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Abstract Are there ‘self-referential’ propositions? That is, propositions that say of
themselves that they have a certain property, such as that of being false. There can
seem reason to doubt that there are. At the same time, there are a number of reasons
why it matters. For suppose that there are indeed no such propositions. One might then
hope that while paradoxes such as the Liar show that many plausible principles about
sentences must be given up, no such fate will befall principles about propositions.
But the existence of self-referential propositions would dash such hopes. Further, the
existence of such propositions would also seem to challenge the widespread claim that
Liar sentences fail to express propositions. The aim of this paper is thus to settle the
question–at least given an assumption. In particular, I argue that if propositions are
structured, then self-referential propositions exist.

Keywords Self-referential propositions · Paradoxes for propositions · Truth ·
The liar paradox

Are there ‘self-referential’ propositions? That is, propositions that say of themselves
that they have a certain property, such as that of being false. There can seem reason
to doubt that there are. There are of course self-referential sentences, such as ‘the
proposition expressed by this sentence is false’. But a standard response to these is
to deny that they express propositions, in which case the existence of such sentences
would not entail that of self-referential propositions.

At the same time, there are a number of reasons why the question of whether
there are such propositions is significant. The first is as follows. Suppose that there
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are indeed no such propositions. One might then hope that while paradoxes such as
the Liar must be grappled with in giving an account of language, one can give an
account of propositions—and of propositional attitudes and acts, such as belief and
assertion—entirely untroubled by such things. That is, one might hope that although
the Liar shows that many plausible principles about sentences must be given up, no
such fate will befall principles about propositions.

Consider, for example, the truth-schema for sentences (i.e. ‘A’ is true iff A, for a
sentence A). The existence of Liar sentences (e.g. ‘this sentence is not true’) seems to
give us strong reasons to reject this: since it shows that we cannot maintain it without
being classically inconsistent.1 On the other hand, if there are no Liar propositions
(e.g. propositions that say of themselves that they are not true), then one might hope
to maintain the truth-schema for these while remaining classically consistent.2 One
might even hope to keep both the truth-schema and classical logic for propositions. But
the existence of self-referential propositions—in particular, Liar propositions—would
frustrate such hopes.

Similarly, the existence of Liar sentences seems to provide strong reasons to reject
bivalence for sentences (i.e. the principle that every sentence is either true or false).
But one might hope to maintain this for propositions.3 Again, however, the existence
of self-referential propositions would seem to dash such hopes.

A further group of reasons why the question of whether there are self-referen-
tial propositions matters is as follows. As I have in effect noted, a standard response
to Liar sentences is to deny that they express propositions.4 But if there are self-
referential propositions, i.e. Liar propositions, then we would have a version of the
paradox whose solution would require something fundamentally different from this
standard move. Indeed, the existence of such propositions would seem to challenge
this traditional claim about Liar sentences. For standard arguments for this claim use
either the truth-schema or bivalence for propositions (which would be challenged
by the existence of Liar propositions). Further, since the sentential and propositional
versions of the paradox would seem to be very similar, it would seem desirable to give
similar solutions. But then, since the solution in the propositional case will not deny
that something expresses a proposition, it seems that the solution in the sentential case
shouldn’t either.

All of this makes a suggestion of Saul Kripke’s particularly intriguing. For in his
celebrated paper on truth (in a footnote, no less) he suggests that as long as propositions
are ‘structured’, it may be possible to apply Gödelian techniques for generating self-
reference directly to them (1975, p. 713). The result would be a range of self-referential

1 Thus, most recent work on truth for sentences does indeed reject it: e.g. Kripke (1975), Gupta (1982),
Herzberger (1982),McGee (1991),Gupta andBelnap (1993),Maudlin (2004) andLeitgeb (2005). (Although
there are exceptions to this trend, such as Priest (1979, 1987/2006), Field (2008) and Beall (2009)).
2 For example, Sobel (1992) andGlanzberg (2001)maintain the truth-schema for propositions, and certainly
do not mean to embrace classical inconsistency. Indeed, Glanzberg goes so far as to write: I doubt that
anything that failed to validate [it] could count as a reasonable theory of propositions (2001, p. 228).
3 For example, Skyrms (1984), Sobel (1992) and Gaifman (2000) all give up bivalence for sentences but
maintain it for propositions.
4 See, e.g., Skyrms (1984), Sobel (1992), Gaifman (2000) and Glanzberg (2001).
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propositions, including Liar propositions. Thus, since propositions are indeed struc-
tured on many of the most popular—and apparently most plausible—accounts, this
would seem to be highly significant. So it is surprising that Kripke’s suggestion does
not seem to have been pursued. The aim of the present paper, however, is to pursue it
and show it to be correct.

The structure of the paper is as follows. Section 1 contains preliminaries. Section 2
outlines the construction of self-referential propositions. Section 3 considers objec-
tions. Section 4 spells out why the existence of such propositions matters. And Sect. 5
goes through the construction of such propositions in full.

1 Preliminaries

1.1 Propositions

For the purposes of this paper, then, I assume that propositions are ‘structured’, i.e. in
a way that mirrors the structures of the sentences that express them.5 This is true on
the traditional Fregean and Russellian accounts, and I would argue that it is likely to be
true on any adequate account—but that is not of course a case that I will make here.6

Indeed, for definiteness, I will assume a broadly Russellian approach (unless otherwise
stated). That is, I will assume that the proposition that John is tall, for example, is a
structured entity built out of John together with the property of being tall. (I will say
much more about how I propose to think about propositions in Sect. 5). However,
everything that I will say could easily be made compatible with a Fregean approach,
or any other on which propositions have a sentence-like structure.

1.2 Self-reference

A self-referential proposition is one that says of itself that it has a certain property and
that does not say anything else. Thus, an atomic proposition F(p) (i.e. the proposition
that p is F) such that p = F(p) would be self-referential. That is, if there really
are such propositions, then they would be self-referential (although that there are is
something that one might doubt: see below). Similarly, a negated atomic proposition
¬G(q) such that q = ¬G(q)would be self-referential. As would be a proposition r of
the form ∀x(H(x) → J (x)) such that H applies precisely to r . And so on. This is not
a completely precise characterization, but it will suffice for the purposes of this paper.

It is hard to deny that there are self-referential sentences. As Kripke pointed out, we
can produce one simply by baptizing the string ‘Jack is short’: Kripke (1975, p. 693).
In contrast, it seems very far from obvious that there are self-referential propositions.
For, assuming that propositions are Russellian, one analogous to ‘Jack is short’ would
be of the form S(p), where S is the property of being short and p = S(p). But then

5 However, if there is a mismatch between the surface and the logical form of the sentence, then it is the
structure of the latter that is mirrored.
6 On structured propositions see, e.g., Salmon (1986), Soames (1987, 2010), Kaplan (1989), Fine (2007)
and King (2007).
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p would have itself as a constituent: something that is plausibly impossible (just as it
is plausibly impossible for a set to contain itself). If propositions are instead Fregean,
then an atomic proposition about itself would not have itself as a constituent. But it
would be made out of a mode of presentation of a proposition made out of that very
mode, which, again, is plausibly impossible.

One might try rather to produce a self-referential proposition via a sentence such
as ‘the proposition expressed by this sentence is false’. But, as I noted, a standard
response to such sentences is to deny that they express propositions.

1.3 An alternative approach

An approach to the question of whether there are self-referential propositions that is
very different from that which I will pursue is that of Barwise and Etchemendy (1987).
That work gives an account of truth focused on propositions, and self-referential
propositions play a central role. However, this account does not in fact seem well-
suited to establishing the existence of such propositions.

It uses the non-wellfounded set theory of Aczel (1988) to provide models of such
propositions. For example, a proposition ¬T (p) that says of itself that it is untrue
(i.e. such that p = ¬T (p)) is modelled by something like a set that contains itself
(more precisely: a set that belongs to its own transitive closure7). But if one is unsure
whether there is a proposition of this form about itself—for example, on the grounds
that such a proposition would have to have itself as a constituent—then one is unlikely
to be convinced by the existence of such models. After all, the existence of such a
model no more establishes that there really is such a proposition than the existence
of non-standard models of arithmetic establishes that there really is a natural number
with infinitely many predecessors. A similar point can be made about any of the other
models of self-referential propositions given in that work, all of which employ non-
wellfounded sets in a similar way. In contrast, the approach pursued below does not use
anything like these non-wellfounded models and, in part because of this, would seem
much better suited to establishing that there really are self-referential propositions.

2 Self-referential propositions: outline

The idea is thus to construct self-referential propositions using a version of Gödel’s
‘diagonal’ function. In this section I will outline the construction, and show how the
resulting propositions give rise to propositional versions of paradoxes such as the Liar,
i.e. versions that do not involve expressions, mental states or similar. The construction
will be given in full in Sect. 5.

Thus, let Z be the proposition 0 = 0. And let d be a function such that for any
proposition p, d(p) is the result of replacing all occurrences of Z in p with p itself
(if p is Z , then d(p) is simply p). For example, if p is the proposition ¬Z , then d(p)
is ¬¬Z , whereas if p is the proposition T (Z) (i.e. the proposition that Z is true), then

7 The transitive closure of a set x is the set whose members are the members of x , the members of the
members of x , the members of the members of the members of x , etc.
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d(p) is T (T (Z)). How d behaves with arguments that are not propositions will not
matter, but for definiteness let’s assume that d sends any such thing to 0.

This function seems straightforward, and so prima facie it seems hard to deny that
it exists (although I will consider attempts in Sect. 3). However, given such a function,
it is straightforward to construct self-referential propositions, such as one that says of
itself that it is untrue.

Before giving the construction, I should make clear how I will think about functions
in connectionwith propositions, that is, how functions are constituents of propositions.
Specifically, I will take it that just as formulas of standard formal languages can contain
function symbols in addition to names and predicate symbols, so propositions can
contain functions in addition to objects and properties. For example, the proposition
that the successor of 0 is a number, i.e. N (s(0)), is built from N , s and 0, and is thus
distinct from N (1), which is built simply from N and 1.

The alternative—to identify such propositions—would seem unnatural. For con-
sider the proposition that s is an injection, for example: ∀x∀y(s(x) = s(y) → x = y).
There does not seem to be any way of conceiving of this, except as containing s. But
then it is hard to see why one should deny that the instances of this proposition—or
N (s(0))—also contain this function.8

I should add, however, that nothing essential turns on this stance about functions.
If one objects to it, one could construct self-referential propositions in a similar way,
but using relations rather than functions (see Sect. 3). However, it is simplest to use
functions, and so that is the construction that I focus on.

Thus, given d we can construct a self-referential proposition as follows:

¬T (d(¬T (d(Z)))),

i.e. the proposition that d(¬T (d(Z))) is untrue. Call this LP (for ‘Liar proposition’).
LP says of itself that it is untrue: for d(¬T (d(Z))) is just LP (this is what you get if
you replace every occurrence of Z in ¬T (d(Z)) with ¬T (d(Z)) itself).

We are then led, via plausible steps, to contradiction. For, as we have seen:

(1) d(¬T (d(Z))) = LP.

But, for any proposition p,¬T (d(p)) is the proposition that d(p) is not true. So it
seems that ¬T (d(p)) is true iff d(p) is not. In particular:

(2) LP is true iff d(¬T (d(Z))) is not.

But then by (2) and (1) we have:

(3) LP is true iff it is not.

Further, one can construct a whole range of self-referential propositions in a similar
way, giving rise to propositional versions of every other paradox (or puzzle) that results

8 In support of the identification of N (s(0)) and N (1) one might note that it is natural to describe the
sentences ‘s(0) is a number’ and ‘1 is a number’ as being ‘about the same thing’ (i.e. 1). However, there are
many other cases where we would give a comparable description, but where we would certainly not want
to say that the things in question are constituents of the propositions expressed. For example, it is natural to
describe ‘all odd primes are ϕ’ and ‘all primes greater than two are ϕ’ as being ‘about the same things’, but
we would not want to say that these infinitely many numbers are constituents of the propositions in question.

123



5028 Synthese (2017) 194:5023–5037

from a self-referential sentence. For example, a proposition that says of itself that it is
true will give a propositional version of the truth-teller; one that says of itself that if it
is true, then 0 = 1, will give a version of Curry’s paradox; and so on.

Let M be the proposition Mont Blanc = Mont Blanc. Then, for any proposition p,
we can construct a proposition p* that says of itself exactly what p says of M . Thus, if
p is T (M), then p* will say of itself that it is true, whereas if p is T (M) → 0 = 1, p*
will say that if it is true, then 0 = 1. Here is how to do this: assuming, for simplicity,
that Z does not occur in p. First, let p′ be the result of replacing all occurrences of M
in p with d(Z). Then, to obtain p*, replace all of the occurrences of Z in p′ with p′
itself (i.e. p* = d(p′)). This proposition will say of itself whatever p said of M . For
p* clearly says of d(p′) whatever p said of M (since the occurrences of d(p′) in p*
are precisely those that replaced occurrences of M in p). But d(p′) is p*.

Indeed, we can use a similar method to produce propositions that form more com-
plex networks. For example, propositions p and q such that p says that q is true,
while q says that p is not, or an infinite sequence of propositions with the structure of
Yablo’s paradox.

For example, to produce p and q consider a function e as follows, using In for the
proposition n = n: for propositions r and t, e(r, t) is the result of replacing, in r , all
occurrences of I1 with r , and all occurrences of I2 with t . Then, if

p′ = T (e(I2, I1)), and
q ′ = ¬T (e(I2, I1)),

we are done by letting

p = T (e(q ′, p′)), and
q = ¬T (e(p′, q ′))

(it is easy to see that e(q ′, p′) = q and e(p′, q ′) = p).
To generate an infinite sequence of propositions, where each member talks about

later ones, we proceed as follows. Consider a function f such that, for any proposi-
tions p0, p1 . . . , pn, . . . , f (p0, p1, . . . , pn, . . . ) is the result of replacing, in p0, all
occurrences of Ii with pi , for each i ≥ 1.9 We can then produce an infinite sequence
of propositions, where each says that the next is true, for example, as follows. First,
for each n ≥ 1, let

q ′
n = T ( f (In+1, I1, I2, . . . )).

Then if

qn = T ( f (q ′
n+1, q

′
1, q

′
2, . . . )),

q1, …, qn , …are as required.10

9 That is, f is an ω-ary function, with a place for each natural number. If desired, one could give a similar
example using a unary function from sequences of propositions.
10 The more complicated case, where each proposition says something about all subsequent ones, is
handled as follows. Here is an example where each proposition says that all later ones are untrue(giving a
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Iwill give these constructionsmore carefully in Sect. 5. That is, I will showhow they
can be carried out within a natural, but more precisely stated, account of propositions.
First, however, I will consider objections to the claim that propositions along the lines
constructed above exist (Sect. 3), and then—having answered these—I will explain
why the existence of such propositions would seem to be significant (Sect. 4). (The
outline above will suffice for these discussions.) I will focus on the example of LP, but
similar points apply to the whole range of propositions constructed above.

3 Objections

The most obvious possible objection is as follows. It is essential to the above con-
struction that d can apply to propositions that contain this function. What, then, about
simply denying that a function can ever apply to a proposition that contains it?

To be effective as a means of denying that there are Liar propositions, one would
similarly have to deny that a property can apply to a proposition that contains it. For
although the construction above was in terms of a function, one could just as well use
a 2-place property D as follows: for any propositions p and q, D(p, q) iff q is the
result of replacing every occurrence of Z in p with p itself. Now consider:

∀x(D(r, x) → ¬T (x)),

where r is: ∀x(D(Z , x) → ¬T (x)). It is easy to see that this says of itself that it is
untrue, just as LP does.

What, then, about denying that a function or property can apply to a proposition that
contains it? This would seem to be unacceptably restrictive. For example, there could
be no property of being known K that could apply to the proposition that Z is known
in this sense (i.e. K (Z)). Rather, one would need a hierarchy of properties of being
known—leading to problems similar to those faced by Tarski’s approach to truth.11

Such a blanket prohibition on functions and properties applying to propositions that
contain them would thus seem unacceptable.

If properties, for example, can apply to propositions that contain them, then they
cannot be modelled by sets. More precisely, given the standard account of sets (i.e.
Zermelo-Fraenkel set theorywith urelements, ZFU), one cannot bothmodel an n-place
property with the set of ordered n-tuples that it applies to, and model a proposition
with a set-theoretic construction of its constituents (i.e. a set whose transitive closure

Footnote 10 continued
propositional version of Yablo’s paradox).

q ′
n = ¬T ( f (In+1, I1, I2, . . . ), f (In+2, I1, I2, . . . ), . . . )

qn = ¬T ( f (q ′
n+1, q

′
1, q

′
2, . . . ), f (q ′

n+2, q
′
1, q

′
2, . . . ), . . . )

Here ¬T (p1, p2, . . . ) is shorthand for: ¬T (p1) ∧ ¬T (p2) ∧ . . . . The sequence q1, . . . , qn , . . . is then as
required. One could give a similar example without infinite conjunctions, but for reasons of space I omit
the details.
11 For this approach, see his (1935). For its problems, see, e.g., Kripke (1975) and Soames (1999).
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contains these constituents). Since in ZFU no set can belong to its own transitive clo-
sure, whereas the members of an ordered n-tuple do belong to the transitive closure
of that n-tuple, and thus to the transitive closure of any set whose transitive closure
contains the n-tuple. Similarly, if a function can apply to a proposition that contains
it, then—given standard set theory—one cannot both model an n-place function with
a set of ordered n + 1-tuples (in the familiar way), and model a proposition with
a set-theoretic construction of its constituents. However, as the above example with
the property of being known makes clear, even if not being able to model properties
and functions in ZFU in this way is a cost, it is one that can be avoided only at the
apparently much higher one of a severely restrictive account of propositions.

But onemight at this point have the following concern. As I noted in Sect. 1, one can
apparently quite reasonably reject as impossible a proposition of the form F(p) such
that p = F(p), on the grounds that such a proposition would have to have itself as a
constituent. Am I now arguing that we should accept that a property or function can in
some sense ‘contain’ itself? Absolutely not. I am arguing that we should accept that a
property or function can apply to a proposition that contains it. But this entails that the
property or function ‘contains’ itself (in some sense) only if we think of a property or
function as ‘containing’ the things that they apply to, and that seems unmotivated once
we recognize the limits of standard set theory when it comes to modelling properties
and functions.

What—as an alternative objection—about denying simply that this particular func-
tion d exists (and similarly that the property D does)? After all, I have shown that d
can be used to generate paradoxes. Isn’t that already ground for denying its existence?
No—for the following reason. To determine the value of d for a given proposition p, all
one needs to know is where one particular entity (i.e. Z ) occurs in p. One does not need
to know anything about which things the properties in p apply to, or about which val-
ues the functions in p take. Thus, given some straightforward notation for propositions
(such as that which I am using, or that of Sect. 5), one could easily write a computer
program that, given the notation for a proposition q as input, gives that of d(q) as out-
put. It would thus seem incredible to respond to the paradox that LP give rise to—not
by revising our naive theory of T—but rather our naive theory of d. After all, when we
consider LP, and other propositions involved in the paradox, itmay not be clearwhether
T applies to them, but it is completely clear what value d takes when applied to them.

The claim that d exists is also supported by the fact that it would be extremely diffi-
cult, if not impossible, to give an adequate account of propositions without resources
that would enable one to express a function that is at least coextensive with d (and
which would thus generate paradox in just the way that d does). This is just a proposi-
tional version of the familiar point that an adequate account of the syntax of a standard
formal language would seem to require resources sufficient to express (a function
coextensive with) a sentential version of d.

Thus, d exists. But then—given that ¬, T and Z of course also exist—it is hard
to see what could prevent a proposition from resulting from their straightforward
combination as in LP.
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4 Significance

So self-referential propositions such as LP exist. Why does that matter?
The first group of reasons concern prima facie plausible principles about truth, for

sentences and propositions. Thus, Liar sentences show that one cannot maintain the
truth-schema for sentences while remaining classically consistent. But onemight hope
tomaintain this for propositionswhile so remaining.12 Indeed, onemight hope tomain-
tain both this schema and classical logic for propositions. But LP dashes such hopes.

For to maintain the truth-schema for propositions is to accept every proposition of
the following form, for a proposition p.

(TP) T (p) ↔ p

But we have seen that the following proposition is true.

(P1) d(¬T (d(Z))) = ¬T (d(¬T (d(Z))))

While the following is an instance of (TP).

(P2) T (¬T (d(¬T (d(Z))))) ↔ ¬T (d(¬T (d(Z))))

But (P1) and (P2) are classically inconsistent. So one cannot maintain (TP) while
being classically consistent, and one cannot maintain it together with classical logic
(since it entails everything in that logic).

Consider next bivalence. Many approaches to truth give this up for sentences—on
the basis of considerations about Liar sentences—but hold on to it for propositions.13

However, LP gives us reasons for rejecting bivalence for propositions that seem every
bit as strong as those that Liar sentences give us for rejecting it for sentences.

For example, one argument against bivalence for sentences uses the following rules,
where Tr and Fa mean sentential truth and falsity, respectively.

(TR) Tr(‘A’) / A
(FR) Fa(‘A’) / ¬A

For suppose that c = ‘¬Tr(c)’.We can then derive⊥ fromTr(c): we haveTr(‘¬Tr(c)’)
(by c = ¬Tr(c)), and then ¬Tr(c) (by (TR)). And we can also derive ⊥ from Fa(c):
we get Fa(‘¬Tr(c)’), then ¬¬Tr(c) (by (FR)), and then Tr(c); and then ⊥ as before.
But then it seems that we should reject Tr(c) ∨ Fa(c)—an instance of bivalence for
sentences. However, LP of course allows us to give just the same argument against
bivalence for propositions, using propositional versions of (TR) and (FR).More gener-
ally, it seems that any argument that uses Liar sentences to make trouble for bivalence

12 See, e.g., Sobel (1992) and Glanzberg (2001). I should note that in that work Glanzberg represents
propositions as sets of possible worlds. But he is quite clear that this is merely a simplifying assumption,
and that the claims of the work are not supposed to make essential use of this. He writes:

The Liar paradox…is insensitive to issues of how finely structured propositions must be. Thus, we may
take the possible worlds view of propositions as at least a simplifying assumption, regardless of whether the
familiar arguments, such as those of (Soames 1987), ultimately show propositions to be structured entities
(2001, p. 245).

13 For example, Skyrms (1984), Sobel (1992) and Gaifman (2000).
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for sentences, will correspond to an equally convincing one that uses LP to make trou-
ble for bivalence for propositions. Thus, if Liar sentences should lead us to give up the
sentential principle, then it seems that LP should lead us to give up the propositional
one too.

The second group of reasons that the existence of LPmatters concern the traditional
claim that Liar sentences fail to express propositions. For LP of course gives rise to
a paradox that cannot be solved by anything like this standard move. But, further, it
in fact seems to challenge this traditional claim. The first reason that it does this is
simply that standard arguments for this claim use propositional versions of either the
truth-schema or bivalence. But, as we have just seen, LP challenges these.

For example, one such argument is as follows.14 Consider a Liar sentence of the
form ‘this sentence does not express a true proposition’. That is, suppose that b =
‘¬∃p(Exp(b, p)∧T (p))’ (where Exp(x, q)means that x expresses q). It is surely the
case that if b expresses a proposition, than that proposition is¬∃p(Exp(b, p)∧T (p)).
That is, ∀q(Exp(b, q) → q = ¬∃p(Exp(b, p)∧T (p))). But now suppose Exp(b, r).
By (TP) and what we have just seen, T (r) ↔ ¬∃p(Exp(b, p) ∧ T (p)), and thus
¬T (r). That is, ∀p(Exp(b, p) → ¬T (p)), giving ¬∃p(Exp(b, p) ∧ T (p)); which,
by (TP) again, gives T (r)—contradiction. Thus, ¬∃pExp(b, p). But of course this
argument is called into question once (TP) is.

Alternatively, one might argue for the claim that Liar sentences do not express
propositions using bivalence for propositions, together with (a) the claim that Liar
sentences are neither true nor false, and (b) the claim that if x expresses p, then x
is true (false) if p is true (false). But this argument is also called into question once
bivalence for propositions is.

Finally, the existence of LP also challenges the claim that Liar sentences fail to
express propositions for the following reason. The paradox that LP gives rise to is
obviously very similar to that which these sentences give rise to. It would thus seem
desirable to give similar solutions. But the solution in the propositional case will not
involve anything like the claim that something fails to express a proposition—so it
seems that the solution in the sentential case shouldn’t either.

5 Self-referential propositions: in full

Iwill nowfill in the outline of Sect. 2.More precisely, Iwill showhow the constructions
of that section can be carried out in a natural, but more precisely stated, account of
propositions. This is essential, because a certain difficulty emerges as soon as one tries
to think clearly about the nature of propositions.

Specifically, the following.15 On the usual way of thinking about things, the propo-
sition that 1 is a (natural) number, for example, is something like the ordered pair of
the property of being a number N and 1: 〈N , 1〉. What, then, about the proposition that
the successor of 0 is a number, which (as explained in Sect. 2) one wants to distinguish

14 See, e.g., Sobel (1992) and Glanzberg (2001).
15 This difficulty is mentioned in Kaplan (1989, p. 496). Kaplan does not say in any detail how it should
be solved, but the solution below is in the general direction that he suggests.
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from this? It seems natural to think of this as (something like) another ordered pair,
but this time of N together with a complex of the successor function s and 0, i.e.
something like 〈s, 0〉. So the proposition would be 〈N , 〈s, 0〉〉. But the problem is now
easy to see. For if the result of combining 1 with N to form 〈N , 1〉 is the proposition
that 1 is a number, then shouldn’t the result of combining 〈s, 0〉 with N in just the
same way be the proposition that 〈s, 0〉—i.e. this complex—is a number? And, if not,
then what is the proposition that this complex is a number?

Themost natural way of solving this difficulty would seem to be as follows. Give up
on the idea that the proposition that 1 is a number is anything like 〈N , 1〉. Rather, it is
(something like) the pair of N and (something like) the ‘ordered single’ of 1. I use [1] for
the latter component. I will state the resulting account of propositions more precisely
below. But the way in which it solves the difficulty—i.e. allows us to distinguish
propositions thatuse complexes from those thatmention them—is this. Theproposition
that 1 is a number is 〈N , [1]〉. The proposition that the successor of 0 is a number is
〈N , [s, [0]]〉, where [s, [0]] is a complex of s and [0] (here the complex is used). Finally,
the proposition that this complex is a number is 〈N , [[s, [0]]]〉 (where, of course,
[[s, [0]]] is the ordered single of [s, [0]]; here the complex is mentioned). And these
last two propositions are distinct because [s, [0]] = [[s, [0]]]—solving the difficulty.

More generally, propositions are as follows.

5.1 Simple terms

I assume that for every object x , there is an object [x], called a simple (propositional)
term. I call x the constituent of [x].

What exactly is an object? All that I will assume is that numbers are objects, as are
simple terms, and complex terms and propositions (to be introduced below). But if
one does not think that terms or propositions are really objects, then one can simply
read my uses of ‘object’ as ‘object, term or proposition’.

In ZFU, one can easily define (ordered) n-tuples, for n ≥ 1, such that the following
is satisfied.16 (‘X’ is for ‘extensionality’.)

(X) If the m-tuple of x1, …, xm (in that order) is identical to the l-tuple of y1, …yl
(in that order), then m = l and x1 = y1, …, xm = yl .

In the following, I assume that we have settled on one such definition, and use n-tuple
(and similar) to mean n-tuple (and similar) so defined.

The ordered single of x is at least a natural model of [x]. I will give similar mod-
els of complex terms and propositions below. Now, on one version of the account
being proposed, terms and propositions would in fact be identified with these models.
However, this version would seem to face a problem similar to that which Benacerraf
(1965) raises for identifications of numbers with sets. That problem is simply that
since there are multiple, apparently equally good, ways of modelling numbers with
sets, any such identification would appear arbitrary. But any attempt to identify terms

16 For example, one can define the n-tuple of x1, …, xn as {�1, x1�, . . . , �n, xn�}, where �i, xi � is
{{i}, {i, xi }}.
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and propositions with sets would seem to face a similar issue: why use one definition
of n-tuples rather than another, for example?17

In the number case, the natural lesson would seem to be that these are sui generis
objects, and so not reducible to sets or anything else. And the natural lesson in the
propositional case would seem to be similar. For this reason, I will not assume that
the models of this section tell us what terms and propositions really are. Rather, they
are meant simply to convey the sort of way in which these are constructed from their
basic constituents, such as objects, functions and properties.

Indeed, all that one needs to assume about simple terms is the following, which of
course holds in the suggested set-theoretic model by (X).

(XS) If [x] = [y], then x = y.

5.2 Complex terms

I assume that there are also complex (propositional) terms generated recursively as
follows: if n ≥ 1, f is an n-place function, and t1, …, tn are simple or complex terms,
then there is a complex term [ f, t1, . . . , tn]. Once again, f, t1,…, tn are the constituents
of [ f, t1, . . . , tn]. And a natural model of [ f, t1, . . . , tn] is the n + 1-tuple of f, t1, …,
tn (in that order).

To be clear, I am not suggesting that set theory can be used to give natural models
of functions, at least not in the standard way (see Sect. 3). Rather, I am suggesting
that it can be used to give a natural model of [ f, t1, . . . , tn]—but in this model f is an
urelement. What then are functions? It is beyond the scope of this paper to say in any
detail. All that is required for my purposes here is that certain straightforward ones
exist (i.e. d and the variants of it considered in Sect. 2). But I would suggest thinking
of functions as sui generis objects—as ways of going from one object to another (or
from a number of objects to another)—in the same way that it is plausible to think of
numbers or sets as sui generis objects.

The natural assumptions about complex terms are as follows.

(XC) If [ f, t1, . . . , tn] = [g, u1, . . . um], then n = m and f = g, t1 = u1, . . . , tn =
um .

(SC) No complex term is a simple term.

Again, these hold in the suggested set-theoretic model by (X). It is (SC) that ensures
that the difficulty raised at the start of this section is solved.

5.3 Atomic propositions

Next, I assume that if n ≥ 1, H is an n-place property, and t1,…, tn are (simple or com-
plex) terms, then there is an object 〈H, t1, . . . , tn〉, called an atomic proposition. H, t1,
…, tn are the constituents of 〈H, t1, . . . , tn〉.18 A natural model of 〈H, t1, . . . , tn〉 is

17 For discussions of versions of this problem for accounts of propositions, see Jubien (2001), King (2007,
pp. 47–50, 127–36) and Soames (2010, pp. 91–94).
18 Note that the defined use of ‘constituent’ is slightly narrower than that of previous sections. For on the
former 0 is not a constituent of the proposition 〈N , [0]〉; rather, it is a constituent of a constituent of this
proposition.
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again the corresponding n+1-tuple. I use different brackets for terms and propositions
just for readability.

The natural assumptions are: (XA), i.e. the analogue of (XC) for atomic proposi-
tions, and that no atomic proposition is a term. These hold in the suggested model by
(X), as long as no property is a function (which I assume).

〈H, [a]〉 is the proposition that a is H, 〈H, [ f, [a]]〉 is the proposition that f (a) is
H , and so on.

Thus, 〈N , [1]〉 is the proposition that 1 is a number; 〈N , [s, [0]]〉 is the proposi-
tion that s(0) is a number; and 〈N , [[s, [0]]]〉 is that to the effect that [s, [0]] (i.e. this
complex term) is a number. The first and second are distinct by (XA), together with
the fact that no simple term is a complex one (i.e. (SC)); and the second and third are
distinct for the same reason. So the difficulty raised at the start of this section is solved
as anticipated.

(What about the distinctness or otherwise of the first and third propositions? These
will indeed be distinct as long as 1 is distinct from the complex term [s, [0]]. This
is highly plausible. However, it does not follow from the explicit assumptions above,
since none of these have any bearing on what numbers are.)

Here is a further example that will help make clear the way in which the account
works—and theway inwhich it allows us to distinguish propositions that are about (i.e.
mention) terms from those that have them as constituents (i.e. use them). Thus, let i be
the identity function. Then the proposition that i(0) is 0, that is, 〈=, [i, [0]], [0]〉, is of
course true. —Despite the fact that the two constituents of this proposition are distinct
(by (SC)). For the proposition is not about the constituents. What (SC) commits us to
is rather the falsity of 〈=, [[i, [0]]], [[0]]〉 (the identity proposition that mentions the
terms that the last proposition used).

5.4 Compound propositions

Finally, I assume that there are negated and conjoined propositions generated recur-
sively as follows: if p and q are atomic, negated or conjoined propositions, then there is
a negated proposition (¬, p) and a conjoined proposition (∧, p, q). I also call negated
and conjoined propositions negations and conjunctions (respectively);¬ and p are the
constituents of (¬, p), and ∧, p and q are those of (∧, p, q). The idea is that ¬ and ∧
are abstract entities corresponding to the English words ‘not’ and ‘and’ (respectively),
but nothing will turn on what exactly these are. Negations and conjunctions are once
again naturally modelled by pairs and triples (respectively). The natural assumptions
are similar to those in the atomic case: i.e. (¬, p) = (¬, q) entails p = q; no negation
is a conjunction, atomic proposition or term; and similarly for conjunctions. These will
hold in themodel given (X), togetherwith the assumption that no function is a property.

If H and J are 1-place properties and a and b are objects, then (¬, 〈H, [a]〉) is the
proposition that it is not the case that a is H ; and (∧, 〈H, [a]〉, 〈J, [b]〉) is that to the
effect that a is H and b is J . And so on.

One could straightforwardly extend this account to quantified propositions, but for
reasons of space I will not do this here.
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5.5 Self-referential propositions

Wenow have a precisely stated framework inwhich to construct self-referential propo-
sitions, following the outline of Sect. 2.

Thus, let Z be the proposition 〈=, [0], [0]〉. And let d be a function such that for any
proposition p, d(p) is the result of replacing all occurrences of Z in p with p itself
(as before, d(Z) = Z ). For example, if p is (¬, Z), then d(p) is (¬, (¬, Z)); and if
p is 〈T, [Z ]〉, then d(p) is 〈T, [〈T, [Z ]〉]〉. Once again, for definiteness, let d(x) = 0
for any x that is not a proposition. As we saw in Sect. 3, it seems hard to deny that
such a function exists.

In addition to the arguments of Sect. 3, one can also provide set-theoretic models
along the lines suggested above in which such a function exists. That is, Sects. 5.1–
5.4 describe a family of set-theoretic models of propositions, in which functions,
properties, ¬ and ∧ are urelements. But it is straightforward to extend any member of
this family to one in which d exists. (For reasons of space I leave this as an exercise
for the reader.)

The construction of self-referential propositions can then proceed as in Sect. 2.
Thus, let LP be the following.

(¬, 〈T, [d, [(¬, 〈T, [d, [Z ]]〉)]]〉)

As before, we have:

(1*) d((¬, 〈T, [d, [Z ]]〉)) = LP.

That is, LP says of itself that it is untrue.
We then have a purely propositional version of the Liar. For if p is a proposition,

then (¬, 〈T, [d, [p]]〉) is that to the effect that d(p) is not true. So it seems that this
should be true iff d(p) is not. In particular:

(2*) LP is true iff d((¬, 〈T, [d, [Z ]]〉)) is not.

Giving:

(3*) LP is true iff it is not.

Similarly for the other propositions constructed in Sect. 2 (i.e. other self-referential
propositions and those that form more complex networks).

Therefore, given a precise and apparently natural account of propositions, the con-
structions of Sect. 2 can be straightforwardly carried out. The above should also make
plausible, however, that this will similarly be possible on any alternative such account
(at least on which propositions are structured).

Thus, if propositions are structured, they can be self-referential, and a range of
apparently plausible claims about truth will have to be rethought.
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