
Synthese (2018) 195:4373–4417
https://doi.org/10.1007/s11229-016-1172-3

LORI-V

On the expressive power of first-order modal logic with
two-dimensional operators

Alexander W. Kocurek1

Received: 15 March 2016 / Accepted: 15 July 2016 / Published online: 20 August 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Many authors have noted that there are types of English modal sentences
cannot be formalized in the language of basic first-order modal logic. Some widely
discussed examples include “There could have been things other than there actually
are” and “Everyone who is actually rich could have been poor.” In response to this
lack of expressive power, many authors have discussed extensions of first-order modal
logic with two-dimensional operators. But claims about the relative expressive power
of these extensions are often justified only by example rather than by rigorous proof.
In this paper, we provide proofs of many of these claims and present a more complete
picture of the expressive landscape for such languages.

Keywords First-order modal logic · Expressive power · Two-dimensional operators ·
Actually · Fixedly · Vlach Operators · Bisimulation

1 Introduction

It iswell known that first-ordermodal logic faces fundamental limitations in expressive
power. Some standard examples used to illustrate this include:

(E) There could have been things other than there actually are.1

(R) Everyone who is actually rich could have been poor.2

Informally, the first is true iff there is a possible worldwhere something exists that does
not exist in the actual world. The second has multiple readings, but on one reading,

1 Originally from Hazen (1976, p. 31).
2 Originally from Cresswell (1990, p. 34).
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it is true iff there is a possible world where everyone who is rich in the actual world
is poor in that world. It can been shown that no formula in basic first-order modal
logic with actualist quantifiers (i.e., quantifiers ranging over existents) is equivalent to
(E) or to (R).3 We can regiment (E) using a possibilist existential quantifier � (i.e., a
quantifier ranging over all possible objects) and an existence predicate E as follows:

�x (¬E(x) ∧ ♦E(x)) . (1)

But one can prove that even with these additions, there is still no formula that is
equivalent to (R).4

In response to these expressive limitations,many authors have considered extending
first-order modal logic with an “actually” operator @.5 They then point out that in the
presence of @ and the possibilist universal quantifier �, the following is equivalent
to (R):

♦�x (@Rich(x) → Poor(x)) . (2)

However, even with possibilist quantifiers and the actuality operator, sentences like
the following seem to remain inexpressible:6

(NR) Necessarily, everyone who was rich could have been poor.

One could try to fix this problem by adding more and more operators to the lan-
guage, some of which we will discuss below. But many such languages face further
expressivity limitations themselves.7 Corresponding expressive limitations also arise
for first-order temporal logic, though we will mostly focus on the modal versions until
the end of this paper.

Very often, these inexpressibility claims are justified in the literature only by exam-
ple: all of the most straightforward attempts at formalizing these English sentences
into first-order modal logic fail. While this style of argument may be convincing, it
does not constitute a proof. One can sometimes find rigorous proofs for a variety of
inexpressibility claims.8 But only (Hodes 1984a, b, c) provides proofs of the inexpress-
ibility of (R), (E), and sentences like them in extensions of first-order modal logic with
two-dimensional operators such as @.9 And while these proofs are very interesting
and involve a number of underappreciated techniques, they are quite complicated and
difficult to generalize to other formal languages of interest.

In this paper, I will use a modular notion of bisimulation to characterize the expres-
sive power of extensions of first-order modal logic with two-dimensional operators.

3 Hodes (1984c).
4 Wehmeier (2001).
5 Crossley and Humberstone (1977), Davies and Humberstone (1980), Hazen (1976, 1990), Hodes
(1984a, b).
6 Hazen (1976), Bricker (1989), Cresswell (1990) and Sider (2010).
7 van Benthem (1977), Gabbay (1981) and Cresswell (1990).
8 See Fine (1979), Hodes (1984a, b, c), Forbes (1989),Wehmeier (2001), Fritz (2012) and Yanovich (2015).
9 Forbes (1989, pp. 42–44) gives some inexpressibility results for first-order modal logic with @. See also
Correia (2007), Fritz (2012) and Yanovich (2015) for work on related languages.
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After reviewing basic first-order modal logic (Sect. 2), I will provide a single proof
method for characterizing the expressive power of a wide variety of first-order modal
languages using bisimulations (Sect. 3). I will then present a variety of inexpressibility
proofs using this technique (Sect. 4). I will conclude by generalizing these results to
temporal logics and higher-dimensional logics (Sect. 5). The more intricate details are
left to appendices (Appendices 1–4).

2 First-order modal logic

In this section, we review the standard possible worlds semantics for first-order modal
logic. The technical details below are fairly standard except our points of evaluation
need to be two-dimensional to account for operators like the actuality operator @.
While we have picked a particularly simple formulation of first-order modal logic, the
inexpressibility results we explore in this paper apply to a wide range of formulations
of first-order modal logic.10

The signature for our plain vanilla first-order modal language L1M contains:

– VAR = {x1, x2, x3, . . .} (the set of (object) variables);
– PREDn =

{
Pn
1 , Pn

2 , Pn
3 , . . .

}
for each n ≥ 1 (the set of n-place predicates);

The set of formulas in L1M or L1M-formulas is defined recursively:

ϕ ::= Pn(y1, . . . , yn) |¬ϕ | (ϕ ∧ ϕ) |�ϕ | ∀xϕ

where Pn ∈ PREDn for any n ≥ 1, and x, y1, . . . , yn ∈ VAR. The usual abbreviations
for ⊥, ∨,→,↔, ∃, and ♦ apply. We may drop parentheses for readability. If the free
variables of ϕ are among y1, . . . , yn , we may write “ϕ(y1, . . . , yn)” to indicate this.

To talk more easily about extensions of L1M, we will introduce a convention. Let
S1, . . . , Sn be some new symbolswith pre-defined syntax. The language obtained from
L1M by adding S1, . . . , Sn is L1M(S1, . . . , Sn). Some symbols that might be added
include:

ϕ ::= · · · | x ≈ y | E(y) | @ϕ | ↓ϕ | Fϕ | ∀@xϕ | �xϕ

where≈ is the identity relation,E is an existence predicate,@ is an “actually” operator,
↓ is a diagonalization operator (the inverse of @),11 F is a “fixedly” operator,12 ∀@
is a quantifier over all actual objects,13 and � is the possibilist universal quantifier
(its existential counterpart is �). The usual abbreviations apply. In what follows, we
will let “L” stand for any arbitrary L1M(S1, . . . , Sn) where S1, . . . , Sn are among the
symbols above.

10 See Garson (2001) for a tree of such formulations.
11 Vlach (1973) and Lewis (1973).
12 Davies and Humberstone (1980).
13 Bricker (1989) and Gilbert (2015).
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Definition 1 (Models) A model is a tuple M = 〈W, R, F, D, δ, I 〉 where:
– W is a nonempty set (the state space);
– R ⊆ W ×W (the �-accessibility relation);
– F ⊆ W ×W (the F-accessibility relation);
– D is a nonempty set disjoint from W (the (global) domain);
– δ : W → ℘ (D) is a function (the local domain assignment), where for each

w ∈ W , δ(w) is the local domain of w;
– I : PREDn × W → ℘(Dn) (for all n ≥ 1) is a function (the interpretation
function).

We will let M’s state space be WM, M’s �-accessibility relation be RM, etc. We
will define R[w] := {v ∈ W |wRv } (and likewise for F). If R = W × W , we will
say R is universal. If D =⋃

w∈W δ(w) (i.e., D does not contain impossible objects),
we will say D satisfies the domain constraint. We will let U be the class of models
where R and F are universal, D be the class of models where D satisfies the domain
constraint, and UD be their intersection.

LetM be a model. A variable assignment forM is a function gmapping variables
to elements in D. Let the set of variable assignments forM beVA(M). If g ∈ VA(M),
then gxa is the result of modifying g by mapping x to a.

For readability, if α1, . . . , αn is a sequence (of terms, objects, etc.), we may write
“α” in place of “α1, . . . , αn”. α is assumed to be of the appropriate length, whatever
that is in a given context. Let |α| be the length of α. When f is some unary function,
we may write “ f (α)” in place of “ f (α1), . . . , f (αn)”. For instance, if g is a variable
assignment, “g(x)” on this notation stands for “g(x1), . . . , g(xn)”. Likewise, “gxa ”
stands for “gx1,...,xna1,...,an ”.

Since we want to consider operators like @, our possible worlds semantics will
be two-dimensional [as suggested in, e.g., Davies and Humberstone (1980, pp. 4–5)].
That is, indices will have to contain two worlds. The first world is to be interpreted as
the world “considered as actual” and the second as the world of evaluation.

Definition 2 (Satisfaction for L1M) The L-satisfaction relation � is defined recur-
sively, for all models M = 〈W, R, F, D, δ, I 〉, all w, v ∈ W and all g ∈ VA(M):

M, w, v, g � Pn(x) ⇔ 〈g(x)〉 ∈ I (Pn, v)

M, w, v, g � x ≈ y ⇔ g(x) = g(y)
M, w, v, g � E(x) ⇔ g(x) ∈ δ(v)

M, w, v, g � ¬ϕ ⇔ M, w, v, g � ϕ

M, w, v, g � ϕ ∧ ψ ⇔ M, w, v, g � ϕ and M, w, v, g � ψ

M, w, v, g � �ϕ ⇔ ∀v′ ∈ R[v] : M, w, v′, g � ϕ

M, w, v, g � @ϕ ⇔ M, w,w, g � ϕ

M, w, v, g � ↓ϕ ⇔ M, v, v, g � ϕ

M, w, v, g � Fϕ ⇔ ∀w′ ∈ F[w] : M, w′, v, g � ϕ

M, w, v, g � ∀xϕ ⇔ ∀a ∈ δ(v) : M, w, v, gxa � ϕ

M, w, v, g � ∀@xϕ ⇔ ∀a ∈ δ(w) : M, w, v, gxa � ϕ

M, w, v, g � �xϕ ⇔ ∀a ∈ D : M, w, v, gxa � ϕ.

If |x | ≤ |a|, then M, w, v � ϕ[a] if for all g ∈ VA(M), M, w, v, gxa � ϕ(x).
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Definition 3 (Validity) Let C be a class of models. We will say ϕ is (generally)
C-valid—written as �C ϕ—if M, w, v, g � ϕ for all M ∈ C, all w, v ∈ WM,
and all g ∈ VA(M). We will say ϕ is diagonally C-valid—written as �d

C ϕ—if
M, w,w, g � ϕ for all M ∈ C, all w ∈ WM, and all g ∈ VA(M). If ϕ ↔ ψ is
(diagonally) C-valid, we will say ϕ and ψ are (diagonally) C-equivalent. If C is the
class of all models, we may drop mention of C and just say “valid” or “equivalent”.

We could have defined some of the additional symbols above in terms of oth-
ers, assuming the others are present. For instance, E(x) ↔ ∃y(x ≈ y), ∀xϕ ↔
�x (E(x) → ϕ), and ∀@xϕ ↔ �x (@E(x) → ϕ) are all valid (we will invoke these
throughout without explicit mention of them). Thus, by the following lemma, we
could have taken the lefthand side of these biconditionals to be abbreviations for their
righthand side:

Lemma 4 (Replacement of equivalents) Suppose ϕ and ψ have the same free vari-
ables. Let θ ′ be a formula that results from replacing any number of instances of ϕ in
θ with ψ . Then �C ϕ ↔ ψ implies �C θ ↔ θ ′.

This follows by a straightforward induction. If we replace �C in Lemma 4 with �d
C,

then the result no longer holds (for instance,�d @P(x) ↔ P(x), but �
d �@P(x) ↔

�P(x)). However, if �d
C ϕ ↔ ψ , then �C 
ϕ ↔ 
ψ , where 
 ∈ {@,↓}, in which

case we can replace 
ϕ with 
ψ .
We can think of Definition 2 as specifying a translation from the modal language

into the language of possible worlds. We can make this more precise by formally
defining the language of possible worlds, which is often called the correspondence
language.14 The correspondence language is a two-sorted first-order language: one
sort for objects, and one sort for worlds. The signature for our two-sorted first-order
language LTS contains VAR, PRED, and:

– SVAR = {s1, s2, s3, . . .} (the set of state variables).
The set of formulas in LTS or LTS-formulas is defined recursively:

α ::= Pn(y; s) | x ≈ y |s≈ t | E(y; s) | R(s, t) | F(s, t) | ¬α | (α ∧ α) |∀xα | ∀sα

where Pn ∈ PREDn , x, y, y ∈ VAR, and s, t ∈ SVAR. Iwill typically useα, β, γ, . . .

for LTS-formulas to distinguish them from L1M-formulas.
To illustrate, here are the intended formalizations of (E), (R), and (NR), where s∗

is meant to be interpreted as the actual world (which we will assume is the same as
our starting world of evaluation, just for simplicity):15

14 See Blackburn et al. (2001).
15 There is a general question as to whether the object quantifier in (R) and (NR) is possibilist or actualist. In
general, I assume it should be actualist, in which case the object quantifiers in (4) and (5) should technically
be E-bounded. But to avoid clutter, we assume in the background that nothing can be rich or poor unless
it exists (∀s∀x ((Rich(x; s) ∨ Poor(x; s)) → E(x; s))), in which case it does not matter which type of
quantifier we use in (4) and (5). None of our models will violate this constraint.
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(E) There could have been things other than there actually are.

∃t (R(s∗, t) ∧ ∃x (
E(x; t) ∧ ¬E(x; s∗))) (3)

(R) Everyone who’s actually rich could have been poor.

∃t (R(s∗, t) ∧ ∀x (
Rich(x; s∗)→ Poor(x; t))) (4)

(NR) Necessarily, everyone who’s rich could have been poor.

∀s(R(s∗, s) → ∃t (R(s, t) ∧ ∀x (Rich(x; s) → Poor(x; t)))) (5)

To define LTS’s semantics, we need to modify the definition of a variable assignment
for M so that not only do variable assignments map variables to elements of D, but
they also map state variables to elements of W . Then satisfaction in LTS is just the
standard notion of satisfaction for two-sorted first-order logic:

Definition 5 (Satisfaction for LTS) The LTS-satisfaction relation � is defined recur-
sively for all models M and all g ∈ VA(M):

M, g � Pn(x; s) ⇔ 〈g(x)〉 ∈ I (Pn, g(s)) M, g � F(s, t) ⇔ g(t) ∈ F[g(s)]
M, g � x ≈ y ⇔ g(x) = g(y) M, g � ¬α ⇔ M, g � α

M, g � s ≈ t ⇔ g(s) = g(t) M, g � α ∧ β ⇔ M, g � α andM, g � β

M, g � E(x; s) ⇔ g(x) ∈ δ(g(s)) M, g � ∀xα ⇔ ∀a ∈ D : M, gxa � α

M, g � R(s, t) ⇔ g(t) ∈ R[g(s)] M, g � ∀sα ⇔ ∀w ∈ W : M, gsw � α.

We say α is C-valid—written as �C α—if M, g � α for all M ∈ C and all g ∈
VA(M). Equivalence is defined likewise.

We can nowmakemore precise the thought that Definition 2 is specifying a translation:

Definition 6 (Standard translation) Let ϕ be a L-formula, and let s, t ∈ SVAR. The
standard translation of ϕ with respect to 〈s, t〉, STs,t (ϕ), is defined recursively:

STs,t (Pn(x)) = Pn(x; t) STs,t (Fϕ) = ∀s′ (F(s, s′)→ STs′,t (ϕ)
)

STs,t (x ≈ y) = x ≈ y STs,t (@ϕ) = STs,s (ϕ)

STs,t (E(x)) = E(x; t) STs,t (↓ϕ) = STt,t (ϕ)

STs,t (¬ϕ) = ¬STs,t (ϕ) STs,t
(∀xϕ) = ∀x (

E(x; t)→ STs,t (ϕ)
)

STs,t (ϕ ∧ ψ) = (
STs,t (ϕ) ∧ STs,t (ψ)

)
STs,t

(∀@xϕ
) = ∀x (

E(x; s)→ STs,t (ϕ)
)

STs,t (�ϕ) = ∀t ′ (R(t, t ′)→ STs,t ′ (ϕ)
)

STs,t (�xϕ) = ∀xSTs,t (ϕ)

where s′ and t ′ are state variables not occurring anywhere in STs,t (ϕ). If Φ is a set
of L-formulas, then we will let STs,t (Φ) = {

STs,t (ϕ)
∣
∣ϕ ∈ Φ

}
.

The following lemma, which can be proved using a simple induction on formulas,
states that ST translates every L-formula into an equivalent LTS-formula:

Lemma 7 (Translation) LetM be a model, w, v ∈ WM, g ∈ VA(M), s, t ∈ SVAR,
and ϕ an L-formula. Then M, w, v, g � ϕ iffM, gs,tw,v � STs,t (ϕ).
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In other words, Lemma 7 tells us that we can think of “M, w, v, g � ϕ” as a notational
variant of “M, gs,tw,v � STs,t (ϕ)”. In what follows, we will implicitly identify an
extension ofL1Mwith its equivalent fragment of the two-sorted language. The question
now is to what extent we can find a translation that goes the other way. To help answer
this question, we can define a formal notion of expressivity relative to LTS as follows:

Definition 8 (Expressivity) Let C be a class of models. We will say a set of LTS-
formulas Γ C-expresses a set of LTS-formulas Δ if Γ is C-equivalent to Δ—that
is, for all M ∈ C and all g ∈ VA(M), we have that M, g � Γ iff M, g � Δ. If
either Γ orΔ are singletons, we can drop the set brackets for readability. Where L is a
fragment ofLTS, wewill sayΓ isC-expressible inL if there is a set ofL-formulas that
C-expresses Γ . Where L1 and L2 are fragments of LTS, we will say L2 C-expresses
L1 or L1 is C-included in L2—written as L1 ≤C L2—if for any set of L1-formulas
Γ , there is a set of L2-formulas Δ that C-expresses Γ . We will write L1 <C L2 if
L1 ≤C L2 and L2 �C L1, and L1 ≡C L2 if L1 ≤C L2 and L2 ≤C L1.

These definitions apply to extensions of L1M, viewed as fragments of LTS. Thus,
where Γ is a set of LTS-formulas, and where L is an extension of L1M, we will say Γ

is C-expressible in L if there is a set of L-formulas Φ such that Γ is C-equivalent to
STs,t (Φ). Likewise, if L1 and L2 are extensions of first-order modal logic, we will
write L1 ≤C L2 if for any set of L1-formulas Φ, there is a set of L2-formulas Ψ such
that STs,t (Φ) is C-equivalent to STs,t (Ψ ). Similarly for <C and ≡C.

3 Bisimulation

To show that no formula (or set of formulas) of amodal languageL can express a certain
formula α ofLTS, one must generally construct two models such that (a) they agree in
L on allL-formulas (i.e., they areL-equivalent), and (b) they disagree inLTS on α. To
make showing that such models are L-equivalent easier, we can appeal to the notion
of a bisimulation.16 The notion of a bisimulation for first-order modal logic has not
been discussed much until recently.17 Below, we extend the notion of bisimulation in
order to ensure modal equivalence for formulas involving two-dimensional operators.

A bisimulation is basically a back-and-forth game. In the standard back-and-forth
game for (non-modal) first-order logic, there are two players, Abelard and Eloïse.
Abelard aims to refute Eloïse’s attempt to show that the two models satisfy the same
closed formulas. Abelard starts by picking an object from one of the models. Eloïse
must then pick a matching object from the other model that satisfies the same atomic
formulas. They continue in thismanner, making sure at all times that the objects picked
out so far from one model satisfy exactly the same atomic formulas that the objects
picked out from the other model satisfy. If at any point the objects picked out from
one model do not satisfy the same atomic formulas as the objects picked out from
the other model, then Abelard wins. But if Eloïse manages to extend the game out
for an infinite number of rounds, she wins. Two first-order models are elementarily

16 See Blackburn et al. (2001, Chap. 2) for an introduction to bisimulations.
17 See Fine (1981), Sturm and Wolter (2001), van Benthem (2010), Fritz (2012) and Yanovich (2015).
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equivalent (i.e., satisfy the same closed first-order formulas) if (but not only if) Eloïse
has a winning strategy in this game for those models.

Likewise, twomodal models satisfy the sameL1M-formulas if Eloïse has a winning
strategy for a back-and-forth game like the one above, with some modifications. In
the modified game, the game is “located” at some world(s) in the two models. When
Abelard picks an object from the model, he must pick an object that exists at the world
where the game is located; likewise with Eloïse. Now the catch: Abelard can choose,
at any time, to change the location of the game in either model to any accessible
world from the current location. In order to keep playing, Eloïse must likewise pick a
matching accessible world in the other model to relocate the game to. The game then
relocates to those accessible worlds, and the game continues. As before, if the objects
that have been picked out from one model do not satisfy the same atomic formulas
at the game’s current location that are satisfied by the objects picked out from the
other model, then Abelard wins. But if Eloïse manages to extend the game out for
an infinite number of rounds, she wins. Two worlds in two models will satisfy the
same L1M-formulas if Eloïse has a winning strategy in this game, where the game
starts at those two worlds. More variations arise when different extensions of L1M are
considered. More precisely:

Definition 9 (Bisimulation) LetM andN be models. AnL1M-bisimulation between
M and N is a nonempty variably polyadic relation Z such that for all w, v ∈ WM,
all w′, v′ ∈ WN , all finite a ∈ DM, and all finite b ∈ DN where |a| = ∣

∣b
∣
∣, we have

that Z(w, v, a;w′, v′, b) only if:
(Atomic) ∀m ∈ N∀Pm ∈ PREDm∀i1, . . . , im ≤ |a|:

〈
ai1 , . . . , aim

〉 ∈ IM(Pm, v) ⇔ 〈
bi1 , . . . , bim

〉 ∈ IN (Pm, v′)

(Zig) ∀u ∈ RM[v]∃u′ ∈ RN [v′] : Z(w, u, a;w′, u′, b)
(Zag) ∀u′ ∈ RN [v′]∃u ∈ RM[v] : Z(w, u, a;w′, u′, b)
(Forth) ∀a′ ∈ δM(v)∃b′ ∈ δN (v′) : Z(w, v, a, a′;w′, v′, b, b′)
(Back) ∀b′ ∈ δN (v′)∃a′ ∈ δM(v) : Z(w, v, a, a′;w′, v′, b, b′).
We may write “M, w, v, a � N , w′, v′, b” (where possibly |a| = ∣

∣b
∣
∣ = 0)

to indicate that M, w, v, a and N , w′, v′, b are L1M-bisimilar, i.e., that there is a
bisimulation Z between M and N such that Z(w, v, a;w′, v′, b).

The notion of an L1M(S1, . . . , Sn)-bisimulation between M and N is defined
similarly, except one must add the corresponding condition(s) below:

(Eq) ∀n,m ≤ |a| : an = am iff bn = bm
(Ex) ∀n ≤ |a| : an ∈ δM(v) iff bn ∈ δN (v′)
(Act) Z(w,w, a;w′, w′, b)
(Diag) Z(v, v, a; v′, v′, b)
(F − Zig) ∀u ∈ FM[w]∃u′ ∈ FN [w′] : Z(u, v, a; u′, v′, b)
(F − Zag) ∀u′ ∈ FN [w′]∃u ∈ FM[w] : Z(u, v, a; u′, v′, b)
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(∀@ − Forth) ∀a′ ∈ δM(w)∃b′ ∈ δN (w′) : Z(w, v, a, a′;w′, v′, b, b′)
(∀@ − Back) ∀b′ ∈ δN (w)∃a′ ∈ δM(w′) : Z(w, v, a, a′;w′, v′, b, b′)
(�− Forth) ∀a′ ∈ DM∃b′ ∈ DN : Z(w, v, a, a′;w′, v′, b, b′)
(�− Back) ∀b′ ∈ DN ∃a′ ∈ DM : Z(w, v, a, a′;w′, v′, b, b′).

We may write “M, w, v, a �L N , w′, v′, b” to indicate that M, w, v, a and
N , w′, v′, b are L-bisimilar. We may also sometimes write “M, w, v, a �S1,...,Sn
N , w′, v′, b”, where L = L1M(S1, . . . , Sn), for readability.

Here are the various conditions phrased in terms of games. (Atomic) says that
Eloïse loses unless a satisfy the same atomic formulas in M, w, v that b satisfy in
N , w′, v′. (Zig) says that if Abelard decides to move the game to 〈w, u〉 inM where
u ∈ RM[v], Eloïse must choose a u′ ∈ RN [v′] and relocate the game inN to

〈
w′, u′

〉

to continue. Likewise for (Zag). (Forth) says that if Abelard picks an object a′ from v,
Eloïse must pick an object b′ from v′ to match it with. Likewise for (Back). (Eq) says
that if Abelard picks an object that was already chosen, Eloïse must pick the matching
object. (Ex) says that the objects picked have to agree in terms of existence, even when
the game relocates. (Act) says that Abelard can force the game to relocate to 〈w,w〉
and

〈
w′, w′

〉
. Likewise for (Diag). The other clauses are as before, except with respect

to different domains and relations.

Definition 10 (Modal equivalence)M, w, v, a andN , w′, v′, b are L-equivalent or
modally equivalent if for all L-formulas ϕ(x) (where |x | ≤ |a|), M, w, v � ϕ[a]
iff N , w′, v′ � ϕ[b]. We may write “M, w, v, a ≡L N , w′, v′, b” to indicate that
M, w, v, a and N , w′, v′, b are L-equivalent.
Theorem 11 (Bisimulation impliesmodal equivalence)WhereL = L1M(S1, . . . , Sn),
ifM, w, v, a �L N , w′, v′, b, then M, w, v, a ≡L N , w′, v′, b.

In general, modal equivalence does not imply bisimulation.18 However, it does
when infinitary conjunction is present in the language. Consider the symbol

∧
with

the following formation rule: if Φ is a set of well-formed formulas (of any size), then∧
Φ is a well-formed formula. Then it can be shown that M, w, v, a ≡∧

,S1,...,Sn

N , w′, v′, b iffM, w, v, a �S1,...,Sn N , w′, v′, b.19 Thus, bisimulation is equivalent
to infinitary modal equivalence. No bisimulation clauses need to be added for

∧
.

Adding infinitary conjunction to the language clearly increases the expressive
power of the language. For example, one can regiment the sentence “There are
infinitely many rich people” as

∧
n∈ω ∃≥nxRich(x), where

∧
n∈ω ϕn is short for

the formula
∧ {ϕn | n ∈ ω }, and ∃≥nxϕ(x) is short for the formula ∃x1 · · · ∃xn(∧n

i=1 ϕ(xi ) ∧∧
i �= j xi �≈ x j

)
. However, infinitary conjunction does not increase the

expressive power enough to overcome the particular expressive limitations discussed
here, so we set it aside in what follows.

Now, recall the definition of expressibility (Definition 8).

18 See Blackburn et al. (2001, p. 68) for the proof in the propositional case.
19 See Goranko and Otto (2006) for a proof in the propositional case. Generalizing to first-order modal
logic is straightforward.
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Corollary 12 (Translation implies invariance) Let α(x; s, t) be an LTS-formula. If
M, w, v, a �S1,...,Sn N , w′, v′, b, and if α is equivalent to the translation of some
set of L1M(S1, . . . , Sn)-formulas, then M � α[a;w, v] iff N � α[b;w′, v′]. In other
words, ifM, w, v, a andN , w′, v′, b areL1M(S1, . . . , Sn)-bisimilar, but they disagree
on α, then α is not expressible as a set of L1M(S1, . . . , Sn)-formulas.

Corollary 12 says that if a LTS-formula is equivalent to the translation of an L-
formula (or a set of L-formulas), then it is preserved under L-bisimulations. As in
propositional modal logic, the converse also holds (see Appendix 1 for the proof).20

Theorem 13 (van Benthem Characterization Theorem) Let α(x; s, t) be an LTS-
formula such that M � α[a;w, v] iff N � α[b;w′, v′] given that M, w, v, a �L
N , w′, v′, b. Then α is equivalent to the translation of some L-formula.
This together with Theorem 11 implies that L is just the L-bisimulation invariant
fragment of LTS. For our purposes, however, Corollary 12 will be the key result in
generating the inexpressibility results below.

4 Inexpressibility

While Corollary 12 and Theorem 13 exactly characterize the expressive power of
L1M and its various extensions, the characterization is a bit abstract, and it does not
automatically tell us what the expressive power of these extensions are relative to one
another.We now turn to illustrating the expressive limitations ofL1M and its extensions
with concrete examples. Note that all of our models in this section fall in the classUD,
so these inexpressibility results therefore apply to any class that includes UD.

To warm up, we start by showing that (E) is not expressible in L1M. Recall (E) says
that there could have been things other than there are,which is formalized inLTS as (3):

∃t (R(s∗, t) ∧ ∃x (
E(x; t) ∧ ¬E(x; s∗))) . (3)

The proof strategy will always be the same: construct two modal models that are
bisimilar, but that disagree on (3). Because we do not have ≈ in L1M by default, this
is actually very easy. Let E = 〈W, R, F, D, δ, I 〉, where W = {w, v}, R and F are
universal, D = δ(w) = δ(v) = {a}, and I (P, u) = ∅. Let E ′ = 〈

W, R, F, D′, δ′, I
〉
,

where everything is as in E , except D′ = δ′(v) = {a, b}. See Fig. 1 for a picture.
It is easy to see that w in E does not satisfy (3): every possible object exists at w.

However, w in E ′ does satisfy (3): b is a possible object that does not exist at w. So
E, w and E ′, w disagree on (3). So we just need to show that E, w,w � E ′, w,w. In
fact, in this case, we can just take Z to map every world to every world, and every
object to every object any number of times. To show this is a bisimulation, we just
check each of the clauses from Definition 9 holds, which is easy to do. One might
initially think that we will run into problems in trying to show (Back) holds; for if we
consider Z(w, v, a;w, v, a), and we decide to pick b from δ′(v), then we cannot pick

20 The proof is essentially the same as the proof for propositional modal logic. See Blackburn et al. (2001,
Chap. 2.6) and Sturm and Wolter (2001, pp. 579–580).

123



Synthese (2018) 195:4373–4417 4383

Fig. 1 L1M-bisimilar models
that disagree on (E)

a

w

a

v

E

a

w

a, b

v

E

b from δ(v) to match it with. But since a and b do not disagree on any predicates, and
since≈ is not present in the language, L1M cannot tell that a and b are distinct objects
anyway. We do not have to match a to a and b to b every time. We can just as well
match b in δ′(v) with a in δ(v).

What made this proof easy was the absence of ≈. Now we will show that even
L1M(≈) cannot express (E).21 Consider first E1 =

〈
W1,W 2

1 ,W 2
1 , N, δ1, I1

〉
, where

the global domain is N and the accessibility relations are both universal. For each
nonempty finite or cofinite S ⊆ N, there is a world wS ∈ W1 such that δ1(wS) = S.
No other worlds are in W1. Again, the extension of all non-logical predicates will
be empty at all worlds. The second model E2 =

〈
W2,W 2

2 ,W 2
2 , N ∪ {∞} , δ2, I2

〉
is

similar to the first, but now the global domain contains an additional object∞. For
each nonempty set S that is either finite or cofinite in N

∞:=N∪ {∞}, there is a world
wS ∈ W2 such that δ2(wS) = S. See Fig. 2 for a picture.

Since δ1(wN) = N = D,wN in E1 does not satisfy (3). ButwN in E2 does satisfy (3),
since∞ /∈ δ2(wN). So E1, wN and E2, wN disagree on (3). Sowe just need to show that
E1, wN, wN �≈ E2, wN, wN. Constructing the bisimulation is fairly straightforward

21 A proof of this was suggested by Hazen (1976, p. 35). He describes his models as follows:

For suppose that [(3)] is false, that the actual world is the only one with infinitely many individuals,
and that for every finite set of individuals in the actual world there is a world containing just those
individuals, and consider the purely logical sentences true under those suppositions. Now suppose
there is added to the system of possible worlds a new world for each old world, containing all the
same individuals plus one new individual (the same for each new world) not in any old world. [(3)]
will have become true, but no purely logical sentence of the modal language will have changed its
truth value.

However, the proof is not correct as stated, since the second model, but not the first, satisfies the formula
♦∃x�(E(x)→ ∃z (x �≈ z)) (there is noworldwhere this newobject exists by itself). The natural fix is to add
another world to the secondmodel which only contains the new object. The resulting models (which are like
ours except the worlds with cofinite domains are removed) satisfy the same L1M(≈)-formulas, but they are
not bisimilar, since they are distinguished by theL1M(

∧
,≈)-formula♦∃x♦(∧

n∈ω ∃≥n yE(y) ∧ ¬E(x)
)
.

However, if you restrict theL1M(≈)-bisimulation game to n-steps, for any finite n, then Eloïse has awinning
strategy (that is, the models are n-bisimilar for every n); and this suffices to guarantee modal equivalence.
Here, we ensure full bisimilarity by including worlds with cofinite domains. Thus, our proof shows that (3)
is not even expressible in L1M(

∧
,≈).
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Fig. 2 L1M(≈)-bisimilar models disagreeing on (E)

(albeit tedious) once we work out what Eloïse’s winning strategy is. The construction
of the bisimulation is given in Appendix 2, but the idea in terms of games is sketched
below. To help describe the proof, let us introduce the following useful definition:

Definition 14 (Partial isomorphism)A partial isomorphismbetweenM, w, v, a and
N , w′, v′, b is a finite partial map ρ : D → D′ such that ρ(ai ) = bi for i ≤ |a| and:
(Predicate) ∀m ∈ N∀Pm ∈ PREDm∀c1, . . . , cm ∈ dom (ρ):

〈c1, . . . , cm〉 ∈ IM(Pm, v) ⇔ 〈ρ(c1), . . . , ρ(cm)〉 ∈ IN (Pm, v′).

(Existence)∀a ∈ dom (ρ) : a ∈ δM(v) iff ρ(a) ∈ δN (v′).
(Equality)∀c, d ∈ dom (ρ) : ρ(c) = ρ(d) ⇒c = d.

We writeM, w, v, a � N , w′, v′, b to indicate that there is a partial isomorphism
between M, w, v, a and N , w′, v′, b.

To say thatM, w, v, a � N , w′, v′, b is essentially to say that Eloïse can continue the
game (i.e., Abelard has not won yet) at this stage of the game (even with ≈ present).
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Proposition 15 (Inexpressibility of (E)) E1, wN, wN �≈ E2, wN, wN. But E2 �
(3)[wN] while E1 � (3)[wN]. Hence, (3) is not expressible in L1M(≈).

Proof (Sketch) Our game starts at E1, wN, wN and E2, wN, wN. We will describe a
strategy for Eloïse such that, at every stage of the game, which we will represent as〈
wN, v1, a;wN, v2, b

〉
, we have that E1, wN, v1, a � E2, wN, v2, b (in other words:

Eloïse can continue the game at every stage of the game). We construct the strategy
by induction on Abelard’s move.

Vacuously, E1, wN, wN � E2, wN, wN. So suppose
〈
wN, v1, a′;wN, v2, b

〉
is

the current stage of the game, where E1, wN, v1, a � E2, wN, v2, b and where
|δ1(v1)| = |δ2(v2)|, i.e., the size of δ1(v1) and δ2(v2) is the same. Abelard can
decide either to pick an object from δ1(v1) or δ2(v2), or to relocate the game. By
the fact that E1, wN, v1, a � E2, wN, v2, b and that |δ1(v1)| = |δ2(v2)|, it follows that
|δ1(v1)− {a}| =

∣
∣δ2(v2)−

{
b
}∣∣. So if Abelard decides to pick a new object from one

of v1 and v2, Eloïse can always pick a matching object from the local domain of the
other world to continue the game.

Suppose instead that Abelard decides to relocate the game. Eloïse should then
choose a world in the other model so that the following holds of the new locations u1
and u2: (i) |δ1(u1)| = |δ2(u2)|, and (ii) ai ∈ δ1(u1) iff bi ∈ δ2(u2). Since there are
only finitely many a at any given stage of the game, this will always be possible. And
as long as (ii) holds, we will have that M, wN, u1, a �M, wN, u2, b. ��

Notice that this proof will fail under a variety of extensions ofL1M(≈). This is easy
to see if the extension can express (3) directly, as does L1M(≈,@) and L1M(≈,�):

♦∃x@¬E(x) (6)

�x(♦E(x) ∧ ¬E(x)). (7)

But it is also instructive to see where the proof for Proposition 15 fails for these
extensions. Ifwewere to add�, thenAbelardwould be allowed to pick any object from
the global domain of eithermodel. In that case, partial isomorphism is no longer enough
to guarantee that Eloïse can continue in this game. For Eloïse to continue the game
at

〈
wN, v1, a;wN, v2, b

〉
, we also need to ensure that |N− δ1(v1)| = |N∞ − δ2(v2)|.

Otherwise, if say |N− δ1(v1)| < |N∞ − δ2(v2)|, Abelard could keep picking objects
from N − δ1(v1) until he ran out (since |N− δ1(v1)| < |N∞ − δ2(v2)| would imply
that N − δ1(v1) is finite). Then he could pick whatever unmatched objects remain in
N
∞ − δ2(v2). In response, Eloïse would be forced to match Abelard’s object either

with an object not inN−δ1(v1), thus violating (Ex) fromDefinition 9, or with an object
in N− δ1(v1) that was already chosen, thus matching a previously unmatched object
to a previously matched object and violating (Eq). So we need to be able to ensure that
|N− δ1(v1)| = |N∞ − δ2(v2)| at every stage of the game, which we can do except at
one very crucial point, viz., the beginning: |N− δ1(wN)| �= |N∞ − δ2(wN)|. In other
words, Abelard can force a win just by picking ∞ from D2, leaving Eloïse unable
to pick a matching object while meeting (Ex). Without �, this winning strategy for
Abelard is blocked.

If we add@, thenAbelard can force the location of the game in bothmodels tomove
back to wN. In the proof of Proposition 15 above, it is crucial that Eloïse can choose
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to relocate to a world similar enough to the actual world. For instance, suppose on
round 1, Abelard chooses to move to w{∞} in E2. Then Eloïse must choose to move to
some w{n} in E1—let us say w{5}. Abelard can then choose∞ from δ2(w{∞}), forcing
Eloïse to choose 5. At this point, if Abelard decided to relocate the game back to wN

in both models, then he could choose 5 from E1, and Eloïse would lose by violating
(Eq). But without @, while Abelard can choose to relocate the game to wN in E2, say,
Eloïse does not have to relocate the game to wN in E1; she can, for instance, pick to
relocate to wN−{5} in E1.

Let us now turn to showing a more difficult inexpressibility result, viz., that (R) is
not expressible in L1M(≈,@).22 Recall (R) says that everyone who is actually rich
could have been poor, which is formalized in LTS as (4):

∃t (R(s∗, t) ∧ ∀x (
Rich(x; s∗)→ Poor(x; t))) . (4)

Let N
− :=Z − N. We let R1 = 〈W1, R1, F1, D1, δ1, I1〉 and R2 =

〈W2, R2, F2, D2, δ2, I2〉, where D1 = D2 = Z and the accessibility relations are
universal for both models. There is a world w ∈ W1 that will act as our actual world,
where every positive integer is rich (top half of circle), and every negative integer is
poor (bottom half of circle). For each nonempty finite subset S ⊆ N, there is a world
vS ∈ W1 where the members of S do not exist, and otherwise the rich and the poor
are flipped with respect to w; so at vS , the negative integers are rich, and the positive
integers not in S are poor, and the positive integers in S do not exist. The extension
of all other predicates is empty. The only difference between R1 and R2 is that R2
includes an additional world v∅ ∈ W2, where no integer fails to exist, and where the
rich and poor are flipped with respect to w. See Fig. 3 for a picture.

R2 � (4)[w], since v∅ is the world where everyone rich in w is poor. But R1 �

(4)[w], since in every world where something that is rich in w is poor, something that
is rich in w does not exist (and hence is not poor). And once again, R1, w,w �≈,@
R2, w,w. The details are left to Appendix 2, but a proof is sketched in terms of games
below.

Proposition 16 (Inexpressibility of (R))R1, w,w �≈,@ R2, w,w. ButR2 � (4)[w]
even though R1 � (4)[w]. Hence, (4) is not expressible in L1M(≈,@).

22 Yanovich (2015, p. 87) claims to have shown that♦�x (@Q(x)→ Q(x)) is not expressible inL1M(≈,

�). He proceeds, as we do, by constructing two models that disagree on this sentence, and then argues that
they are bisimilar. The first model consists of two worlds w and u, where R = {〈w, u〉} and where in both
w and u, a1, a2, a3, . . . satisfy Q(x) and b1, b2, b3, . . . do not satisfy Q(x). The second model consists of
worlds w′, u′1, and u′2, where R′ = {〈

w′, u′1
〉
,
〈
w′, u′2

〉}
. In w′, c1, c2, c3, . . . , d1, d2, d3, . . . satisfy Q(x)

while e1, e2, e3, . . . do not. In u
′
1, only c1, c2, c3, . . . satisfy Q, and in u′2, only d1, d2, d3, . . . satisfy Q. He

then claims that w and w′ are L1M(≈, �)-bisimilar. However, these models are not L1M(≈,�)-bisimilar.
In fact, they do not even satisfy the same L1M(�)-formulas: e.g., �x (Q(x) ∧♦¬Q(x)) distinguishes the
two models. The claim that such sentences cannot be expressed in L1M(≈, �) is still correct, as can be
verified with a bisimulation argument using the models N1, w,w and N2, w,w defined in Fig. 4 below
(where w = w∅∅). Another proof that L1M(≈, �) cannot express (R) can be found in Wehmeier (2001).
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Fig. 3 L1M(@)-bisimilar models disagreeing on (R). The top half of each circle satisfies Rich, while the
bottom half satisfies Poor; at each vS , the members of S do not exist

Proof (Sketch)Our game starts atR1, w,w andR2, w,w. As before, wewill describe
a winning strategy for Eloïse such that, at every stage

〈
w, v, a;w, v′, b

〉
of theL1M(≈,

@)-bisimulation game, R1, w, v, a � R2, w, v′, b.
Again, vacuously, R1, w,w � R2, w,w. So suppose

〈
w, u1, a;w, u2, b

〉
is the

current stage of the game, whereR1, w, u1, a � R2, w, u2, b and where ai is positive
(i.e., in N) iff bi is positive. We will show that this continues to be true regardless of
Abelard’s move. If Abelard decides to pick a new object from δ1(u1) or δ2(u2), it will
either be positive or negative. Since there are infinitely many of both, Eloïse will have
no trouble picking a new one; and since there was a partial isomorphism between u1
and u2, Eloïse only needs the new objects to agree on their sign.

Suppose instead that Abelard decides to relocate the game. If he decides to move
the game in both models back to w, since ai is positive iff bi is positive, we will have
R1, w,w, a � R2, w,w, b. (Likewise, if Abelard chooses to relocate to w in one
model but lets Eloïse choose the other new location, she should still choose w for the
reason above.) If he decides to relocate to some vS where S �= ∅ in, say, R1, let T
be any set with the same cardinality as S such that ai ∈ S iff bi ∈ T . Since there are
only finitely many ai s, there will always be such a T . Eloïse can choose to relocate
to vT , and again, since ai is positive iff bi is positive, R1, w, vS, a � R2, w, vT , b.
Likewise if Abelard chooses to relocate to some vS inR2.

The tricky part is determining what to do when Abelard decides to relocate to v∅
in R2. But since there are only finitely many ai s, Eloïse can just choose a vS where
S ∩ {a} = ∅. Then it will still be the case that R1, w, vS, a � R2, w, v∅, b. So no
matter where Abelard decides to relocate, Eloïse can continue the game. ��

Notice that the proof fails if we try to add either �, ↓, or F . It is easy to see this
for �, since we can express (4) as (2):

123



4388 Synthese (2018) 195:4373–4417

♦�x(@Rich(x) → Poor(x)). (2)

To see where the proof above fails for L1M(≈,@,�), consider what happens when
Abelard decides to move from u2 to v∅ inR2. Eloïse will try to match that move inR1
by moving from u1 to some vS where S ∩ {a} = ∅. But now, because of �, Abelard is
free to pick any object in S (and hence not in δ1(vS)), forcing Eloïse to match it with
an object in δ2(v∅) (since δ2(v∅) = D2 = Z), and hence violating (Atomic).

As for ↓ and F , the models above disagree on both of these formulas:

∃x (
Rich(x) ∧ ♦↓ (

Poor(x) ∧�∀y@E(y)
))

(8)

∃x (
Rich(x) ∧ 〈F〉@ (

Poor(x) ∧�∀y@E(y)
))

. (9)

In particular, R2, w,w � (8) and R2, w,w � (9) (take v∅ to be the world we shift to
by ♦↓ or 〈F〉@), but R1, w,w � (8) and R1, w,w � (9). While this does not show
that (4) can be expressed as an L1M(≈,@,↓,F)-formula, it does show R1 and R2
cannot be used to settle the matter. Using modified models, however, it is possible to
settle the matter in the negative: (4) is not even UD-expressible in L1M(≈,@,↓,F)

(see Appendix 3).23

As a final example, we will show that even L1M(≈,@,�) cannot express (NR),
which is formalized as (5):

∀s(R(s∗, s) → ∃t (R(s, t) ∧ ∀x (Rich(x; s) → Poor(x; t)))). (5)

Consider twomodelsN1=〈W1, R1, F1, D1, δ1, I1〉 andN2=〈W2, R2, F2, D2, δ2, I2〉.
Again, D1 = D2 = Z and the accessibility relations are universal. However, now all
of Z exists at every world in either model. Our actual world is z, an egalitarian world
where no integer is either rich or poor. For every finite set S ⊆ N and finite set T ⊆ N

−,
there is a worldwT

S where all the integers in (N− S)∪T are rich, while all the integers
in (N−−T )∪ S are poor (so our old w is now just w∅∅). And for every nonempty finite
set S ⊆ N, and every finite set T ⊆ N

−, there is a world vTS like before, where the
rich and poor are flipped with respect to wT

S . The only difference betweenN1 andN2

is the presence of worlds of the form vT∅ in N2. See Fig. 4 for a picture.24

N1, z, z andN2, z, z both agree that (4) is true, since nothing in z is rich. But they
disagree on whether (5) is true; without the presence of vT∅ , there is no world where
everyone rich in w∅∅ (i.e., N) is poor. Thus,N1 � (5)[z] butN2 � (5)[z]. Furthermore:

Proposition 17 (Inexpressibility of (NR))N1, z, z �≈,@,� N2, z, z. ButN2 � (5)[z]
while N1 � (5)[z]. Hence, (5) is not expressible in L1M(≈,@,�).

23 I claimed in Kocurek (2015, p. 215) that the proof of Proposition 16 extends to L1M(≈,@,↓, F)

immediately. But this needs qualification. We can obtain a quick proof that (4) is not expressible in L1M(≈
,@,↓, F) by restricting the accessibility relations in R1 and R2; but as Appendix 3 reveals, the proof of
UD-inexpressibility is more challenging.
24 I claimed to prove this in Kocurek (2015, pp. 215–216) using models like the ones presented here, except
with T = ∅ for all worlds. However, my proof was incorrect, since those models are distinguishable by the
L1M-formula ♦[∃xRich(x) ∧ ∀x∀y (Rich(x) ∧ Rich(y) → �(Rich(x) ↔ Rich(y)))

]
.
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Z

z

(N − S) ∪ T

(N− − T ) ∪ S

wT
S

(N− − T ) ∪ S

(N − S) ∪ T

vT
S

N1

∀S ⊆ N

∀T ⊆ N
−

S, T finite

∀S ⊆ N

∀T ⊆ N
−

S, T finite
S = ∅

Z

z

(N − S) ∪ T

(N− − T ) ∪ S

wT
S

(N− − T ) ∪ S

(N − S) ∪ T

vT
S

N2

∀S ⊆ N

∀T ⊆ N
−

S, T finite

∀S ⊆ N

∀T ⊆ N
−

S, T finite

Fig. 4 L1M(≈,@, �)-bisimilar models disagreeing on (NR)

Proof (Sketch) Our game starts at N1, z, z and N2, z, z. We will describe a winning
strategy for Eloïse such that at every stage of the game

〈
z, u1, a; z, u2, b

〉
, not only do

we have N1, z, u1, a � N2, u2, b, but also we have u1 = z iff u2 = z, and we have
u1 = w

T1
S1

for some S1 and T1 iff u2 = w
T2
S2

for some S2 and T2. Clearly this holds for

the initial stage 〈z, z; z, z〉. So suppose
〈
z, u1, a; z, u2, b

〉
is such a stage.

Because for each world u and each k ∈ {1, 2}, Ik(Rich, u) and Ik(Poor, u) are
empty or infinite, the back-and-forth step is easy. So suppose Abelard decides to
relocate the game in N1. If he relocates to z, then Eloïse should also just relocate
to z in N1. Suppose now Abelard decides to relocate to some w

T1
S1

in N1. Define

S2:=
{
bi ∈ N

∣
∣
∣ ai ∈ I1(Poor, w

T1
S1

)
}

and T2:=
{
bi ∈ N

−
∣
∣
∣ ai ∈ I1(Rich, w

T1
S1

)
}
.

Then one can check that N1, z, w
T1
S1

, a � N2, z, w
T2
S2

, b. For instance, suppose

ai ∈ I1(Rich, w
T1
S1

). Either bi ∈ N or bi ∈ N
−. If bi ∈ N, then bi /∈ S2, so

bi ∈ I2(Rich, w
T2
S2

). If bi ∈ N
−, then bi ∈ T2, so bi ∈ I2(Rich, w

T2
S2

). Likewise,

if ai ∈ I1(Poor, w
T1
S1

), then bi ∈ I2(Poor, w
T2
S2

). The same strategy works if Abelard

chooses to relocate to some v
T1
S1

in N1. It also works if Abelard decides to relocate in

N2, except when he chooses v
T2
S2

where the corresponding S1 as defined above would

be empty. In that case, for no ai ∈ N is bi ∈ I2(Rich, v
T2
S2

). So Eloïse can choose S1
to be any nonempty subset of N− {a}. ��

Once again, however, this inexpressibility proof does not extend to languages with
↓, since we can express (5) as:
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�↓♦�x (@Rich(x) → Poor(x)) . (10)

Likewise, if we restrict to the class of models where R = F , we can express (5) with:

F@♦�x (@Rich(x) → Poor(x)) . (11)

5 Generalizations

In the previous section,we sawanumber of examples demonstratinghowbisimulations
can be used to prove inexpressibility results for a variety of two-dimensional logics.
In this section, we turn to some more general results regarding the expressive power
of two-dimensional modal languages and beyond.

First, given that sentences like (E), (R), and (NR) are expressible in some languages
but not others, it is natural to ask what exactly the relative expressive power of all
these various languages are. For instance, combining the results in Sect. 4, we know
that L1M(≈) < L1M(≈,@) < L1M(≈,@,�). But how do languages like L1M(≈
,@,↓) and L1M(≈,@,F) compare? Is one stronger than the other? What if we add
a possibilist quantifier to one or the other?

Using bisimulation techniques like the ones in Sect. 4, we can mostly settle
these questions for the two-dimensional languages discussed in this paper (though
in what follows, I have excluded languages that include ∀@). The inclusions rel-
ative to the class of all models can be diagrammed as in Fig. 5 (for a proof of
the accuracy of the diagram, see Appendix 4). The diagram is still accurate rela-
tive to D. Relative to U, adding ↓ or F without @ present is redundant. Moreover,

L1M ≡ L1M(↓)

L1M(F) L1M(@)

L1M(@, F) L1M(@, ↓)L1M(↓, F)

L1M(@, ↓, F)

L1

L1(E)

L1(≈)

L2

L2(E)

L2(≈)

L1(Π)

L1(E, Π)

L1(≈, Π)

L2(Π)

L2(E, Π)

L2(≈, Π)

Fig. 5 The (D-)expressive hierarchy for two-dimensional languages between L1M and L1M(≈,@,↓,

F ,�). Arrows represent strict increase in expressive power. If there is an upward path from L1 to L2
in the diagram on the left, then the inclusions between L1, L2, and their extensions with E, ≈, or � are
represented in the right diagram
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L1M(E,@,↓,�) ≡U L1M(E,@,F ,�) ≡U L1M(E,@,↓,F ,�).25 Relative toUD,
we will have more inclusions. For instance, while L1M(�) �U L1M(@,↓) and
L1M(�) �D L1M(@,↓), we do have L1M(�) ≤UD L1M(@,↓), using the trans-
lation �xϕ:=↓�∀x@ϕ. Similarly, L1M(�) ≤UD L1M(@,F). However, there are
still limitations: L1M(�) �UD L1M(≈,@) and L1M(@,�) �UD L1M(≈,@,↓,F).
For more details, see Appendix 4.

Second, all of these inexpressibility results carry over to temporal logic. In temporal
logic, one also includes a backward-looking operator �−1, in addition to �, with the
following semantic clause (where R−1 = {〈v,w〉 | 〈w, v〉 ∈ R }):

M, w, v, g � �−1ϕ ⇔ ∀v′ ∈ R−1[v] : M, w, v′, g � ϕ.

Usually, � and �−1 are written respectively asG andH (for “it is always going to be”
and “it has always been”), @ is written as N (for “now”), and ↓ is written as T (for
“then”). The notion of a bisimulation can easily be generalized to temporal logic by
including Zig-Zag clauses for both R and R−1 (which are often written respectively
as < and >).

All of the sentences considered in this paper have natural temporal analogues. Here
are a few variations on some of the sentences we have been considering (where R is
replaced by <):

(FE) There will be things other than there are now.

∃t > s∗
(
E(x; t) ∧ ¬E(x; s∗)) (12)

(PR) It was the case that everyone now rich was poor.

∃t < s∗∀x (
Rich(x; s∗)→ Poor(x; t)) (13)

(FPR) Henceforth, everyone who is rich will have once been poor.

∀t > s∗∃t ′ < t∀x (
Rich(x; t) → Poor(x; t ′)) (14)

All of our models in Sect. 4 have universal accessibility relations. However, allowing
< to be universal would be too permissive in the context of temporal logic (there would
be no difference between future and past!). Often, < is required to be at least a strict
partial order (i.e., irreflexive, asymmetric, and transitive), thereby excluding models
where it is universal. Thus, none of the results in Sect. 4 immediately carry over to
temporal logic.

Fortunately, we can still piggyback on these inexpressibility results with the
following trick. Suppose M, w,w �S1,...,Sn N , v, v where the accessibility rela-
tions of M and N are universal. Assume for simplicity that WM and WN

25 The exact relation between L1M(@, F), L1M(@,↓), and L1M(@,↓, F) relative to U is an open
question. In particular, it is unknown whether L1M(@,↓) <U L1M(@, F) or even L1M(@,↓, F) ≡U
L1M(@,F). Fig. 11 in Appendix 4 summarizes the remaining inclusions relative to U.
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are countable. Let f M : N → WM be a surjection such that f M(0) =
w (and likewise for f N ). Define a new model MZ×N where WMZ×N :=Z ×
WM, RMZ×N = FMZ×N := {〈〈i, f (n)〉 , 〈 j, f (m)〉〉 | i < j or (i = j and n < m) },
DMZ×N :=DM, δMZ×N(〈i, f (n)〉):=δM( f (n)), and IMZ×N(P, 〈i, f (n)〉)
:=IM(P, f (n)). That is, each i ∈ Z contains a copy of M, and the integer-world
pairs are ordered lexicographically. Define NZ×N similarly from N using f N .

From this, it follows thatMZ×N, 〈0, w〉 , 〈0, w〉��−1,S1,...,Sn NZ×N,〈0, v〉 , 〈0, v〉.
For instance, suppose we are playing the L1M(�−1, S1, . . . , Sn) back-and-forth
game with MZ×N and NZ×N, and we are currently located at some stage〈〈i1, u1〉 , 〈i2, u2〉 , a;

〈
i ′1, u′1

〉
,
〈
i ′2, u′2

〉
, b

〉
. Then whenever Abelard makes a move,

Eloïse need only consult the L1M(S1, . . . , Sn) back-and-forth with M and N , and
see how she would respond at stage

〈
u1, u2, a; u′1, u′2, b

〉
. In particular, if Abelard

chooses to relocate the game in MZ×N to 〈i3, u3〉 where 〈i3, u3〉 > 〈i2, u2〉, then
Eloïse can pick whatever u′3 she would have chosen had Abelard chose u3 in the back-
and-forth game withM andN , and then she can relocate the game inNZ×N to

〈
i ′3, u′3

〉

where
〈
i ′3, u′3

〉
>

〈
i ′2, u′2

〉
(she will always be able to find one, since there are infinitely

many copies of N after i ′2). The same strategy applies if Abelard picks 〈i3, u3〉 with
〈i3, u3〉 < 〈i2, u2〉. Thus, our results in Sect. 4 can be extended to temporal logic.26

Finally, it seems as though two-dimensions is not enough to overcome the kind
of expressive limitations discussed in this paper in full generality. Recall that while
(NR) is not expressible as an L1M(≈,@,�)-formula, it is expressible as an L1M(≈
,@,↓,�)-formula. However, more complicated sentences can be constructed that
reveal the expressive limitations of evenL1M(≈,@,↓,�). Themost natural examples
use temporal modalities or mix modalities. For instance, here is a temporal example
from Cresswell (1990, p. 29):

(H) Once, everyone now alivewhowas not thenmiserablewould eventually be happy.

To formalize this, it seems that we need to store two reference times, not just one. In
LTS, we would formalize (H) as follows:

∃t < s∗∃t ′ > t∀x ((
Alive(x; s∗) ∧ ¬Miserable(x;t)

)→ Happy(x; t ′)) . (15)

We can also get examples with metaphysical modality, although the more powerful
the language is, the more contrived the examples have to be:

(RC) There could have been a brave man such that everyone who was poor but kind
in reality necessarily received money from that man.

The problem is that we need to be able to go back to both the actual world and the first
world we shifted to while we are at the second world we shifted to; but we can only
keep track of one reference world at a time. It has been noted in the literature that this
point seems to generalize to higher-dimensional languages.27 One gets the feeling that

26 Though our partial order was linear and discrete, this was not crucial to the construction. We could have,
for instance, mapped each state in M to a rational in the interval [0, 1), and have obtained a dense linear
order. Alternatively, via tree unraveling, we could have obtained a branching structure.
27 See, e.g., Vlach (1973, pp. 183–185), Needham (1975, pp. 73–74), van Benthem (1977, p. 418), Forbes
(1989, p. 87), and Cresswell (1990, pp. 29–30).
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for any n, we can concoct a LTS-formula that requires keeping track of (n+ 1)-many
worlds in our points of evaluation. But no proof of this claim has been offered in
the literature.28 Using the power of bisimulations, we can actually verify this claim. I
will conclude by explaining how to generate further inexpressibility results for higher-
dimensional languages. We will only explicitly prove that a certain three-dimensional
language is not expressible in any two-dimensional language. Hopefully, it will be
clear how the method can be schematized to show that some (n + 1)-dimensional
languages are not expressible in any n-dimensional language.

First, we define an n-dimensional model to be any tuple of the form M =
〈W, R, R1, . . . , Rn−1, D, δ, I 〉 where each Ri ⊆ W × W , and otherwise everything
is as before. For instance, the models we have been working with in this paper have
all been 2-dimensional models (where F = R1). Second, for each k ≥ 1, we will
introduce operators �k , @k , and ↓k , which we might add to L1M. In what follows,
we will define L1M

1 :=L1M and L1M
n+1:=L1M(�1, . . . ,�n,@1, . . . ,@n,↓1, . . . ,↓n).

Third, where σ = 〈w1, . . . , wn〉 is a sequence of worlds, and where 1 ≤ k ≤ n, let
σ k

v be the result of replacing wk in σ with v. Finally, satisfaction for L1M
n+1 will be

relativized to (n + 1)-dimensional models, as well as a sequence of n-many worlds
σ = 〈w1, . . . , wn〉, a world v, and a variable assignment g ∈ VA(M), with the
semantic clauses for the new operators stated below for 1 ≤ k ≤ n:

M, σ, v, g � �kϕ ⇔ ∀u ∈ Rk[wk] : M, σ k
u , v, g � ϕ

M, σ, v, g � @kϕ ⇔ M, σ,wk, g � ϕ

M, σ, v, g � ↓kϕ ⇔ M, σ k
v , v, g � ϕ.

Thus, F , @, and ↓ are �1, @1, and ↓1 respectively. Since L1M
1 = L1M and L1M

2
is essentially L1M(@,↓,F), it makes sense to call L1M

n with this semantics an
n-dimensional language. Generalizing the definition of a bisimulation to L1M

n is
straightforward.

Using models similar to N1 and N2 from Fig. 4, we can show that L1M
n+1

is not included in L1M
n (≈,�). We have already shown with Proposition 17

that L1M
2 is not included in L1M

1 (≈,�) (or even in L1M
1 (≈,@1,�)), since

�↓1♦∀x (@1Rich(x) → Poor(x)) distinguishes N1, z, z and N2, z, z, even though
N1, z, z �≈,@1,� N2, z, z. We will show that the following L1M

3 -formula is not

28 Several conjectures have been made about how to construct such formulas. For instance, Needham
(1975, pp. 73–74) gives a sentence he claims is not expressible in L1M(�−1,@,↓, �); but van Benthem
(1977, p. 417) shows it is. van Benthem then gives a genuine example of a temporal LTS-formula that is
not expressible in L1M(�−1,@,↓, �). However, it should be noted that even though F operators were
not the focus of van Benthem (1977), the sentence he gives is expressible in L1M(@,F−1, �), which is
still two-dimensional. Forbes (1989, p. 89) also gives a schema that was supposed to show that (n − 1)-
dimensional logic is not as expressive as n-dimensional logic. But as footnote 29 explains, the example is
not correct either. Cresswell (1990, p. 30) suggests one can generate such sentences from (H) since, reading
the conditional in (15) as a disjunction, “disjunctions can be extended with no upper limit.”
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(N1 − S1) ∪ (N2 − S2) ∪ S3 ∪ S4P1

(N3 − S3) ∪ (N4 − S4) ∪ S1 ∪ S2

αS1,S2,S3,S4

(N1 − S1) ∪ (N3 − S3) ∪ S2 ∪ S4P2

(N2 − S2) ∪ (N4 − S4) ∪ S1 ∪ S3

βS1,S2,S3,S4

(N1 − S1) ∪ (N4 − S4) ∪ S2 ∪ S3P3

(N2 − S2) ∪ (N3 − S3) ∪ S1 ∪ S4

γS1,S2,S3,S4

N1 ∪ N2 ∪ N3 ∪ N4

z

Fig. 6 Summary of N3 and N4. For each k ∈ {1, 2, 3, 4}, we have that Sk ⊆ Nk and |Sk | < ℵ0. For N3,
there are no worlds of the form γ∅,S2,S3,S4

expressible in L1M
2 (≈,�):29

�↓1�↓2♦∀x ((@1P1(x) ∧@2P2(x)) → P3(x)) . (16)

The proof that �↓1 · · ·�↓n♦∀x
(∧n

i=1 @i Pi (x) → Pn+1(x)
)
is not expressible in

L1M
n (≈,�) is a straightforward generalization of the proof below.
First, we describe our modelsN3 andN4. These models have been summarized in

Fig. 6. All of the accessibility relations will be universal, andN3 andN4 will both be
constant domain models (so the local domain of every world is the global domain).
Let N1, N2, N3, and N4 be disjoint copies of N. In both models, there will be a unique
world z where Ik(P1, z) = Ik(P2, z) = Ik(P3, z) = ∅ for k ∈ {3, 4}. There will be
three types of worlds: α-worlds, β-worlds, and γ -worlds. Each type of world will be
uniquely specified by four sets S1, S2, S3, and S4, where Sk ⊆ Nk and |Sk | < ℵ0 for
k ∈ {1, 2, 3, 4}. Where η ∈ {α, β, γ }, we will denote the worlds as ηS1,S2,S3,S4 . Each
of S1, S2, S3, and S4 is generally allowed to be empty, but inN3, only γ -worlds where
S1 �= ∅ are allowed. For each k ∈ {3, 4} and each i ∈ {1, 2, 3}, Ik(Pi , ηS1,S2,S3,S4) = ∅
with the following exceptions:

29 Forbes (1989, p. 87) gives a purported example of an n-dimensional formula not expressible as an
(n + 1)-dimensional formulas. (Following Forbes, we restrict attention to models whose accessibility
relations are universal.) Given a model M, let us say a sequence w1, . . . , wn ∈ WM is an n-chain if
δM(wi ) ⊂ δM(wi+1) for 1 ≤ i < n. Forbes (1989, p. 89) says “it is a very probable conjecture that
‘there is an n-chain of worlds’ cannot be expressed in [L1M

n−1(≈)], so that the hierarchy of modal languages

is strictly increasing in expressive power…” Forbes also notes that L1M
n−1(≈, �) can express “there is an

n-chain of worlds”, but claims that it cannot express “there is an n + 1-chain of worlds”. However, the
conjecture is false. Define θi,k :=@i∀x@kE(x) ∧@k∃x@i¬E(x). Then the claim that there is a 4-chain

can be expressed as an L1M
3 (≈)-formula: ♦1♦2

(
θ1,2 ∧♦1

(
θ2,1 ∧♦2θ1,2

))
. Likewise for n > 4. Also,

let χ :=�x (@1E(x)→ E(x))∧∃x@1¬E(x) and let η:=∀x@1E(x)∧�x (@1E(x) ∧ ¬E(x)). Then the
claim that there is a 4-chain can be expressed as an L1M

2 (≈, �)-formula: ♦1♦(χ ∧♦1 (η ∧♦χ)). Again,
this generalizes to n-chains where n > 4.
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– Ik(P1, αS1,S2,S3,S4) = (N1 − S1) ∪ (N2 − S2) ∪ S3 ∪ S4
– Ik(P2, βS1,S2,S3,S4) = (N1 − S1) ∪ (N3 − S3) ∪ S2 ∪ S4
– Ik(P3, γS1,S2,S3,S4) = (N1 − S1) ∪ (N4 − S4) ∪ S2 ∪ S3.

We will start by explaining why N3, 〈z, z〉 , z � (16) while N4, 〈z, z〉 , z � (16).
First, to explain why N3, 〈z, z〉 , z � (16), it suffices to note the following (where α

and β below have set S1 = S2 = S3 = S4 = ∅, and w is any world):

N3, 〈α, β〉 , w � ♦∀x ((@1P1(x) ∧@2P2(x)) → P3(x)) .

This is simply because I (P1, α) ∩ I (P2, β) = N, but no γ -world has all of N in
its interpretation of P3. Second, to explain why N4, 〈z, z〉 , z � (16), consider the
following formula:

♦∀x ((@1P1(x) ∧@2P2(x)) → P3(x)) . (17)

Notice that N4, 〈w, v〉 , u � (17) holds vacuously unless w is an α-world and v is a
β-world. So suppose w = αS1,S2,S3,S4 and v = βT1,T2,T3,T4 . Then:

I4(P1, w) ∩ I4(P2, v) = (N1 − (S1 ∪ T1)) ∪ (T2 − S2) ∪ (S3 − T3) ∪ (S4 ∩ T4).

Now pick u = γ(S1∪T1),(T2−S2),(S3−T3),S′4 , where S′4 is disjoint from S4 ∩ T4. (We can
always find such a γ since S1 ∪ T1 is allowed to be empty.) Then it is easy to see
that N4, 〈w, v〉 , u � ∀x ((@1P1(x) ∧@2P2(x)) → P3(x)). Thus, N3, 〈z, z〉 , z and
N4, 〈z, z〉 , z disagree on (16).

Now, in what follows, let us say that a 2D-partial isomorphism between
M, 〈w, z〉 , v, a and N ,

〈
w′, z′

〉
, v′, b is a map ρ such that ρ is a partial isomor-

phism betweenM, w, v, a and N , w′, v′, b, and also a partial isomorphism between
M, w,w, a andN , w′, w′, b. In other words, 2D-partial isomorphisms must also sat-
isfy (Predicate) and (Existence) at w and w′. We will write �2D in place of � for
2D-partial isomorphisms. It is easy to verify that 2D-partial isomorphism allows for
Eloïse to continue the L1M

2 (≈)-bisimulation game.
Let us write M, w, z, v, a �2 N , w′, z′, v′, b to mean that M, w, z, u, a and

N , w′, z′, u′, b are L1M
2 -bisimilar (I am dropping the angle brackets). Note �2 is just

L1M(@1,↓1,�1) = L1M(@,↓,F)-bisimilarity, with an extra argument place for
worlds in the middle; no clause in this notion of bisimilarity can do anything to or
with the z and z′ worlds. The conventions from before regarding adding additional
operators, quantifiers, etc. all apply.

Theorem 18 (Higher-dimensional inexpressibility) N3, z, z, z �2≈,@2,�
N4, z, z, z.

Proof Clearly, z, z, z �2D z, z, z. Now, suppose w, z, v, a �2D w′, z, v′, b, where:

– w = z iff w′ = z (likewise for v and v′)
– w is an α/β/γ -world iff w′ is an α/β/γ -world (likewise for v and v′)
– w = v iff w′ = v′.
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Using these assumptions, we will show that no matter what move Abelard makes,
Eloïse can match his move so as to preserve these assumptions.

First, observe that no matter what worlds w and v are, for any i, j ∈ {1, 2, 3}, all
of the following sets are either empty or infinite (where k ∈ {3, 4}):

Ik(Pi , w) ∩ Ik(Pj , v) Ik(Pi , w) ∩ Ik(Pj , v)

Ik(Pi , w) ∩ Ik(Pj , v) Ik(Pi , w) ∩ Ik(Pj , v).

Thus, if Abelard picks a new a ∈ δ3(u), then no matter what predicates it satisfies in
w or v, Eloïse will have infinitely many new b ∈ δ4(u′) to choose from which satisfy
the same predicates in w′ and v′. Likewise if Abelard picks a new b ∈ δ4(u′).

Next, suppose Abelard decides to relocate the game inN3. Since this is the L1M
2 (≈

,�)-bisimulation game, he can either choose to replace w with another world, or v

with another world (there are no clauses for reseting z). Clearly if he replaces one
of these with z, Eloïse should match his move by replacing the corresponding world
with z. If he replaces w with v, Eloïse should replace w′ with v′. Likewise if he
replaces v with w. Suppose WLOG that he decides to replace v with a new α-world
u = αS1,S2,S3,S4 . Define:

T1 := {bi ∈ N1 | ai /∈ I3(P1, u) } T3 := {bi ∈ N3 | ai ∈ I3(P1, u) }
T2 := {bi ∈ N2 | ai /∈ I3(P1, u) } T4 := {bi ∈ N4 | ai ∈ I3(P1, u) } .

Define u′ = αT1,T2,T3,T4 . It is easy to check that ai ∈ I3(P1, u) iff bi ∈ I4(P1, u′).
(Suppose ai ∈ I3(P1, u), and reason by cases depending on which Nk contains bi .
Likewise with ai /∈ I3(P1, u).) The other cases are symmetric (for both Zig and Zag),
except if Abelard decides to replace v′ with a γ -world where the corresponding S1 we
define would be empty. In that case, define the other sets as before, and pick a new
c ∈ N1 − {a} and set S1 = {c}. ��

6 Conclusion

As we have seen, there are a number of English modal claims that seem to resist
regimentation in first-order modal logic, even if we add two-dimensional operators.
Proofs of these claims in the literature are often quite complicated. But as we have
shown, they can be simplified by first regimenting these English sentences as formulas
in an extensional two-sorted language and then constructing bisimilar models that
disagree on these extensional formulas. We illustrated this technique by showing that
(E) is not expressible in L1M(≈), that (R) is not expressible in L1M(≈,@), and that
(NR) is not expressible in L1M(≈,@,�). We then classified the relative expressive
power of the extensions of L1M with operators like @, ↓, and F , and finally showed
how these inexpressibility results generalize to temporal languages and to higher-
dimensional languages.

There are still a number of questions about the expressivity of extensions of first-
order modal logic that have yet to be resolved. For one thing, we have yet to complete
the classification of the expressive power of these languages relative to U and UD,
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and one might also wonder whether these results hold in other kinds of models, such
as the class of models with finite global domains.30 More broadly, there is still a
question about whether we can formally characterize sentences like (E), (R), and
(NR).31 Finally, there is still much to be learned about even more powerful extensions
of first-order modal logic. For instance, the results in Sect. 5 suggest that the key to
overcoming all of these expressive limitations is to move to a hybrid language, or some
weakerVlachian languages.32 Bisimulation techniques can also be used to characterize
the expressive power of first-order Vlachian logics and hybrid logics.33 But there is
still much to uncover about the full expressive landscape for these languages and their
extensions.

Acknowledgements Many thanks to Melissa Fusco, Wes Holliday, and two anonymous reviewers for all
their feedback on this paper. Thanks also to those who participated in UC Berkeley’s dissertation seminar
in the Spring of 2016 for all their valuable comments and suggestions on an earlier draft of this paper.

Appendix 1: van Benthem’s characterization theorem

In this appendix, we prove Theorem 13. We essentially follow the proof of the corre-
sponding theorem for propositional modal logic in Blackburn et al. (2001, Chap. 2.6).
The crucial change is with the definition of a set of formulas being satisfiable.

Definition 19 (Satisfiability) Let z be some new variables not in VAR, and let L(z)
be the result of extending L with z. Let Γ (x, z) be a set of L(z)-formulas whose only
variables not among z are x . Let M be a model, and X ⊆ W 2, and let b ∈ D.

– Γ is Σ/∃/∃@-satisfiable in X over b (with respect toM) if there is a 〈w, v〉 ∈ X
and some a ∈ D/δ(v)/δ(w) such that M, w, v � Γ [a, b].

– Γ is finitely Σ/∃/∃@-satisfiable in X over b (with respect to M) if every finite
subset of Γ is �/∃/∃@-satisfiable in X over b (with respect toM).

Note that if the only free variables in Γ are among z, then Γ is (finitely) �-satisfiable
in X over b iff it is (finitely) ∃-satisfiable in X over b iff it is (finitely) ∃@-satisfiable
in X over b. We will just use the term “(finitely) satisfiable” when the distinction does
not matter.

Definition 20 (Modal saturation) Assume F , ∀@, and � are not among S1, . . . , Sn .
A modelM is L1M(S1, . . . , Sn)-saturated if for all w, v ∈ W , all b ∈ D, and all sets
Γ (x, z) of L1M(S1, . . . , Sn, z)-formulas:

30 A theoremofYanovich (2015, pp. 85–86) shows that onewill not generally be able to use the bisimulation
technique proposed in this paper to establish inexpressibility over the class of models with finite domains.
I suspect one could still establish such results, however, by constructing sequences of pairs of finite models
that were n-bisimilar for each n ∈ N. But working out the details must be left for future work.
31 See Kocurek (2016) for one such syntactic characterization.
32 See Vlach (1973), Areces et al. (1999), Areces and Cate (2007), Fritz (2012), Yanovich (2015) and
Kocurek (2016).
33 For examples, see Fritz (2012) and Yanovich (2015).
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(a) if Γ is finitely ∃-satisfiable in {w} × R[v] over b (with respect to M), then it is
∃-satisfiable in {w} × R[v] over b;

(b) if Γ is finitely ∃-satisfiable in {〈w, v〉} over b (with respect to M), then it is
∃-satisfiable in {〈w, v〉} over b.

If F is among S1, . . . , Sn , we just add the following clause:

(c) if Γ is finitely ∃-satisfiable in F[w] × {v} over b (with respect to M), then it is
∃-satisfiable in F[w] × {v} over b.

If �/∀@ is among S1, . . . , Sn , add the clauses above but with ∃ replaced by �/∃@.

Lemma 21 (Modal saturation implies the Hennessy–Milner property) Suppose M
and N are L1M(S1, . . . , Sn)-saturated. Then ≡S1,...,Sn is an L1M(S1, . . . , Sn)-
bisimulation between M and N . Hence, if M, w, v, a ≡S1,...,Sn N , w′, v′, b, then
it follows that M, w, v, a �S1,...,Sn N , w′, v′, b.

Proof Suppose M, w, v, a ≡S1,...,Sn N , w′, v′, b. Clearly (Atomic) is satisfied (and
likewise for (Ex) and (Eq) if E or ≈ are among S1, . . . , Sn).

Zig-Zag. Let u ∈ RM[v]. Define Γ (z):= {ϕ(z) |M, w, u � ϕ[a] }. Let Δ ⊆ Γ

be finite and nonempty. Then since u ∈ RM[v],M, w, v � ♦
∧

Δ[a].
Since M, w, v, a ≡S1,...,Sn N , w′, v′, b (and since for each ψ ∈ Δ,
we could replace z with fresh new variables in VAR), it follows that
N , w′, v′ � ♦

∧
Δ[b]. Hence, Δ is satisfiable in

{
w′

} × RN [v′] over
b. By L1M(S1, . . . , Sn)-saturation, there is a u′ ∈ RN [v′] such that
M, w, u′ � Γ [b]. Thus, M, w, u, a ≡S1,...,Sn N , w′, u′, b. Likewise
for the Zag clause. �

Back-Forth. Let a′ ∈ δM(v). Define Γ (x, z):= {
ϕ(x, z)

∣
∣M, w, v � ϕ[a′, a]}. Let

Δ ⊆ Γ be finite and nonempty. Then M, w, v � ∃x ∧
Δ(x, z)[a].

Since M, w, v, a ≡S1,...,Sn N , w′, v′, b, it follows that N , w′, v′ �
∃x ∧

Δ(x, z)[b]. Hence, Δ is ∃-satisfiable in
{〈

w′, v′
〉}

over b with
respect toN . By L1M(S1, . . . , Sn)-saturation, Γ itself is ∃-satisfiable in{〈

w′, v′
〉}
over b with respect to N . So there is a b′ ∈ δM(v′) such that

N , w′, v′ � Γ [b′, b]. Thus, M, w, v, a, a′ ≡S1,...,Sn N , w′, v′, b, b′.
Likewise for the Forth clause. �

The F-Zig-Zag-clauses are just like the Zig-Zag clause above, and the other quan-
tifier Back-Forth clauses are just like the Back-Forth clauses above. The Act and
Diag clauses are taken care of automatically by the fact that M, w, v, a ≡S1,...,Sn
N , w′, v′, b (assuming @/↓ is among S1, . . . , Sn). ��
Definition 22 (Realization) Let LTS(z, t) be LTS extended with z /∈ VAR and t /∈
SVAR. Let b ∈ D and v ∈ W where

∣
∣b

∣
∣ = |z| and |v| = ∣

∣t
∣
∣. Let M be a model, and

let Γ (x, z; s, t) be a set of LTS(z, t)-formulas whose only free variables are among
x, z, s, t .

– Γ is realized over b and v (with respect toM) if there are some a ∈ D and u ∈ W
such that M � Γ [a, b; u, v]. We call b and v parameters.
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– Γ is finitely realized over b and v (with respect toM) if every finite subset of Γ

is realized over b and v (with respect toM).

Definition 23 (Saturation) We will say M is countably saturated if for every finite
b ∈ D, every finite v ∈ W , and every set Γ of LTS(z, t)-formulas (where

∣
∣b

∣
∣ = |z|

and |v| = ∣
∣t

∣
∣) that is finitely realized over b and v, Γ is also realized over b and v.

Lemma 24 (Countable saturation implies modal saturation) If M is countably satu-
rated, then it is L-saturated.
Proof LetM be a countably saturated model. Suppose a set Γ (x, z) ofL(z)-formulas
is finitely ∃-satisfiable in {w} × R[v] over b. Consider the set:

Γ ∗(x, z; s, r, t):=STs,t (Γ ) ∪ {R(r, t)} ∪ {E(xi ; t) | xi ∈ x } .

Let Δ ⊆ Γ be finite and nonempty. Since Δ is ∃-satisfiable in {w} × R[v], there is a
u ∈ R[v] and some a ∈ δ(u) such that M, w, u � Δ[a, b]. Let:

Δ∗:=STs,t (Δ) ∪ {R(r, t)} ∪ {E(xi ; t) | xi ∈ x } .

Then M � Δ∗[a, b;w, v, u]. But Δ∗ ⊆ Γ ∗ is finite. So every finite subset of Γ ∗
is realized over b, w, v, and u. By countable saturation, there are some a ∈ D and
u ∈ W such thatM � Γ ∗[a, b;w, v, u]. But then u ∈ R[v], a ∈ δ(u), andM, w, u �
Γ [a, b]. So Γ is ∃-satisfiable in {w} × R[v]. Likewise for ∃-satisfiability in {〈w, v〉},
except you define:

Γ ∗(x, z; s, t):= {
STs,t (ϕ)

∣
∣ϕ ∈ Γ

} ∪ {E(xi ; t) | xi ∈ x } .

Similarly for the other kinds of satisfiability. ��
It follows from Lemmas 21 and 24 that:

Corollary 25 (Countable saturation implies Hennessy–Miller property) IfM andN
are countably saturated, and itM, w, v, a ≡S1,...,Sn N , w′, v′, b, then it follows that
M, w, v, a �S1,...,Sn N , w′, v′, b.

Definition 26 (Ultraproducts) Let N �= ∅. An ultrafilter over N is a set U ⊆ ℘ (N )

where U is closed under supersets and finite intersections, ∅ /∈ U , and for all
S ∈ ℘ (N ), either S ∈ U or S ∈ U . Let U be an ultrafilter over N . For each
i ∈ N , let Wi �= ∅. Then ∏

i∈N Wi is the set of functions f : N → ⋃
i∈N Wi

where f (i) ∈ Wi . We will say f ∼U f ′ if
{
i ∈ N

∣
∣ f (i) = f ′(i)

} ∈ U . Define
[ f ]U =

{
f ′

∣
∣ f ∼U f ′

}
. Finally, we will define the ultraproduct of Wi modulo U

as the set
∏

U Wi :=
{
[ f ]U

∣
∣ f ∈∏

i∈N Wi
}
. We will drop the subscript U when the

ultrafilter in question is obvious from the context. An ultrapower is an ultraproduct
where Wi = W for all i ∈ N , which we may write as

∏
U W .

Definition 27 (Ultrapowers of models) LetM = 〈W, R, F, D, δ, I 〉 be a model. The
ultrapower model of M modulo U is the model

∏
U M defined as follows:
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– WU :=∏
U W

– RU ([ f1] , [ f2]) iff {i ∈ N | R( f1(i), f2(i)) } ∈ U
– FU ([ f1] , [ f2]) iff {i ∈ N | F( f1(i), f2(i)) } ∈ U
– DU :=∏

U D
– [o] ∈ δU ([ f ]) iff {i ∈ N | o(i) ∈ δ( f (i)) } ∈ U
– 〈[o1] , . . . , [on]〉 ∈ IU (P, [ f ]) iff {i ∈ N | 〈o1(i), . . . , on(i)〉 ∈ I (P, f (i)) } ∈
U .

It is a routine exercise to show that these definitions are well-defined, i.e., they do not
depend on the representative of the equivalence class used in their statement.

Theorem 28 (Łoś’s theorem) The following are equivalent:

(a)
∏

U M � α[[o1] , . . . , [on]].
(b) {i ∈ N |M � α[o1(i), . . . , on(i)] } ∈ U.

This can be proven by induction.34 Now, define fw : i !→ w and oa : i !→ a. If
g is a variable assignment over M, define gU : x !→ og(x). Let the diagonal map
be the map d from M to

∏
U M such that d(w) = fw and d(a) = oa . Then it is

a straightforward corollary of Theorem 28 that the diagonal map is an elementary
embedding of M into

∏
U M.

Say that U is countably incomplete if there is a countable subset of U whose
intersection is not in U . A standard result from model theory shows that if U is
countably incomplete, then

∏
U M is countably saturated.35 The important point,

however, is that we can always find a countably saturated elementary extension ofM
(viz.,

∏
U M where U is a countably incomplete ultrafilter). This is all we will need

below.

Proof (Theorem 13) Let Γ := {
STs,t (ϕ)

∣
∣α � STs,t (ϕ)

}
. It suffices to show (by the

compactness of LTS) that Γ � α. Suppose M, g � Γ . Define:

Δ:= {
STs,t (ϕ)

∣
∣M, g � STs,t (ϕ)

} ∪ {α} .

It is easy to show that Δ is satisfiable (again by compactness). Let N , h � Δ. Then
M, g(s), g(t), g(x) ≡S1,...,Sn N , h(s), h(t), h(x) by the way we defined Δ. Now, by
the results above, there exist elementary extensions e : M � M′ and f : N � M′
that are countably saturated. Since these are elementary embeddings:

M′, e(g(s)), e(g(t)), e(g(x)) ≡S1,...,Sn N ′, f (h(s)), f (h(t)), f (h(x)).

By Corollary 25, since these are countably saturated:

M′, e(g(s)), e(g(t)), e(g(x)) �S1,...,Sn N ′, f (h(s)), f (h(t)), f (h(x)).

Hence, by invariance under bisimulation, M′, g′ � α (where g′(x) = e(g(x)). Since
e :M � M′, it follows that M, g � α. ��

34 See Chang and Keisler (1990, Chap. 4).
35 See Bell and Slomson (2006, pp. 222–224).
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Appendix 2: Bisimulation proofs

In this appendix, we give more formal details regarding the bisimulation proofs from
Sect. 4. We start with the proof of Proposition 15. Before reading, recall the definition
of a partial isomorphism from Definition 14, and the definition of the models E1 and
E2 (see Fig. 2 for a picture). Note thatM, w, v, a � N , w′, v′, b iff the map ai !→ bi
is a partial isomorphism between them. In particular, for our models E1 and E2, if
ai ∈ δ1(v1) iffbi ∈ δ2(v2) andai = a j iffbi = b j , thenE1, wN, v1, a � E2, wN, v2, b,
since this means ai !→ bi is a partial isomorphism.We will make use of this implicitly
throughout.

We will define our bisimulation in stages. First, set Z0 = {〈wN, wN;wN, wN〉}.
Next, suppose we have constructed Zi so that for all

〈
wN, v1, a;wN, v2, b

〉 ∈ Zi ,
|δ1(v1)| = |δ2(v2)| and E1, wN, v1, a � E2, wN, v2, b. (Clearly this holds for Z0.)
Define the following sets:

Set Zi+1:=Zi ∪ ZZZ-fin
i ∪ ZZZ-cofin

i ∪ ZBF
i .

Lemma 29 (This construction can continue) If
〈
wN, v1, a;wN, v2, b

〉 ∈ Zi+1, then
|δ1(v1)| = |δ2(v2)| and E1, wN, v1, a � E2, wN, v2, b.

Proof Suppose
〈
wN, v1, a;wN, v2, b

〉 ∈ Zi+1. If
〈
wN, v1, a;wN, v2, b

〉 ∈ Zi , then
this is obvious. Otherwise,

〈
wN, v1, a;wN, v2, b

〉
is either in ZZZ-fin

i , ZZZ-cofin
i , or

ZBF
i .

Case 1: ZZZ-fin
i . So v1 = wS and v2 = wT for some S and T . By the fact that

|S| = |T |, |δ1(v1)| = |δ2(v2)|. And by construction, ai ∈ S iff bi ∈ T , so
ai ∈ δ1(v1) iff bi ∈ δ2(v2), and thus E1, wN, v1, a � E2, wN, v2, b. �
Case 2: ZZZ-cofin

i . Same reasoning, only we know |δ1(v1)| = |δ2(v2)| = ℵ0. �
Case 3: ZBF

i . We already know |δ1(v1)| = |δ2(v2)| since this was guaranteed by
Zi . Moreover, both a ∈ δ1(v1) and b ∈ δ2(v2), so we still meet (Existence). And
by the fact that a = ai iff b = bi , we still meet (Equality). �

��
Lemma 29 guaranteeswe can continue the construction. Finally, define Z := ⋃

i∈ω Zi .

Proof (Proposition 15) Suppose
〈
wN, v1, a;wN, v2, b

〉 ∈ Z . Then there is some i
such that

〈
wN, v1, a;wN, v2, b

〉 ∈ Zi . By Lemma 29, E1, wN, v1, a � E2, wN, v2, b,
so (Atomic) and (Eq) (as well as (Ex)) are satisfied.
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Zig. Let u1 ∈ W1. Suppose that u1 = wS for some finite nonempty S ⊆ N. Wewant
to show that there is a T ⊆ N

∞ such that
〈
wN, wS, a;wN, wT , b

〉 ∈ ZZZ-fin
i .

List the elements c1, . . . , cn ∈ S − {a}. Let d1, . . . , dn be n-many distinct
elements from N

∞ − {
b
}
, and set T = {bi | ai ∈ S } ∪ {d1, . . . , dn}. Then

T ⊆ N
∞ is also finite and nonempty, |S| = |T |, and ai ∈ S iff bi ∈ T . So〈

wN, wS, a;wN, wT , b
〉 ∈ ZZZ-fin

i . The case where u1 = wN−S is essentially
the same, except one does not need |S| = |T |. �

Zag. As above. �
Forth. Let a ∈ δ1(v1). If a = ai , then we can just pick b = bi , and note that〈

wN, v1, a, ai ;wN, v2, b, bi
〉 ∈ ZBF

i . So suppose a is not among a. Since
|δ1(v1)| = |δ2(v2)|, we have that |δ1(v1)− {a}| =

∣
∣δ2(v2)−

{
b
}∣∣. And the

former is not empty since a ∈ δ1(v1) − {a}. So pick any b ∈ δ2(v2) −
{
b
}
.

Then we have that
〈
wN, v1, a, a;wN, v2, b, b

〉 ∈ ZBF
i . �

Back. As above. �
��

Now for the proof of Proposition 16. As before, set Z0 = {〈w,w;w,w〉}. Now
suppose we have constructed Zi and for all

〈
w, u1, a;w, u2, b

〉 ∈ Zi ,R1, w, u1, a �
R2, w, u2, b and u1 = w iff u2 = w. Define the following sets:

Then set: Zi+1 = Zi ∪ ZAct
i ∪ ZZZ

i ∪ ZZZ∅
i ∪ ZBF

i .

Lemma 30 (This construction can continue too) If
〈
w, u1, a;w, u2, b

〉 ∈ Zi+1, then
R1, w, u1, a � R2, w, u2, b and u1 = w iff u2 = w.

Proof Suppose
〈
w, u1, a;w, u2, b

〉 ∈ Zi+1. It is easy to verify that u1 = w iff u2 = w

by looking at the constructions above. If
〈
w, u1, a;w, u2, b

〉 ∈ Zi , then we are done.
So suppose

〈
w, u1, a;w, u2, b

〉
/∈ Zi .

First, (Predicate). If
〈
w, u1, a;w, u2, b

〉 ∈ ZAct
i ∪ ZZZ

i ∪ ZZZ∅
i , then we know

∃u′1, u′2 :
〈
w, u′1, a;w, u′2, b

〉 ∈ Zi . So R1, w, u′1, a � R2, w, u′2, b. But since u′1 =
w iff u′2 = w, that means ai ∈ N iff bi ∈ N. So since u1 = w iff u2 = w,
R1, w, u1, a and R2, w, u2, b satisfy (Predicate). If instead

〈
w, u1, a;w, u2, b

〉 =〈
w, u1, c, c;w, u2, d, d

〉 ∈ ZBF
i , then

〈
w, u1, c;w, u2, d

〉 ∈ Zi , which (by the same
reasoning as above) means ci ∈ N iff di ∈ N. And by construction of ZBF

i , c ∈ N
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iff d ∈ N. So since u1 = w iff u2 = w, again R1, w, u1, a and R2, w, u2, b satisfy
(Predicate).

Next, (Existence). This is trivial if
〈
w, u1, a;w, u2, b

〉 ∈ ZAct
i , since δ1(w) =

δ2(w) = Z. It is guaranteed by construction in all other cases.
Finally, (Equality). This is trivial in every case, except ZBF

i , in which case it is
guaranteed by construction. ��
As before, define Z := ⋃

i∈ω Zi .

Proof (Proposition 16) Suppose
〈
w, u1, a;w, u2, b

〉 ∈ Z . Then there is an i such that〈
w, u1, a;w, u2, b

〉 ∈ Zi . By Lemma 30, (Atomic) and (Eq) (as well as (Ex)) are
satisfied.

Act. By construction of ZAct
i ,

〈
w,w, a;w,w, b

〉 ∈ Zi+1. �
Zig. Let u′1 ∈ W1. If u′1 = w, then this is covered by the above case. So let

u′1 = vS instead. Define T := {bi | ai ∈ S } ∪ {c} where c ∈ N − {
b
}

is arbitrary. Then T is finite and nonempty, and ai ∈ S iff bi ∈ T . So〈
w, vS, a;w, vT , b

〉 ∈ ZZZ
i . �

Zag. As above, except in the case where we pick v∅ ∈ W2. In that case,
let S ⊆ N be any finite nonempty set such that S ∩ {a} = ∅. Then〈
w, vS, a;w, v∅, b

〉 ∈ ZZZ∅
i . �

Back. Let a ∈ δ1(u1) (we assume without loss of generality that a /∈ {a}). If
a ∈ N

−, then pick any new b ∈ N
−. If instead a ∈ N, then since

δ2(u2) ∩ N is infinite, pick any new b ∈ δ2(u2) ∩ N. Either way,〈
w, u1, a, a;w, u2, b, b

〉 ∈ ZBF
i . �

Forth. As above. �
��

Other inexpressibility proofs are straightforward once the winning strategy for Eloïse
is worked out.

Appendix 3: Inexpressibility in L1M(≈,@, ↓,F)

In this appendix, we will prove that (4) is not expressible as an L1M(≈,@,↓,F)-
formula. Recall (4):

∃t (R(s∗, t) ∧ ∀x (
Rich(x; s∗)→ Poor(x; t))) . (4)

First, we define our models R3 = 〈W3, R3, F3, D3, δ3, I3〉 and
R4 = 〈W4, R4, F4, D4, δ4, I4〉. Our global domains will contain Z plus a disjoint
copy of N, which we will call N∞:= {∞n | n ∈ N }. So D3 = D4 = Z ∪ N∞. All
the accessibility relations are universal in their respective models. If T ⊆ N, let
T∞:= {∞n | n ∈ T }. Please note: throughout this section, when we write T∞, we
mean N∞ − T ; when we write S where S ⊆ N, we mean N− S.

For each finite nonempty S ⊆ N, and each finite T ⊆ N, W1 will contain a world
wT

S and a world vTS . Intuitively, w
T
S is a world where (i) every negative integer is poor,
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N ∪ T∞
N

−

wT
∅

N
−

(N − S) ∪ T∞

vT
S

(N − S) ∪ T∞

N
−

wT
S

R3

∀S, T ⊆ N

S, T finite
S = ∅

∀S, T ⊆ N

S, T finite
S = ∅

N ∪ T∞
N

−

wT
∅

N
−

(N − S) ∪ T∞

vT
S

(N − S) ∪ T∞

N
−

wT
S

R4

∀S, T ⊆ N

S, T finite
∀S, T ⊆ N

S, T finite
S = ∅

Fig. 7 L1M(≈,@,↓, F)-bisimilar models that still disagree on (R)

(ii) every integer of (N− S) is rich, (iii) every object of T∞ is rich, and (iv) nothing in
S ∪ T∞ exists. vTS is like wT

S except the rich and the poor are flipped. In addition, for
any finite T ⊆ N, there will be a world of the form wT

∅ in W1 (our actual world will
be w:=w∅∅). W2 is like W1 except it also contains worlds of the form vT∅ . See Fig. 7
for a picture.

Observe R3 � (4)[w] while R4 � (4)[w]. Furthermore, recall that the reason R1
andR2 could not be used to show that (4) is not expressible as an L1M(≈,@,↓,F)-
formula was because they disagreed on the following formulas at w:

∃x (
Rich(x) ∧ ♦↓ (

Poor(x) ∧�∀y@E(y)
))

(8)

∃x (
Rich(x) ∧ 〈F〉@ (

Poor(x) ∧�∀y@E(y)
))

. (9)

Observe that this is no longer the case: w does not satisfy either (8) or (9) in R3 or
R4.

Proposition 31 (Strengthened inexpressibility of (R))R3, w,w �≈,@,↓,F R4, w,w.
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Proof Clearly R3, w,w � R4, w,w. So suppose that R3, s
T1
S1

, t T2S2 , a � R4, s
T ′1
S′1

,

t
T ′2
S′2

, b, where:

(I)sT1S1 = w
T1
S1
iffs

T ′1
S′1
= w

T ′1
S′1

(and likewise fort)

(II)ai ∈ N
−iffbi ∈ N

−

(III)ai ∈ S1 ∪ T1∞iffbi ∈ S′1 ∪ T ′1∞
(IV)ai ∈ S2 ∪ T2∞iffbi ∈ S′2 ∪ T ′2∞
(V) |(S1 − S2) ∪ (T2∞ − T1∞)| = ∣

∣(S′1 − S′2) ∪ (T ′2∞ − T ′1∞)
∣
∣ .

Notice in particular that R3, w,w � R4, w,w meets all of these constraints vac-
uously. We will show using (I)–(V) that, regardless of Abelard’s move, Eloïse can
continue the game in a way that preserves (I)–(V). Note throughout that if I use
the same letter, say u, for uTS and uT

′
S′ , I mean for uTS to be a w-world iff uT

′
S′ is a

w-world.
First, suppose Abelard decides to pick an object a ∈ δ3(t

T2
S2

) (the case where he

picks a b ∈ δ4(t
T ′2
S′2

) is symmetric). If he does this, then obviously (I) and (V) are

met regardless of what Eloïse picks. So she just needs to ensure (II)–(IV) are met. If
a ∈ N

−, then Eloïse can pick an arbitrary b ∈ N
− that has not already been picked.

Otherwise, since a ∈ δ3(t
T2
S2

), that means a /∈ S2 ∪ T2∞. There are two cases to
consider:

Case 1: a /∈ S1 ∪ T1∞. That means a ∈ (N− (S1 ∪ S2))∪ (T1∞ ∪ T2∞). But since
S′1, S′2, T ′1, and T ′2 are all finite, there will be infinitely many b ∈ (N− (S′1∪ S′2))∪
(T ′1∞ ∪ T ′2∞) that have not been picked yet. So Eloïse can just pick an arbitrary

one of those, in which case b /∈ S′1 ∪ T ′1∞ and b /∈ S′2 ∪ T ′2∞. �
Case 2: a ∈ S1 ∪ T1∞. That means we need to ensure that b ∈ S′1 ∪ T ′1∞ while

also ensuring that b /∈ S′2 ∪ T ′2∞. That means we need:

b ∈ (S′1 ∪ T ′1∞)− (S′2 ∪ T ′2∞)

= (S′1 − S′2) ∪ (T ′1∞ − T ′2∞)

= (S′1 − S′2) ∪ (T ′2∞ − T ′1∞).

But since |(S1 − S2) ∪ (T2∞ − T1∞)| = ∣
∣(S′1 − S′2) ∪ (T ′2∞ − T ′1∞)

∣
∣, and since

(II)–(IV) hold for a and b, it is easy to show that:

|[(S1 − S2) ∪ (T2∞ − T1∞)] − {a}| = ∣
∣[(S′1 − S′2) ∪ (T ′2∞ − T ′1∞)] − {

b
}∣∣

Hence, there must be some b ∈ (S′1− S′2)∪ (T ′2∞− T ′1∞) that has not been picked
yet. So Eloïse can just pick an arbitrary one of those. �

Next, suppose Abelard decides to relocate the game. If he uses the @ or ↓ moves,
then the constraints will all be vacuously satisfied. So suppose he decides to relocate
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the game in R3 to
〈
sT1S1 , u

T3
S3

〉
. If T3 = T1 and S3 = S1, then Eloïse should pick u

T ′1
S′1
. If

T3 = T2 and S3 = S2, then she should pick u
T ′2
S′2
. Otherwise, Eloïse can pick a T ′3 and

S′3 using a different method as follows. Define the following sets:

S∗3 :=
{
bi ∈ b

∣
∣ bi ∈ N and ai ∈ S3 ∪ T1∞

}

T ∗3∞:=
{
bi ∈ b

∣
∣ bi ∈ N∞ and ai /∈ S3 ∪ T1∞

}
.

One can verify that if S′3 ⊆ N and T ′3∞ ⊆ N∞ such that S′3∩
{
b
} = S∗3 and T ′3∞∩

{
b
} =

T ∗3∞, then ai ∈ S3 ∪ T3∞ iff bi ∈ S′3 ∪ T ′3∞. We will now show the following:

Claim There are S′3 ⊆ N and T ′3∞ ⊆ N∞ such that:

1. S′3 ∩
{
b
} = S∗3

2. T ′3∞ ∩
{
b
} = T ∗3∞, and

3. |(S1 − S3) ∪ (T3∞ − T1∞)| = ∣
∣(S′1 − S′3) ∪ (T ′3∞ − T ′1∞)

∣
∣.

Suppose not. That is, suppose that every S′3 ⊆ N and T ′3∞ ⊆ N∞ that satisfy (i)
and (ii) fail to satisfy (iii). We will show that from this assumption, we can derive a
contradiction.

First, suppose there is an S′3 ⊆ N and T ′3∞ ⊆ N∞ satisfying (i) and (ii) such
that |(S1 − S3) ∪ (T3∞ − T1∞)| >

∣
∣(S′1 − S′3) ∪ (T ′3∞ − T ′1∞)

∣
∣. Let n be such that

|(S1 − S3) ∪ (T3∞ − T1∞)| = ∣
∣(S′1 − S′3) ∪ (T ′3∞ − T ′1∞)

∣
∣ + n (both sets are finite

after all). Since T ′1∞ and T ′3∞ are finite, we can pick n arbitrary objects c ∈ N∞ −
(T ′1∞∪ T ′3∞∪

{
b
}
) and set T ′′3∞:=T ′3∞∪ {c}. But then |(S1 − S3) ∪ (T3∞ − T1∞)| =∣

∣(S′1 − S′3) ∪ (T ′′3∞ − T ′1∞)
∣
∣, and (ii) is still met replacing T ′3∞ with T ′′3∞. �

Hence, it must be that for every S′3 ⊆ N and T ′3∞ ⊆ N∞ satisfying (i) and
(ii), |(S1 − S3) ∪ (T3∞ − T1∞)| < ∣

∣(S′1 − S′3) ∪ (T ′3∞ − T ′1∞)
∣
∣. Now, we can assume

without loss of generality that (S′1 − S′3) ⊆
{
b
}
and (T ′3∞ − T ′1∞) ⊆ {

b
}
. Here

is why. Suppose (S′1 − S′3) −
{
b
} �= ∅. Then pick a c ∈ (S′1 − S′3) −

{
b
}
and

set S′′3 :=S′3 ∪ {c}. Then
∣
∣S′1 − S′′3

∣
∣ <

∣
∣S′1 − S′3

∣
∣, so

∣
∣(S′1 − S′′3 ) ∪ (T ′3∞ − T ′1∞)

∣
∣ <∣

∣(S′1 − S′3) ∪ (T ′3∞ − T ′1∞)
∣
∣. S′′3 still satisfies (i), so by hypothesis, it still must be

that |(S1 − S3) ∪ (T3∞ − T1∞)| < ∣
∣(S′1 − S′′3 ) ∪ (T ′3∞ − T ′1∞)

∣
∣. So we can just keep

adding objects from (S′1 − S′3) −
{
b
}
to S′3 in this way until (S′1 − S′3) −

{
b
} = ∅.

Likewise, we can keep removing objects in T ′3∞ from (T ′3∞ − T ′1∞) − {
b
}
until

(T ′3∞ − T ′1∞)− {
b
} = ∅.

Thus, we may assume that (S′1 − S′3) ⊆
{
b
}
and (T ′3∞ − T ′1∞) ⊆ {

b
}
. It follows

that (S′1 − S′3) ∪ (T ′3∞ − T ′1∞) ⊆ {
b
}
. But if bi ∈ (S′1 − S′3) ∪ (T ′3∞ − T ′1∞), then

ai ∈ (S1 − S3) ∪ (T3∞ − T1∞) by (III) and by the fact that (i) and (ii) imply that
ai ∈ S3 ∪ T3∞ iff bi ∈ S′3 ∪ T ′3∞. This gives rise to an injection from (S′1 − S′3) ∪
(T ′1∞∩T ′3∞) to (S1− S3)∪(T1∞∩T3∞), which means

∣
∣(S1 − S3) ∪ (T1∞ ∩ T3∞)

∣
∣ ≥∣

∣
∣(S′1 − S′3) ∪ (T ′1∞ ∩ T ′3∞)

∣
∣
∣. � This completes our proof of the claim above.

Thus, Eloïse can just pick any such S′3 and T ′3∞, and it will have the desired prop-
erties. If instead Abelard decides to relocate the game inR4, the strategy is the same:
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Fig. 8 Relative (D-)expressive
power for languages between
L1M and L1M(@,↓, F)

L1M ≡ L1M(↓)

L1M(F) L1M(@)

L1M(@, F) L1M(@, ↓)L1M(↓, F)

L1M(@, ↓, F)

the reasoning above did not rely on Abelard’s S3 being nonempty. Finally, the case

where Abelard decides to relocate the game in R3 to
〈
uT3S3 , t

T2
S1

〉
is symmetric. ��

Appendix 4: Mapping the expressive hierarchy

In this appendix, we map out in more detail the relative expressive power for var-
ious fragments of L1M(≈,@,↓,F ,�). We will start by showing that, ignoring E,
≈, and �, the relative expressive power for the remaining languages is accurately
diagrammed by Fig. 8. This includes the strict inclusions and incomparabilities the
diagram suggests. Note that for any class of models C, ≤C is a preorder.

Lemma 32 (Adding only ↓ does nothing) L1M ≡ L1M(↓).

Proof First, note that, by induction, for any L1M(↓)-formula ϕ, M, w, v, g � ϕ

iff M, w′, v, g � ϕ. Thus, where ϕ is an L1M(↓)-formula, let ϕ− be the result of
removing every instance of ↓ from ϕ. Then it is easy to show by induction (using
this fact for the ↓-case) that � ϕ ↔ ϕ−. Hence, L1M(↓) ≤ L1M, and therefore
L1M ≡ L1M(↓). ��

Throughout, when I say “IM is empty” or “IM = ∅”, what I mean is that for all
w ∈ WM and all predicates P , IM(P, w) = ∅. Also, if a is clear from context, I will
use “ai” to stand for an arbitrary element of a.

Lemma 33 (Adding F) L1M(F) �D L1M(≈,@,↓,�).

Proof Let M1 = 〈W1, R1, F1, D1, δ1, I1〉, where W1 = {w}, D1 = δ1(w) = {a},
R1 = F1 = {〈w,w〉}, and I1 = ∅. Let M2 be just like M1 except F2 = ∅. Then
M1, w,w �≈,@,↓,� M2, w,w, but M1, w,w � F⊥ while M2, w,w � F⊥. ��

WhereM is amodel, letME→P be themodel just likeM except IME→P
(P, w) =

δM(w) for allw ∈ WM. That is,ME→P effectively makes P an existence predicate.
Define M≈→P likewise. It will be useful to note the following:
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Lemma 34 (Replacing E) If M, w, v, a �L(E) N , w′, v′, b, then ME→P , w, v,

a �L(E) NE→P , w′, v′, b. In addition, if IM(P, u) = ∅ = IN (P, u′) for all u ∈
WM and all u′ ∈ WN , then the converse holds as well. Likewise for ≈ in place
of E.

We can use this trick to bootstrap off of previous inexpressibility results which
used E or ≈ for languages without E or ≈. For instance, it is relatively easy to
show L1M(@) �UD L1M(≈,↓,F). Take models E1 and E2 from Fig. 2. Since
E1, wN, wN �≈ E2, wN, wN, we can use Lemma 34 to conclude EE→P

1 , wN, wN �≈
EE→P
2 , wN, wN, though they disagree on ♦∃x@¬P(x).
However, this proof does not show that L1M(@) �UD L1M(≈,↓,F ,�), since the

models are distinguishable by�x¬P(x). Lemma 35 strengthens this result to include
�, again using Lemma 34:36

Lemma 35 (Adding @) L1M(@) �UD L1M(≈,↓,F ,�).

Proof It is easy to show that if ϕ is an L1M(≈,↓,F ,�)-formula, then �U Fϕ ↔ ϕ

(just use the observation from the proof of Lemma 32). So every L1M(≈,↓,F ,�)-
formula is U-equivalent to an L1M(≈,↓,�)-formula. But if ψ is an L1M(≈,↓,�)-
formula, then�U ↓ψ ↔ ψ . Putting these together, everyL1M(≈,↓,F ,�)-formula is
U-equivalent to anL1M(≈,�)-formula. So it suffices to find twoL1M(≈,�)-bisimilar
models in UD that disagree on some L1M(@)-formula.

Let M1 = 〈W1, R1, F1, D1, δ1, I1〉, where:

W1 = {w} ∪
{
vTS

∣
∣
∣ S ⊆ N, T ⊆ N

−, and 1 < |S| , |T | < ℵ0
}

,

36 Hodes (1984b, pp. 445–446) claimed to have a proof that L1M(≈,@) �UD L1M(≈, �). He also

constructs two models which he claims satisfy the same L1M(≈, �)-formulas, but disagree on the L1M(≈
,@)-formula θ2 = �

(
∃x@¬E(x)→ ∃≥2x@¬E(x)

)
. Here are the modelsA andB he describes (p. 445,

his notation; A(w) and B(w) in Hodes’s notation means δA(w) and δB(w) in ours, and 〈w, a〉 ∈ V (P) in
his notation means a ∈ I (P, w) in ours; he also write A, 0 � ϕ in place of our A, 0, 0 � ϕ):

Let W = {0} ∪ {(n,m) | n �= m, n,m ∈ ω }, W ′ = W ∪ {1}. Let A(0) = B(0) = ω, A((n,m)) =
B((n,m)) = (ω − {n,m}) ∪ {−n | n ∈ ω }, let V (P) be empty for all P ∈ Pred, A = (W, A, V ),
B = (

W ′, B, V
)
. Clearly A, 0 � θ2 but B, 0 � θ2.

However, Hodes’s description of these models is incomplete, since crucially the local domain of 1 in B is
never specified, and the proof that follows gives no indication of what it might be. Moreover, given the proof
requires that A, 0, 0 � θ2 and B, 0, 0 � θ2, we can infer that it would have to be that B(1)∩ {−n | n ∈ ω }
has exactly one member (since {−n | n ∈ ω } is the set of objects that do not exist at 0). But if that is right,
then these models are distinguishable by the following L1M(≈, �)-formula:

�x�y (x �≈ y ∧ ¬E(x) ∧ ¬E(y) ∧♦(E(x) ∧ ¬E(y))) .

The proof of Lemma 35 was inspired by an attempt to fix Hodes’s proof.
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R1 and F1 are universal, D1 = Z, δ1(w) = N, δ1(vS) = (N− S)∪ T , and I1 = ∅. Let
M2 be likeM1 except thatW2 = W1 ∪ {v}, and δ2(v) = (N−{1})∪ {−1}. Observe:

M1, w,w � �
(∃x@¬E(x) → ∃≥2x@¬E(x)

)

M2, w,w � �
(∃x@¬E(x) → ∃≥2x@¬E(x)

)
.

However, we will show that M1, w,w �≈,� M2, w,w. Clearly w,w � w,w.
Suppose w, u1, a � w, u2, b. Since δ1(u1) and δ1(u1) are infinite, if Abelard picks
an a′ ∈ D1, then Eloïse can find a b′ ∈ D2 so that w, u1, a, a′ � w, u2, b, b′ by
ensuring that a′ ∈ δ1(u1) iff b′ ∈ δ2(u2). Likewise if Abelard picks a b′ ∈ D2.
Now, suppose Abelard picks an u′1 ∈ W1. Define S = {bi ∈ N | ai /∈ δ1(u1) } and
T = {

bi ∈ N
− ∣

∣ ai ∈ δ1(u1)
}
. (If |S| ≤ 1, add a couple of elements from N− {

b
}
to

S. If |T | ≤ 1, add a couple of elements from N
− − {

b
}
to T .) Then ai ∈ δ1(u1) iff

bi ∈ δ2(v
T
S ). So w, vTS , a � w, vT

′
S′ , b. Likewise if Abelard chooses a u′2 ∈ W2, even

if u′2 = v. Thus, using Lemma 34, L1M(@) �UD L1M(≈,�). ��

Lemma 36 (Adding twooperators)L1M(↓,F) �D L1M(≈,@,F ,�) �D L1M(@,↓).

Proof First, L1M(↓,F) �D L1M(@,F). LetM1 = 〈W1, R1, F1, D1, δ1, I1〉, where
W1 = {w, v}, R1 = W1 × W1, F1 = ∅, D1 = δ1(w) = δ1(v) = {a}, and I1 = ∅.
Let M2 be like M1 except F2 = {〈v, v〉}. Then M1, w,w �≈,@,F ,� M2, w,w

(since F1[w] = F2[w] = ∅), but M1, w,w � �↓F⊥, while M2, w,w � �↓F⊥.
So L1M(↓,F) �D L1M(≈,@,F ,�).

Next, L1M(@,↓) �D L1M(≈,@,F ,�). Consider the models N1 and N2
from Fig. 4. Modify them so that F1 = F2 = ∅, and call the resulting
models N ′

1 and N ′
2. Then N ′

1, z, z �≈,@,F ,� N ′
2, z, z, but they disagree on

�↓♦∀x (@Rich(x) → Poor(x)). Hence, L1M(@,↓) �D L1M(≈,@,F ,�). ��
It is tedious, but straightforward, to show the following using the lemmas above:

Theorem 37 (Completeness of Fig. 8) Figure 8 is a complete diagram of the expres-
sive power of the languages presented in that diagram.

Now we turn to extensions with E, ≈, and �. It will help to define back-and-forth
games for LTS and some of its fragments. First, an LTS-formula is almost E-free
if it can be built from atomics other than those of the form E(x; s) using negation,
conjunction, object quantification, state quantification, and E-bounded object quan-
tification. (Thus, E only occurs as the bounds of object quantifiers.) Let LTS−≈ be the
≈-free fragment, LTS

−≈,(E)
be the ≈-free and almost E-free fragment, and LTS

�E be the

E-bounded fragment of LTS.

Definition 38 (Back-and-forth system) Let M and N be models. A back-and-forth
system between M and N is a nonempty variably polyadic relation Z such that
whenever Z(w, a; v, b), |w| = |v| < ℵ0 and |a| = ∣

∣b
∣
∣ < ℵ0, and if Z(w, a; v, b),

then:
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(TS Atomic) ∀k ≤ |w| ∀m ∈ N∀Pm ∈ PREDm∀i1, . . . , im ≤ |a|:
〈
ai1 , . . . , aim

〉 ∈ IM(Pm, wk) ⇔ 〈
bi1 , . . . , bim

〉 ∈ IN (Pm, vk)

(TS Eq) ∀n,m ≤ |a| : an = am iff bn = bm
(TS StEq) ∀k, l ≤ |w| : wk = wl iff vk = vl
(TS Ex) ∀k ≤ |w| ∀n ≤ |a| : an ∈ δM(wk) iff bn ∈ δN (vk)

(TS Acc) ∀k, l ≤ |w| : R(wk, wl) iff R(vk, vl) and F(wk, wl) iff F(vk, vl)

(TS Zig) ∀w′ ∈ WM∃v′ ∈ WN : Z(w,w′, a; v, v′, b)
(TS Zag) ∀v′ ∈ WN ∃w′ ∈ WM : Z(w,w′, a; v, v′, b)
(TS Forth) ∀a′ ∈ DM∃b′ ∈ DN : Z(w, a, a′; v, b, b′)
(TS Back) ∀b′ ∈ DN ∃a′ ∈ DM : Z(w, a, a′; v, b, b′).

We may write M, w, a �TS N , v, b to indicate that M, w, a and N , v, b are back-
and-forth equivalent. If we drop (TS Eq) and (TS StEq), we get a notion of a back-
and-forth system for LTS−≈. We get a notion of a back-and-forth system for LTS

−≈,(E)
if

we drop (TS Eq), (TS StEq), and (TS Ex) and we add:

(TS E-Forth) ∀k ≤ |w| ∀a′ ∈ δM(wk)∃b′ ∈ δN (vk) : Z(w, a, a′; v, b, b′)
(TS E-Back) ∀k ≤ |v| ∀b′ ∈ δN (vk)∃a′ ∈ δM(wk) : Z(w, a, a′; v, b, b′).

If we replace (TS Forth) and (TS Back) with (TS E-Forth) and (TS E-Back), we get
a notion of a back-and-forth system for LTS

�E .

Definition 39 (LTS-Equivalence)M, w, a andN , v, b are LTS-equivalent if for all
LTS-formulas α(x; s) (where |x | ≤ |a| and |s| ≤ |w|),M � α[a;w] iffN � α[b; v].
We may write “M, w, a ≡TS N , v, b” to indicate that M, w, a and N , v, b are
LTS-equivalent. Likewise for the various fragments of LTS.

It is easy to check that M, w, a �TS N , v, b implies M, w, a ≡TS N , v, b, and
likewise for the various fragments of LTS. Now, say L1 ≤∗ L2 if every L1-formula
is equivalent to some L2-formula. This is more stringent than ≤, since some L1-
formula might only be expressible as a set of L2-formulas. Observe by Definition 6
that L1M(@,↓,F ,�) ≤∗ LTS

−≈,(E)
, that L1M(E,@,↓,F ,�) ≤∗ LTS−≈, and that

L1M(≈,@,↓,F) ≤∗ LTS
�E .

Lemma 40 (Adding E and ≈) If L1M ≤∗ L ≤∗ LTS
−≈,(E)

, then L < L(E) < L(≈).
Likewise if relativize to D, U, or UD.

Proof Recall the models E and E ′ from Fig. 1. It is easy to check that via our original
bisimulation, E, w,w �TS−≈,(E) E ′, w,w (remember, you do not need to satisfy (TS
Eq) or (TS Ex) in this back-and-forth game!). But these models are distinguishable by
the L1M(E)-formula ♦∃x♦¬E(x). So L1M(E) � LTS

−≈,(E)
. Suppose now for reductio

that L(E) ≤ L. Since L1M(E) ≤∗ L(E) (easily verified by induction), L1M(E) ≤
L ≤∗ LTS

−≈,(E)
, �. So L(E) � L, and thus L < L(E).

As for L(E) < L(≈), revise E and E ′ by deleting the world w from the models.
Call the resulting models E− and E ′−. Then E−, v �TS−≈ E ′−, v, but they disagree on
∃x∃y (x �≈ y). SoL1M(≈) � LTS−≈. ButL(E) ≤ L(≈), so reasoning as before (noting
that L(E) ≤∗ LTS−≈), we have that L(E) < L(≈). ��
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Fig. 9 Relative expressive
power after adding E or ≈

L1 L2

L1(E)

L1(≈)

L2(E)

L2(≈)

Fig. 10 Relative expressive
power after adding �

L1 L2

L1(Π) L2(Π)

Now, where L1 and L2 were languages in Fig. 8 such that L1 < L2, we can show
that the inclusions involving their extensions with E or ≈ can be diagrammed as in
Fig. 9. First, the arrows that are present are immediate by Lemma 40 and by the fact
that if L1 < L2 in Fig. 8, then we already have L1 <∗ L2. Next, L1(E) � L2, since if
it were, we would have L1M(E) ≤∗ L1(E) ≤ L2 ≤∗ LTS

−≈,(E)
� L1M(E), contrary to

Lemma 40. Likewise, L1(≈) � L2(E). Finally, observe that in the results used above
to show that L2 � L1, we already showed that L2 � L1(≈,�). Thus, L2 � L1(≈).

Lemma 41 (Adding �) If L1M ≤∗ L ≤∗ LTS
�E , then L < L(�). Likewise if we

relativize to U. Also, if L1M ≤∗ L ≤∗ L1M(≈,@,↓,F), then L <D L(�).

Proof Let M1 = 〈W1, R1, F1, D1, δ1, I1〉, where W1 = {w}, R1 = F1 = {〈w,w〉},
D1 = {a}, δ1(w) = {a}, I1(P, w) = {a}. LetM2 be just likeM1 except D2 = {a, b}.
Then M1, w �TS�E M2, w, but they disagree on the L1M(�)-formula �x¬P(x).
So L1M(�) � LTS

�E . Reasoning as before, L < L(�).
Suppose now we restrict to D. Let M1 = 〈W1, R1, F1, D1, δ1, I1〉, where W1 =

{w} ∪ {vn | n ∈ N }, R1 = F1 = {〈w, vn〉 | n ∈ N }, δ1(w) = N, δ1(vn) = N − {n},
I (P, w) = ∅, and for each n ∈ N, I (P, vn) = {n}. Let M2 be just like M1 except
W2 = W1 ∪ {u}, where u /∈ W1, R2 = R1 ∪ {〈w, u〉}, F2 = F1, δ2(u) = N,
and I (P, u) = ∅. One can show that M1, w,w �≈,@,↓,F M2, w,w. But, they
disagree on the L1M(�)-formula ��x P(x). So L1M(�) �D L1M(≈,@,↓,F). So
L <D L(�). ��
So once again, using Lemma 41 and the results above, we can verify that if L1 and
L2 are in Fig. 8 and L1 < L2, then their extensions involving � can be represented
in Fig. 10. This holds even if we add E or ≈. Thus, Fig. 5 from Sect. 4 is correct.
Moreover, it is still correct even relative to D.

We now turn to asking to what extent these results hold relative to U and UD. We
only give a partial answer here. First, set aside E,≈, and �, and focus just onU. Then
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Fig. 11 Relative U-expressive
power for languages between
L1M and L1M(@,↓, F)

L1M ≡U L1M(↓) ≡U L1M(F) ≡U L1M(↓, F)

L1M(@)

L1M(@, F) L1M(@, ↓)

L1M(@, ↓, F)

?

?

the diagram of expressive power looks something like Fig. 11 (whether we should
include the dashed arrows has yet to be determined).

First, if ϕ is @-free, then �U (Fϕ ↔ ϕ) and �U (↓ϕ ↔ ϕ). So L1M ≡U
L1M(↓) ≡U L1M(F) ≡U L1M(↓,F). But still L1M <U L1M(@) by Lemma 35. And
the remarks on page 4 (together with Lemma 34) show that L1M(@) <U L1M(@,↓)

and that L1M(@) <U L1M(@,F). As for the lack of inclusion from L1M(@,F) to
L1M(@,↓):

Lemma 42 (F ,@ Not included in @,↓) L1M(@,F) �UD L1M(≈,@,↓).

Proof Let M1 = 〈W1, R1, F1, D1, δ1, I1〉 where:

W1 =
{
vTS

∣
∣
∣ S ⊆ N, T ⊆ N

−, |T | < ℵ0, and either S = ∅ or 1 < |S| < ℵ0
}

,

R1 = F1 = W1 × W1, D1 = Z, δ1(vTS ) = (N− S) ∪ T , and I1 = ∅. Let M2 be just
likeM1, except we allow |S| = 1. Let w = v∅∅ . Observe that:

M1, w,w � F (∃x@¬E(x) → ∃≥2x@¬E(x)
)

M2, w,w � F (∃x@¬E(x) → ∃≥2x@¬E(x)
)
.

However, we will show M1, w,w �≈,@,↓ M2, w,w. Clearly w,w � w,w. Sup-
pose throughout that u1, u2, a � u′1, u′2, b and that the following hold:

(I) ai ∈ δ1(u1) iff bi ∈ δ1(u1)
(II) u1 = u2 iff u′1 = u′2
(III)

∣
∣
∣(δ1(u1) ∩ δ1(u2))− {a}

∣
∣
∣ =

∣
∣
∣(δ2(u′1) ∩ δ2(u′2))−

{
b
}∣∣
∣.

Observe that no matter what u1 and u2 are, (δ1(u1) ∩ δ1(u2)) − {a} is infinite, and
(δ1(u1) ∩ δ1(u2))− {a} is finite. Likewise for u′1 and u′2.

First, suppose Abelard picks a new a ∈ δ1(u2). If a ∈ δ1(u1), then since (δ2(u′1)∩
δ2(u′2))−

{
b
}
is infinite, Eloïse will always be able to match a with a b ∈ (δ2(u′1) ∩

δ2(u′2)) −
{
b
}
. If instead a /∈ δ1(u1), then by (III), we can find a b ∈ (δ2(u′1) ∩
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δ2(u′2)) −
{
b
}
to match a with. A symmetric argument applies if Abelard instead

picks a b ∈ δ2(u′2).
Next, suppose Abelard decides to relocate the game. If he invokes (Act) or (Diag),

then clearly (I)–(III) hold. So suppose he decides to pick a u3 ∈ W3 to relocate to.
Eloïse’s choice is obvious if u3 = u1, so suppose u3 �= u1. We will construct a T ′3
and a S′3 of the appropriate sort and show they meet (I)–(III). First, pick two elements
c, d ∈ (N ∩ δ2(u′1))−

{
b
}
(note that (N ∩ δ2(u′1))−

{
b
}
is infinite since each world

has cofinitely many positive integers) and define:

S′3:= {bi ∈ N | ai /∈ δ1(u3) } ∪ (N− (δ2(u
′
1) ∪

{
b
}
)) ∪ {c, d} .

Note that where u′1 = v
T ′1
S′1
, N− (δ2(u′1)∪

{
b
}
) = S′1−

{
b
}
is finite, so S′3 is finite and

S′1 −
{
b
} ⊆ S′3. Second, define T ′3,0:=

{
bi ∈ N

− ∣
∣ ai ∈ δ1(u3)

}
. Observe that:

[δ2(u′1) ∩ δ2(v
T ′3,0
S′3

)] − {
b
} = [(S′1 ∪ (N− − T ′1)) ∩ ((N− S′3) ∪ T ′3,0)] −

{
b
}

= [(S′1 ∩ (N− S′3)) ∪ ((N− − T ′1) ∩ T ′3,0)] −
{
b
}

= [(S′1 ∩
{
b
}
) ∪ T ′3,0] −

{
b
} = ∅.

Now, where k =
∣
∣
∣(δ1(u1) ∩ δ1(u2))− {a}

∣
∣
∣, pick k-many elements e1, . . . , ek ∈ N

−−
(δ2(u′1)∪

{
b
}
) (notice that N

− − (δ2(u′1)∪
{
b
}
) is infinite, since each world only has

finitely many negative integers). Define T ′3 = T ′3,0 ∪ {e1, . . . , ek}. We will show that

if Eloïse chooses u′3 = v
T ′3
S′3
, then all the necessary constraints are met.

We first need to show u1, u3, a � u′1, v
T ′3
S′3

, b—in particular, ai ∈ δ1(u3) iff bi ∈
δ2(u′3). Suppose ai ∈ δ1(u3). Either bi ∈ N or bi ∈ N

−. If bi ∈ N, then bi /∈ S′3,
so bi ∈ δ2(u′3). If bi ∈ N

−, then bi ∈ T ′3,0 ⊆ T ′3, so bi ∈ δ2(u′3). Suppose instead
ai /∈ δ1(u3). Again, either bi ∈ N or bi ∈ N

−. If bi ∈ N, then bi ∈ S′3, so bi /∈ δ2(u′3).
If bi ∈ N

−, then bi /∈ T ′3, so bi /∈ δ2(u′3). No matter what, ai ∈ δ1(u3) iff bi ∈ δ2(u′3).
Next, we need to show (I)–(III). (I) holds by default. Now, we assumed above

u3 �= u1, so we need u′3 �= u′1. But recall that we picked c, d so that c, d ∈ δ2(u′1).
But c, d ∈ S′3, so c, d /∈ δ2(u′3). Thus, u′3 �= u′1. So (II) holds. Finally, using the
calculations above, since e1, . . . , ek ∈ N

− − (δ2(u′1) ∪
{
b
}
) = N

− − (T ′1 ∪
{
b
}
), we

find that:

[δ2(u′1) ∩ δ2(v
T ′3,0
S′3

)] − {
b
} = [(S′1 ∩

{
b
}
) ∪ (T ′3,0 ∪ {e1, . . . , ek})] −

{
b
}

= {e1, . . . , ek} ,

where k =
∣
∣
∣(δ1(u1) ∩ δ1(u2))− {a}

∣
∣
∣. So (III) holds. Thus, if Abelard relocates to

u3, Eloïse can choose to relocate to u′3. And since
∣
∣S′3

∣
∣ > 1, a symmetric argument

applies if Abelard decides to relocate the game in M2. The proof is completed with
one application of Lemma 34. ��
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Now, because the proof of Lemma 40 only uses models in U (in fact, in UD), we
can still safely say that adding E or ≈ can be diagrammed as in Fig. 9. Adding �

makes things more complicated. Recall that relative to the class of all models, we
could simply say that if L1M <∗ L1 <∗ L2 ≤∗ L1M(≈,@,↓,F), then Li < Li (�),
L1(�) < L2(�), and L1(�) and L2 were incomparable. However, showing that
L2 � L1(�) crucially relied on the fact that all of our inexpressibility proofs for
showing L2 � L1 already showed that L2 � L1(�). But because Lemma 42 left out
� (which is crucial, as we will see below), we cannot conclude that L2 �U L1(�).

We can still verify by hand that in some cases, L2 � L1(�). For one thing,
L1M(@) �UD L1M(≈,�) by Lemma 35. We also have that L1M(@,↓) �UD L1M(≈
,@,�) by Proposition 17. Likewise, L1M(@,F) �UD L1M(≈,@,�). But impor-
tantly, some of these languages without E and � that were distinct collapse when you
add E and �:

Lemma 43 (Collapse) L1M(E,@,↓,�) ≡U L1M(E,@,F ,�) ≡U L1M

(E,@,↓,F ,�). Likewise if we add ≈ to these languages.

Proof Throughout, let L∗ = L1M(E,@,↓,F ,�). Note that the following are all
U-valid (where α is an atomic formula):

↓α ↔ α

↓¬ϕ ↔ ¬↓ϕ

↓(ϕ ∧ ψ) ↔ (↓ϕ ∧ ↓ψ)

↓@ϕ ↔ ↓ϕ

↓↓ϕ ↔ ↓ϕ

↓Fϕ ↔ Fϕ

↓�xϕ ↔ �x↓ϕ.

Likewise, all of these are U-valid:

@¬ϕ ↔ ¬@ϕ

@(ϕ ∧ ψ) ↔ (@ϕ ∧@ψ)

@�ϕ ↔ �ϕ

@@ϕ ↔ @ϕ

@↓ϕ ↔ @ϕ

@�xϕ ↔ �x@ϕ.

Using these rules, we can push each @ and each ↓ inwards as much as possible until
@ only occurs right before a F or an atomic, and ↓ only occurs right before a �.
Moreover, we can delete any F and ↓ if it does not scope over an @, and repeat.
After this entire process, the resulting formula will be U-equivalent to our original.
So assume without loss of generality that our formula has already gone through this
pre-processing.
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Now, say that an L∗-formula is in normal form if it is either a non-modal formula,
or if it is of the form:

Q1y1 · · ·Qn ynBC(ψ, 
θ),

whereQi ∈ {�,�} (the quantifier block may be empty), BC is some boolean combi-
nation of its components, ψ are all non-modal, each 
i ∈ {�,@,↓�,F}, and θ are
all in normal form. By induction, one can convert every L∗-formula into one of nor-
mal form (essentially by pre-processing as above, and then replacing bound variables
and pulling out quantifiers). Thus, we may assume without loss of generality that our
formula is already in normal form.

Finally, suppose an L∗-formula has been pre-processed and is in the form:

Q1yn · · ·Qn ynBC(ϕ,@ψ,�θ,↓�χ,Fξ),

where ϕ are all non-modal, andψ , θ , χ , and ξ are all in normal form (notice that since
we pre-processed, each ψ is either an atomic or of the form Fψ ′). Then the following
are U-valid:

FQ1yn · · ·Qn ynBC(ϕ,@ψ, �θ,↓�χ, Fξ)↔ ↓�Q1yn · · ·Qn ynBC(@ϕ,ψ, �θ,↓�χ, Fξ)

↓�Q1yn · · ·Qn ynBC(ϕ,@ψ, �θ,↓�χ, Fξ)↔ FQ1yn · · · Qn ynBC(@ϕ,ψ, �θ,↓�χ, Fξ).

Thus, in our original formula, we can replace any F with ↓� or vice versa. ��
To sum up, the following questions have yet to be answered about the relative U-
expressive power of these languages:

– Is L1M(@,↓) <U L1M(≈,@,F)?
– Is L1M(@,↓,F) <U L1M(≈,@,F)?
– Is L1M(@,F) <U L1M(@,↓,�) or L1M(@,↓) <U L1M(@,F ,�)?
– Is L1M(@,↓,F) <U L1M(@,↓,�) or L1M(@,↓,F) <U L1M(@,F ,�)?

Answering these questions would settle the rest.
We now finally turn to UD. Excluding E, ≈, and �, the diagram in Fig. 11 is still

correct (again, the dashed arrows have not been determined). And again, Fig. 9 is still
correct when adding either E or ≈. But adding � is even trickier than before, since
we can no longer appeal to Lemma 41. We still have the lack of inclusions mentioned
above Lemma 43. We also have the following lack of inclusions:

Lemma 44 (Inexpressibility of @ with �) L1M(�) �UD L1M(≈,@).

Proof Recall that R1, w,w �≈,@ R2, w,w (Fig. 3). But the models are distin-
guished by ∃x (Rich(x) ∧� (Poor(x) → �y (¬Rich(y) ∧ ¬Poor(y)))). ��
Lemma 45 (Inexpressibility of @,� with @,↓,F) L1M(@,�) �UD L1M(≈,

@,↓,F).

Proof This immediately follows from Proposition 31. ��
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However, we now have more inclusions. For example, L1M(�) <UD L1M(@,↓)

(just set �xϕ:=↓�∀x@ϕ).37 Likewise, L1M(�) <UD L1M(@,F), thoughthe proof
is a bit more roundabout.38 These inclusions are strict by Lemma 35. The ques-
tions mentioned above forU-expressive power are still unanswered forUD-expressive
power. And again, answering these questions suffices to settle the remaining inclu-
sions.
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