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Abstract This paper aims to implement Bell’s notion of local causality into a
framework, called local physical theory, which is general enough to integrate both
probabilistic and spatiotemporal concepts and also classical and quantum theories.
Bell’s original idea of local causality will then arise as the classical case of our def-
inition. First, we investigate what is needed for a local physical theory to be locally
causal. Then we compare local causality with Reichenbach’s common cause principle
and relate both to the Bell inequalities. We find a nice parallelism: both local causality
and the common cause principle are more general notions than captured by the Bell
inequalities. Namely, Bell inequalities cannot be derived neither from local causality
nor from a common cause unless the local physical theory is classical or the common
cause is commuting, respectively.

Keywords Local causality · Bell inequality · Common cause

1 Introduction

Local causality is the principle that causal processes cannot propagate faster than the
speed of light. This does not mean that in a physical theory subject to this principle
no correlation between spatially separated events can exist; a correlation can well be
brought about by a common cause in the past of the events in question. However, since
all causal processes propagate within the light cone, fixing the past of an event in a
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detailed enough manner, the state of this event will be fixed once and for all, and no
other spatially separated event can contribute to it any more.

In a nutshell, this is the idea which becomes primary focus in John Bell’s (2004)
seminal papers initiating a whole research program in the foundations of quantum
theory. In these papers Bell translated the intuitive idea of local causality into a prob-
abilistic language opening the door to treat the principle in a theoretical setting and to
test its experimental validity via the Bell inequalities derived from the principle. The
logical scheme of this translation was the following: if physical events are localized
in the spacetime in a certain independent way, then they are to satisfy certain prob-
abilistic independences. Be this manual as intuitive as it is, to apply it in a formally
correct way one had to wait until the advent of a mathematically well-defined and
physically well-motivated formalism which was able to integrate spatiotemporal and
probabilistic concepts. Without such a framework one could not account for the (oth-
erwise intuitive) inference from relations between spacetime regions to probabilistic
independences between, say, random variables. The most elaborate formalism offer-
ing such a general framework is quantum field theory, or its algebraic-axiomatic form,
algebraic quantum field theory (AQFT).

Thus, it comes as no surprise that AQFT has soon become an important medium
to pursue research on the Bell inequalities (Summers and Werner 1987a, b; Summers
and Werner 1988; Halvorson 2007); relativistic causality (Butterfield 1995, 2007;
Earman and Valente 2014); or the closely related (see below) common cause principle
(Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and Vecsernyés 2012a, 2013a).
In this paper we follow the route pioneered by the algebraists, but we do not go as
far as AQFT. Our aim is simply to establish a minimal framework which is needed to
formulate Bell’s notion of local causality in a strict fashion. Thuswewill borrow only a
part ofAQFT to represent somethingwhichwewill call a local physical theory. A local
physical theory is a formal structure integrating the two most important components
of a general physical theory: spacetime structure and algebraic-probabilistic structure.
Our secondary aim in this paper is to clarify the relation of Bell’s local causality to
such other important notions as local primitive causality, common cause principle and
the Bell inequalities.

There is a renewed interest in a deeper conceptual and formal understanding of
Bell’s notion of local causality. Travis Norsen illuminating paper on local causality
(Norsen 2011) or its relation to Jarrett’s completeness criterion (Norsen 2009); the
paper of Seevinck and Uffink (2011) aiming at providing a ’sharp and clean’ formula-
tion of local causality; or Henson’s (2013) paper on the relation between separability
and the Bell inequalities are all examples of this inquiry. On the other hand, there is
far from being a consensus on what the sound notion of local causality in the algebraic
approach should amount to. Just to mention a few, Brunetti et al. (2003) claim that
the notion of locality actually consists in two components: localizability in spacetime
and the so-called kinematic independence. Summers (1990, 2009) specifies indepen-
dence in a number of different ways. Ruetsche (2011) regards relativistic covariance
as the single manifestation of local causality, whereas Rédei (2014) takes the position
that only a whole hierarchy of conditions expresses local causality. Our research runs
parallel in some respect to these investigations and we will comment on the points of
contact underway.
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In Sect. 2 we fix our mathematical framework, called local physical theory and
list some important relativistic causality principles. In Sect. 3 we formulate Bell’s
notion of local causality in a local physical theory in a general way including also the
noncommutative case. In Sect. 4 we compare local causality with the common cause
principle and relate both to the Bell inequalities. We conclude the paper in Sect. 5.

This paper is the philosopher-friendly version of our more detailed and more tech-
nical work (Hofer-Szabó and Vecsernyés 2015). Many points (such as local causality
in a non-atomic local physical theory; local causality in stochastic dynamics; its com-
plex relation to other locality and causality concepts, etc.) which are treated in a more
elementary way here obtain a more detailed mathematical analysis there. We will not
refer to these results point-by-point in the paper.

2 What is a local physical theory?

First we set the framework, called local physical theory, within which probabilistic
and spatiotemporal notions can be treated in an integrated way. Before introducing
it in a full-fledged form, let us briefly sketch the motivating idea behind. In a local
physical theory the observable quantities can be localized within bounded spacetime
regions.Hence, a local physical theory associates spacetime regions to local observable
algebras generated by local observable events or quantities (represented by σ -algebra
elements or by self-adjoint elements of a C∗-algebra). The association is regulated by
the following two physically motivated rules. First, if an observable can be localized in
a spacetime region, then it can also be localized in a bigger region containing the for-
mer. Second, observables localized in spatially separated regions are co-possible—as
physicists put it, they do not disturb one another. These requirements can be expressed
in the following mathematically sound way:

Definition 1 A local physical theory is a net {A(V ), V ∈ K} associating algebras
of events to spacetime regions which satisfies isotony and microcausality defined as
follows (Haag 1992):

1. Isotony. LetM be a globally hyperbolic spacetime and letK be a covering collec-
tion of bounded, globally hyperbolic subspacetime regions ofM such that (K,⊆)

is a directed poset under inclusion ⊆. The net of local observables is given by the
isotone map K � V �→ A(V ) to unital C∗-algebras, that is V1 ⊆ V2 implies that
A(V1) is a unital C∗-subalgebra ofA(V2). The quasilocal algebra A is defined to
be the inductive limit C∗-algebra of the net {A(V ), V ∈ K} of local C∗-algebras.

2. Microcausality (also called as Einstein causality) is the requirement thatA(V ′)′ ∩
A ⊇ A(V ), V ∈ K, where primes denote spacelike complement and algebra
commutant, respectively.

If the quasilocal algebraA of the local physical theory is commutative, we speak about
a local classical theory; if it is noncommutative, we speak about a local quantum
theory. For local classical theories microcausality fulfills trivially.1

1 We note that our definition of a local physical theory does not embrace models beyond the Tsirelson
bound. In order to incorporate also such models (Popescu–Rohrlich box) one should generalize the net of
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Up to now, there was no mention of probabilities. Probabilities of events as observ-
able quantities are given by states on the quasilocal observable algebra of the theory.
A state φ : A → C in a local physical theory is a normalized positive linear functional
on A. A state assigns expectation values to observable quantities of the theory. If the
observable quantity is an event, namely, a projection in a local observable algebra,
then its expectation value is the probability of the event. This notion of events comes
from the translation of classical events represented by elements of a σ -algebra (�,�)

into projections in the commutative function algebra on �, namely, translation of a
measurable set into its characteristic function. In this translation a state on the com-
mutative function algebra will define a probability measure on the σ -algebra. Since
genericC∗-algebras do not contain (enough) projections, one usually considers special
C∗-algebras, namely von Neumann algebras. The canonical way of this replacement
uses the GNS representation πφ : A → B(Hφ) corresponding to the state φ, which
maps the net of C∗-algebras into a net of C∗-subalgebras of B(Hφ). Closing these
subalgebras in the weak topology one arrives at a net of local von Neumann observ-
able algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Contrary to generic C∗-subalgebras,
von Neumann algebras are rich in, moreover, generated by their projections. The net
{N (V ), V ∈ K} of local von Neumann algebras also obeys isotony and microcausal-
ity, hence one can also refer to a net {N (V ), V ∈ K} of local von Neumann algebras as
a local physical theory. Although, the local σ -algebras of classical observable events
provided by the projections of the local abelian vonNeumann algebras are not themost
general σ -algebras, still they provide us a rich enough set of examples for classical
theories.

One can introduce a number of important locality and causality concepts into the
above formalism. Some of them refer only to the observable quantities, i.e. to local
observable algebras, some others also involve the states on them. (For a detailed
motivation of these concepts see Earman and Valente 2014).

Local primitive causality. A(V ′′) = A(V ) holds for any globally hyperbolic bounded
subspacetime region V ∈ K.

Local primitive causality is the requirement that the local algebra associated to
a region contains just as many observables as the algebra associated to the causal
shadow of the region. Local primitive causality does hold in many AQFTs, but is
typically violated in stochastic local physical theories.

A local physical theory satisfying local primitive causality also satisfies local deter-
minism and stochastic Einstein locality:

Local determinism. For any two states φ and φ′ and for any globally hyperbolic
spacetime region V ∈ K, if φ|A(V ) = φ′|A(V ) then φ|A(V ′′) = φ′|A(V ′′).
Local determinism is the requirement that fixing the state on a region, the state of any
observable in the causal shadow is also fixed.

Footnote 1 continued
local algebras to a net of order-unit vector spaces. See (Summers and Werner 1987a) and (Popescu and
Rohrlich 1994).
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Stochastic Einstein locality. Let VA, VC ∈ K such that VA ⊂ V ′′
C and VC ⊂ J−(VA),

where J−(VA) is the causal past of VA. If φ|A(VC ) = φ′|A(VC ) holds for any two states
φ and φ′ on A then φ(A) = φ′(A) for any projection A ∈ A(VA).
Stochastic Einstein locality is the requirement that fixing the state on a region, the
probability of any event localized in the (future part of) the causal shadow is also
fixed.

The next local causality requirement is Haag duality (which can be required only
in local quantum theories). A net satisfies Haag duality if

A(V ′)′ ∩ A = A(V ) (1)

for all bounded globally hyperbolic subspacetime region V ∈ K. If a net satisfies
Haag duality, then it also satisfies local primitive causality. Note that microcausality
alone does not entail local primitive causality. Haag duality is a stronger requirement
than microcausality in the sense that the local algebras are “fat” enough to contain all
observables which commute with the observables localized in their spacelike comple-
ment.

Finally, one can go over to the global version of the above local causality concepts
(entailed by the local ones):

Primitive causality. Let K(C) ⊆ K be a covering collection of a Cauchy surface
C ⊂ M and let A(K(C)) be the corresponding algebra. Then A(K(C)) = A.

A local physical theory with primitive causality also satisfies

Determinism. If φ|A(KC) = φ′|A(KC) for any two states φ and φ′ on A then φ = φ′.

In the rest of the paper a local physical theory obeys only isotony andmicrocausality
bydefinitionwithout anyother locality and causality constraints. Especially, thismeans
that no prescription on states onA are required. We turn now to Bell’s notion of local
causality.

3 Bell’s notion of local causality in a local physical theory

Local causality has been playing a central notion in Bell’s influential writings on
the foundations of quantum theory. To our knowledge it gets an explicit formulation
three times: in Bell (2004). In this latter posthumously published paper “La nouvelle
cuisine”, for example, local causality is formulated as follows:2

“A theorywill be said to be locally causal if the probabilities attached to values of
local beables in a space-time region VA are unaltered by specification of values
of local beables in a space-like separated region VB , when what happens in the
backward light cone of VA is already sufficiently specified, for example by a full
specification of local beables in a space-time region VC . ” (Bell 2004)

(For a reproduction of the figure Bell is attaching to this formulation see Fig. 1 with
Bell’s caption.) Bell elaborates on his formulation as follows:

2 For the sake of uniformity we slightly changed Bell’s notation and figure.
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Fig. 1 Full specification of
what happens in VC makes
events in VB irrelevant for
predictions about VA in a locally
causal theory V

V V

C

A B

“It is important that region VC completely shields off from VA the overlap of
the backward light cones of VA and VB . And it is important that events in VC be
specified completely. Otherwise the traces in region VB of causes of events in
VA could well supplement whatever else was being used for calculating proba-
bilities about VA. The hypothesis is that any such information about VB becomes
redundant when VC is specified completely.” (Bell 2004)

The notions featuring in Bell’s formulation has been target of intensive discussion in
philosophy of science. Here we would like to give only a brief exposé of them.

The notion “beable” is Bell’s neologism. (See Norsen 2009, 2011.) “The beables
of the theory are those entities in it which are, at least tentatively, to be taken seriously,
as corresponding to something real” (Bell 2004). The clarification of the “beables”
of a given theory is indispensable in order to define local causality since “there are
things which do go faster than light. British sovereignty is the classical example.When
the Queen dies in London (long may it be delayed) the Prince of Wales, lecturing on
modern architecture in Australia, becomes instantaneously King” (p. 236).

Beables are to be local: “Local beables are thosewhich are definitely associatedwith
particular space-time regions. The electric andmagnetic fields of classical electromag-
netism, E(t, x) and B(t, x) are again examples.” (p. 234). Furthermore, local beables
are to “specify completely” region VC in order to block causal influences arriving at
VA from the common past of VA and VB . (For the question of complete vs. sufficient
specification see (Seevinck and Uffink 2011) and our reply (Hofer-Szabó 2015).

One can “translate” Bell’s above terms in the following way. In a classical field
theory beables are characterized by sets of field configurations. Taking the equivalence
classes of those field configurations which have the same field values on a given
spacetime region one can generate local σ -algebras. Translating σ -algebras into the
language of abelian von Neumann algebras one can capture Bell’s notion of “local
beables” in the framework of a local physical theory. More generally, one can apply
the term “local beables” both for abelian and also for non-abelian local von Neumann
algebras, hence treating local classical and quantum theories on an equal footing.
We note here that our use of beables and hence our upcoming definition of local
causality transcends Bell’s intuition and original definition in an important sense.
Elements of a noncommutative local algebra can readily be interpreted operationally as
measurement outcomes but can hardly be as something ontological.Moreover, nothing
in our formalism expresses Bell’s explicitly stressed requirement that beables should
“correspond to something real”.On the one handwe think that at this level of generality,
where neither the dynamics nor any other features of the system is specified, we cannot
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Fig. 2 A region VC satisfying
Requirements (i)–(iii) VA B

C

V

V

determine which elements of the local algebras should be regarded as local beables.
On the other hand, we acknowledge that an ontological theory of noncommuting
observables would be highly desirable, if not indispensable, to better understand the
meaning of noncommutative local causality, especially where it differs (see below)
from Bell’s original ideas based on classical beables.

Finally, “complete specification” can be translated into this framework as a prob-
ability measure having support on the local equivalence class of a single specified
configuration. In the abelian von Neumann language this corresponds to a pure state
on the local von Neumann algebra in question with value 1 on the projection cor-
responding to the local equivalence class of the specified configuration. If the local
algebras of the net are atomic (which, by the way, is not the case in a general AQFT),
this state can be generated by conditioning on an arbitrary atomic event in the local
algebra expressing a complete specification of the “beables” of the region in question.3

With these notions in hand we can formulate Bell’s notion of local causality in local
physical theories as follows:

Definition 2 A local physical theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is called (Bell) locally causal, if for any pair A ∈ N (VA) and
B ∈ N (VB) of projections supported in spacelike separated regions VA, VB ∈ K
and for every locally normal and faithful state φ establishing a correlation, φ(AB) �=
φ(A)φ(B), between A and B, and for any spacetime region VC such that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,
(iii) J−(VA) ∩ J−(VB) ∩ (

J+(VC ) \ VC
) = ∅,

(see Fig. 2) and for any atomic event Ck of A(VC ) (k ∈ K ), the following holds:

φ(Ck ABCk)

φ(Ck)
= φ(Ck ACk)

φ(Ck)

φ(Ck BCk)

φ(Ck)
(2)

Remark 1. Again we stress that Definition 2 captures local causality only for local
physical theories with atomic local von Neumann algebras.

3 For a similar approach to local causality using σ -algebras see (Henson 2013); for a general definition of
local causality via completely positive maps and for a comparison of the two approaches see our (Hofer-
Szabó and Vecsernyés 2015).
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2. In case of classical theories a locally faithful state φ determines a locally nonzero
probability measure p by p(A) := φ(A) > 0, A ∈ P(N (V )). By means of this
(2) can be written in the following ’symmetric’ form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (3)

or equivalent in the ’asymmetric’ form:

p(A|BCk) = p(A|Ck) (4)

sometimes used in the literature (for example in (Bell 2004)).
3. The role of Requirement (iii) in the definition is to ensure that “VC shields off from

VA the overlap of the backward light cones of VA and VB”. Namely, a spacetime
region above VC in the common past of the correlating events may contain sto-
chastic events which, though completely specified by the region VC , still, being
stochastic, could establish a correlation between A and B in a classical stochastic
theory (Norsen 2011; Seevinck and Uffink 2011). If VC is a piece of a Cauchy
surface Requirement (iii) coincides with Requirement (iv):

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅
visualized in Fig. 1. However, for algebras corresponding to coverings of Cauchy
surfaces Requirement (iii) is weaker than Requirement (iv) since it allows for
regions penetrating into the top part of the common past. For local classical theo-
ries Requirement (iii) is enough, but for local quantum theories Requirement (iv)
should be used.

Of course the main question is how to ensure that a local physical theory is locally
causal.Generally the question is difficult to answer; herewe simplymention a sufficient
condition in case of atomic local algebras:

1. A local classical theory is locally causal if the local von Neumann algebras are
atomic and satisfy local primitive causality.

Proof Due to isotony and local primitive causality N (VA) ⊂ N (V ′′
C ) = N (VC ) and

hence for any atom Ck ofN (VC ): either (i) ACk = 0 or (ii) ACk = Ck . In case of (i)
both sides of (2) are zero, in case of (ii) (2) holds as follows:

φ(ABCk)

φ(Ck)
= φ(BCk)

φ(Ck)
= φ(ACk)

φ(Ck)

φ(BCk)

φ(Ck)
. (5)

2. A local quantum theory is locally causal if the local von Neumann algebras are
atomic and satisfy local primitive causality, and if Requirement (iii) in the defin-
ition of local causality is replaced by Requirement (iv).

Proof Since region VC is spatially separated from region VB , B ∈ N (VB) and an
atomic event Ck ∈ N (VC )will commute due to microcausality. Using Ck ACk = r Ck
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(where r ∈ [0, 1] depends on both A and Ck) we obtain:

φ(Ck ABCk)

φ(Ck)
= φ(Ck ACk B)

φ(Ck)
= r

φ(Ck B)

φ(Ck)
= φ(Ck ACk)

φ(Ck)

φ(BCk)

φ(Ck)
. (6)

Since local primitive causality, which originates from solving initial value problems of
hyperbolic partial differential equations, grasps the property of a local causal dynamics,
we can feel reassured that local primitive causality implies Bell’s local causality.
However, one can also expresses solicitude by looking at Point 2 and asking: how
can a local quantum theory be locally causal if local causality implies various Bell
inequalities, which are known to be violated for certain set of quantum correlations.
Does Definition 2 correctly grasp Bell’s intuition of local causality? We answer these
questions in the next section.

4 Local causality, common cause principle and the Bell inequalities

Local causality is closely related to Reichenbach’s (1956) common cause principle.
The common cause principle (CCP) states that if there is a correlation between two
events A and B and there is no direct causal (or logical) connection between the
correlating events, then there always exists a common cause C of the correlation.
Reichenbach’s original classical probabilistic definition of the common cause can
readily be generalized to the local physical theory framework. (See Rédei 1997, 1998;
Rédei and Summers 2002; Hofer-Szabó and Vecsernyés 2012a, b, 2013a, b; Hofer-
Szabó, Rédei and Szabó 2013).

Let {N (V ), V ∈ K} be a net representing a local physical theory. Let A ∈ N (VA)

and B ∈ N (VB) be two events (projections) supported in spacelike separated regions
VA, VB ∈ K which correlate in a locally normal and faithful state φ. The common
cause of the correlation is an event screening off the correlating events from one
another and localized in the past of A and B. But in which past? Here one has (at least)
three options. One can localize C either (i) in the union J−(VA) ∪ J−(VB) or (ii) in
the intersection J−(VA)∩ J−(VB) of the causal past of the regions VA and VB ; or (iii)
more restrictively in ∩x∈VA∪VB J−(x), that is in the spacetime region which lies in the
intersection of causal pasts of every point of VA ∪ VB . We will refer to the above three
pasts in turn as the weak past, common past, and strong past of A and B, respectively
(Rédei and Summers 2002).

Depending on the choice of the past we can define various CCPs in a local physical
theory:

Definition 3 A local physical theory represented by a net {N (V ), V ∈ K} is said
to satisfy the (Weak/Strong) CCP, if for any pair A ∈ N (VA) and B ∈ N (VB)

of projections supported in spacelike separated regions VA, VB ∈ K and for every
locally faithful state φ establishing a correlation between A and B, there exists a
nontrivial common cause system, that is a set of mutually orthogonal projections
{Ck}k∈K ⊂ N (VC ), VC ∈ K summing up to the unit of the algebra, satisfying
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φ(Ck ABCk)

φ(Ck)
= φ(Ck ACk)

φ(Ck)

φ(Ck BCk)

φ(Ck)
, for all k ∈ K (7)

such that the localization region of VC is in the (weak/strong) common past of VA and
VB .

A common cause is called nontrivial if Ck � X with X = A, A⊥, B or B⊥ for
some k ∈ K . If {Ck}k∈K commutes with both A and B, then we call it a commuting
common cause system, otherwise a noncommuting one, and the appropriate CCP a
Commutative/Noncommutative CCP.

The status of these six different notions of the CCP has been thoroughly scrutinized
in a special local quantum theory, namely AQFT (See Rédei (1997, 1998); Rédei and
Summers (2002); Hofer-Szabó and Vecsernyés (2012a, 2013a).) Now, what is the
relationship between the various CCPs and Bell’s local causality? The following list
of prima facie similarities and differences may help to explicate this relationship:

Similarities:

1. Both local causality and the CCPs are properties of a local physical theory repre-
sented by a net {N (V ), V ∈ K}.

2. The coremathematical requirement of both principles is the screening-off condition
(2) or equivalently (7).

3. The Bell inequalities can be derived from both principles. (But see below.)

Differences:

1. In case of local causality the screening-off condition (2) is required for every atomic
event (satisfying certain localization conditions). In case of the CCP for every
correlation only a single subset of events is postulated satisfying the screening-off
condition (7).

2. In case of local causality the screening-off condition is required only for atomic
events expressing the complete specification of the shielding-off region blocking
any causal information from the past. In case of the CCPs these atomic screener-
offs of the algebra A(VC ) are called trivial, since they screen any correlation off
irrespectively to the state.What one is typically looking for are nontrivial common
causes.4

3. In case of local causality screener-offs are localized ’asymmetrically’ in the past
of VA; in case of the CCP they are localized ’symmetrically’ in either the weak,
common or strong past of VA and VB .

Let us come back to Point 3 of the Similarities, that is to the relation of local causality
and the CCPs to the Bell inequalities. In (Hofer-Szabó and Vecsernyés 2013b, Propo-
sition 2) we have proven a proposition which clarifies the relation between the CCPs
and the Bell inequalities. It asserts that the Bell inequalities can be derived from the
existence of a (local, non-conspiratorial joint) common cause system for a set of corre-
lations if common causes are understood as commuting common causes. However, if

4 Finding a common cause for a correlation does not mean to provide the most detailed description for
the physical situation; it simply means that at this coarser level of description correlations can be causally
accounted for. For an opposing view see Uffink (1999) and Henson (2005).
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we also allow for noncommuting common causes, the Bell inequalities can be derived
only for another state which is not identical to the original one. And indeed in (Hofer-
Szabó and Vecsernyés 2013a, b) a noncommuting common cause was constructed for
a set of correlations violating the Clauser–Horne inequality. Moreover, this common
cause was localized in the strong past of the correlating events.5

Now, an analogous proposition holds for the relation between local causality and
the Bell inequalities. We assert here only the proposition without the proof since the
proof is step-by-step the same as that of the proposition mentioned above.

Proposition 1 Let {N (V ), V ∈ K} be a locally causal local physical theory with
atomic (type I) local von Neumann algebras. Let A1, A2 ∈ A(VA) and B1, B2 ∈
A(VB) be four projections localized in spacelike separated spacetime regions VA and
VB, respectively, which pairwise correlate in the locally faithful state φ that is

φ(Am Bn) �= φ(Am) φ(Bn) (8)

for any m, n = 1, 2. Let furthermore {Ck}k∈K ⊂ N (VC ), VC ∈ K be a maximal
partition of the unit, where the set {Ck}k∈K contains mutually orthogonal atomic
projections satisfying Requirements (i)–(iii) in Definition 2 of local causality. Then
the Clauser–Horne inequality

− 1 � φ{Ck }(A1B1 + A1B2 + A2B1 − A2B2 − A1 − B1) � 0. (9)

holds for the state φ{Ck }(X) := ∑
k φ(Ck XCk). If {Ck} commutes with A1, A2, B1

and B2, then the Clauser–Horne inequality holds for the original state φ:

− 1 � φ(A1B1 + A1B2 + A2B1 − A2B2 − A1 − B1) � 0. (10)

The moral of Proposition 1 is the same as in the case of the CCPs: the Bell inequalities
can be derived in a locally causal local physical theory only for a modified state φ{Ck };
it can be derived for the original state φ if the set of atomic projections {Ck} localized
in VC commutes with A1, A2, B1 and B2. What is needed for this to be the case?

In local classical theories any element taken from any local algebra will commute,
therefore theBell inequalitieswill hold in local classical theories. In locally causal local
quantum theories, commutativity of {Ck} and the correlating events is not guaranteed.
If VC is spatially separated from VB (due to Requirement (iv) in Definition 2), then
{Ck} will commute with B1 and B2 and hence (2) will be satisfied. However, for
noncommuting A1 and A2 one cannot pick a maximal partition {Ck} commuting with
both projections, and therefore the theorem of total probability,

∑
k φ(Ck AmCk) =

φ(Am), will not hold for the original state φ at least for one of the projections A1
and A2 (it will hold only for the state φ{Ck }). This fact blocks the derivation of Bell
inequalities for the original state φ. (For the details see (Hofer-Szabó and Vecsernyés

5 For an argument to use noncommuting common causes in causal explanation of quantum correlations
see (Hofer-Szabó and Vecsernyés 2013a, b). For a criticism of noncommuting common causal explanation
see Cavalcanti and Lal (2014) and for an answer to this see our (Hofer-Szabó and Vecsernyés 2015).
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2013b, p. 410)). In short, the Bell inequalities can be derived in a locally causal local
quantum theory only if all the projections commute.

At this point we would like to note that the violation of the theorem of total proba-
bility is a straightforward consequence of our approach transcending Bell’s classical
beables. It has the conceptually challenging consequence that we cannot reconstruct
the original state φ from the states conditioned on the atomic projections. Similarly,
in the noncommutative case violation of the theorem of total probability makes the
standard interpretation of the common causal explanation as a “finer description of the
same physical situation” impossible. (See our (Hofer-Szabó and Vecsernyés 2013b);
Cavalcanti and Lal (2014) and our response (Hofer-Szabó and Vecsernyés 2015).)

Coming back to the question posed at the end of the previous Section, namely how
a local quantum theory can be locally causal in the face of the Bell inequalities, we
already know the answer: the Bell inequalities can be derived from local causality if the
’beables’ of the local theory are represented by commutative local algebras. This fact is
completely analogous to the relation shown in (Hofer-Szabó and Vecsernyés 2013b),
namely that the Bell inequalities can be derived from a (local, non-conspiratorial,
joint) common cause system if it is a commuting common cause system. Thus, the
violation of the Bell inequalities for certain quantum correlations is compatible with
locally causal local quantum theories but notwith locally causal local classical theories.
Local causality is a more general notion than captured by the Bell inequalities.

5 Conclusions

In this paper we have shown the following:

(i) Bell’s notion of local causality presupposes a clear-cut framework in which
probabilistic and spatiotemporal entities can be related. This aim can be reached
by introducing the notion of a local physical theory represented by an isotone
net of algebras.

(ii) We have implemented Bell’s notion of local causality in this general framework
and shown sufficient conditions on which local physical theories will be locally
causal.

(iii) Finally, we pointed out some important similarities and differences between local
causality and the CCPs and showed that in a locally causal local quantum theory
one cannot derive the Bell inequalities from local causality just as one cannot
derive them from noncommuting common causes.
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