified. This theory, I maintain, is very well suited
to serve as a framework within which a number of alternative views of ground may
be articulated and examined. By way of defending this claim, I have presented a very
natural and attractive account of the truth-functional operations and their interaction
with ground, and I have shown how various possible views of the structural features
of ground can be accommodated within my framework. Finally, I have described
three views of the identity conditions of modes and some of their implications for
the logic of ground, highlighting some surprising and intriguing features of the most
coarse-grained of the views.

A natural next step is now to try and determine the exact pure and propositional
logics of ground corresponding to a range of competing views of ground that may
be implemented in the framework. In addition, various kinds of extensions of the
frameworkmay be attempted, for example by treating quantification, modal operators,
and perhaps iterated ground, i.e. the grounds of truths of the formΓ < P . Already in its
present form, however, the framework represents a significant step forward on the way
towards a satisfactory and comprehensive theory of ground, and of ground-theoretic
content.
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Appendix

We begin with the definition of a mode-space.

Definition 1 (Mode-spaces) A mode-space is a pair 〈M, V 〉 such that

1. M is non-empty
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2. V is a non-empty, partial function taking non-empty sequences of non-empty
subsets of M into members of M

3. the domain of V is closed under non-empty subsequences and countable concate-
nations of sequences

4. V (γ1
�γ2

� . . .) = V (δ�
1 δ�

2 . . .) whenever V (γ1) = V (δ1), V (γ2) = V (δ2), . . .

Given a fixed mode-space 〈M, V 〉, we call a mode any member of M . Any mode
which is the value of V for some argument is called derivative, every other mode
is called fundamental. We write MD (MF ) for the set of derivative (fundamental)
modes. Any subset of M will be called a content, and their set will be denoted by C .
The contents containing only derivative modes will themselves be called derivative,
and the other contents will be called fundamental. We write C D (C F ) for the set of
derivative (fundamental) contents. Any sequence for which V is defined is called a
via-sequence. Since the domain of V is closed under non-empty subsequences, for
any content P that is an element of some via-sequence, there is also the via-sequence
〈P〉 corresponding to the mode of verifying via P . We shall call any such content
raisable and denote their set by R. We call a ground-set of a derivative mode m any
set of contents that underlies a content-sequence γ with V (γ ) = m.

We say that a derivative mode m is a fusion of the sequence of derivative modes
〈m1, m2, . . .〉 iff there are via-sequences γ1, γ2, . . . such that V (γ1) = m1, V (γ2) =
m2, . . ., andm = V (γ1

�γ2
� . . .).42 By the third constraint onmode-spaces, fusions

will always exist, and by the fourth constraint, they will be unique. For the sequence
of derivative modes 〈m1, m2, . . .〉, we write its fusion as ⊔〈m1, m2, . . .〉 and also as
m1 � m2 � . . . We note a first central lemma (the proof is elementary):

Lemma 1 IfΓ1, Γ2, . . . are ground-sets ofm1, m2, . . ., respectively, thenΓ1∪Γ2∪. . .

is a ground-set of m1 � m2 � . . .

For convenience, we repeat the definitions of the grounding relationships and of the
truth-functions.

Definition 2 Let Γ ⊆ C and P ∈ C . Then

Γ < P :↔ for some mode m ∈ P , Γ is a ground-set of m
Q ≺ P :↔ for some m ∈ P , Q is a member of a ground-set of m
Γ ≤ P :↔ Γ = {P} or Γ < P or Γ \{P} < P
Q 	 P :↔ Q = P or Q ≺ P

As before, we write Γ < {P1, P2, . . .} to abbreviate that for some Γ1, Γ2, . . ., Γ =
Γ1 ∪ Γ2 ∪ . . . and Γ1 < P1, Γ2 < P2, . . ., and similarly for the case of Γ ≤
{P1, P2, . . .}.
Definition 3 For P, Q ∈ C D:

P � Q := {m � n : m ∈ P and n ∈ Q}
P + Q:= (P ∪ Q) ∪ (P � Q)

42 Note that somewhat unusally, our operation of fusion applies to sequences of modes and is thereby
potentially sensitive to order and repetition of the modes being fused.
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Definition 4 For P, Q ∈ R:

↑P := {V 〈P〉} if P ∩ MD is empty, {V 〈P〉} + (P ∩ MD) otherwise
P ∧ Q := ↑P � ↑Q
P ∨ Q := ↑P + ↑Q

We shall mainly be interested in mode-spaces in which the set of raisable contents is
closed under these operations.

Definition 5 A mode-space is called complete iff P ∧ Q ∈ R, P ∨ Q ∈ R, and
↑P ∈ R whenever P, Q ∈ R.

Lemma 2 (Introduction Lemma) In any complete mode-space, for Γ ⊆ R and
P, Q ∈ R:

1. If Γ ≤ P, then Γ <↑P.
2. If Γ < {P, Q}, then Γ < P � Q.
3. If Γ < P or Γ < Q or Γ < {P, Q}, then Γ < P + Q
4. If Γ ≤ {P, Q}, then Γ < P ∧ Q
5. If Γ ≤ P or Γ ≤ Q or Γ < {P, Q}, then Γ < P ∨ Q.

Proof For 1: Suppose Γ ≤ P . Then either (i) Γ = {P}, or (ii) Γ < P , or (iii)
Γ \ {P} < P . Suppose (i). By definition of ↑, V 〈P〉 ∈↑ P . Since {P} is the set
underlying 〈P〉, it is a ground-set of V 〈P〉, so Γ < P . Suppose (ii). Then Γ is a
ground-set of some mode m ∈ P . But then by definition of ↑, it follows that m ∈↑P ,
and hence Γ < P . Suppose (iii). Then for some m ∈ P , Γ \{P} is a ground-set
of m. But then by definition of ↑, it follows that V 〈P〉 � m ∈↑ P . By Lemma 1,
Γ \{P} ∪ {P} = Γ is a ground-set of V 〈P〉 � m, hence Γ < P .

For 2: Suppose Γ < {P, Q}. Let ΓP < P and ΓQ < Q with ΓP ∪ ΓQ = Γ . Then
ΓP is a ground-set of some mode mP ∈ P and ΓQ is a ground-set of some mode
mQ ∈ Q. By definition of �, mP �mQ ∈ P � Q, and by Lemma 1, ΓP ∪ ΓQ = Γ is
a ground-set of mP � mQ , hence Γ < P � Q.

For 3: Suppose Γ < P . Then there is a mode m ∈ P of which Γ is a ground-set.
By definition of +, the same mode is included in P + Q, hence Γ < P + Q. Suppose
Γ < Q. Then by the same reasoning, Γ < P + Q. Finally, suppose Γ < {P, Q}.
Then by part 2., Γ < P � Q, and hence by definition of +, Γ < P + Q.

For 4: Suppose Γ ≤ {P, Q}. Let ΓP ≤ P and ΓQ ≤ Q with ΓP ∪ ΓQ = Γ . By
part 1., ΓP <↑P and ΓQ <↑Q, hence Γ < {↑P, ↑Q}, and by part 2., Γ < P ∧ Q.

For 5: If Γ ≤ P or Γ ≤ Q, then by part 2., Γ <↑P or Γ <↑Q. If Γ ≤ {P, Q},
then by the reasoning in part 4., Γ < {↑P, ↑Q}. So by part 3., Γ < P ∨ Q. ��
Definition 6 A mode-space is called constrained iff V (γ ) = V (δ) only if the same
ground-set corresponds to γ and δ.

In a constrainedmode-space, every derivativemodem corresponds to a unique ground-
set, which we denote by |m|.
Lemma 3 (Elimination Lemma) In any constrained and complete mode-space, for
Γ ⊆ R and P, Q ∈ R:
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1. If Γ <↑P, then Γ ≤ P
2. If Γ < P � Q, then Γ < {P, Q}
3. If Γ < P + Q, then Γ < P or Γ < Q or Γ < {P, Q}
4. If Γ < P ∧ Q, then Γ ≤ {P, Q}
5. If Γ < P ∨ Q, then Γ ≤ P or Γ ≤ Q or Γ ≤ {P, Q}
Proof For 1: SupposeΓ <↑P . Letm ∈↑P withΓ = |m|. By definition of↑, there are
three cases. (i) m ∈ P ∩ MD . Then Γ < P and hence Γ ≤ P . (ii) m = V 〈P〉. Then
Γ = |V 〈P〉| = {P}, so againΓ ≤ P . (iii)m = V 〈P〉�n for some n ∈ P∩MD . Since
n ∈ P , |n| < P . By Lemma 1, Γ = |n| ∪ {P}. Then either |n| = Γ or |n| = Γ \{P},
so either Γ < P or Γ \{P} < P , and hence Γ ≤ P .

For 2: Suppose Γ < P � Q. Let |m| = Γ andm ∈ P � Q. Thenm = mP �mQ for
some mP ∈ P and mQ ∈ Q. So |mP | < P and |mQ | < Q. But Γ = |mP | ∪ |mQ |,
and hence Γ < {P, Q}.

For 3: Suppose Γ < P + Q. Then it is immediate from the definition of + that
Γ < P or Γ < Q or Γ < P � Q, which by part 2. implies Γ < {P, Q}.

For 4: Suppose Γ < P ∧ Q. By part 2., Γ < {↑P, ↑Q}. So let ΓP <↑P and
ΓQ <↑Q with Γ = ΓP ∪ ΓQ . By part 1., ΓP ≤ P and ΓQ ≤ Q, hence Γ ≤ {P, Q}.

For 5: Suppose Γ < P ∨ Q. By part 3., there are three cases. (i) Γ <↑P . Then by
part 1., Γ ≤ P . (ii) Γ <↑Q. Then by part 1. again, Γ ≤ Q. (iii) Γ ≤ {↑P, ↑Q}.
Then by the reasoning in part 4., Γ ≤ {P, Q}. ��
Wemove on to the case of bilateral contents. We define the truth-functional operations
on bilateral contents as well as the notion of ground-theoretic equivalence (≈).

Definition 7 For P, Q ∈ R × R:

¬P := 〈P−,↑P+〉
P ∧ Q := 〈P+ ∧ Q+, P− ∨ Q−〉
P ∨ Q := 〈P+ ∨ Q+, P− ∧ Q−〉

Definition 8 For P, Q ∈ R ×R: P ≈ Q :↔ for all Γ : Γ < P iff Γ < Q, and for all
Δ and R: Δ, P < R iff Δ, Q < R.

Recall that ground between bilateral contents is defined simply as ground between
the positive components. As a result, bilateral contents will be ground-theoretically
equivalent (written ≈) provided their positive components are the same.

Lemma 4 (DeMorgan) For P, Q ∈ R × R:

1. ¬(P ∧ Q) ≈ ¬P ∨ ¬Q
2. ¬(P ∨ Q) ≈ ¬P ∧ ¬Q

Proof By application of the definitions.
For 1: (¬(P ∧ Q))+ = (P ∧ Q)− = P− ∨ Q− = (¬P)+ ∨ (¬Q)+ = (¬P ∨¬Q)+
For 2: (¬(P ∨ Q))+ = (P ∨ Q)− = P− ∧ Q− = (¬P)+ ∧ (¬Q)+ = (¬P ∧¬Q)+

��
As an immediate consequence of the definition of ground on bilateral contents and the
previous lemmata, we obtain
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Theorem 5 (Truth-functions and ground, introduction) In any complete mode-space,
for Γ ⊆ R × R and P, Q ∈ R × R:

1. If Γ ≤ {P, Q}, then Γ < P ∧ Q
2. If Γ ≤ P or Γ ≤ Q or Γ < {P, Q}, then Γ < P ∨ Q.
3. If Γ ≤ P, then Γ < ¬¬P
4. If Γ ≤ ¬P or Γ ≤ ¬Q or Γ ≤ {¬P, ¬Q}, then Γ < ¬(P ∧ Q)

5. If Γ ≤ {¬P, ¬Q}, then Γ < ¬(P ∨ Q)

Theorem 6 (Truth-functions and ground, elimination) In any complete and con-
strained mode-space, for Γ ⊆ R × R and P, Q ∈ R × R:

1. If Γ < P ∧ Q, then Γ ≤ {P, Q}
2. If Γ < P ∨ Q, then Γ ≤ P or Γ ≤ Q or Γ ≤ {P, Q}
3. If Γ < ¬¬P, then Γ ≤ P
4. If Γ < ¬(P ∧ Q), then Γ ≤ ¬P or Γ ≤ ¬Q or Γ ≤ {¬P, ¬Q}
5. If Γ < ¬(P ∨ Q), then Γ ≤ {¬P, ¬Q}
We turn now to the structural properties of ground.

Definition 9 A proposition P is

– irreflexive iff: P does not occur in γ whenever V (γ ) ∈ P ,
– closed iff: P contains a mode with ground-set Γ1 ∪ Γ2 ∪ . . . whenever P contains
modes with ground-sets Γ1, Γ2, . . .,

– transitive iff: P includes a mode with ground-set Γ, Δ whenever P includes a
mode with ground-set Δ, Q and Q includes a mode with ground-set Γ .

– normal iff: irreflexive, closed, and transitive.

Theorem 7 (Structural Principles for Normal Propositions) In any constrained mode-
space, for normal propositions P, P1, P2, . . . , Q, R and sets of normal propositions
Γ, Γ1, Γ2, . . . , Δ:

1. P ⊀ P
2. If Γ1 < P, Γ2 < P, …, then Γ1, Γ2, . . . < P.
3. If Γ ≤ P and Q ≺ P for all Q ∈ Γ , then Γ < P.
4. If Γ, P ≤ P, then Γ ≤ P.
5. If Γ1 ≤ P, Γ2 ≤ P, . . ., then Γ1 ∪ Γ2 ∪ . . . ≤ P.
6. If Γ < P and Δ, P < Q, then Γ, Δ < Q.
7. If Γ1 ≤ P1, Γ2 ≤ P2, …, and P1, P2, . . . ≤ Q then Γ1, Γ2, . . . ≤ Q
8. If P 	 Q and Q ≺ R then P ≺ R
9. If P ≺ Q and Q 	 R then P ≺ R

10. If P 	 Q and Q 	 R then P 	 R

Proof 1–4., and 6. were established in Sect. 5.4 above.
For 5., suppose Γ1 ≤ P, Γ2 ≤ P, . . . Consider all the Γi which are distinct

from {P}. By definition of ≤ and 1., Γi \{P} < P for any such Γi . If there are any
such Γi , let Γ ′ be the result of removing P from their union. By 2, Γ ′ < P , so
Γ1∪Γ2 ∪ . . . = Γ ′ ∪ {P} ≤ P . If there are no such Γi , then Γ1∪Γ2 ∪ . . . = {P} ≤ P .
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For 7., suppose Γ1 ≤ P1, Γ2 ≤ P2, …, and P1, P2, . . . ≤ Q. We confine ourselves
to showing thatΓ1∪{P2, . . .} ≤ Q follows.By applying the same reasoning repeatedly
and making use of the reflexivity of ≤, we may establish the desired conclusion. Now
either (a) Γ1 = {P1}, or (b) Γ1 < P1, or (c) {P1} ⊂ Γ1 and Γ1 \{P1} < P1. If (a),
then our intended result Γ1 ∪ {P2, . . .} ≤ Q follows immediately. Suppose that (b).
Then if (b1) P1 = Q, we have Γ1 < Q and hence Γ1 ≤ Q. Moreover, by 4., we
have {P2, . . .} ≤ Q. So by 5., Γ1 ∪ {P2, . . .} ≤ Q follows. But if (b2) P1 �= Q, then
P1 ∈ {P1, P2, . . .}\{Q} and {P1, P2, . . .}\{Q} < Q, so by 6.,Γ1∪{P2, . . .}\{Q} < Q,
hence Γ1 ∪ {P2, . . .} ≤ Q. Suppose finally that (c). Then if (c1) P1 = Q, Γ1 ≤ Q,
and so Γ1 ∪{P2, . . .} ≤ Q follows as in case (b1). But if (c2) P1 �= Q, then by similar
reasoning as in case (b2), Γ1\{P1} ∪ {P1, P2, . . .} = Γ1 ∪ {P2, . . .} ≤ Q.

For 8., suppose P 	 Q and Q ≺ R. If P = Q, then P ≺ R follows immediately.
So suppose P �= Q, and hence P ≺ Q. Let m ∈ Q be such that P ∈ |m|, and let
n ∈ R be such that Q ∈ |n|. Then |m| ∪ {P} < Q and |n| ∪ {Q} < R, so by 6,
|n| ∪ |m| ∪ {P} < R, so P ≺ R.

For 9., suppose P ≺ Q and Q 	 R. If Q = R, then P ≺ R follows immediately.
So suppose Q �= R, and hence Q ≺ R. Then by the same reasoning as before, P ≺ R.

For 10., suppose P 	 Q and Q 	 R. If either P ≺ Q or Q ≺ R, then it follows
by the previous results that P ≺ R, and hence P 	 R. If neither P ≺ Q nor Q ≺ R,
then P = Q and Q = R, hence P = R, and thus again P 	 R. ��
Together with the Subsumption principles and the Identity principle P ≤ P for weak
ground established in Sect. 5.2, parts 1, 3, 7–10 correspond to the basic rules of the
logic proposed in Fine (2012c), which is thereby shown to be sound with respect to
the class of normal propositions in a constrained mode-space.

We call a bilateral content irreflexive, closed, transitive, or normal, just in case
its positive component has the relevant property. We wish then to show that any
truth-functional combinations of normal propositions are themselves normal. By the
definitions of the truth-functional operations, it suffices to show that for unilateral
contents, normality is preserved under ∧,∨, and ↑.
Theorem 8 For P, Q ∈ R, in some constrainedmode-space: If P and Q are normal,
then so are P ∧ Q, P ∨ Q, and ↑P.
Proof By reducing failures for P ∧ Q, P ∨ Q, ↑P of the characteristic principles of
irreflexivity, amalgamation, and transitivity (1, 2 and 6 in Theorem 7) to failures of
the corresponding principles for P or Q. We give the proof for P ∧ Q; the other cases
may be established by parallel means.

For irreflexivity, suppose that P∧Q ≺ P∧Q. Then for someΓ :Γ, P∧Q < P∧Q.
Then by the Elimination Lemma,Γ, P∧Q ≤ {P, Q}, and hence either (i) P∧Q 	 P
or (ii) P ∧ Q 	 Q. Suppose (i). Then since P ≺ P ∧ Q, it follows by transitivity of
P that P ≺ P , in contradiction to P’s irreflexivity.

For amalgamation, suppose that Γ1 < P ∧ Q, Γ2 < P ∧ Q, …. For each Γi :
Γi ≤ {P, Q}. So letΓiP ≤ P andΓiQ ≤ QwithΓi = ΓiP ∪ΓiQ for all i . Then byweak
ground amalgamation for P and Q, Γ1P , Γ2P , . . . ≤ P , and Γ1Q , Γ2Q , . . . ≤ Q, so
Γ1, Γ2, . . . ≤ {P, Q}, and hence Γ1, Γ2, . . . < P ∧ Q.

For transitivity, suppose that Δ, R < P ∧ Q and Γ < R. Then Δ, R ≤ {P, Q}.
So we may write Δ, R as the union of weak full grounds of respectively P and Q. R
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will be a member of at least one of these. By replacing R with Γ , using the transitivity
of P and Q, we may infer Γ, Δ < {P, Q}, and hence Γ, Δ < P ∧ Q. ��

References

Batchelor, R. (2010). Grounds and consequences. Grazer Philosophische Studien, 80, 65–77.
Correia, F. (2010). Grounding and truth-functions. Logique et Analyse, 53(211), 251–279.
Correia, F. (2014b). Logical grounds. The Review of Symbolic Logic, 7(1), 31–59.
Correia, F., & Schnieder, B. (2012). Grounding: An opinionated introduction. In F. Correia & B. Schnieder

(Eds.), Metaphysical Grounding: Understanding the Structure of Reality (pp. 1–36). Cambridge:
Cambridge University Press.

deRosset, L. (2013). What is weak ground? Essays in Philosophy, 14(1), 7–18.
deRosset, L. (2014). On weak ground. The Review of Symbolic Logic, 7(4), 713–744.
Dixon, T. S. (2016). What is the well-foundedness of grounding? Mind, 125(498), 439–468.
Fine, K. (2010). Some puzzles of ground. Notre Dame Journal of Formal Logic, 51(1), 97–118.
Fine, K. (2012a). Counterfactuals without possible worlds. The Journal of Philosophy, 109(3), 221–246.
Fine, K. (2012b). Guide to ground. In B. Schnieder & F. Correia (Eds.), Metaphysical Grounding (pp.

37–80). Cambridge: Cambridge University Press.
Fine, K. (2012c). The pure logic of ground. The Review of Symbolic Logic, 5(1), 1–25.
Fine,K. (2014). Truth-maker semantics for intuitionistic logic. Journal of Philosophical Logic, 43, 549–577.
Fine, K. (2016). Angellic content. Journal of Philosophical Logic, 45(2), 199–226.
Jenkins, C. (2011). Is metaphysical dependence irreflexive? The Monist, 94(2), 267–276.
Krämer, S. (2013). A simpler puzzle of ground. Thought: A. Journal of Philosophy, 2(2), 85–89.
Krämer, S., & Roski, S. (2015). A note on the logic of worldly ground. Thought: A. Journal of Philosophy,

4(1), 59–68.
Krämer, S., & Roski, S. (2016). Difference-making grounds. Philosophical Studies, pp. 1–25.
Litland, J. E. (2013). On some counterexamples to the transitivity of grounding. Essays in Philosophy,

14(1), 19–32.
Litland, J. E. (2016a). An infinitely descending chain of ground without a lower bound. Philosophical

Studies, 173(5), 1361–1369.
Litland, J. E. (2016). Pure logic of many-many ground. Journal of Philosophical Logic, pp 1–47. doi:10.

1007/s11229-015-0923-x.
Poggiolesi, F. (2015). On defining the notion of complete and immediate formal grounding. Synthese, pp.

1–21.
Raven, M. (2013). Is ground a strict partial order? American Philosophical Quarterly, 50(2), 193–201.
Reboul,A. (Ed.). (2014a). Fromgrounding to truth-making: Some thoughts.Mind, Values, andMetaphysics:

Philosophical Essays in Honour of KevinMulligan (Vol. 1, pp. 85–98). NewYork: Springer. Originally
published online in 2011.

Rosen, G. (2010). Metaphysical dependence: Grounding and reduction. In B. Hale & A. Hoffmann (Eds.),
Modality: Metaphysics, Logic, and Epistemology (pp. 109–136). Oxford: Oxford University Press.

Schaffer, J. (2009). On what grounds what. In D. J. Chalmers, D. Manley, & R. Wassermann (Eds.),
Metametaphysics: New Essays on the Foundations of Ontology (pp. 347–383). Oxford: Oxford Uni-
versity Press.

Schaffer, J. (2012). Grounding, transitivity, and contrastivity. In B. Schnieder & F. Correia (Eds.), Meta-
physical Grounding (pp. 122–138). Cambridge: Cambridge University Press.

Schnieder, B. (2008). ‘By’: A refutation of the Anscombe Thesis. Linguistics and Philosophy, 31(6), 649–
669.

Schnieder, B. (2010). A Puzzle about ‘Because’. Logique et Analyse, 53(211), 317–343.
Schnieder, B. (2011). A logic for because. The Review of Symbolic Logic, 4(3), 445–465.
Williamson, T. (1994). Vagueness. London: Routledge.

123

http://dx.doi.org/10.1007/s11229-015-0923-x
http://dx.doi.org/10.1007/s11229-015-0923-x

	Towards a theory of ground-theoretic content
	Abstract
	1 Introduction
	2 Preliminaries
	3 The truthmaker conception of content
	4 Introducing modes of verification
	5 A mode-ified truthmaker theory of content
	5.1 Modes
	5.2 Ground
	5.3 The truth-functional operations
	5.4 Structural properties of ground
	5.5 Ground-theoretic equivalence and the individuation of modes

	6 Conclusion
	Acknowledgements
	Appendix
	References




