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Abstract When should a scientific community be cognitively diverse? This article
presents a model for studying how the heterogeneity of learning heuristics used by sci-
entist agents affects the epistemic efficiency of a scientific community. By extending
the epistemic landscapes modeling approach introduced by Weisberg and Muldoon,
the article casts light on the micro-mechanisms mediating cognitive diversity, coor-
dination, and problem-solving efficiency. The results suggest that social learning and
cognitive diversity produce epistemic benefits only when the epistemic community is
faced with problems of sufficient difficulty.

Keywords Social epistemology · Diversity · Social learning ·
Division of cognitive labor

1 Introduction: why scientific communities should be diverse

The rationality of individual scientists is neither a sufficient nor necessary condi-
tion for achieving good collective outcomes in research. The literature on the social
epistemology of science even suggests that having egoistic, stubborn, or otherwise
epistemologically sullied agents as members of a scientific community can—under
appropriate conditions—improve its epistemic efficiency (Weisberg 2010; Mayo-
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Wilson et al. 2011). In such cases, the increase in the efficiency of knowledge
production capacities of the community is often due to its increased diversity.

As especially feminist social epistemologists have emphasized, differences in how
people see theworld due to their different backgrounds, social identity, and gender are a
precondition for effective critical discourse, and hence important for avoiding bias and
producing objective scientific knowledge (Longino 1990, 2002).1 Solving complex
scientific problems often requires that they are attacked with a wide range of different
research approaches (Solomon 2006; Page 2008), and in many cases, the connection
between diversity in general and efficiency of collective problem-solving appears to
be mediated by factors such as variation in background beliefs, concepts used, and
reasoning styles of scientists, that is, cognitive diversity. The model presented in this
article shows how a particular aspect of cognitive diversity—agents’ different learning
heuristics—affects the epistemic division of labor within a community and thereby
influences the epistemic performance of the community in different kinds of research
domains.

Let us begin by considering a few examples. According to the popular perception of
science, scientific discoveries arise from flashes of insight by exceptional individuals.
For example, Nikola Tesla has long been thought of as a lone genius, whose numerous
scientific and technological inventions appeared to arise mainly from his independent
inquiries into the nature of electro-magnetic phenomena (Novak 2014). The lone
genius model seems to also apply to Yitang Zhang, an unknown mathematician who
in April 2013 proved a weaker variant of the twin prime conjecture, a great result
in the history of number theory that had widely been regarded as too difficult to
solve with the current resources of mathematics. In interviews after receiving the
MacArthur award for his accomplishment, Zhang has attributed his success mainly
to perseverance, refusing to switch topics even after long stretches of time with no
progress on a problem (Klarreich 2013; MacArthur-Foundation 2014).

However, for the most part contemporary scientific research is far from a solitary
endeavor. By talking to supervisors, colleagues, reading journals and going to confer-
ences, academic researchers are constantly collecting new ideas from others, and on
the lookout for ways to improve their research based on social feedback. We are often
happy to align our research questions, methods, and theories with those of others in
order to produce scientific results of at least moderate significance and impact. And as
history of science shows, often even major breakthroughs in science have resulted not
from solitary work but from bricolage, skillful and often lucky combination of ideas
from a variety of sources (cf. Johnson 2011).

These examples illustratewhat Imean by scientists having different learning heuris-
tics. Since resources and time are always limited, each scientist repeatedly faces a
decision of how to conduct her research: whether she should spend the day at the
bench running experiments and analyzing her data, or whether to engage in social
learning. It appears that successful communal knowledge production needs both indi-
vidual and social learners. On the one hand, laying the foundations for new paradigms

1 Diversity in science obviously matters also beyond strictly epistemological concerns. For example, it can
help fight epistemic injustice (Fricker 2007) and promote institutional epistemic virtues, e.g., by reducing
prejudice and ethnocentrism (Anderson 1995).
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and scientific revolutions requires that a scientist or a group of scientists goes against
the grain and develops new ways of thinking independently of the existing paradigm.
On the other hand, efficient problem-solving in normal scientific research requires that
a large share of research work is allocated to the currently most promising research
approaches. But how much social learning should there be in a scientific community,
and when should it occur?

To study the effects of the different research strategies on epistemic performance,
I adopt a population-modeling approach to scientific problem-solving. This approach
treats the scientific community in a research field as an epistemic system (cf. Goldman
2011). Scientific knowledge is not understood as residing primarily at the level of
individuals, but instead, it is treated as a system property, determined both by the work
done by individual scientist as well as the adequacy of their social coordination and
division of cognitive labor (Polanyi 1962; Hull 1988; Longino 2002).

More precisely, the systems approach to the epistemology of science suggests the
hypothesis that the efficiency of a scientific community is determined by at least three
kinds of factors:

1. The distribution of the cognitive properties of individual agents in the community
(cognitive diversity)

2. The organizational properties of the community (e.g., its communication structure,
reward system)

3. The nature and difficulty of the problem-solving task faced by the community.

The model presented in this article examines the dependencies between these factors
and the problem-solving capacity of a scientific community.

Since Philip Kitcher’s (1990, 1993) seminal work on the topic, diversity and the
social organization of science have been discussed within a variety of models and
modeling frameworks (Strevens 2003; Weisberg and Muldoon 2009; Zollman 2010;
De Langhe 2014; Muldoon 2013). Among these different modeling approaches, cur-
rently themost amenable framework for studying diverse learning heuristics in science
is the epistemic landscapesmodel (ELmodel) byWeisberg andMuldoon (2009),which
represents scientific research as a population of scientist agents foraging on an epis-
temic landscape. The current article extends thismodeling approach in twoways. First,
I argue that the EL model (i) suffers from several interpretational problems, (ii) builds
on problematic assumptions about the behavioral rules followed by scientist agents,
and (iii) applies to an overly narrow set of research topics. Secondly, by introduc-
ing new assumptions regarding the implementation of the social-learning heuristics,
measurement of epistemic performance, and the complexity of research topics, the
broadcasting model (introduced in Sect. 3) aims to provide a more applicable account
of the micro-mechanisms mediating cognitive diversity, division of cognitive labor,
and epistemic success.

2 Research as foraging on an epistemic landscape

There are a number of reasonswhy epistemic landscapemodeling is especially suitable
for studying the effects of cognitive diversity on collective epistemic performance:
First, unlike many other models, the framework is capable of representing genuine
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cooperation, not only competition, between agents (cf. D’Agostino 2009). Secondly,
the agent-based approach allows for a natural representation of bounded rationality
and cognitive diversity in terms of different learning heuristics employed by agents.
Thirdly, unlike the otherwise elegant NK models used in some alternative approaches
(Alexander et al. 2015; Lazer and Friedman 2007; Page 2008), the three-dimensional
representation of the fitness landscape allows easy manipulation of the epistemic
structure of the studied research field (landscape topography). This is crucial for the
experiments I run with my model. Let us begin by examining how scientific research,
cognitive diversity, and division of cognitive labor can be represented in epistemic
landscapes modeling.

2.1 The original EL model

As in most agent-based simulations, the model primitives in the EL model concern
the attributes and behavior of agents, and the structure of their environment. Gen-
erally, the model builds on an analogy to fitness landscape models used in ecology:
Collective search is portrayed as the movement of a population on a landscape, where
the height parameter of a particular environment point represents its fitness value
(Wright 1932).

Applied to the social epistemology of science, the model is interpreted as follows:
A scientific research topic (e.g., synthetic biology, astrophysics, endocrinology) is
represented as an n-dimensional space, where the dimensions up to n − 1 constitute
the different aspects of a research approach. For example, attempting to synthesize
novel DNA nucleotides and studying the stability of these molecules by computational
methods are independent but both necessary research approaches in synthetic biology
(Weisberg and Muldoon 2009).

The last (n:th) dimension stands for the epistemic significance of the approach.
Here epistemic significance is understood according to Philip Kitcher’s (1993, Ch. 4)
analysis: Significant statements are the ones which answer significant questions. Sig-
nificant questions, in turn, are ones that help us uncover the structure of the world, or
at least organize our experience of it. Respectively, we can define the significance of
a research approach as the significance of truth (or truths) that can be uncovered by
using the approach. If we, furthermore, make the idealizing assumption that the sci-
entists working in a field share the same judgments about significance, it is possible to
represent the community as populating and perceiving a shared epistemic landscape.

For the sake of simplicity, in the model the large number of dimensions defining an
approach are collapsed into two, and hence a three-dimensional landscape can be used
to represent the epistemic structure of the research topic at hand. Furthermore, the
space is divided into discrete patches, where each patch represents a combination of
(i) a research question being investigated, (ii) instruments and methods for gathering
and analyzing data, and (iii) background theories used to interpret the data. The greater
the elevation of a particular patch, the more significant truths the research done by
using that approach discloses. The simulations that Weisberg and Muldoon report in
their paper concern a smooth, mostly flat landscape with two Gaussian-shaped hills
of positive epistemic significance.
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An important difference to many other models in recent social epistemology is
that in epistemic landscape modeling, agents are not portrayed as Bayesian condition-
alizers or competent maximizers of expected utility. Instead, bounded rationality is
implemented in the following way. Initially all of the agents working on the research
topic are placed randomly on zero significance areas of the landscape, and at each
turn of the simulation, they move at a velocity which is small compared to the size of
the landscape. Their movement is guided by a satisficing search for increasing epis-
temic significance in their Moore neighborhood. This search-based implementation
of learning embodies an assumption about the local nature of information available to
scientists when deciding about how to proceed about their future research: Changing
one’s research approach is a gradual and costly process, and no individual agent has
access to global information about how epistemic significance is distributed on the
landscape, i.e. what the most effective research approaches are.

Although the notion of cognitive diversity could be seen to include a variety of
factors ranging from background beliefs, training and education, perception of signif-
icance, to general intellectual style, and so on, the EL model actually focuses on one
particular type of cognitive diversity, variation in the scientists’ research heuristics in
terms of individual and social learning.2 While this is by no means the only important
source of cognitive diversity, epistemic landscape models do show how it brings about
and maintains another kind of diversity in the research field—division of cognitive
labor, i.e., the distribution of agents over different research approaches (Alexander
et al. 2015, pp. 436–437).

In the ELmodel, the diversity in learning heuristics is implemented in terms of three
kinds of agents (controls, followers, and mavericks) corresponding to different rules
for engaging in individual and social learning. In this case, when conducting individual
learning, agents search for epistemically significant results by interacting with nature,
so to speak (e.g., by gradually improving theirmethods, experimentingwith changes in
instrumentation, and in their theoretical assumptions). Social learning, in turn, refers
to improving one’s research approach based on the exchange of information with
other agents (e.g., by reading publications of other scientists). In the EL model, both
individual and social learning are represented as variations of gradient-climbing on
the landscape. Control agents ignore all social information, while followers prefer
patches already visited by others, and mavericks avoid already examined approaches.

The most striking finding suggested by the model is that maverick scientists
immensely improve the problem-solving efficiency of the scientific community. Intu-
itively, the ELmodel suggests that the researcher population benefits from the presence
of explorer members who explicitly avoid methods and approaches employed by oth-
ers. However, the simulations by Weisberg and Muldoon also imply a much stronger
claim, according to which a homogeneous population of mavericks is more efficient
than a diverse community consisting of both followers and mavericks. Both these

2 This same aspect of cognitive diversity is also the topic of the subsequent epistemic landscape models
introduced by Thoma (2015) and Alexander et al. (2015). Zollman (2010), in contrast, deals with a different
aspect of diversity. In the context of theory choice, he examines how (a) the flow of information in social
networks and (b) the strength of agents’ prior degrees of belief influence the emergence of consensus in
theory choice.
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results have been shown to be open to various kinds of criticism, and assumptions in
themodel regarding both the search rules of agents and the topography of the landscape
have been challenged.

First, as shown by their critics, some of the central results of Weisberg and Mul-
doon’sNetlogo simulation arise from implementation errors in the control and follower
search rules (Alexander et al. 2015). Moreover, as Thoma (2015) suggests, alternative
forms of the search rules which appear to be just as compatible with actual scien-
tists’ behavior as those suggested by Weisberg and Muldoon, lead to clearly different
outcomes. The general applicability of results from the EL model is further com-
promised by the fact that in the absence of robustness analysis (Grimm and Berger
2016), Weisberg and Muldoon’s published findings are not sufficient for establishing
that their results follow from the substantial assumptions of the model, and not from
implementation-related auxiliary assumptions. On the contrary, the fact that the model
structure is borrowed from another domain (ecology) raises theworry that at least some
of the results might be artifacts produced by the imported modeling framework itself.

2.2 What does an epistemic landscape represent?

Another set of worries concerns the landscape and its interpretation. The choices that
Weisberg andMuldoonmake about landscape topography in their simulations aremore
controversial than they admit, as those choices stand for crucial assumptions about the
epistemic structure of the research topic (Alexander et al. 2015). Epistemic landscapes
underlying real scientific research probably involve a greater number of interdependen-
cies between the elements of approaches (questions, instruments, methods, theories)
than the smooth two-dimensional landscape can represent. Consequently, results from
the EL model are conditional on the choice of particular kinds of simple research top-
ics, which might often not be the ones encountered in cutting-edge scientific research.

However, when Alexander and his coauthors treat the ELmodel as a special case of
NK landscapes (2015, p. 446), they risk falling prey to another misinterpretation of the
landscape idea. In typical applications, NK landscapes are used to represent a search
space for a problem, where hill-climbing towards maxima points is interpreted as a
search for better solutions to the problem, i.e.,minimization of the error function (Lazer
and Friedman 2007; Kauffman and Levin 1987). Although Alexander et al. purport to
reinterpret theNK landscape as an epistemic landscape, in fact they still use theirmodel
to represent interdependencies between a set of propositions. Although it remains
somewhat unclear what the global performance measured by their simulations refers
to, their results against the usefulness of social learning seem to rely on observations
about the effect of social learning on how quickly and how often the agents find the
peaks on rugged landscapes.

As I argue below, such a measure tracks the wrong property—success on an epis-
temic landscape is more subtle. A landscape does not represent a search space for a
single problem (where patches correspond to different states of the belief vector of an
agent, as Alexander et al. suggest). Instead, the landscape stands for a distribution of
epistemic significance over a set of different but complementary research approaches.
The EL model is not (or at least it should not be) primarily used to study the perfor-
mance of individual agents and whether they find the peaks on the landscape. Instead,
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the modeling results concern the dependency between cognitive diversity and coordi-
nation, where coordination refers to the distribution of agents on non-zero parts of the
landscape. Consequently, the global maximum on an epistemic landscape should not
be understood as the “correct solution to the problem.” There is simply not a single
problem to solve. What the maximum (when unique) stands for is the most productive
way to advance the inquiry on a research topic.

2.3 Measuring collective epistemic performance

Keeping in sight this coherent interpretation of the landscape suggests that both of
the ways that Weisberg and Muldoon measure the epistemic success or efficiency
of a scientist population are inadequate, or at least insufficient, as they track very
particular aspects of success. First, Weisberg andMuldoon study (i) how often and (ii)
how quickly peaks are reached. As argued above, (i) and (ii) do not directly measure
community-level epistemic success: A situation where the whole population quickly
lands on the global maximum looks good by these measures, but the coordination
between the agents is very poor. Imagine, for example, a population of synthetic
biologists all of whom converge on doing the same kind of computational modeling
work, because at a certain time, that is what produces the most epistemic significance.
In such a situation there would be no division of labor, and the success of such a
strategy would surely prove short-lived.

The other measure, epistemic progress, defined as the proportion of explored non-
zero patches on the landscape, captures the coordination aspect better. However, this
measure disregards the epistemic significance level of the exploredpatches (as long as it
is not zero). Consequently, beyond the simple landscape studied byWeisberg andMul-
doon, epistemic progress can be amisleadingmeasure of success. To see why, imagine
a situationwhere there is a certain number of dead-end research approacheswithin the
research field, that is, research approaches of low epistemic significance surrounded by
evenworse alternatives.Due to factors such as badly formulated research questions and
inappropriately chosen instrumentation and analysis methods, such low-significance
research approaches where no incremental change can improve the approach are likely
to crop up in all non-trivial scientific researchfields. The resulting dead-end approaches
can be represented as local maxima on the landscape (Fig. 1).

In general, there are often interdependencies between aspects of research approaches,
which cannot be captured by Weisberg and Muldoon’s smooth landscape. For exam-
ple, certain experimental approaches might be useful only when used with a particular
data analysis method and background theory. If we assume that aspects of research
approaches aremappedon each dimension of a landscape so that similaritywith respect
to a particular aspect is represented by distance along that axis, postulating a smooth
landscape would amount to assuming that the interdependencies mentioned above
do not arise in the particular research field. Hence, rugged landscapes characterized
by several local maxima can more faithfully represent the complex problem-solving
situations faced by scientific researchers (cf. Alexander et al. 2015).3

3 For more general discussions of the use of rugged landscapes in problem-solving research, see, e.g., Page
(2008, Ch. 1), and Lazer and Friedman (2007).
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Fig. 1 Landscape with
dead-end research approaches

What epistemic progress, as it is defined byWeisberg and Muldoon, fails to convey
is whether the population has found areas of high epistemic significance, or whether
all of the explored patches reside on low significance areas surrounding the dead-end
approaches. Although these difficulties do not arise on smooth landscapes, on rugged
ones epistemic progress is not an adequate way to measure the collective performance
of an epistemic community.

2.4 Behavioral rules of agents

Finally, the model behavior resulting from adding dead-end approaches on the land-
scape also suggests that the search rules of agents implemented in the EL model are
only applicable to the simplest epistemic landscapes. It is well known that gradient-
climbing search is sensitive to local maxima and fails to find global maxima on rugged
landscapes (Russell and Norvig 2003, Ch. 4.4.1). As all three behavioral rules of the
agents in the EL model rely only on local-search based hill climbing, they cannot cap-
ture the research heuristics employed by scientists working on more complex research
topics.

I conclude this section by reporting on a modeling experiment which suggests that
the radical results obtained byWeisberg andMuldoonmight be, at least partly, artifacts
of the problematic aspects of their model discussed above.

2.5 Are mavericks unbeatable?

Weisberg and Muldoon’s most striking finding is that a homogeneous population
of maverick agents is epistemically superior to all mixed populations of controls,
followers, and mavericks. Intuitively, this result follows almost trivially from the fact
that epistemic progress is measured in terms of the proportion of explored patches on
the landscape, and the maverick movement rule is tailored to maximize the efficiency
of exploration. Let us, however, introduce a small cost of exploration into the model—
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Fig. 2 EL model with cost of exploration. Progress measured as average epistemic significance of the
population after 200 time steps

for example a delay of ten time steps when an agent enters an unexplored patch. In
the next section I will return to the question of how to measure epistemic success,
but for now, let us, instead of epistemic progress, keep track of the average epistemic
significance of the population (calculated as the mean of the elevations of individual
agents) over time. It now turns out that the cost of exploration can make a mixed
population of followers and mavericks more efficient than a pure maverick population
(Fig. 2). With this particular delay value (td = 10), a diverse population consisting
of 50–50-mix of trailblazing mavericks and faster followers lands most quickly on
high-significance areas.4

Furthermore, Fig. 2 also shows that once the implementation errors in the search
rule for control agents have been corrected (cf. Alexander et al. 2015), controls perform
even slightly better in the mixed population than maverick agents do. It appears that
when exploration is more costly than exploitation, simple hill-climbing is a better
strategy than a similar strategy biased toward avoiding already explored approaches.
In sum, small modifications of the model compromise the generality of Weisberg
and Muldoon’s result that a large proportion of maverick scientists in an epistemic
community drastically improves its performance.

3 The broadcasting model

The broadcasting model differs from the EL model with respect to (i) how epistemic
success is measured, (ii) which landscapes are studied, and (iii) what the search rules
employed by the agents are. In doing so, it avoids the problems discussed in the
previous section.

4 For a Python replication of Weisberg and Muldoon’s model, and the source code for the simulations in
this article, see the repository at https://github.com/samulipo/broadcasting/. Simulations were conducted
with n = 50 for each data point. Error bars (when shown) stand for one standard deviation in sample.
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I beginwithmeasurement and landscape topography. I suggest that a quantity,which
can be called the epistemic work done by an individual agent (and aggregated into the
epistemic work done by the community), is a meaningful and coherent measure of
success.Given the characterization of epistemic significance in Sect. 2.1, it seems that a
population of scientist agents can be said to be themore successful themore significant
truths the agents can communally uncover, and the efficiency of the community is
determined by how quickly the accumulation of truths is done. I define epistemic
work wi done by an agent i since the beginning of the simulation as the sum of the
epistemic significances of the patches visited by the agent until time t , weighted by a
constant time scale factor λ ∈ [0, 1]. Hence for the agent i, wi,t = ∑t

τ=0 λsi,τ , where
si,τ is the significance of the patch visited by agent i at time τ . The epistemic work
Wt done by the population at time t is simply the sum of work done by the individual
agents.5

Measuring epistemic efficiency in terms of epistemic work over time is, alone, not
sufficient for capturing the need for genuine coordination or division of labor between
scientists. Like success in finding peaks, epistemic work could also be maximized by
minimizing coordination and guiding the whole population to the global maximum.
To capture the dynamics of the division of labor, adopting a research approach that has
already been used by another scientist should be associated with diminishing marginal
returns. In order to represent this assumption that research done using a particular
approach decreases the payoff from further research with the same approach, let us
introduce landscape depletion: When an agent receives the amount λsi,τ of epistemic
payoff by visiting a patch, the same amount of “significance mass” is removed from
the landscape. In the current simulation, this was done by lowering the elevation of
the patch in question by the same amount. The coefficient λ determines how quickly
depletion occurs: the smaller λ is, the more time it takes to deplete a patch.6

I have two main reasons for adopting this new measure of epistemic success. First,
epistemic work avoids the rather serious conceptual problems with Weisberg and
Muldoon’s two original measures. Secondly, it allows a more natural interpretation of
what it means to visit a patch. By not attributing any epistemic payoff to revisiting
a patch, Weisberg and Muldoon are drawn to suggest one of two implausible ideas:
Either that there’s only one significant truth to be uncovered per research approach
(2009, footnote 3), or that all of the significant truths from an approach are always
uncovered within one time step of the simulation. In contrast, together epistemic work
and landscape depletion allow for a plausible interpretation of collective search on
the landscape: What matters for epistemic advancement is that an agent spends a unit
of time on a patch of considerable epistemic significance—not only the fact that a
non-zero patch has been visited. That is, collective problem-solving is advanced when
a scientist spends some time applying a significant research approach to a meaningful

5 Consequently, the average epistemic significance of the population at a particular time (used in Sect. 2.3)
is the change in W over one time step, scaled by a constant.
6 Weisberg and Muldoon (2009, p. 232), suggest implementing such interaction between agents and land-
scape as a possible extension of their model. Likewise, Thoma (2015, footnote 7) brings up the idea of a
modified model where revisiting patches uncovers further epistemic significance, but she does not develop
the idea further.
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problem. A core challenge of division of cognitive labor within a community can
hence be formulated in the language of my model: How, as a community, should the
scientists organize their joint work so that they can harvest as much significance mass
from the landscape as quickly as possible?

The third major difference to the EL model concerns the learning heuristics used
by the agents. As discussed above, all social learning in the EL model occurs by
studying traces left by other agents in one’s Moore neighborhood. That is hardly a
well-founded assumption. As specified by Weisberg and Muldoon, a single epistemic
landscape represents a rather constrained research topic (e.g., the study of opioid
receptors in chemical biology, or critical phenomena in statistical physics), and so it
can safely be assumed that researchers are aware of each others’ work. There is no
reason for social learning to be constrained only to agents who use approaches very
similar to one’s own (cf. Thoma 2015).

In the broadcasting model, the cognitive diversity in the population pertains to the
agents’ different thresholds for social learning. For several reasons (an agent’s risk
preference, her assumptions about the size and shape of the landscape and the length
of her career, etc.), some agents prefer to collect immediate epistemic payoff from
individual learning rather than investing in expected future gain from social learning,
whereas others value long-term success more.

At each time step, every agent follows the same decision procedure. All agents on
the landscape are potentially visible to each other as sources of social information
(based on their ability to broadcast their findings through publications, conference
presentations, etc.), and at each turn every agent gets to observe the differences in
epistemic significance between her approach and those of others. She compares the
expected payoff from social learning to the assumed gain from doing individual search
in her local neighborhood, and decides which kind of research (social or individual
learning) to conduct during the following time step.7 More specifically, the decision
procedure goes as follows:

ASK: Is the epistemic significance of the current patch
higher than or equal to the one on previous time step?

If YES: Do not alter heading.
If NO:

Calculate the highest expected payoff from social
learning (for details , see below ).
ASK: Is that payoff higher than agent ’s threshold
αi for social learning?

If YES: Take new heading hi towards the most
successful peer

If NO: ASK: Are there any higher patches in the
agent ’s Moore neighborhood?

If YES: Take heading hi towards a randomly
selected higher patch

If NO: Set velocity vi to 0
Move with velocity vi to heading hi

7 For applications of similar social-learner-explorer strategies in the literature on cultural inheritance and
evolution, see Enquist et al. (2007) and Borenstein et al. (2008).
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A BC

Fig. 3 The cognitive diversity in the population can be visualized as agents having “cones of vision” of
different breadths. GivenαA , agentAwould consider B, but not C, as a potential source of social information

In this stepwise heuristic, an agent could calculate the expected payoffs from social
and individual learning in variousways. In the current simulationswe focus on the case
where agents are motivated simply by gain in their epistemic significance level, i.e.
trying to find as significant a research approach as possible. The behavioral rule used
by the agents in the simulations reported in the next section is consistent with them
conducting a simple cost-benefit analysis of whether to engage in social learning: The
benefit from social learning (�s j,i ) is the difference in epistemic significance level
of the agent i and another agent j . The distance between the two agents’ approaches
determines the time �t it takes for i to adopt j’s approach, and hence it represents
the foregone possibilities for individual exploration. Each agent is characterized by a
particular value of the social-learning thresholdαi . An agent engages in social learning
if

αi <
�s j,i
�t

(1)

In other words, if at a particular time in the simulation the expected gain per timestep
from adopting a fellow scientist’s approach exceeds the agent’s social-learning thresh-
old αi , she chooses social learning. However, if there are currently no agents around
following whom would exceed the threshold, an agent defaults to individual learning,
which is implemented as a satisficing form of gradient climbing (similar to the control
rule in the EL model). Hence, αi can be understood as the agent’s expectation about
the average increase in significance level that she can obtain from individual learning.8

Geometrically, the cognitive diversity in the population can be represented as each
agent having a ”cone of vision” of particular breadth, withinwhich she agrees to pursue
a more successful approach of a peer (Fig. 3). Individualist scientists—like Tesla, at
least when portrayed as in the example in Sect. 1—could be seen as having a narrow
cone of vision, whereas less ambitious members of the research workforce are happy
to settle for social-learning opportunities of smaller expected payoff, and hence have
broader cones.

8 Simulation experiments were also runwith agents who, instead of aiming formaximum significance level,
aim tomaximize the epistemic work done over a future time period, and yet more sophisticated ones who try
to take landscape depletion into account by exponentially discounting for distant payoffs based on λ. Such
decision rules result in a field of vision delimited by a surface of revolution drawn by a non-linear function.
Careful analysis of such situations must be left as a task for future work, but in initial experimentation the
differences in the shape of the cone did not lead to qualitative changes in the results.
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To summarize, all the agents in the population share the structurally same decision
procedure, and the cognitive diversity concerns their different tendencies to engage
in social learning. Unlike in the EL model where diversity is represented in terms of
discrete agent categories, the model allows continuous variation, and social learning
thresholds can be drawn freely froma continuous distribution. Thiswayof representing
cognitive diversity avoids the problematic artifacts resulting from the EL model’s all-
or-nothing implementation of the different learning profiles, and crucially, the new
implementation of the learning heuristics captures the idea that social learning can
help avoid myopia and motivate long-term projects involving movement downhill
through areas of lower significance.

Apart from these modifications, other structural assumptions in the model are the
same as in the EL model.

4 Results

In the simulations, the behavior of a population consisting of 50 agents was studied
on a 101 × 101 toroidal landscape. The central question of interest concerned how
the different tendencies for social learning present in the scientist population affect
its epistemic efficiency on different kinds of landscapes. Variations in environment
structure were introduced by varying the smoothness of the landscape and the levels
of the time scale parameter λ.

4.1 Smooth landscapes

On a smooth landscape resembling that of the original EL model, social learning does
not increase the epistemic efficiency of a population of agents. Instead, exploration
of the parameter space (summarized in Table 1; more extensive data available in the
supplementarymaterials, documents 1 and 2) shows that for all values of the time scale
parameter λ, the epistemic work done by the community slightly increases as values
of α in the population increase, that is, when agents become less eager to engage in
social learning. Similarly, diverse populations with lambdas drawn from a uniform
distribution U (1, 100) slightly outperform pure populations of social learners.9

In addition to epistemic work, the performance of the different kinds of populations
of agents was also measured by keeping track of epistemic progress∗, a modified ver-
sion of the measure used byWeisberg andMuldoon. Epistemic progress∗ is defined as
the proportion of visited patches among all significant (elevation >100 units) patches,
and it reflects how exhaustively the patches on the two hills of significance have been
visited at a particular time. For smooth landscapes, epistemic progress∗ leads to very
similar conclusions as those suggested by epistemic work: Social learning does not

9 However, as the value of λ becomes smaller, harvesting epistemic significance from a patch becomes
slower, and movement on the landscape becomes relatively less costly. Consequently, the choice of a search
heuristic becomes less critical. Real research topics with small lambdaswould be oneswhere changing one’s
approach is relatively quick compared to the time it takes to produce results by using a chosen approach.
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Table 1 Epistemic work W in diverse and non-diverse populations on a smooth landscape

Depletion
rate

Individual learners
α ∼ N (100, 1)

Social learners
α ∼ N (1, 1)

Diverse population
α ∼ U (1, 100)

λ = 0.001 7.14 × 10−2 7.00 × 10−2 7.25 × 10−2

λ = 0.01 0.405 0.401 0.411

λ = 0.1 0.934 0.897 0.939

Progress measured at t = 400. Italics indicate the most efficient population type

improve epistemic progress∗, and the differences between the three kinds of popula-
tions are rather insignificant (see supplementary materials, documents 1 and 2).10

The categories represented in the columns of the table feature also in the subsequent
simulations discussed below. These particular categories were chosen for presenting
the results for two reasons. First, they capture the range of relevant variation in the
social-learning thresholds. Experimentation with the model shows that most of the
variation in the social-learning thresholds that influences epistemic work occurs when
values of α fall between 1 and 100.11

Secondly, the categories make it easy to draw qualitative conclusions from the
model. A social-learning threshold of 1 represents an agent who only needs to expect
a gain of one unit of epistemic significance per time period from social learning in
order to engage in it. In contrast, an alpha of 100 represents a strongly individualist
learning profile, where an agent on the zero-significance plane only decides to follow
a peer on the global peak (at 1000 units) when the distance between them is less
than 10 units. Henceforth, I refer to these kinds of agents as as social learners and
individual learners, respectively. Finally, cognitively diverse populations are modeled
either by increasing the variance of the distribution fromwhich alphas are drawn or by
constructing mixed populations by merging sub-populations of social and individual
learners.

These results seem to conflict with those obtained by Weisberg and Muldoon.
According to my model, on the smooth landscape examined also in the EL model,
individual learning (∼control agent rule) is more efficient than the use of social infor-
mation, and diversity in the population produces only very small effects. This is hardly
surprising, however. Visual inspection of the simulation runs reveals that both indi-
vidual and social learners find the two peaks on the landscape, albeit in different
ways. Whereas a population of individual learners gets evenly distributed on both
hills, groups of agents with low social-learning thresholds harvest the epistemic sig-
nificance mass in a sequential manner: As one of the agents happens to find the higher
peak, the whole group flocks to that hill. Only after the whole hill is depleted does the
population start to search for another. Once the other hill is found, the agents repeat

10 Thanks to the anonymous referee for insisting on the use of alternative measures of epistemic success.
11 Due to the nature of the model (see the discussion in Sect. 5), the qualitative results from the model
should not depend on the choice of particular point values for the parameters. The scaling of the parameter
space was chosen mainly for convenience and for its continuity with the EL model.
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Fig. 4 Example of epistemic work on rugged landscapes. (t = 400, λ = 0.01). See supplementary
materials document 3 for a more comprehensive presentation of the results

the same flocking procedure.12 What makes individual learners slightly more effective
is the robustness of their strategy: Both hills of epistemic significance are investigated
in parallel, whereas social learners often end up spending a long time searching for
the second peak. As is seen below, this difference in collective search strategy turns
out to be quite important on more complex landscapes.

4.2 Rugged landscapes

Aswas argued in Sect. 2, the collective problem-solving tasks in real scientific research
can hardly be represented by smooth landscapes. It also turns out that the most inter-
esting dynamics of the broadcasting model occur on more complex landscapes.

To study research topics with dead-end research approaches, noise consisting of
small amplitude two-dimensional Gaussian bumps (Gaussian kernels) was added onto
the landscape (see Fig. 1). Figure 4 shows that as the amount of ruggedness increases
(the number of bumps denoted by β), the search problem obviously becomes harder
for all kinds of agents. Notice, however, that this is where the power of social learning
starts to show:Because the individual learners easily get trapped on localmaxima, their
performance drops more than that of agents with lower social-learning thresholds.13

Table 2 reveals that the difference in performance between social and individual
learners is sensitive to the time-scale parameter, the advantage of social learners being
larger for small values of lambda. At large values of lambda (λ ≥ 0.1), the effect
is again reversed and a population of individual learners can be more effective than

12 Animations of individual simulation runs with different kinds of populations can be found in the online
supplementary materials.
13 As the ruggedness of the landscape increases evenmore, local search heuristics generally become less and
less useful, and even the diverse communities make little progress. Such landscapes can be seen to represent
research problems beyond the cognitive capacities of the scientist agents, where attaining significant results
becomes increasingly a matter of luck.
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Table 2 Epistemic work on rugged landscapes (β = 200)

Depletion
rate

Individual learners
α ∼ N (100, 1)

Social learners
α ∼ N (1, 1)

Diverse population
α ∼ U (1, 100)

λ = 0.001 9.49 × 10−3 3.79 × 10−2 2.10 × 10−2

λ = 0.01 7.36 × 10−2 0.146 0.128

λ = 0.1 0.411 0.340 0.445

Italics indicate the most efficient population type

social learners.14 In the following, I focus on the case where lambda is 0.01, because
it nicely captures the conditions in a research field where coordination and division
of cognitive labor are needed: When λ = 0.01, it takes one agent roughly 500 time
steps to deplete a patch to a 1/100 of its original height, i.e. to produce nearly all
of the significant results available by using that approach. With a population size of
50, this leads to a situation where during a 1000-round simulation, the population
can deplete both hills of epistemic significance only with coordinated effort. Large
values of lambda represent less interesting cases, where the problem faced by the
community is easy enough so that only a handful of agents who happen to find the
hills of epistemic significance can exhaust them on their own, and there is no need for
successful community-wide learning and coordination.

Hence, the first result of interest on rugged landscapes is the necessity of social
learning to overcome getting stuck on local maxima. The mechanism underlying the
success of social learners is the following. In a population of social learners, a large
group of scientists can take advantage of one of their peers landing on a successful
research approach. Commitment to adopting the approach of a peer provides scien-
tists a rationale to accept temporary losses in the epistemic significance level due to
ruggedness of landscape, when promised longer-term large rewards.

However, although a population consisting of social learners is significantly more
efficient than a population of individual learners, it suffers from a problem of its own—
herding.15 When all agents are sensitive to social information, the whole population
often ends up on one of the two hills. As already described above, once the hill is
depleted, members of the population have no information about the location (or even
existence) of the other hill on the landscape. Because ruggedness makes rediscovery
difficult, often such populations fail to discover the other hill during 1000 simulation
rounds.

This suggests that perhaps adding a few individual agents into an otherwise social
learner population might improve its exploratory capacities. As Fig. 5 suggests, this
is indeed what happens. In a population of 50, replacing 10 agents, who have low
social learning thresholds, with agents strongly preferring individual learning signifi-
cantly increases the population’s efficiency. Especially at later stages of search (after

14 As document 1 in the supplementary materials shows, these results hold remarkably well across beta
values ranging from 50 to 300, and across different times of measurement.
15 By herding, I refer to undesirable behavior where agents do what others do even in situations where they
should be relying on their own information (Banerjee 1992).
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Fig. 5 Homogeneous and diverse populations on rugged landscapes (β = 100, λ = 0.01)

500 rounds), a mixed population performs clearly better. This is because, with high
probability, in the mixed population at least one of the individualist agents remains on
the hill ignored by social learners. Once the first hill is sufficiently depleted (around
500 rounds), the individualist agent(s) can guide the majority to the new source of
significance.16

Adding 10–20 % individual learners both increases the epistemic work done by the
community and improves the reliability of the population in finding both hills on the
landscape. However, having more than 20 % of individual learners in the population
is counterproductive. As more individual learners are added, more agents get stuck on
local maxima, and the collective efficiency decreases.17 Hence, at least when faced
with moderately challenging research topics (in terms of β and λ), amixed population
consisting of a few individual learners together with a large majority of social learners
achieves the best epistemic outcomes.

4.3 Summary

The three most important above results can be summarized as follows:

1. On smooth landscapes, no social learning or cognitive diversity is needed for
efficient epistemic work. In fact, populations of agents following social-learning

16 Measuring epistemic progress∗ (see supplementary material, documents 3 and 4) suggests a further
advantage of diversity. Unlike populations of social learners, given enough time, diverse populations and
populations of individual learners do not leave behind unexamined significant patches on the landscape.
This is due to their local search strategy: Agents conducting individual learning only leave a neighborhood
of patches once all its patches have been depleted. Hence, in this way, diversity can make the population of
scientists more pedantic in its work.
17 As full results reported in document 4 in the supplementary materials confirm, the ordering in Fig. 5
is stable across the whole range of examined β values. However, for the higher ruggedness values (β ∈
[200, 300]), adding some extra individual learners can lead to a small additional payoff in last stages of the
1000-round simulation run.
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heuristics suffer slightly from herding, whereas individual learning leads to effec-
tive exploration and division of labor between agents.

2. On rugged landscapes, individual learners easily get stuck on local maxima, and
populations of social learners achieve significantly better outcomes.

3. The power of cognitive diversity shows on landscapes corresponding tomoderately
challenging research topics.Mixed populations consistingmostly of social learners
with a minority (in the current simulations, 10–20%) of individualistic agents who
tend to ignore social information aremore effective than ahomogeneouspopulation
of social learners.

Together these results suggest themore general observation that no learning strategy
is per se more rational than others, but instead the efficiency of individual learning,
social learning, and the usefulness of cognitive diversity all depend on the task faced by
the community. In order to achieve good outcomes, a correct mix of agents employing
different learning rules must be applied in the right context.18

Compared to the EL model, these results provide a more fine-grained, and as I
have argued, more realistic, view of the conditions and processes related to cognitive
diversity. Looking at individual simulation runs confirms that a mixed population per-
forms best on rugged landscapes because it combines effective exploitation of socially
learned information with exploration of new patches conducted by more individual-
istic agents: The success of a search conducted by the social learners is sensitive to
their initial distribution on the landscape, and adding some individual learners in the
population increases the probability that both peaks are found. Therefore, although
social learners can be fast, individual learners improve the reliability of the search and
reduce variance in the amount of epistemic work conducted over several trials.

5 Discussion

Before concluding, I address some concerns regarding the reliability of these results,
their interpretation, and their implications for understanding real science and research
policy.

First, the generality and relevance of the findings from the broadcasting model
might raise concerns. Compared to analytical models, agent-based models usually
come with more parameters, and the results often only hold in limited parts of the
parameter space. However, as Marchi and Page (2014) point out, this should not be
seen as a general shortcoming of agent-based modeling. Instead, the expansion of the
parameter space is a result of having to actually run the simulation on a computer.
In computational modeling even seemingly trivial modeling choices (regarding, e.g.,
timing, learning, interaction) must be made explicit. In analytical modeling it is eas-
ier for similar assumptions to go unnoticed, but this does not reduce the modeler’s
responsibility to justify such choices.

18 The interaction effects between task difficulty and the distribution of social learning thresholds shows in
Table 2, where no column dominates the others. For example, at different values of λ, pure social learning
can be the best, second, or even the worst learning heuristic among the three.
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One possible strategy for meeting the challenge of relevance for real-world science
would be to calibrate the model with empirical data. However, data about the difficulty
of scientific problems, learning strategies employed by scientists, and dependencies
between aspects of research approaches is not readily available—and often it is not
even clear how relevant evidence should be obtained. So while empirical calibration
is a laudable aim, it remains outside the scope of my current endeavor. The model pre-
sented in this paper serves a different purpose. Rather than being a high-fidelity model
of a particular target system in the world, it could be called a how-possibly model or an
intuition engine (Marchi and Page 2014) aimed to reveal qualitatively described depen-
dencies between the components of the model—the broadcasting model is designed
to illuminate the micro-mechanisms mediating cognitive diversity, coordination, and
problem-solving efficiency.

One should always be cautious about drawing conclusions about real science based
on results from a simple theoretical model. I share Alexander and his coauthors’ worry
that, since the true nature of epistemic landscapes in real science is beyond our knowl-
edge, an epistemic landscapemodel cannot directly be used to argue for the desirability
of cognitive diversity in a particular scientific field. I believe, however, that epistemic
landscape modeling can legitimately serve a more modest role: Agent-based models
which have not been calibrated with empirical data can be conceived as computational
thought experiments, where modeling assumptions are seen as premises and results as
conclusions from extended arguments (Beisbart 2012). Hence, the modeling results
are of a conditional nature. They answer questions on what would happen to epistemic
efficiency (and why), given certain hypothetical ranges of parameter values, learning
heuristics, and the rest of the model structure. From this perspective, agent-based
models in philosophy can be seen as argumentative devices, and the added value of
agent-based modeling resides in their usefulness in deriving simple conclusions from
a massive number of premises (regarding, for example, distributions of the cognitive
properties of agents).

Furthermore, Ylikoski and Aydinonat (2014) have recently argued that the epis-
temic contribution of abstract theoretical models can often only be understood in the
context of a cluster of models of the same phenomenon. This suggests that we should
not study the explanatory contributions of different epistemic landscape models in
isolation, but instead see these computational thought experiments as variations on a
theme, as a family of models with similar explananda and explanantia. Exploration of
the parameter space of a single model provides information about the robustness of
modeling results within the scope of modeling assumptions embodied in that partic-
ular model. In like manner, cross-model comparisons allow more general robustness
assessments in light of the variation of modeling assumptions within themodel cluster.
Therefore, general results to be drawn from the model cluster should typically be ones
which can be shown to be immune to changes in the auxiliary assumptions.

Insofar as the epistemic landscape models put forward by Weisberg and Muldoon,
Thoma, Alexander and his coauthors, and myself all share the same basic model
structure, they definitely form a cluster within which comparisons across models can
increase our understanding of the target phenomenon. The main differences between
these models concern changes in the behavioral rules of the agents and the way
epistemic performance is measured: Alexander and his coauthors’ examination of
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the swarm rule is basically a replication of the original EL model with the addition
of a new homogeneous population engaging in flocking behavior. Similarly, Thoma
slightly changes the way collective epistemic performance is measured, suggests new
implementations of the maverick and follower rules, and examines the usefulness of
diversity when the assumption of strict locality of search and movement is relaxed.

Like Thoma’s model, also the broadcasting model extends social learning beyond
the immediate Moore neighborhood. However, unlike Thoma’s model, it does not
allow non-local movement (jumping), and it derives the choice between individual and
social learning from rudimentary cost-benefit analysis done by the scientist agents.
Together with the implemented agent-environment interaction (landscape depletion)
and examination of rugged landscapes, these changes make the broadcasting model
perhaps the clearest departure from the original EL model. However, as was pointed
out above (see footnote 6), similar modifications were envisioned already byWeisberg
and Muldoon as worthwhile extensions of their work.

As this article’s starting point and its target of critical appraisal has been the original
EL model, more detailed comparisons between the broadcasting model and those
put forward by Thoma and Alexander et al. must be left for future work. It should,
however, be noted that results from the broadcasting model differ in interesting ways
from findings in the other models. In contrast to Thoma’s findings, my model suggests
that on smooth landscapes there is no noticable benefit from diversity. However, when
compared to Alexander and his coauthors’ results, the broadcasting model paints a
more positive picture of the usefulness of social learning and diversity inmore complex
problem-solving situations. By showing how the usefulness of social learning and
cognitive diversity are related to the difficulty of the problem, the broadcasting model
goes some way towards explaining the prima facie contradictory results obtained in
the earlier models.

The cautious conclusion to be drawn from these differences is that, in its entirety,
the relationship between diversity and epistemic performance is likely to be more
complex than can be captured by any simple model. Nonetheless, the model cluster
approach to the epistemology of theoretical modeling suggests that instead of trying to
determine which model provides the correct picture of cognitive diversity, each model
could be seen as a candidate for illuminating some possible scenarios and processes
related to cognitive diversity. By tracing differences in outcomes to differences in
modeling assumptions, the different models can together be seen to lead to a clearer
picture of the potential and correct interpretation of epistemic landscape modeling—
and more generally, to a better understanding of the possible mechanisms through
which cognitive diversity influences the conduct of scientific research.

6 Conclusion

Diversity clearly makes a difference in the research community. The broadcasting
model suggests that the picture of the micro-mechanisms mediating cognitive diver-
sity and epistemic efficiency is roughly the following: Cognitive diversity produces
efficient division of labor between scientists by maintaining a beneficial mix of explo-
ration and exploitation in the population. In simple research domains where areas of
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high epistemic significance are easily identifiable, no social learning between agents
is needed for good coordination. However, on rugged landscapes which better capture
the complexity of scientific problem-solving, the presence of social learners is crucial
for enabling the population to converge to research approaches of high epistemic sig-
nificance. However, high occurrence of social learning increases the unreliability of
the research process due to herding behavior.

My results suggest that for moderately demanding research topics, the best mix of
problem-solving speed and reliability is reached by a cognitively diverse population
of scientists, where most of the agents are eager to engage in social learning, counter-
balanced by a minority of individualistic researchers who mostly conduct explorative
research on their own. In such a population, most of the epistemic work is done by
the majority of agents highly sensitive to social information about the currently most
efficient research approaches. However, maverick scientists are indispensable for pro-
viding an alternative to the consensus, ensuring that the community does not lose sight
of valuable research approaches currently ignored by the conformist majority.
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