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Abstract Quine often argued for a simple, untyped system of logic rather than the
typed systems thatwere championed byRussell andCarnap, among others.He claimed
that nothing important would be lost by eliminating sorts, and the result would be addi-
tional simplicity and elegance. In support of this claim, Quine conjectured that every
many-sorted theory is equivalent to a single-sorted theory. We make this conjecture
precise, and prove that it is true, at least according to one reasonable notion of the-
oretical equivalence. Our clarification of Quine’s conjecture, however, exposes the
shortcomings of his argument against many-sorted logic.
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Introduction

During the last century, an idea about the relationship between many-sorted logic and
single-sorted logic became a piece of folklore. Many logicians endorsed the idea that
many-sorted and single-sorted logic are mere “notational variants” of one another, and
that the two frameworks have precisely the same expressive power. One particularly
natural way to put this idea is as follows:

Every many-sorted theory is equivalent to a single-sorted theory.
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Quine was one of the most famous proponents of this claim.1 For this reason, we call
the claim Quine’s conjecture.

In this paper, we aim to capture the sense in which Quine’s conjecture is true.
Although the basic idea behind the conjecture is clear, before proving it one needs to
make precise what it might mean for two many-sorted theories to be “equivalent.” We
consider two precise versions of Quine’s conjecture. We show that the first version of
the conjecture is false, but we prove the second.

Preliminaries

Webeginwith somepreliminaries about theories inmany-sorted logic.2 A signature �

is a set of sort symbols, predicate symbols, function symbols, and constant symbols.�
must contain at least one sort symbol, and the predicate, function, and constant symbols
in� are assigned arities constructed from the sorts in�. The only difference from the
syntax of single-sorted logic is that the quantifiers ∀σ and ∃σ that appear in�-formulas
must be indexed by sorts σ ∈ �.

Given a signature�, a�-theory T is a set of�-sentences. The sentences φ ∈ T are
called the axioms of T . If the signature � has only one sort symbol, then a �-theory
T is called a single-sorted theory, while if � has more than one sort symbol, then
T is called a many-sorted theory. A �-structure M is a model of a �-theory T if
M � φ for all φ ∈ T , where � is the standard notion of logical consequence. A theory
T entails a sentence φ, written T � φ, if M � φ for every model M of T .

We begin with the following preliminary criterion for theoretical equivalence.

Definition Theories T1 and T2 are logically equivalent if they have the same class of
models.

One can verify that theories T1 and T2 are logically equivalent if and only if they
entail precisely the same sentences. It is therefore easy to see that logical equivalence
is too strict to capture any sense in which Quine’s conjecture is true. Theories can only
be logically equivalent if they are formulated in the same signature, so no many-sorted
theory is logically equivalent to a single-sorted theory.

Logical equivalence is a strict criterion for theoretical equivalence, so logicians
and philosophers of science have proposed other more general criteria.3 We will begin

1 See in particular Quine (1951, pp. 69–71), Quine (1960, pp. 209–210), and Quine (1963, pp. 267–268).
He explains the conjecture as follows: “We can always reduce multiple sorts of variables to one sort if we
adopt appropriate predicates. Wherever we might have used a special sort of variable we may use instead
a general variable and restrict it to the appropriate predicate” (Quine 1963, p. 268). Quine (1969, p. 92)
expresses the same idea when he remarks that “notations with one style of variables and notations with
many are intertranslatable.” Quine (1937, 1938, 1956) provides support for the conjecture by describing
a method of “translating” between many-sorted and single-sorted logic and applying it to NBG set theory
and Russell’s theory of types. Of course, the fact that sorts can be eliminated (or, better, unified) was also
discussed in the pure logic literature. For example, see Schmidt (1951).
2 We here take for granted some basic definitions. The reader is encouraged to consult Hodges (2008) and
Barrett and Halvorson (2015b) for details and notation.
3 See Quine (1975), Sklar (1982), Halvorson (2012, 2013, 2015), Glymour (2013), Fraassen (2014),
and Coffey (2014) for general discussion of theoretical equivalence in philosophy of science. See
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by considering a criterion called definitional equivalence that was introduced into
philosophy of science by Glymour (1971, 1977, 1980). In order to describe this
criterion, we need to do some work.

Let � ⊂ �+ be signatures and let p ∈ �+ − � be a predicate symbol of arity
σ1 × · · · × σn . An explicit definition of p in terms of � is a �+-sentence of the
form

∀σ1x1 . . . ∀σn xn
(

p(x1, . . . , xn) ↔ φ(x1, . . . , xn)
)

where φ(x1, . . . , xn) is a �-formula. Similarly, an explicit definition of a function
symbol f ∈ �+ − � of arity σ1 × · · · × σn → σ is a �+-sentence of the form

∀σ1x1 . . . ∀σn xn∀σ y
(

f (x1, . . . , xn) = y ↔ φ(x1, . . . , xn, y)
)

(1)

and an explicit definition of a constant symbol c ∈ �+ −� of sort σ is a�+-sentence
of the form

∀σ x
(
x = c ↔ ψ(x)

)
(2)

where φ(x1, . . . , xn, y) and ψ(x) are both �-formulas. Note that in all of these cases
it must be that the sorts σ1, . . . , σn, σ ∈ �.

Although they are �+-sentences, (1) and (2) have consequences in the signature
�. In particular, (1) and (2) imply the following sentences, respectively:4

∀σ1x1 . . . ∀σn xn∃σ=1y φ(x1, . . . , xn, y)

∃σ=1x ψ(x)

These two sentences are called the admissibility conditions for the explicit definitions
(1) and (2).

We now have the resources necessary to describe the concept of a definitional
extension. Let � ⊂ �+ be signatures and T a �-theory. A definitional extension of
T to �+ is a �+-theory

T + = T ∪ {δs : s ∈ �+ − �}
that satisfies the following two conditions. First, for each symbol s ∈ �+ − � the
sentence δs is an explicit definition of s in terms of �, and second, if s is a constant
symbol or a function symbol and αs is the admissibility condition for δs , then T � αs .

Footnote 3 continued
Glymour (1977), North (2009), Swanson and Halvorson (2012), Curiel (2014), Knox (2011), Knox (2014),
Barrett (2015),Weatherall (2015a, b, c), and Rosenstock et al. (2015) for discussion of whether or not partic-
ular physical theories should be considered theoretically equivalent. Finally, see de Bouvére (1965), Kanger
(1968), Pinter (1978), Pelletier and Urquhart (2003), Andréka et al. (2005), Friedman and Visser (2014),
and Barrett and Halvorson (2015a, b) for some results that have been proven about varieties of theoretical
equivalence.
4 We will use the notation ∃σ=n x φ(x) throughout to abbreviate the sentence “there exist exactly n things
of sort σ that are φ.”
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One can think of a definitional extension of a theory as “saying no more” than the
original theory (Barrett and Halvorson 2015b). It simply allows one to add “abbre-
viations” of old formulas to the theory. With this thought in mind, we can describe
definitional equivalence.

Definition Let T1 be a �1-theory and T2 be a �2-theory. T1 and T2 are definitionally
equivalent if there are theories T +

1 and T +
2 that satisfy the following three conditions:

• T +
1 is a definitional extension of T1,

• T +
2 is a definitional extension of T2,

• T +
1 and T +

2 are logically equivalent �1 ∪ �2-theories.

One often says that T1 and T2 are definitionally equivalent if they have a “common
definitional extension.” The intuition behind definitional equivalence is simple: T1
and T2 are definitionally equivalent if T1 can define all of the vocabulary that T2 uses,
and in a compatible way, T2 can define all of the vocabulary that T1 uses. Definitional
equivalence captures a sense in which two theories are “intertranslatable” (Barrett and
Halvorson 2015a).

One can easily verify that definitional equivalence is a strictly weaker criterion than
logical equivalence. Unlike logical equivalence, theories in different signatures can be
definitionally equivalent. But definitional equivalence is still incapable of capturing
any sense in which Quine’s conjecture is true. As we have described it, a definitional
extension does not allow one to define new sorts. If T1 and T2 are definitionally equiv-
alent, therefore, they must be formulated in signatures with the same sort symbols. So
no many-sorted theory is definitionally equivalent to a single-sorted theory.

Fortunately, there are criteria for theoretical equivalence that are more general than
definitional equivalence. The one that will be of particular interest to us is called
Morita equivalence.5 Morita equivalence is a natural generalization of definitional
equivalence. Indeed, it is essentially the same as definitional equivalence, but it allows
one to define new sort symbols in addition to new predicate, function, and constant
symbols.

The first version of Quine’s conjecture that we will consider is the following.

Quine’s conjecture 1

Every theory is Morita equivalent to a single-sorted theory.

In order to understand Quine’s conjecture 1, we need to carefully describe Morita
equivalence. We begin by discussing how to define new sort symbols. Let � ⊂ �+
be signatures and consider a sort symbol σ ∈ �+ − �. One can define the sort σ as a

5 Quine (1975) proposed his own criteria for equivalence of theories. This criterion suffers from some seri-
ous shortcomings, however, so we will not discuss it here (Barrett and Halvorson 2015a). Definitional and
Morita equivalence each capture a sense in which two theories are intertranslatable (Barrett and Halvorson
2015a, b). Theories that are equivalent according to these criteria, therefore, can be “mutually interpreted”
into one another. One has good reason to prefer these stricter notions of equivalence over mutually inter-
pretability, however, because the latter does not preserve various important theoretical properties. See Visser
(2015) for examples of some of these properties, Barrett andHalvorson (2015b) for an introduction toMorita
equivalence, and Andréka et al. (2008) and Mere and Veloso (1992) for discussion of closely related ideas.
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product sort, a coproduct sort, a subsort, or a quotient sort. In each case one defines σ

using old sorts from � and new function symbols from �+ − �. These new function
symbols specify how the new sort σ is related to the old sorts in �. We describe in
detail these four ways to define new sorts.

In order to define σ as a product sort, one needs two function symbols π1, π2 ∈
�+ − � with π1 of arity σ → σ1, π2 of arity σ → σ2, and σ1, σ2 ∈ �. The function
symbols π1 and π2 serve as the “canonical projections” associated with the product
sort σ . An explicit definition of the symbols σ, π1, and π2 as a product sort in terms
of � is a �+-sentence of the form

∀σ1x∀σ2 y∃σ=1z
(
π1(z) = x ∧ π2(z) = y

)

One should think of a product sort σ as the sort whose elements are ordered pairs,
where the first element of each pair is of sort σ1 and the second is of sort σ2.

One can also define σ as a coproduct sort. In this case, one needs two function
symbols ρ1, ρ2 ∈ �+ − � with ρ1 of arity σ1 → σ , ρ2 of arity σ2 → σ , and
σ1, σ2 ∈ �. The function symbols ρ1 and ρ2 are the “canonical injections” associated
with the coproduct sort σ . An explicit definition of the symbols σ, ρ1, and ρ2 as a
coproduct sort in terms of � is a �+-sentence of the form

∀σ z
(∃σ1=1x(ρ1(x) = z) ∨ ∃σ2=1y(ρ2(y) = z)

) ∧ ∀σ1x∀σ2 y ¬(
ρ1(x) = ρ2(y)

)

One should think of a coproduct sort σ as the disjoint union of the elements of sorts
σ1 and σ2.

When defining a new sort σ as a product sort or a coproduct sort, one uses two
(not necessarily distinct) sort symbols σ1 and σ2 in � and two function symbols in
�+ − �. The next two ways of defining a new sort σ only require one sort symbol in
� and one function symbol in �+ − �.

In order to define σ as a subsort, one needs a function symbol i ∈ �+ − � of arity
σ → σ1 with σ1 ∈ �. The function symbol i is the “canonical inclusion” associated
with the subsort σ . An explicit definition of the symbols σ and i as a subsort in terms
of � is a �+-sentence of the form

∀σ1x
(
φ(x) ↔ ∃σ z(i(z) = x)

) ∧ ∀σ z1∀σ z2
(
i(z1) = i(z2) → z1 = z2

)
(3)

where φ(x) is a �-formula. One should think of σ as “the things of sort σ1 that are
φ.” The sentence (3) entails the following �-sentence:

∃σ1x φ(x)

As above, we will call this �-sentence the admissibility condition for the defini-
tion (3).

Lastly, in order to define σ as a quotient sort one needs a function symbol ε ∈
�+ − � of arity σ1 → σ with σ1 ∈ �. An explicit definition of the symbols σ and ε

as a quotient sort in terms of � is a �+-sentence of the form
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∀σ1x1∀σ1x2
(
ε(x1) = ε(x2) ↔ φ(x1, x2)

) ∧ ∀σ z∃σ1x(ε(x) = z) (4)

where φ(x1, x2) is a �-formula. This sentence defines σ as a quotient sort that is
obtained by “quotienting out” the sort σ1 with respect to the formula φ(x1, x2). The
sort σ should be thought of as the set of “equivalence classes of elements of σ1
with respect to the relation φ(x1, x2),” and the function symbol ε is the “canonical
projection” that maps an element to its equivalence class. And indeed, one can verify
that the sentence (4) implies that φ(x1, x2) is an equivalence relation. In particular,
(4) entails the following �-sentences:

∀σ1x φ(x, x)

∀σ1x1∀σ1x2(φ(x1, x2) → φ(x2, x1))

∀σ1x1∀σ1x2∀σ1x3
(
(φ(x1, x2) ∧ φ(x2, x3)) → φ(x1, x3)

)

These �-sentences are the admissibility conditions for the definition (4).
Now that we have described the four ways of defining new sort symbols, we can

define the concept of aMorita extension. AMorita extension is a natural generalization
of a definitional extension. The only difference is that now one is allowed to define
new sort symbols. Let � ⊂ �+ be signatures and T a �-theory. A Morita extension
of T to the signature �+ is a �+-theory

T + = T ∪ {
δs : s ∈ �+ − �

}

that satisfies the following three conditions. First, for each symbol s ∈ �+ − � the
sentence δs is an explicit definition of s in terms of�. Second, if σ ∈ �+ −� is a sort
symbol and f ∈ �+ − � is a function symbol that is used in the explicit definition
of σ , then δ f = δσ . (For example, if σ is defined as a product sort with projections
π1 and π2, then δσ = δπ1 = δπ2 .) And third, if αs is an admissibility condition for a
definition δs , then T � αs .

AMorita extension of a theory again “says nomore” than the original theory (Barrett
and Halvorson 2015b). Like a definitional extension, it can be thought of simply
as a way to add in “abbreviations” of old statements into the theory T . A Morita
extension, however, allows one to abbreviate old statements using the apparatus of
sorts, in addition to the apparatus of predicates, functions, and constant symbols. Our
definition of Morita equivalence is perfectly analogous to definitional equivalence.

Definition Let T1 be a �1-theory and T2 a �2-theory. T1 and T2 are Morita equiva-
lent if there are theories T 1

1 , . . . , T n
1 and T 1

2 , . . . , T m
2 that satisfy the following three

conditions:

• Each theory T i+1
1 is a Morita extension of T i

1 ,
• Each theory T i+1

2 is a Morita extension of T i
2 ,• T n

1 and T m
2 are logically equivalent �-theories with �1 ∪ �2 ⊂ �.

The intuition behind Morita equivalence is the same as that behind definitional
equivalence: T1 and T2 are Morita equivalent if they each can, in compatible ways,
define all of the vocabulary that the other uses.
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One small clarification should be made about this definition. In order to show that
two theories are Morita equivalent, one is allowed to take a finite number n of Morita
extensions of T1 and a finite number m of Morita extensions of T2. One might wonder
whether any generality is lost if we were to instead define Morita equivalence as
follows:

(�) T1 and T2 are Morita equivalent if there are logically equivalent theories T +
1

and T +
2 that are Morita extensions of T1 and T2, respectively.

The following example shows that the proposal (�) is significantly less general than
the standard definition of Morita equivalence provided above.

Example Let σ1 and σ2 be sort symbols, with c a constant symbol of sort σ1, d a
constant symbol of sort σ2, and i a function symbol of arity σ2 → σ1. We define the
signatures �1 = {σ1, c}, �2 = {σ1, c, σ2, i}, and �3 = {σ1, c, σ2, i, d} and consider
the following three theories:

T1 = ∅
T2 = {∀σ1x

(
x = c ↔ ∃σ2 y(i(y) = x)

) ∧ ∀σ2 y1∀σ2 y2
(
i(y1) = i(y2) → y1 = y2

)}

T3 = T2 ∪ {∀σ2 y
(
y = d ↔ i(y) = c

)}

It is easy to see that the �2-theory T2 is a Morita extension of the �1-theory T1, and
that the �3-theory T3 is a Morita extension of T2. The theory T2 defines the sort σ2
as a subsort containing just the “thing that is c,” and T3 then defines the constant d in
such a way that it applies to this new thing. So naturally, one would like to consider
T1 and T3 equivalent. After all, T3 is obtained from T1 simply by defining some new
vocabulary.

Although T1 and T3 are Morita equivalent according to the standard definition, they
are not equivalent according to the proposal (�). The axiom of T3 that defines d in
terms of �2 is not a definition of d in terms of �1. And indeed, there simply is no
definition of the constant symbol d in terms of �1. Such a definition would have to
be a sentence of the form ∀σ2 y (y = d ↔ ψ(y)), where ψ is a �1-formula. This
expression, however, is not well-formed. The constant d and variable y are of sort σ2,
which is not in �1, so ψ cannot be a �1-formula. This means that there is no Morita
extension of T1 that defines the constant symbol d; it takes two Morita extensions of
T1 to define d.

The proposal (�) would therefore not be a satisfactory definition of Morita equiva-
lence, so we use the standard definition for the remainder of this paper.

One can easily verify that Morita equivalence is a strictly weaker criterion than
definitional equivalence. If two theories are definitionally equivalent, then they are
Morita equivalent. But in general the converse does not hold. As the above example
shows, theories can beMorita equivalent even if they are formulated in signatures with
different sort symbols.

We now consider Quine’s conjecture 1 and show that it is false. The following
theorem provides an example of a theory that is not Morita equivalent to any single-
sorted theory.
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Theorem 1 Let �1 = {σ1, σ2, . . .} be a signature containing a countable infinity of
sort symbols. The �1-theory T1 = ∅ is not Morita equivalent to any single-sorted
theory.

The idea behind Theorem 1 is simple. One can think of the theory T1 as saying the
following: “Every element is either of kind1 or of kind2 or of kind3 or…, no element is
of more than one kind, and there is at least one element of every kind.” A single-sorted
theory in first-order logic simply does not have the expressive power to say this. (In
particular, it cannot express the first conjunct.) The theory T1 should therefore not be
Morita equivalent to any single-sorted theory. Before proving this we need a simple
lemma and some notation.

Lemma Let � ⊂ �+ be signatures and T a �-theory. Suppose that A is a model of
T with Aσ a finite set for every sort σ ∈ �. Let T + be a Morita extension of T to a
signature �+ and A+ a model of T + such that A+|� = A.6 Then A+

σ is a finite set
for every σ ∈ �+.

Proof Let σ ∈ �+ − � be a sort symbol. We show that A+
σ is a finite set in the cases

where σ is defined as a product sort or a subsort. If T + defines σ as a product sort
of σ1 and σ2, then A+

σ has exactly as many elements as Aσ1 × Aσ2 , which is finite by
assumption. If T + defines σ as a subsort of σ1 ∈ �, then the cardinality of A+

σ is less
than or equal to the cardinality of Aσ1 , which is also finite. The coproduct and quotient
cases follow analogously. �


Our proof of Theorem 1 will expedited by using the following simple category-
theoretic machinery.7 A first-order theory T has a category of models. A category
C is a collection of objects with arrows between the objects that satisfy two basic
properties. First, there is an associative composition operation ◦ defined on the arrows
of C , and second, every object c in C has an identity arrow 1c : c → c. We will use
the notation Mod(T ) to denote the category of models of T . An object in Mod(T )

is a model M of T , and an arrow f : M → N between objects in Mod(T ) is an
elementary embedding f : M → N between the models M and N . One can easily
verify that Mod(T ) is a category.

A functor F : C → D between categories C and D is a map from objects and
arrows of C to objects and arrows of D that satisfies

F( f : a → b) = F f : Fa → Fb F(1c) = 1Fc F(g ◦ h) = Fg ◦ Fh

for every arrow f : a → b in C , every object c in C , and every composable pair of
arrows g and h inC . Functors are the “structure-preservingmaps” between categories;
they preserve domains, codomains, identity arrows, and the composition operation. A
functor F : C → D is full if for all objects c1, c2 in C and arrows g : Fc1 → Fc2 in

6 Themodel A+|� is the�-structure obtained from the�+-structure A+ by “forgetting” the interpretations
of symbols in �+ − �. One can show that the model A+ exists and is unique up to isomorphism (Barrett
and Halvorson 2015b, Theorem 4.1).
7 The reader is encouraged to consult Mac Lane (1971) or Borceux (1994) for further details.
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D there exists an arrow f : c1 → c2 in C with F f = g. F is faithful if F f = Fg
implies that f = g for all arrows f : c1 → c2 and g : c1 → c2 in C . F is essentially
surjective if for every object d in D there exists an object c in C such that Fc ∼= d.
A functor F : C → D that is full, faithful, and essentially surjective is called an
equivalence of categories.

We now turn to the proof of Theorem 1.

Proof of Theorem 1 Suppose for contradiction that there is a single-sorted theory T2
that is Morita equivalent to T1. This means that T2 is a �2-theory with σ ∈ �2 the
unique sort symbol. Let T be the “common Morita extension” of T1 and T2 to a
signature � ⊃ �1 ∪ �2. We consider the model A of T1 defined by Aσi = {i, i ′} for
each i ∈ N. For every i ∈ N there is an isomorphism fi : A → A that is the identity
on Aσ j for j �= i , but on Aσi maps fi : i �→ i ′ and fi : i ′ �→ i . The fi : A → A are
isomorphisms, and so are elementary embeddings. This implies that there are infinitely
many arrows f : A → A in the category Mod(T1).

Since T1 and T2 are Morita equivalent, there is an equivalence of categories F :
Mod(T1) → Mod(T2) such that for every model M of T1

F(M) = M+|�2

for some model M+ of T that is isomorphic to an expansion of M (Barrett and
Halvorson 2015b, Theorem 5.1).We consider the model A+ of T . The Lemma implies
that A+

σ is a finite set. This implies that F(A)σ is a finite set. Since�2 contains only the
sortσ and F(A)σ is finite, there can be atmost finitelymany arrows g : F(A) → F(A)

in the category Mod(T2). But since F is an equivalence and therefore full and faithful,
this cannot be the case. �


Theorem 1 immediately implies that Quine’s conjecture 1 is false. It is not the
case that every many-sorted theory is Morita equivalent to a single-sorted theory. This
disproof of Quine’s conjecture 1, however, suggests the following slight modification
of the conjecture.

Quine’s conjecture 2

If � is a signature with finitely many sorts, then every �-theory is Morita equivalent
to a single-sorted theory.

This second version of Quine’s conjecture is true. One proves Quine’s conjecture 2
by explicitly constructing a “corresponding” single-sorted theory T̂ for every many-
sorted theory T . The basic idea behind the construction is intuitive. The theory T̂
simply replaces the sort symbols that the theory T uses with predicate symbols.8 It
takes some work, however, to make this idea precise.

8 This construction recalls the proof that every theory is definitionally equivalent to a theory that uses only
predicate symbols (Barrett and Halvorson 2015a, Prop. 2). Quine (1937, 1938, 1956, 1963) suggests the
basic idea behind our proof, as do Burgess (2005, p. 12) and Manzano (1996, pp. 221–222). The theorem
that we prove here is much more general than Quine’s results because we make no assumption about what
the theory T is, whereas Quine only considered Russell’s theory of types and NBG set theory.
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Let � be a signature with finitely many sort symbols σ1, . . . , σn . We begin by
constructing a corresponding signature �̂ that contains one sort symbolσ . The symbols
in �̂ are defined as follows. For every sort symbol σ j ∈ � we let qσ j be a predicate
symbol of sort σ . For every predicate symbol p ∈ � of arity σ j1 × · · · × σ jm we let
qp be a predicate symbol of arity σm (the m-fold product of σ ). Likewise, for every
function symbol f ∈ � of arity σ j1 ×· · ·×σ jm → σ j we let q f be a predicate symbol
of arity σm+1. And lastly, for every constant symbol c ∈ � we let dc be a constant
symbol of sort σ . The single-sorted signature �̂ corresponding to � is then defined
to be

�̂ = {σ } ∪ {qσ1 , . . . , qσn } ∪ {qp : p ∈ �} ∪ {q f : f ∈ �} ∪ {dc : c ∈ �}

We can now describe a method of “translating” �-theories into �̂-theories. Let T
be an arbitrary �-theory. We define a corresponding �̂-theory T̂ , and then show that
T̂ is Morita equivalent to T .

We begin by translating the axioms of T into the signature �̂. This will take two
steps. First, we describe a way to translate the �-terms into �̂-formulas. Given a �-
term t (x1, . . . , xn), we define the �̂-formula ψ̂t (y1, . . . , yn, y) recursively as follows.

• If t (x1, . . . , xn) is the variable xi , then ψ̂t is the �̂-formula yi = y.
• If t (x1, . . . , xn) is the constant c, then ψ̂t is the �̂-formula dc = y.
• Suppose that t (x1, . . . , xn) is the term f (t1(x1, . . . , xn), . . . , tk(x1, . . . , xn))

and that each of the �̂-formulas ψ̂ti (y1, . . . , yn, y) have been defined. Then
ψ̂t (y1, . . . , yn, y) is the �̂-formula

∃σ z1 . . . ∃σ zk
(
ψ̂t1(y1, . . . , yn, z1)∧. . .∧ψ̂tk (y1, . . . , yn, zk)∧q f (z1, . . . , zk, y)

)

One can think of the formula ψt (y1, . . . , yn, y) as the translation of the expression
“t (x1, . . . , xn) = x” into the signature �̂.

Second, we use this map from �-terms to �̂-formulas to describe a map from �-
formulas to �̂-formulas. Given a �-formula ψ(x1, . . . , xn), we define the �̂-formula
ψ̂(y1, . . . , yn) recursively as follows.

• If ψ(x1, . . . , xn) is t (x1, . . . , xn) = s(x1, . . . , xn), where s and t are �-terms of
sort σi , then ψ̂(y1, . . . , yn) is the �̂-formula

∃σ z
(
ψ̂t (y1, . . . , yn, z) ∧ ψ̂s(y1, . . . , yn, z) ∧ qσi (z)

)

• Ifψ(x1, . . . , xn) is p(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)), where p ∈ � is a pred-
icate symbol, then ψ̂(y1, . . . , yn) is the �̂-formula

∃σ z1 . . . ∃σ zk
(
ψ̂t1(y1, . . . , yn, z1) ∧ . . . ∧ ψ̂tk (y1, . . . , yn, zk) ∧ qp(z1, . . . , zk)

)

• This definition extends to all �-formulas in the standard way. We define the �̂-
formulas ¬̂ψ := ¬ψ̂ , ψ̂1 ∧ ψ2 := ψ̂1∧ψ̂2, ψ̂1 ∨ ψ2 := ψ̂1∨ψ̂2, and ̂ψ1 → ψ2 :=
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ψ̂1 → ψ̂2. Furthermore, if ψ(x1, . . . , xn, x) is a �-formula, then we define both
of the following:

∀̂σi xψ := ∀σ y(qσi (y) → ψ̂(y1, . . . , yn, y))

∃̂σi xψ := ∃σ y(qσi (y) ∧ ψ̂(y1, . . . , yn, y))

One should think of the formula ψ̂ as the translation of the �-formula ψ into the
signature �̂.

This allows us to consider the translations α̂ of the axioms α ∈ T . The single-sorted
theory T̂ will have the �̂-sentences α̂ as some of its axioms. But T̂ will have more
axioms than just the sentences α̂. It will also have some auxiliary axioms. These
auxiliary axioms will guarantee that the symbols in �̂ “behave like” their counterparts
in�.We define auxiliary axioms for the predicate symbols qσ1 , . . . , qσn ∈ �̂, qp ∈ �̂,
and q f ∈ �̂, and for the constant symbols dc ∈ �̂. We discuss each of these four cases
in detail.

We first define auxiliary axioms to guarantee that the symbols qσ1 , . . . , qσn behave
like sort symbols. The �̂-sentence φ is defined to be ∀σ y(qσ1(y) ∨ . . . ∨ qσn (y)).9

Furthermore, for each sort symbol σ j ∈ � we define the �̂-sentence φσ j to be

∃σ y(qσ j (y)) ∧ ∀σ y
(
qσ j (y) → (¬qσ1(y) ∧ . . . ∧ ¬qσ j−1(y)

∧¬qσ j+1(y) ∧ . . . ∧ ¬qσn (y))
)

One can think of the sentences φσ1 , . . . , φσn , and φ as saying that “everything is of
some sort, nothing is of more than one sort, and every sort is nonempty.”

Nextwe define auxiliary axioms to guarantee that the symbols qp , q f , and dc behave
like their counterparts p, f , and c in �. For each predicate symbol p ∈ � of arity
σ j1 × · · · × σ jm , we define the �̂-sentence φp to be

∀σ y1 . . . ∀σ ym

(
qp(y1, . . . , ym) →

(
qσ j1

(y1) ∧ . . . ∧ qσ jm
(ym)

))

This sentence restricts the extension of qp to the subdomain of n-tuples satisfying
qσ j1

, . . . , qσ jm
, guaranteeing that the predicateqp has “the appropriate arity.”Consider,

for example, the case of a unary predicate p of sort σi . In that case, φp says that

∀σ y(qp(y) → qσi (y)),

which means that nothing outside the subdomain qσi satisfies qp. Note, however, that
here we have made a conventional choice. We could just as well have stipulated that
qp applies to everything outside of the subdomain qσi . All that matters here is that qp

is trivial (either trivially true, or trivially false) except on the subdomain of objects
satisfying qσi .

9 Note that if there were infinitely many sort symbols in �, then we could not define the �̂-sentence φ in
this way.
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For each function symbol f ∈ � of arity σ j1 × · · · × σ jm → σ j we define the
�̂-sentence φ f to be the conjunction

∀σ y1 . . . ∀σ ym∀σ y
(
q f (y1, . . . , ym, y) → (qσ j1

(y1) ∧ . . . ∧ qσ jm
(ym) ∧ qσ j (y))

)

∧∀σ y1 . . . ∀σ ym
(
(qσ j1

(y1) ∧ . . . ∧ qσ jm
(ym)) → ∃σ=1y(q f (y1, . . . , ym, y))

)

The first conjunct guarantees that the symbol q f has “the appropriate arity,” and the
second conjunct guarantees that q f behaves like a function. Lastly, if c ∈ � is a
constant symbol of arity σ j , then we define the �̂-sentence φc to be qσ j (dc). This
sentence guarantees that the constant symbol dc also has “the appropriate arity.”

We now have the resources to define a �̂-theory T̂ that is Morita equivalent to T .

T̂ = {̂α : α ∈ T } ∪ {φ, φσ1 , . . . , φσn }
∪ {φp : p ∈ �}
∪ {φ f : f ∈ �}
∪ {φc : c ∈ �}

The theory T̂ has two kinds of axioms, the translated axioms of T and the auxiliary
axioms. These axioms allow T̂ to imitate the theory T in the signature �̂. Indeed, one
can prove the following result.

Theorem 2 The theories T and T̂ are Morita equivalent.

The proof of Theorem 2 requires some work, and has therefore been placed in
an appendix. But the idea behind the proof is simple. The theory T needs to define
symbols in �̂. It defines the sort symbol σ as a “universal sort,” by taking the coproduct
of the sorts σ1, . . . , σn ∈ �. The theory T then defines the symbols qp, q f , and dc in
�̂ simply by using the corresponding symbols p, f , and c in �. Likewise, the theory
T̂ needs to define the symbols in �. It defines the sort symbol σ j as the subsort of
“things that are qσ j ” for each j = 1, . . . , n. And T̂ defines the symbols p, f , and c
again by using the corresponding symbols qp, q f , and dc.

Since the theory T was arbitrary, Theorem 2 immediately implies that Quine’s
conjecture 2 is true.

Philosophical implications

Our proof of Quine’s conjecture 2 substantiates Quine’s original thought about the
relationship between many-sorted logic and single-sorted logic. It captures a precise
sense in which single-sorted logic has exactly the same expressive power as (finitely)
many-sorted logic.

In capturing this relationship, our results provide a reason to prefer Morita equiv-
alence over definitional equivalence. The original motivation for taking definitional
equivalence as the standard for theoretical equivalence is intuitive: Definitional equiv-
alence captures a sense in which two theories are intertranslatable. If T1 and T2 are
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definitionally equivalent, then there are two precise ways to translate between the
theories.

• The first way of translating between T1 and T2 is purely syntactic. Formulas of T1
can be translated into the signature of T2, and vice versa, and these translations
have some nice features. In particular, theorems are translated into theorems, and
the two translations are “almost inverse” to one another (Barrett and Halvorson
2015a, Theorem 1).10

• The second way of translating is semantic. Models of T1 can be translated into
models of T2, and vice versa, and these translations also have some nice features.
In particular, the two translations induce a categorical equivalence between the
categories of models of the two theories (Barrett and Halvorson 2015b, Theorems
3.1 and 5.1).

Morita equivalence also captures a sense in which two theories are intertranslatable.
Indeed, if two theories are Morita equivalent, then one can again translate formulas
and convert models between them (Barrett and Halvorson 2015b, Theorems 4.3 and
5.1).

The motivation for taking definitional equivalence as the standard for theoretical
equivalence therefore carries over to Morita equivalence. But our results show that
Morita equivalence has a virtue that definitional equivalence lacks. In particular, if
one follows Glymour (1971, 1977, 1980) in taking definitional equivalence as the
standard for theoretical equivalence, then one cannot recover any sense in which
Quine’s conjecture is true. If one wants to substantiate Quine’s conjecture and capture
the relationship between the many-sorted and single-sorted frameworks, one needs to
move to Morita equivalence.

Our discussion also yields a cautionary remark concerning a particular argument of
Quine’s. One might be tempted to conclude from Theorem 2 that many-sorted logic
is dispensable. In fact, this is precisely the conclusion that Quine himself drew. Quine
says that explicitly naming sorts and specifying the sorts of the vocabulary in the
signature of a theory is an “artificial device” (Quine and Carnap 1990, p. 409), and
that we are licensed to ignore it. He sums up his negative stance on many-sorted logic
as follows:

All in all, I find an overwhelming case for a single unpartitioned universe of
values of bound variables, and a simple grammar of predication which admits
general terms all on an equal footing. Subsidiary distinctions can still be drawn
as one pleases, both on methodological considerations and on considerations of
natural kind; but we may think of them as distinctions special to the sciences
and unreflected in the structure of our notation (Quine 1960, p. 229).11

10 Intuitively, two translations F and G between theories are “almost inverse” if both F ◦ G and G ◦ F map
every formula to a provably equivalent (but not necessarily equal) formula. The reader is invited to consult
Barrett and Halvorson (2015a) for a precise definition. See Friedman and Visser (2014) for alternative
characterizations of definitional equivalence and intertranslatability.
11 For other expressions of this same attitude, see Quine (1951, pp. 69–71), Quine (1963, pp. 267–268),
and Quine and Carnap (1990, p. 409).
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Quine’s reasoning here may be seductive, but it is nonetheless misleading. We have
shown that for each theory T in a signature� with finitelymany sorts, there is aMorita
equivalent single-sorted theory T̂ . This result does not imply that we can ignore sorts
altogether. There are a number of reasons for this.

First, Quine’s argument against many-sorted logic is circular. It relies on a theorem
that can only be stated in the framework of many-sorted logic. In capturing the sense
in which Quine’s conjecture is true, one employs Morita equivalence, a standard of
equivalence that is itself inherently many-sorted. If one does away with the many-
sorted framework altogether, one can no longer capture this equivalence; the single-
sorted framework simply does not provide one with a criterion for equivalence that is
capable of substantiating Quine’s conjecture.

The many-sorted framework simply allows us to better recognize the variety of
ways in which theories might be equivalent. For example, one might want to consider
Euclidean geometry formulated using lines to be equivalent to Euclidean geome-
try formulated using points. Although both of these theories are single-sorted, the
single-sorted framework does not allow one to consider them equivalent. With Morita
equivalence in hand, however, the many-sorted framework does allow one capture this
equivalence (Barrett and Halvorson 2016). The issue here is that two single-sorted
theories might have different sorts, in which case there is a non-trivial question about
whether these sorts can be defined from each other. One theory’s single sort might, for
example, be definable as a product of another theory’s single sort. In particular, this
means that two single-sorted theories can be Morita equivalent even if they are not
definitionally equivalent. The following simple example serves to illustrate this fact.

Example Consider the signatures �1 = {σ1} and �2 = {σ2, p}, where σ1 and σ2
are sort symbols, and p is a unary predicate of sort σ2. We define the following two
theories.

T1 = {∃σ1=1x (x = x)}
T2 = {∃σ2=2y (y = y), ∃σ2=1y p(y)}

The�1-theory T1 says “there is only one thing”, while the�2-theory T2 says “there are
exactly two things, the first is p, and the second is¬p.” These two theories are Morita
equivalent. In order to prove this, one shows that T1 can define all of the symbols that
T2 uses, and vice versa. The theory T1 defines the sort symbol σ2 as the coproduct
of the sort σ1 with itself, and then defines the predicate p to hold of the element in
the image of the canonical injection ρ1 that is associated with the new coproduct sort
σ2. And on the other hand, the theory T2 defines the sort symbol σ1 as the subsort of
“things that are p.” T1 and T2 are therefore Morita equivalent.

Suppose, however, that we were to follow Quine and ignore the apparatus of sorts
when considering these theories T1 and T2. That is, suppose that we were to treat
T1 and T2 as if they were both formulated using the same single sort symbol. The
single-sorted framework then gives us no way of recognizing any sense in which these
theories are equivalent. The theory T1 implies that “there is one thing”, while the theory
T2 implies that “there are two things.” These implications contradict one another, so
T1 and T2 do not even have a common conservative extension, let alone a common
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definitional extension.12 They are therefore not definitionally equivalent. If we ignore
the apparatus of sorts when considering the theories T1 and T2, then we are also forced
to forget a natural sense in which they are equivalent theories.13

When Quine argues that nothing of philosophical significance turns on the use of
many-sorted as opposed to single-sorted logic, therefore, he is mistaken. Indeed, recall
that Quine used the fact that many-sorted logic could be reduced to single-sorted logic
as a tool in his debates with Carnap. While Carnap finds many-sorted logic helpful
for capturing the phenomenon of category mistakes, Quine claims that it is more
convenient to say that sentences committing category mistakes are meaningful, but
trivially false:

[…] the many-sorted is translatable into one-sorted. Generally such translation
has the side effect of admitting as meaningful some erstwhile meaningless pred-
ications. E.g., if the predicate “divisible by 3” is henceforth to be trained on
general variables instead of number variables, we must make sense of calling
things other than numbers divisible by 3. But this is easy; we may count such
attributions as false instead of meaningless (Quine 1969, p. 96).

Quine has again missed a beat here. Recall that in eliminating sort distinctions, we
had to make a conventional choice.14 For a predicate that originally was restricted to
things of a particular sort, what should we say about its application to things of another
sort? Should we say that it applies to all such things, or to no such things? There is no
default answer here because we have to consider the question both for a predicate and
for its negation (in which case our answers will be opposite to each other).

Consider a particular example. The predicates “prime” and “composite” are defined
on the domain of natural numbers. Now suppose that we unify the domain of natural
numbers with the domain of 20th century philosophers. FollowingQuine’s suggestion,
we should count the attribution of “prime” to philosophers as false, e.g. “Carnap is
prime,” is considered false. By the same reasoning, we also count the attribution of
“composite” (i.e. “not prime”) to philosophers as false, e.g. “Carnap is composite,”
is considered false. But then Carnap is neither prime nor not-prime, which cannot be
tolerated within the framework of classical logic.

Quine is therefore wrong when he claims that “we may count such attributions
as false.” If we count all such attributions as false, then we land ourselves in a con-
tradiction. We have to choose which attributions are true, and which are false. The
many-sorted framework allows us to refrain from making such conventional choices,
which could easily be mistaken for assertions. And this is an advantage of the frame-

12 Note that if we remember that T1 and T2 use different sort symbols (as we did in the example above),
then we can recognize that they have a common conservative extension. In this case, T1 implies that “there
is one thing of sort σ1”, while T2 implies that “there are two things of sort σ2”, and these implications no
longer contradict one another.
13 Manzano (1996, pp. 221–222) puts our attitude nicely: “It is well-known that many-sorted logic reduces
to [single-sorted] logic, and this approach is the one commonly used in textbooks. […] What is not usually
said in textbooks is that the reduction has a price.”
14 See our definition of the sentence φp and the surrounding discussion in the construction of the theory

T̂ .
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work. It does not force us to apply predicates in cases where we have no good reason
to say that they do (or do not) hold of the items in question.

Recent philosophical literature has devoted significant attention to logic and quan-
tifiers, but relatively little to the device of sorts.15 Some of us felt justified to ignore
sorts because we believed Quine when he claimed that every theory can be replaced
by a single-sorted variant. But when we look at the actual mechanics of how this
replacement works, it becomes clear that Quine was mistaken about the philosophical
upshot of the logical facts. Many-sorted theories are eliminable only to the extent that
Morita equivalence is a reasonable notion of equivalence, andMorita equivalence only
makes sense in the framework of many-sorted logic. When we forget the apparatus of
sorts, we are also foced forget a particularly natural and useful criterion for theoretical
equivalence. And in addition, eliminating sort distinctions forces us to make unneces-
sary conventional choices about how to extend predicates beyond their original range
of application.

Through a bit of logical legerdemain, Quine convinced a generation of philosophers
that formal logic can do without the apparatus of sorts. But the formal result — that
each theory can be replaced with a single-sorted variant — does not support the
philosophical conclusion. If we forget about the apparatus of sorts and replace each
theory with a single-sorted variant, then philosophical questions will be begged and
an interesting point of view will be lost.

Appendix

The objective of this appendix is to prove Theorem 2. We prove a special case of the
result for convenience. We will assume that � has only three sort symbols σ1, σ2, σ3
and that � does not contain function or constant symbols. A perfectly analogous
(though more tedious) proof goes through in the general case.

We prove the result by explicitly constructing a “common Morita extension” T4 ∼=
T̂4 of T and T̂ to the following signature.

�+ = � ∪ �̂ ∪{σ12} ∪ {ρ1, ρ2, ρ12, ρ3} ∪ {i1, i2, i3}

The symbol σ12 ∈ �+ is a sort symbol. The symbols denoted by subscripted ρ are
function symbols. Their arities are expressed in the following figure.

σ

σ3σ12

σ2σ1

ρ1

ρ12
ρ3

ρ2

15 Of course, there are exceptions, such as Turner (2010).
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The symbols i1, i2, and i3 are function symbols with arity σ1 → σ , σ2 → σ , and
σ3 → σ , respectively.

We now turn to the proof.

Proof of Theorem 2 The following figure illustrates how our proof will be organized.

T

T1

T Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

T2

T3

T4 ∼= T4

T3

T2

T1

Steps 1–3 define the theories T̂1, . . . , T̂4, steps 4–6 define T1, . . . , T4, and step 7
shows that T4 and T̂4 are logically equivalent.

Step 1 We begin by defining the theory T̂1. For each sort σ j ∈ � we consider the
following sentence.

∀σ y
(
qσ j (y) ↔ ∃σ j x(i j (x) = y)

)
(θσ j )

∧ ∀σ j x1∀σ j x2(i j (x1) = i j (x2) → x1 = x2)

The sentence θσ j defines the symbols σ j and i j as the subsort of “things that are qσ j .”
The auxiliary axioms φσ j of T̂ guarantee that the admissibility conditions for these
definitions are satisfied. The theory T̂1 = T̂ ∪ {θσ1 , θσ2 , θσ3} is therefore a Morita
extension of T̂ to the signature �̂ ∪ {σ1, σ2, σ3, i1, i2, i3}.
Step 2 We now define the theories T̂2 and T̂3. Let θσ12 be a sentence that defines the
symbols σ12, ρ1, ρ2 as a coproduct sort. The theory T̂2 = T̂1∪{θσ12} is clearly aMorita
extension of T̂1.
We have yet to define the function symbols ρ12 and ρ3. The following two sentences
define these symbols.

∀σ3x∀σ y(ρ3(x) = y ↔ i3(x) = y) (θρ3 )

∀σ12x∀σ y(ρ12(x) = y ↔ ψ(x, y)) (θρ12 )

The sentence θρ3 simply defines ρ3 to be equal to the function i3. For the sentence
θρ12 , we define the formula ψ(x, y) to be

∃σ1 z1
(
ρ1(z1) = x ∧ i1(z1) = y

) ∨ ∃σ2 z2
(
ρ2(z2) = x ∧ i2(z2) = y

)

Weshould take amoment here to understand the definition θρ12 .Wewant to definewhat
the function ρ12 does to an element a of sort σ12. Since the sort σ12 is the coproduct of
the sorts σ1 and σ2, the element a must “actually be” of one of the sorts σ1 or σ2. (The

123



3580 Synthese (2017) 194:3563–3582

disjuncts in the formula ψ(x, y) correspond to these possibilities.) The definition θρ12

stipulates that if a is “actually” of sort σ j , then the value of ρ12 at a is the same as the
value of i j at a. One can verify that T̂2 satisfies the admissibility conditions for θρ3 and
θρ12 , so the theory T̂3 = T̂2 ∪ {θρ3, θρ12} is a Morita extension of T̂2 to the signature

�̂ ∪ {σ1, σ2, σ3, σ12, i1, i2, i3, ρ1, ρ2, ρ3, ρ12}

Step 3 We now describe the �+-theory T̂4. This theory defines the predicates in the
signature �. Let p ∈ � be a predicate symbol of arity σ j1 × · · · × σ jm . We consider
the following sentence.

∀σ j1
x1 . . . ∀σ jm

xm
(

p(x1, . . . , xm) ↔ qp(i j1(x1), . . . , i jm (xm))
)

(θp)

The theory T̂4 = T̂3 ∪ {θp : p ∈ �} is therefore a Morita extension of T̂3 to the
signature �+.

Step 4 We turn to the left-hand side of our organizational figure and define the theories
T1 and T2. We proceed in an analogous manner to the first part of Step 2. The theory
T1 = T ∪ {θσ12} is a Morita extension of T to the signature � ∪ {σ12, ρ1, ρ2}. Now let
θσ be the sentence that defines the symbols σ, ρ12, ρ3 as a coproduct sort. The theory
T2 = T1 ∪ {θσ } is a Morita extension of T1 to the signature � ∪ {σ12, σ, ρ1, ρ2, ρ3,

ρ12}.
Step 5 This step defines the function symbols i1, i2, and i3. We consider the following
sentences.

∀σ3x3∀σ y(i3(x3) = y ↔ ρ3(x3) = y) (θi3 )

∀σ2x2∀σ y
(
i2(x2) = y ↔ ∃σ12 z(ρ2(x2) = z ∧ ρ12(z) = y)

)
(θi2 )

∀σ1x1∀σ y
(
i1(x1) = y ↔ ∃σ12 z(ρ1(x1) = z ∧ ρ12(z) = y)

)
(θi1 )

The sentence θi3 defines the function symbol i3 to be equal to ρ3. The sentence
θi2 defines the function symbol i2 to be equal to the composition “ρ12 ◦ ρ2.”
Likewise, the sentence θi1 defines the function symbol i1 to be “ρ12 ◦ ρ1.” The
theory T3 = T2 ∪ {θi1, θi2 , θi3} is a Morita extension of T2 to the signature
� ∪ {σ12, σ, ρ1, ρ2, ρ3, ρ12, i1, i2, i3}.
Step 6 We still need to define the predicate symbols in �̂. Let σ j ∈ � be a sort symbol
and p ∈ � a predicate symbol of arity σ j1 × · · · × σ jm . We consider the following
sentences.

∀σ y(qσ j (y) ↔ ∃σ j x(i j (x) = y)) (θqσ j
)

∀σ y1 . . . ∀σ ym
(
qp(y1, . . . , ym) ↔ ∃σ j1

x1 . . . ∃σ jm
xm(i j1(x1) = y1 ∧ . . .

∧ i jm (xm) = ym ∧ p(x1, . . . , xm))
)

(θqp )

These sentences define the predicates qσ j ∈ �̂ and qp ∈ �̂. One can verify that T3
satisfies the admissibility conditions for the definitions θqσ j

. And therefore the theory
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T4 = T3∪{θqσ1
, θqσ2

, θqσ3
}∪{θqp : p ∈ �} is aMorita extension of T3 to the signature

�+.

Step 7 It only remains to show that the�+-theories T4 and T̂4 are logically equivalent.
One can verify by induction on the complexity of ψ that

T4 � ψ ↔ ψ̂ and T̂4 � ψ ↔ ψ̂. (5)

for every �-sentence ψ . One then uses (5) to show that Mod(T4) = Mod(T̂4). The
argument involves a number of cases, but since each case is straightforward we leave
them to the reader to verify. The theories T4 and T̂4 are logically equivalent, which
implies that T and T̂ are Morita equivalent. �
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Andréka, H., Madaraśz, J., & Németi, I. (2008). Defining new universes in many-sorted logic (Vol. 93).
Budapest: Mathematical Institute of the Hungarian Academy of Sciences.

Andréka, H., Madarász, J. X., & Németi, I. (2005). Mutual definability does not imply definitional equiva-
lence, a simple example. Mathematical Logic Quarterly, 51(6), 591–597.

Barrett, T. W. (2015). On the structure of classical mechanics. The British Journal for the Philosophy of
Science, 66(4), 801–828.

Barrett, T. W., & Halvorson, H. (2015a). Glymour and Quine on theoretical equivalence. Journal of Philo-
sophical Logic.

Barrett, T. W., & Halvorson, H. (2015b). Morita equivalence. arXiv preprint.
Barrett, T. W., & Halvorson, H. (2016). From geometry to conceptual relativity.
Borceux, F. (1994). Handbook of categorical algebra (Vol. 1). Cambridge: Cambridge University Press.
Burgess, J. P. (2005). Fixing frege. Princeton: Princeton University Press.
Coffey, K. (2014). Theoretical equivalence as interpretative equivalence. The British Journal for the Phi-

losophy of Science, 65(4), 821–844.
Curiel, E. (2014). Classical mechanics is Lagrangian; it is not Hamiltonian. The British Journal for the

Philosophy of Science, 65(2), 269–321.
de Bouvére, K. L. (1965). Synonymous theories. In: Symposium on the Theory of Models, pp. 402–406.

Amsterdam: North-Holland Publishing Company.
Friedman, H. M., & Visser, A. (2014). When bi-interpretability implies synonymy. Logic Group Preprint

Series, 320, 1–19.
Glymour, C. (1971). Theoretical realism and theoretical equivalence. In PSA 1970, pp. 275–288. Berlin:

Springer.
Glymour, C. (1977). The epistemology of geometry. Noûs, 11, 227–251.
Glymour, C. (1980). Theory and evidence. Princeton: Princeton University Press.
Glymour, C. (2013). Theoretical equivalence and the semantic view of theories. Philosophy of Science,

80(2), 286–297.
Halvorson, H. (2012). What scientific theories could not be. Philosophy of Science, 79(2), 183–206.
Halvorson, H. (2013). The semantic view, if plausible, is syntactic. Philosophy of Science, 80(3), 475–478.
Halvorson, H. (2015). Scientific theories. In Oxford Handbooks Online.
Hodges, W. (2008). Model theory. Cambridge: Cambridge University Press.
Kanger, S. (1968). Equivalent theories. Theoria, 34(1), 1–6.
Knox, E. (2011). Newton-Cartan theory and teleparallel gravity: The force of a formulation. Studies in

History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
42(4), 264–275.

Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principle. The British Journal
for the Philosophy of Science, 65(4), 863–880.

Mac Lane, S. (1971). Categories for the working mathematician. New York: Springer.
Manzano, M. (1996). Extensions of first order logic. Cambridge: cambridge University Press.

123



3582 Synthese (2017) 194:3563–3582

Mere, M. C., & Veloso, P. (1992). On extensions by sorts. Monografias em Ciências da Computaçao, DI,
PUC-Rio, 38, 92.

North, J. (2009). The ‘structure’ of physics: A case study. The Journal of Philosophy, 106, 57–88.
Pelletier, F. J., & Urquhart, A. (2003). Synonymous logics. Journal of Philosophical Logic, 32(3), 259–285.
Pinter, C. C. (1978). Properties preserved under definitional equivalence and interpretations. Mathematical

Logic Quarterly, 24(31—-36), 481–488.
Quine, W. V. O. (1937). New foundations for mathematical logic. The American Mathematical Monthly,

44(2), 70–80.
Quine, W. V. O. (1938). On the theory of types. The Journal of Symbolic Logic, 3(04), 125–139.
Quine, W. V. O. (1951). On Carnap’s views on ontology. Philosophical Studies, 2(5), 65–72.
Quine, W. V. O. (1956). Unification of universes in set theory. The Journal of Symbolic Logic, 21(03),

267–279.
Quine, W. V. O. (1960). Word and object. Cambridge: MIT Press.
Quine, W. V. O. (1963). Set theory and its logic. Cambridge: Harvard University Press.
Quine, W. V. O. (1969). Existence and quantification. In Ontological relativity and other essays (pp. 91–

113). New York: Columbia University Press.
Quine, W. V. O. (1975). On empirically equivalent systems of the world. Erkenntnis, 9(3), 313–328.
Quine, W. V. O., & Carnap, R. (1990). Dear Carnap, Dear Van: The Quine-Carnap correspondence and

related work. Berkeley, CA: University of California Press.
Rosenstock, S., Barrett, T. W., &Weatherall, J. O. (2015). On Einstein algebras and relativistic spacetimes.

Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern
Physics, 52, 309–316.

Schmidt,A. (1951).DieZulässigkeit derBehandlungmehrsortiger Theorienmittels der üblichen einsortigen
Prädikatenlogik. Mathematische Annalen, 123(1), 187–200.

Sklar, L. (1982). Saving the noumena. Philosophical Topics, 13, 89–110.
Swanson, N., & Halvorson, H. (2012). On North’s ‘The structure of physics’.
Turner, J. (2010). Ontological pluralism. The Journal of Philosophy, 107(1), 5–34.
Van Fraassen, B. C. (2014). One or two gentle remarks about Hans Halvorson’s critique of the semantic

view. Philosophy of Science, 81(2), 276–283.
Visser, A. (2015). On Q. In Logic Group Preprint Series, p. 330.
Weatherall, J. O. (2015a). Are Newtonian gravitation and geometrized Newtonian gravitation theoretically

equivalent? Erkenntnis, 1–19.
Weatherall, J. O. (2015b). Categories and the foundations of classical field theories. In E. Landry (Ed.),

Forthcoming in categories for the working philosopher. Oxford: Oxford University Press.
Weatherall, J. O. (2015c). Understanding gauge. Philosophy of Science.

123


	Quine's conjecture on many-sorted logic
	Abstract
	Introduction
	Preliminaries
	Quine's conjecture 1
	Quine's conjecture 2
	Philosophical implications
	Appendix
	References




