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Abstract Over the years several non-equivalent probabilistic measures of coherence
have been discussed in the philosophical literature. In this paper we examine these
measures with respect to their empirical adequacy. Using test cases from the coherence
literature as vignettes for psychological experiments we investigate whether the mea-
sures can predict the subjective coherence assessments of the participants. It turns out
that the participants’ coherence assessments are best described by Roche’s (Insights
from philosophy, jurisprudence and artificial intelligence, 2013) coherence measure
based on Douven and Meijs’ (Synthese 156:405–425, 2007) average mutual support
approach and the conditional probability.

Keywords Bayesian coherentism · Probabilistic coherence measures ·
Probabilistic support measures · Test cases · Experimental philosophy

1 Introduction

Loosely speaking, coherence is the property of propositions hanging or fitting together,
dovetailing with or mutually supporting each other (cf. BonJour 1985; Olsson 2005).
It is the key concept of any coherentist theory of justification or truth. Nevertheless,
as many authors have pointed out, coherentists have put only little emphasis on eluci-
dating their central concept—or in Nicholas Rescher’s words “the coherence theorists
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themselves have not always been too successful in explicating the nature of coher-
ence” (Rescher 1973, p. 33). In order to overcome this supposed shortcoming, various
philosophers have attempted to provide a mathematically precise explication of the
concept coherence using probability theory. The results are so-called probabilistic
coherence measures (cf. Douven and Meijs 2007; Fitelson 2003, 2004; Glass 2002;
Meijs 2006; Olsson 2002; Roche 2013; Schippers 2014; Schupbach 2011; Shogenji
1999). Of course, these measures have to be examined with respect to their claim of
measuring coherence adequately. So far, there have been two commonways to do that:
(i) formulating adequacy constraints and proving whether they are satisfied by a mea-
sure or not, (ii) developing paradigmatic test cases providing an intuitive normative
coherence assessment and testing whether a measure is in line with this assessment or
not.

This paper concentrates on the second approach, although in a slightly different
way. Rather than using test cases and the provided normative coherence assessment as
a benchmark for probabilistic coherence measures, the test cases are used as vignettes
for psychological experiments, in which participants are asked for subjective coher-
ence assessments of specified sets of propositions. Accordingly, the results of the
experiments can be used to (i) evaluate the normative coherence assessments provided
by the test cases and to (ii) evaluate the suitability of the tested measures as predic-
tors of the participants’ coherence assessments. The paper is structured as follows. In
Sect. 2 a collection of probabilistic coherence measures that have been proposed in the
literature is introduced. In Sects. 3 and 4 the psychological study including methods
and results is described. Finally, Sect. 5 discusses which conclusions can be drawn
from the results.

2 Probabilistic measures of coherence

The notion of a probabilistic coherence measure can be introduced formally in a
straightforward manner. Let L be a classical propositional language consisting of
atomic formulas closed under some functional complete selection of classical logical
connectives such as e.g. {¬,∧} and let P : L → [0, 1] be a probability function over L
with conditional probability defined by P(x1|x2) = P(x1∧ x2)/P(x2) for any x2 ∈ L
with P(x2) �= 0. Furthermore, let 2L≥2 denote the set of all non-empty, non-singleton
subsets of L andP the set of all probability functions over L . A probabilistic coherence
measure can then be defined as a partial function C : 2L≥2 × P → R assigning real
numbers to sets of propositions under some joint probability distribution. By contrast,
a probabilistic measure of support, on which a coherence measure can be based, is a
partial function S : L × L × P → R assigning real numbers to pairs of propositions
under some probability distribution where the first argument is commonly interpreted
as a hypothesis and the second as a piece of evidence.Notice thatwewill omit reference
to a particular probability function as a separate function argument of coherence or
support measures.

Still, these are only very general requirements a probabilistic coherence mea-
sure should meet. The question which probabilistic information should be taken into
account by a probabilistic coherence measure in order to adequately quantify the
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degree of coherence has been answered in different ways leading to different kinds
of measures. They can be categorized into three groups: (i) measures that quantify
coherence in terms of deviation from probabilistic independence (see Sect. 2.1), (ii)
in terms of relative set-theoretic overlap (see Sect. 2.2) and (iii) in terms of average
mutual support (see Sect. 2.3). In the following we briefly introduce the approaches
and the resulting measures.

2.1 Deviation from independence measures

According to standard textbooks on probability theory (cf. e.g. Kolmogorov 1956), a
set X of propositions x1, . . . , xn is said to be n-wise negatively dependent iff P(x1 ∧
. . .∧ xn) < P(x1)×. . .×P(xn), independent iff P(x1∧. . .∧xn) = P(x1)×. . .×P(xn)
and positively dependent iff P(x1 ∧ . . .∧ xn) > P(x1)× . . .× P(xn). This definition
can be rearranged by dividing the term on the left hand side by the term on the right
hand side. Positive dependence is then defined as a value in the open interval (1,∞),
independence as a value of 1 and negative dependence as a value in the half-open
interval [0, 1). This can be considered the basic idea underlying Shogenji’s (1999)
coherence measure. According to Shogenji, the degree of coherence of a finite set X
of propositions can be computed by dividing the joint probability of X ’s propositions
by the product over their marginal probabilities. This quantifies the propositions’
ratio-wise deviation from their independence threshold value θ = 1. This value is
interpreted as neutrality such that values below θ indicate degrees of incoherence and
values above θ indicate degrees of coherence:

Csho(X) =
P

(∧
xi∈X xi

)
∏

xi∈X P(xi )

AsFitelson (2003) and Schupbach (2011) have pointed out, Shogenji’smeasure suffers
from a lack of subset sensitivity when applied to a set of more than two propositions.
This is due to the fact that for any set X consisting of n propositions there are probabil-
ity distributions such that there are subsets of X which are i-wise negatively dependent,
independent or dependent but not j-wise negatively dependent, independent or depen-
dent for i �= j where i, j ≤ n (cf. Pfeiffer 1990). Therefore, Schupbach (2011) has
suggested the following alternative generalization: to assess the degree of coherence
of X , apply a log-normalized version of Csho to each set X ′

i j which is the i-th subset
of X and contains j ≥ 2 propositions. For each of them divide its coherence value by
the number of sets with j members, sum up the resulting values and divide this sum
by X ’s cardinality minus one ignoring singleton sets:

Csch(X) =
∑n

j=2
∑(nj)

i=1 log
(
Csho(X ′

i j )
)

× (n
j

)−1

n − 1

Although the measure is more fine-grained it is still based on the idea of measuring
coherence in terms of their deviation from independence. However, due to the log-
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normalization the threshold value of Schupbach’s measure for neutrality is θ = 0,
such that values in (−∞, 0) indicate degrees of incoherence and values in (0,∞)

indicate degrees of coherence.

2.2 Relative overlap measures

Glass (2002) and Olsson (2002) have proposed a different measure of coherence that
is based on a set-theoretically inspired understanding of coherence. Here, the joint
probability over all propositions x1 . . . , xn in some set X is interpreted as their over-
lapping set-theoretic surface. Likewise, the probability that any of these propositions
is true is interpreted as their total set-theoretic surface. In order to compute the degree
of coherence of X Glass and Olsson suggest to simply divide the probability of the
conjunction by the probability of the disjunction over X ’s members. Set-theoretically
speaking this can be understood as quantifying the propositions’ relative overlap:

Cgo(X) =
P

(∧
xi∈X xi

)

P
(∨

xi∈X xi
)

It is easy to see that the measure has the codomain [0, 1] where 0 means no overlap
at all and 1 means identity of overlap and total surface of the propositions. But unlike
the two measures mentioned before the threshold θ cannot be based on probabilistic
independence. One can, however, argue that the threshold is .5 in the case of two propo-
sitions x1, x2, since values below this threshold would indicate that x1 coheres better
with¬x2 than with x2. In any case, Bovens and Hartmann (2003) have shown that this
measure has similar problems with respect to subset-sensitivity like Shogenji’s mea-
sure. In order to overcome these difficulties Meijs (2006) has suggested the following
alternative: in order to assess the coherence of X , take the straight average over all
Cgo values applied to every subset X ′

i of X with |X ′
i | ≥ 2:

Cmei (X) =
∑(2n−n)−1

i=1 Cgo(X ′
i )

(2n − n) − 1

This measure is obviously more fine-grained but it is easy to see that the codomain
[0, 1] and the threshold θ remain the same.

2.3 Average mutual support measures

A whole family of coherence measures can be obtained using an approach systemati-
cally developed by Douven andMeijs (2007). According to their approach, coherence
is to be understood as average mutual support. And since there is a variety of prob-
abilistic measures of support (for overviews cf. Crupi et al. 2007; Festa 2012) one
can easily obtain a huge collection of candidates for coherence measures based on
them. The basic idea runs as follows: to assess the coherence of X , consider all pairs
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(X ′, X ′′)i where X ′ and X ′′ are non-empty, disjoint subsets of X . For each pair, take
the conjunctions over the propositions contained in the respective set and calculate the
average degree of support according to some chosen probabilistic support measure S:

CS(X) =
∑(3n−2n+1)+1

i=1 S
(∧

x j∈X ′ x j ,
∧

xk∈X ′′ xk
)
i

(3n − 2n+1) + 1

For his coherence measure Fitelson (2004) has chosen a case-sensitive variation of
Kemeny and Oppenheim’s (1952) measure of factual support. The values of the result-
ing coherence measure are in [−1, 1] with θ = 0:

S f it (x1, x2) =

⎧⎪⎨
⎪⎩

P(x2|x1)−P(x2|¬x1)
P(x2|x1)+P(x2|¬x1)

if x2 � x1 and x2 � ¬x1
1 if x2 
 x1 and x2 � ⊥
−1 if x2 
 ¬x1

Douven and Meijs (2007) have investigated three further support measures as foun-
dations for probabilistic coherence measures, namely Carnap’s (1950) difference
measure with codomain [−1, 1) and θ = 0, Keynes’ (1921) relevance quotient and
Good’s (1984) likelihood ratio measure both with codomain [0,∞) and θ = 1.
Notice that due to commutativity or ordinal equivalence (up to identity) one would
obtain identical coherence measures if one used Levi’s (1962) corroboration measure
or Mortimer’s (1988) confirmation measure instead of Carnap’s difference measure,
Kuipers’ (2000) confirmation measure or Finch’s (1960) confirmation measure +1
instead of Keynes’ and finally Joyce’s (2008) odds-ratio measure instead of Good’s
likelihood-ratiomeasure. Douven andMeijs’ favourite is the coherencemeasure based
on Carnap’s difference measure:

Scar (x1, x2) = P(x1|x2) − P(x1)

Skey(x1, x2) = P(x1|x2)
P(x1)

Sgoo(x1, x2) = P(x2|x1)
P(x2|¬x1)

Siebel andWolff (2008) have extended the collection of candidate measures by taking
into account Carnap’s (1950) relevance measure with codomain (−1, 1) and θ = 0,
Nozick’s (1981) counterfactual likelihood difference measure, Popper’s (1954) cor-
roboration measure and Rescher’s (1958) measure of evidential support, all three with
values in [−1, 1] with θ = 0:

Scar ′(x1, x2) = P(x1 ∧ x2) − P(x1) · P(x2)

Snoz(x1, x2) = P(x2|x1) − P(x2|¬x1)

Spop(x1, x2) = P(x2|x1) − P(x2)

P(x2|x1) + P(x2)
· (1 + P(x1) · P(x1|x2))

Sres(x1, x2) = P(x1|x2) − P(x1)

1 − P(x1)
· P(x2)
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A more recent proposal is due to Roche (2013). His favourite coherence measure is
based on Douven and Meijs’ approach and a case-sensitive version of absolute—as
opposed to incremental—support, namely the conditional probability. The codomain
of the resulting measure obviously is [0, 1] but just like in the case of the Glass-Olsson
measure θ = 0.5 although the interpretation of this value differs from the interpretation
of the θ values of the other measures. Here, values above θ mean that some proposition
is supported to a stronger degree than its negation, while values below indicate the
opposite.

Sroc(x1, x2) =

⎧⎪⎨
⎪⎩

P(x1|x2) if x2 � x1 and x2 � ¬x1
1 if x2 
 x1 and x2 � ⊥
0 if x2 
 ¬x1

Another recent coherence measure has been developed by Schippers (2014) and is
based on his own measure of support. The values of this measure are in [−1, 1] with
θ = 0. Notice that one can obtain the very same coherence measure by using the
so-called power PC measure by Cheng (1997).

Ssch(x1, x2) =
⎧⎨
⎩

P(x1|x2)−P(x1|¬x2)
1−P(x1|¬x2)

if P(x1|x2) ≥ P(x1)

P(x1|x2)−P(x1|¬x2)
P(x1|¬x2)

if P(x1|x2) < P(x1)

Finally, Koscholke (2015) has added four further cadidate measures to the investiga-
tion, namely Crupi’s (2007) z-measure with values in [−1, 1] and θ = 0, Gaifman’s
(1979) measure in [0,∞) with θ = 1, Rips’ (2001) measure and Shogenji’s (2012)
justification measure which according to him is also a measure of evidential support
both with values in in (−∞, 1] and θ = 0:

Scru(x1, x2) =
⎧
⎨
⎩

P(x1|x2)−P(x1)
1−P(x1)

if P(x1|x2) ≥ P(x1)

P(x1|x2)−P(x1)
P(x1)

if P(x1|x2) < P(x1)

Sgai (x1, x2) = P(¬x1)

P(¬x1|x2)
Srip(x1, x2) = 1 − P(¬x2|x1)

P(¬x2)

Ssho(x1, x2) = log2 P(x1|x2)−log2 P(x1)
− log2 P(x1)

Notice that the codomains and the θ values of the confirmation measures carry over to
the coherencemeasures that are based on the respectivemeasures. It is alsoworth notic-
ing that althoughmany of the presented confirmationmeasures have ordinal equivalent
versions, the resulting coherence measures are not necessarily ordinally equivalent.
Having introduced the candidate measures we may now turn to the experiments.
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3 Methods

For the experiments a collection of test cases from Koscholke (2015) has been
employed as vignettes. These test cases include Akiba’s dice case (cf. Akiba 2000),
Bovens and Hartmann’s Tweety and their Tokyo murder cases (cf. Bovens and Hart-
mann 2003), Glass’ dedecahedron case (cf. Glass 2005), Meijs’ samurai and his rabbit
case (cf. Meijs 2005), Meijs and Douven’s plane lottery case (cf. Meijs and Douven
2007), Schupbach’s robber case (cf. Schupbach 2011), Siebel’s pickpocketing case
(cf. Siebel 2004) and Siebel and Schippers’ inconsistent testimony case (cf. Schippers
and Siebel 2014). An overview of the employed test cases is given in Appendix 1, the
test case results for each measure in Appendix 2.

Notice that Harris and Hahn (2009) have provided a very similar study to the one
presented here. However, they only investigated the empirical adequacy of Bovens and
Hartmann’s (2003) coherence quasi-ordering and only for a modified version of their
Tokyo murder case. The present study can therefore be understood as an extension of
Harris and Hahn’s project with respect to coherence measures and with respect to test
cases.

3.1 Participants

57 participants (36 female, mean age = 25.8) were recruited from the Decision Lab
Subject Pool of the University of Göttingen using the online recruiting tool ORSEE
(cf. Greiner 2004). Participants received a show-up fee of 7 Euros (approx. USD 9.50)
or course-credit.

3.2 Procedure and materials

The participants answered three questionnaires online no later than twelve hours before
they arrived for themain study in the lab. The questionnaire included a translation of the
brief form of the preference for consistency scale (cf. Cialdini et al. 1995) consisting of
nine items, the numeracy scale (cf.Weller et al. 2013) consisting of fourteen items, and
the cognitive reflection test (cf. Frederick 2005) consisting of three items. In the lab
participants were presented the ten test cases in random order. Except for Bovens and
Hartmann’s (2003) Tokyo murder case and Siebel’s (2004) pickpocketing case, each
test case consists of two sets of propositions. Participants were first asked to indicate in
which of the two sets the propositions fit together better or if they fit together equally
well. Then participants were asked to use a continuous slider ranging from −100 to
100 to indicate the degree to which the propositions for each set fit together. In Bovens
and Hartmann’s Tokyo murder case participants were asked to rank order the five sets
of propositions according to how well the propositions fit together. Here, they also
had to rate the degree of coherence of each set of propositions using the slider. For
Siebel’s (2004) pickpocketing case the participants were asked if the propositions fit
together or not. Then again the participants had to use the slider to evaluate how well
the propositions fit together. Finally, participants were asked to provide demographic
data and received a written debriefing.

123



1310 Synthese (2017) 194:1303–1322
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Fig. 1 Correctly predicted choices

3.3 Assessment of predictive accuracy

We assessed three variables to evaluate how well the coherence measures predict
participants’ coherence assessments. We recorded if participants chose the first or
second set of propositions as more coherent or if participants chose that the sets were
equally coherent. The first variable choices (see Sect. 4.1) is the agreement between
participants’ choices and the coherence assessments of each measure. For Bovens and
Hartmann’s Tokyo murder case we recorded the coherence ranking participants gave
to the five sets of propositions. The second variable ranking (see Sect. 4.2) is the
percentage of participants who ranked propositions according to the rankings given
by the measures. We also recorded the continuous coherence judgments participants
gave for each set of propositions in each test case. The third variable judgments (see
Sect. 4.3) is the fit between the observed judgments and coherence predictions as
assessed in a mixed-linear-regression model for each measure as explained in more
detail below.

4 Results

4.1 Choices

Most measures can predict participants’ choices better than chance, i.e. 33 % for
three choice-options.1 Correctly predicted choices range from 31 to 60 % between
the measures. The three best measures—Cgo,Cmei and CSroc—perform equally well
around 59% to 60% of correctly predicted choices (see Fig. 1).

1 We excluded the Siebel and Schippers’ inconsistent testimony case from all analyses because most
measures have undefined function values in this test case (see Appendix 2).
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Fig. 2 Correctly predicted rankings

4.2 Rankings

Only six particpants (i.e. 11 %) rank-ordered the five pairs of propositions in Bovens
and Hartmann’s Tokyo murder test case in the way predicted by 44 % of all measures,
i.e. rank-order: 1, 5, 4, 3, 2. Amajority of 19 participants (33%) used a similar ranking
differing only in the ranking of the final two pairs of propositions, i.e. rank-order 1, 5,
4, 3, 2 versus 1, 5, 4, 2, 3. Thus, if we allow for one error in the ranking of the final two
propositions, 44%of themeasures predict 44%of participants correctly. Furthermore,
allowing a switch in the second and third ranking (i.e. rank-order 1, 4, 5, 2, 3 or 1, 4, 5, 3,
2), the remaining 56 % of measures predict another 14 % of all participants’ rankings.
Overall, 68 % of participants behave (although not perfectly) in line with at least one
of the measures. This also means that a considerable percentage of participants (i.e.
32 %) do not rank-order the pairs of propositions in accordance with any measure.
The three best measures for predicting choices—Cgo,Cmei and CSroc—also predict
the ranking that a majority of participants gave quite well (see Fig. 2).

4.3 Judgments

The investigated coherence measures differ in the assessment of coherence in various
test cases, which results in a unique profile for each measure (corresponding to the
rows of Table 2 in Appendix 2). We used these profiles as predictors for participants’
continuous coherence judgments to test how well the measures can account for the
judgments. Conceptually, for each measure j we fitted the profile to the coherence
judgments of all participants. To account for the different scaling between predictions
and judgments ranging from −100 to 100 used in the study, the regression weight of
a factor bi j was estimated from the data to expand the profile. To account for differ-
ences in the extent of scaling for each participant i and to also account statistically
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Csho Cgo Cmei CS f it CScar CSkey CScar CSnoz CSpop CSres CSroc CSsch CScru CSrip
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Fig. 3 Bayesian information criterion ΔBIC = BIC j − BICCSroc
(i.e. difference of BIC for each mea-

sure and best fitting measure by Roche 2013). Notice that Csch ,CSgoo ,CSgai and CSsho do not provide a
BIC score since they are undefined for some test cases

for repeated ratings from the same participants, bi j consists of the sum of a value
shared by all participants and an individual value estimated from the judgments of all
participants and participant i . We further accounted for the direction of the predictions
by subtracting the neutrality value from all values for each measure to restrict predic-
tions above the neutrality value to judgments above 0, below the neutrality value to
judgments below 0, and predictions identical to the neutrality value to zero-judgments.
Technically, this can be achieved by including the prediction profile of a measure after
subtracting the neutrality value in a mixed-linear-regression without an intercept as a
fixed effect and a random effect for each participant.

In order to compare themeasureswe used the Bayesian InformationCriterion (BIC)
(cf. Schwarz 1978) fromeach regressionmodel for eachmeasure as an indicator of how
well a measure can account for the participants’ continuous coherence judgments (see
Fig. 3). The results from the analysis using a software package for linear and nonlinear
mixed effects models (cf. Pinheiro et al. 2013) in R (cf. R Core Team 2015) show that
the measure CSroc can account for participants’ judgments best. The evidence from
the data for CSroc is extreme with a Bayes-factor of 2 × 1011 between CSroc and the
next best fitting measure (cf. Jeffreys 1961; Wagenmakers 2007). Overall, predictions
based on CSroc can describe participants’ judgment ratings very well (see Fig. 4).

4.4 Ability and personality as predictors of coherence-judgments

We also analyzed the relation between individual scaling factors bi for the measure
CSroc and the participants’ ability to process numbers on the one hand and their per-
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Fig. 4 Scatterplot of mean observed coherence judgments in the test cases and predicted judgments
according to the best-fitting measure CSroc (cf. Roche 2013). Note that dotted circles around means indi-
cate 95% confidence intervals. Pearson correlation between observed and predicted means is r = .84
(t (18) = 6.7, p < .001)

sonality on the other hand.2 The numeracy scale measures “the ability to understand,
manipulate, and use numerical information, including probabilities” (Weller et al.
2013, p. 198) by asking participants to solve mainly statistical problems (e.g. “If Per-
son A’s chance of getting a disease is 1 in 100 in 10 years, and person B’s risk is double
that of A, what is B’s risk?”). Since the most successful measure CSroc in predicting
participants’ answers is based on conditional probabilities, we hypothesized that peo-
ple who are sensitive to the measure CSroc as reflected in a higher scaling factor bi
should also score higher on the numeracy scale.

We found a low correlation of r = .30 (t (49) = 2.24, p < .05) in the predicted
direction (see Table 1). Closer inspection revealed that this correlation is driven by
a single participant. After removing this participant from the analysis the correlation
decreased to r = .13 (t (48) = 0.94, p = .35).

The cognitive reflection test (cf. Frederick 2005) measures if people rely on their
first incorrect intuitive answer or reflect more on a task before giving an answer (e.g.
“A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How
much does the ball cost?”). We again predicted a positive correlation between the
scaling factor and the cognitive reflection test and found a low positive (r = .11) but
insignificant correlation (t (49) = 0.79, p = 0.43). The preference for consistency

2 Six participants did not answer the questionnaire prior to the lab study and were therefore excluded from
this analysis.
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Table 1 Correlations (Pearson’s r ) between the scaling factorbi forCSroc , the numeracy scale, the cognitive
reflection task, and the preference for consistency scale

Ability and Personality Scales

Numeracy Cognitive Reflection Preference for
Consistency

Scaling bi for CSroc .30∗ .11 −.28∗
Numeracy (.52) .43∗∗ −.08

Cognitive Reflection – (.53) −.19

Preference for Consistency – – (.76)

Notice that values in parentheses indicate the internal consistency (Cronbach’sα) of scales; ∗ p < .05,∗∗ p <

.01; N = 51 participants

scale (cf. Cialdini et al. 1995) measures individuals’ preference for one’s own and
others’ behavior being consistent and predictable (e.g. “It is important to me that
those who knowme can predict what I will do”). Consistent and predictable coherence
judgments can be achieved by either being sensitive to coherence and thereby clearly
disentangling different degrees of coherence between sets of propositions or by being
insensitive to coherence and behaving similarly regarding all sets of propositions.
In the analysis we found weak support for the second account: participants with a
high preference for consistency show lower scaling factors (r = −.28; t (49) =
−2.04, p < .05). Overall, the analyses show that the impact of ability and personality
on the subjective coherence assessment is low.

5 Conclusion

The evaluation of the psychological experiments clearly shows that there are prob-
abilistic coherence measures performing better in predicting subjective coherence
assessments in the employed test cases than other measures. In particular, onemeasure
standing out from the crowd is Roche’s (2013) coherence measure based on Douven
and Meijs’ average mutual support approach and the conditional probability. This
measure shows decent results with respect to comparative coherence assessments (see
Sects. 4.1, 4.2) as well as absolute, continuous coherence judgments (see Sect. 4.3).

It is, however, important to notice that this does not mean that measures show-
ing a weak performance as predictors of subjective coherence assessments should be
completely disregarded as inadequate. First, being able to predict subjective coher-
ence assessments for a specific case does not ensure that the predicted coherence
assessments themselves are correct. It might turn out that based on philosophical
considerations the subjective coherence assessments for a certain scenario need to be
corrected and as a consequencemight be better captured by ameasure that has wrongly
been disregarded. Second, the empirical adequacy of a probabilistic coherence mea-
sure is only one component among others—e.g. satisfaction of certain coherence
desiderata or performance in coherence-related test cases—that should be taken into
account when evaluating the overall adequacy of a probabilistic coherence measure.
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Interestingly enough, Roche’s measure also cuts a good figure in these two respects
(cf. Schippers 2014; Koscholke 2015). Therefore, this investigation can be understood
as providing further, empirical support for the claim that Roche’s measure is a very
promising candidate for an adequate probabilistic measure of coherence.
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Appendix 1: Test cases

Akiba’s (2000) Die case

Imagine rolling a fair die and consider the following three statements:

S1 : The die comes up 2.
S2 : The die comes up 2 or 4.
S3 : The die comes up 2 or 4 or 6.

Which pair of statements fits together better. Statement 1 and 2 or statement 1 and 3?

Bovens and Hartmann’s (2003) tweety case

Situation 1: Consider a population of 100 animals. 50 out of 100 animals are birds
and 50 out of 100 animals cannot fly. Among these 100 animals there
is exactly one animal that is a bird and cannot fly. Randomly pick one
animal and consider the following two statements:

S1 : The picked animal is a bird.
S2 : The picked animal cannot fly.

Situation 2: Consider a population of 100 animals. 50 out of 100 animals are birds
and 50 out of 100 animals cannot fly. Among these 100 animals there is
exactly one penguin and therefore a bird that cannot fly. Randomly pick
one animal and consider the following three statements:

S1 : The picked animal is a bird.
S2 : The picked animal cannot fly.
S3 : The picked animal is a penguin.

In which of the two situations do the respective sets of statements fit together better?

Bovens and Hartmann’s (2003) Tokyo murder case

Imagine that amurder has occurred in Toyko and the corpse is still to be found. In order
to search more efficiently the map of Tokyo is separated into 100 equally-sized where
the probability of finding the corpse is the same for each square. Now, 5 pairs of equally
reliable and independent witnesses give the following statements as witness reports:
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Pair 1:
S1 : The corpse is in squares 50 to 60.
S2 : The corpse is in squares 51 to 61.

Pair 2:
S1 : The corpse is in squares 22 to 55.
S2 : The corpse is in squares 55 to 90.

Pair 3:
S1 : The corpse is in squares 20 to 61.
S2 : The corpse is in squares 50 to 91.

Pair 4:
S1 : The corpse is in squares 41 to 60.
S2 : The corpse is in squares 51 to 70.

Pair 5:
S1 : The corpse is in squares 39 to 61.
S2 : The corpse is in squares 50 to 72.

Which pair of statements fits together best, which worst? Can you give and ordering
where the first pair is the best and the last pair the worst?

Glass’ (2005) Dodecahedron case

Situation 1: You are rolling a fair die.
Situation 2: You are rolling a fair dodecahedron.

Now consider the following two statements:

S1 : The result will be 2.
S2 : The result will be 2 or 4.

In which of the two situation do these two statements fit together better?

Meijs’ (2005) Samurai case

Situation 1: There are 10,000,000 suspects in amurder case. 1059of themare Japanese
and also 1059 own a samurai sword such that in total there are 9 suspects
who are Japanese and own a samurai sword at the same time.

Situation 2: There are 100 suspects in a murder case. 10 of them are Japanese and
also 10 own a samurai sword such that in total there are 9 suspects who
are Japanese and own a samurai sword at the same time.

Now consider the following two statements:

S1 : The murderer is Japanese.
S2 : The murderer owns a samurai sword.

In which of the two situations do the two statements fit together better?

Meijs’ (2006) Albino rabbit case

Situation 1: There are 102 rabbits on the first island. 101 out of these 102 rabbits are
grey. Also, 101 out of 102 rabbits have two ears. In total there are 100
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out of 102 rabbits which are grey and have two ears at the same time.
Consequently, there is exactly one rabbit which is grey but does not have
two ears and exactly one rabbits which is not grey but has two ears.

Situation 2: There are 102 rabbits on the second island, too. 100 out of these 102
rabbits are grey. Also, 100 out of 102 rabbits have two ears. In total there
are 100 out of 102 rabbits which are grey and have two ears at the same
time. Consequently, every grey rabbit has two ears and every rabbit that
has two ears is also grey.

Now, randomly pick one rabbit and consider the following two statements:

S1 : The rabbit is grey.
S2 : The rabbits has two ears.

In which of the two situations do these two statements fit together better?

Meijs and Douven’s (2007) plane lottery case

Imagine the following lottery. The chances are 4/100 for flying to the North pole,
49/100 for flying to the South pole and 47/100 for flying to New Zealand. The
probability for seeing a penguin at the North pole is 0, at the South pole it is 10/49
and in New Zealand it is 1/47. Now consider the following two situations in which
when having landed one is confronted with two statements.

Situation 1:
S1 : You are landing at the North pole.
S2 : The animal you see is a penguin.

Situation 2:
S1 : You are landing at the South pole.
S2 : The animal you see is a penguin.

In which of the two situations do the respective statements fit together better?

Schippers and Siebel’s (2015) inconsistent testimony case

Imagine there are 8 suspects for a robbery. It is certain that exactly one of them is the
robber. Consider the following two situations in which two independent and equally
reliable witnesses give statements about the robber:

Situation 1:
S1 : The robbery was committed by suspect 1 or 2.
S2 : The robbery was committed by suspect 2 or 3.
S3 : The robbery was committed by suspect 1 or 3.

Situation 2:
S1 : The robbery was committed by suspect 1 or 2.
S2 : The robbery was committed by suspect 3 or 4.
S3 : The robbery was committed by suspect 5 or 6.

In which of these two situations do the respective sets of statements fit together better?
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Schupbach’s (2011) Robber case

Imagine there are 10 suspects for a robbery. It is certain that exactly one of them is the
robber. Consider the following two situations in which two independent and equally
reliable witnesses make give statements about the robber:

Situation 1:
S1 : The robbery was committed by suspect 1 or 2 or 3.
S2 : The robbery was committed by suspect 1 or 2 or 4.
S3 : The robbery was committed by suspect 1 or 3 or 4.

Situation 2:
S1 : The robbery was committed by suspect 1 or 2 or 3.
S2 : The robbery was committed by suspect 1 or 4 or 5.
S3 : The robbery was committed by suspect 1 or 6 or 7.

In which of these two situations do the respective sets of statements fit together better?

Siebel’s (2004) pickpocketing robber case

Imagine the following situation. There are 10 equally likely suspects for a murder.
8 out of 10 have committed a pickpocketing before, 8 out of 10 have committed a
robbery and in total 6 out of 10 have committed a pickpocketing and a robbery. Now
consider the following two statements:

S1 : The murderer has committed a robbery.
S2 : The murderer has committed a pickpocketing.

Do these two statements fit together or not?

Appendix 2: Test case results

See Table 2.
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