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Abstract The paper investigates measures of explanatory power and how to define
the inference schema “Inference to the Best Explanation” (IBE). It argues that these
measures can also be used to quantify the systematic power of a hypothesis and defines
the inference schema “Inference to the Best Systematization” (IBS). It demonstrates
that systematic power is a fruitful criterion for theory choice and that IBS is truth-
conducive. It also shows that even radical Bayesians must admit that systematic power
is an integral component of Bayesian reasoning. Finally, the paper puts the achieved
results in perspective with van Fraassen’s famous criticism of IBE.

1 Introduction

Arguably since Peirce, but at least since Harman (1965), philosophers have been
debating whether Inference to the Best Explanation (IBE) is a legitimate form of
rational inference. Harman describes this form of inference as follows: “one infers,
from the premise that a given hypothesis would provide a ‘better’ explanation for the
evidence than would any other hypothesis, to the conclusion that the given hypothesis
is true” (Harman 1965, p. 89). If we introduce the background knowledge into the
picture, as is nowadays standard, the resulting inference schema (IBE) can be portrayed
as follows1:

1 Some philosophers argue that one must relativize the third premise to a set of available hypotheses.
Whether some hypothesis is the best explanation can only be evaluated in contrast to other hypotheses,
so the argument goes.
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Inference to The Best Explanation (IBE)
B
E

H is the best available explanation for E in the light of B

(with respect to some set of available hypotheses)
Therefore: H

Legend: B = background knowledge (henceforth, mention of background knowledge
is suppressed), E = the evidence, H = a hypothesis.

For McMullin (1992), this is not just one inference schema among many others: for
him IBE is the “The Inference That Makes Science.” It is easy to provide examples
from the history of science that can be taken to show that IBE is indeed crucial to
scientific reasoning. Harman (1965) alludes to the following example by Darwin, who
argues along these lines that the theory of evolution must be true:

it can hardly be supposed that a false theory would explain, in so satisfactory a
manner as does the theory of natural selection, the several large classes of facts
above specified. It has recently been objected that this is an unsafe method of
arguing; but it is a method used in judging of the common events of life, and has
often been used by the greatest natural philosophers. (Darwin 1872, p. 421)

IBE plays an important role outside of science too. In particular, IBE plays an impor-
tant role in many philosophical debates. As examples, one can cite the debates about
scientific realism (for discussion see van Fraassen 1980, p. 19ff.) and external world
skepticism (most explicitly Vogel 1990).With respect to the first debate, some philoso-
phers argue that we are justified in believing that the theoretical terms of our best
scientific hypotheses refer to objects in the world, since this is the best explanation for
the apparent success of science. With respect to the second debate, other philosophers
argue that we are justified in believing that there is an external world, since the exis-
tence of external world objects is the best explanation for our perceptions. For detailed
information concerning the ubiquity of IBE in science and philosophy, see Douven
(2011, Sect. 1.2).

Not all philosophers are so enthusiastic about the inference schema IBE, however.
Van Fraassen, for example, often considered to be one of the fiercest opponents of
IBE, writes the following:

There are many charges to be laid against the epistemological scheme of Infer-
ence to the Best Explanation. One is that it pretends to be something other than
it is. Another is that it is supported by bad arguments. A third is that it conflicts
with other forms of change of opinion, that we accept as rational. (van Fraassen
1989, p. 142)

However, even van Fraassen, the figurehead of the anti-IBE camp, acknowledges the
following:

explanatory power is certainly one criterion of theory choice.When we decide to
choose among a range of hypotheses, or between preferred theories, we evaluate
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each for how well it explains the available evidence. I am not sure that this
evaluation will always decide the matter, but it may be decisive, in which case
we choose to accept that theory which is the best explanation. But, I add, the
decision to accept is a decision to accept as empirically adequate. (van Fraassen
1980, p. 71)

If even the fiercest opponents of the inference schema IBE accept the claim that
explanatory power is one important criterion of theory choice, the only task remaining
seems to be that of spelling out the vindication for that latter claim. Similarly, we have
to ask whether the inference schema IBE as described by Harman (1965) can itself
be vindicated. In this paper we investigate whether it is possible to provide such a
vindication of explanatory power as a criterion of theory choice and of the inference
schema IBE within Bayesian philosophy of science.

The paper has the following structure: Sect. 2 introduces various probabilistic mea-
sures of explanatory power that have been discussed in the literature. These measures
enable us to compare the strength of the different explanations provided by different
hypotheses and thus to define IBE. Common features of all these measures are (i) that
they presuppose a notion of explanation and (ii) that the application of these mea-
sures for quantifying the level of explanatory power presupposes that the hypothesis
in question is indeed an explanation for the evidence. In the context of theory choice,
this presupposition is usually not satisfied. Even though the hypothesis might explain
parts of the (total) evidence, almost no hypothesis explains all the evidence. Thus,
Sect. 2 discusses what the proposed measures quantify, if the above presupposition
is not satisfied, i.e., if the hypothesis does not explain the evidence. It is argued that
in this case they are measuring the systematic power of the hypothesis with respect
to the evidence. It is also argued that in the context of theory choice, we should take
into account the entire systematic power of the hypotheses, not just their explanatory
power. In addition, the corresponding inference schema Inference to the Best System-
atization (IBS) is defined. Section 3 investigates whether it is possible to provide a
vindication of systematic power as a criterion of theory choice and of the inference
schema IBS. I argue that this is indeed the case. In particular, Sect. 3 demonstrates
that in science, systematic power is a very fruitful criterion for theory choice: after
finitely many pieces of evidence, and for every piece of evidence thereafter, (i) true
hypotheses display a higher systematic power than false hypotheses, and (ii) logically
stronger true hypotheses display a higher systematic power than logically weaker true
hypotheses. In Sect. 3 I also demonstrate that the inference schema IBS is a fruitful
inference schema in science, because it directs one to accept the logically strongest
true hypotheses among the hypotheses available. The reason why we cannot achieve
similar results for explanatory power as a criterion of theory choice and the inference
schema IBE is also discussed in Sect. 3. Roughly, the reason is that our hypotheses
cannot usually be considered an explanation of the total evidence available to us. Sec-
tion 4 discusses how to reconcile consideration of explanatory and systematic power
with Bayes’ rule. More specifically, for radical Bayesians even though IBE and IBS
are based on a probabilistic measure of systematic power, strictly speaking they are
not Bayesian at heart, as they force agents either to accept a hypothesis or reject it
for another. The fundamental epistemic norms of Bayesian epistemology recommend
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assigning probabilistic degrees of belief to the hypotheses under consideration and
to update these degrees of belief via Bayes’ Rule. Radical Bayesians think there are
no valid epistemic principles over and above the fundamental epistemic norms of
Bayesian epistemology. However, Sect. 4 shows that Bayes’ rule can be reformu-
lated in such a way that one can see how explanatory power and systematic power
both inform the degrees of belief of Bayesian agents. Section 5 discusses the results
achieved in Sects. 3 and 4 and puts them in perspective with van Fraassen’s famous
criticism of IBE. Section 6 summarizes the findings.

2 From explanatory power to systematic power

2.1 Explanatory power

Suppose the hypothesis H provides an explanation for the evidence E . The core idea
of all measures of explanatory power that have been proposed so far is this: how well
a hypothesis explains the evidence depends on how much the hypothesis increases the
probability of the evidence (i.e., our expectation of the observational data). This core
idea encapsulates three minimal requirements on measures of explanatory power.

First, measures of explanatory power are defined in terms of probabilities. Formally,
this requirement demands thatmeasures of explanatorypower be functions that assign a
real number to each triple consisting of a probability function and a pair of propositions
out of some algebra A of propositions (the first one: the hypothesis, the second one:
the evidence).

Requirement 1 (measures of explanatory power 1) A measure of explanatory power
is a function ep : Pr×A × A → R. (In the following we write: epPr : A × A → R)

Probability theory is a branch of mathematics. Its axiomatic foundation was laid down
by Kolmogorov in his (1933) Grundbegriffe der Wahrscheinlichkeitsrechnung. The
following definition of ‘is a probability function’ defines it over a set of possibilities,
as is standard in contemporary epistemology.

Definition 1 Let W be a set of possibilities (e.g., possible worlds) and let A be a
σ -algebra of subsets over W . A function Pr : A → R is a probability function on A
if and only if for all A, B ∈ A:

1. Pr(A) ≥ 0
2. If A = W , then Pr(A) = 1
3. Pr(A ∪ B) = Pr(A) + Pr(B), if (A ∩ B) = ∅

This definition of probability functions has to be supplemented by the definition of
conditional probability.

Definition 2 If Pr(B) > 0, then Pr(A|B) = Pr(A ∩ B)/Pr(B)

The reason why measures of explanatory power are explicitly relativized to prob-
ability functions is that we want to allow for different agents using the same measure
of explanatory power but apply it to different probability functions. Which probability
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functions are admissible and how these probability functions should be interpreted—
as an agent’s subjective or objective degree of belief function or as the objective chance
function—, are interesting questions. In his 2009 paper “Locating IBE in the Bayesian
Framework”, Weisberg does not aim at defining explanatory power and IBE in terms
of probabilities, but discusses whether IBE can be made compatible with Bayesian
theories of rational reasoning. The conclusion Weisberg reaches concerning our latter
question is this:

What I have been trying to show is that compatibility with subjective Bayesian-
ism infects IBE with the same limitations and counter-intuitiveness. My hope
is that, having seen this, explanationists who are not already committed subjec-
tive Bayesians will appreciate the limitations of compatibilism. I hope that their
explanationist inclinations will then compel them to reject Subjectivist Condi-
tionalization, and to embrace a more full-blooded understanding of IBE. […] If
we grant IBE primacy instead, and use it to shape a more objective Bayesianism
that rejects Subjectivist Conditionalization, we are in a position to develop a
Bayesianism that is free of the limitations that come with Subjectivist Condi-
tionalization. (Weisberg 2009, p. 136)

Thus, keeping our presupposition that explanatory power and IBE should be defined in
terms of probabilities, we learn from Weisberg that we can define explanatory power
and IBE in terms of subjective Bayesian probabilities; however, the resulting notions
of explanatory power and IBE inherit the same limitations of such a definition. Instead,
and still following Weisberg (2009), we should define explanatory power in objective
Bayesian terms, and the probabilities should be interpreted as the “objectively cor-
rect distribution of ‘a priori’ probabilities” as Weisberg (2009, p. 137) puts it. For the
remainder of this paper we do not take a stand on whether the respective probabilities
underlying the definition of explanatory power and IBE should be interpreted as sub-
jective or objective Bayesian probabilities or even as objective chances. For a detailed
exposition of how our inductive probabilities should be interpreted see Brössel (2012).
Brössel and Eder (2014) also address this topic very briefly.

Now let us return to the minimal requirements on measures of explanatory power.
The second minimal requirement is that measures of explanatory power are measures
of probabilistic relevance. More formally2:

2 Note that the following Requirement 2 seems to admit of the possibility that some hypotheses can
explain the evidence while actually lowering its probability. (The requirement specifies how a measure of
explanatory power behaves in case Pr(E |H) < Pr(E), even thoughwe do not knowwhether the assumption
that the hypothesis actually explains the evidence is compatible with the case of Pr(E |H) < Pr(E).
A Gricean implicature of this specification is that advocates of this requirement are ready to admit the
possibility that a hypothesis explains the evidence even though Pr(E |H) < Pr(E). If they do not admit that
this is a possible case, why would they specify a necessary requirement for it?). Thus, it is an interesting
questionwhether this is possible, and the answer certainly depends on the notion of explanation presupposed.
For example, probabilistic theories of causation allow for the possibility of probability-lowering causes.
Thus, given an understanding of explanation as casual explanation it seems possible to give an explanation
of some observational fact by citing a cause that decreases the probability. For a discussion of the formal
requirement in the context of confirmation theory, see Crupi (2007).
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Requirement 2 (measures of explanatory power 2) A function3 epPr(·, ·) is ameasure
of explanatory power relative to probability function Pr only if there is some r ∈ R

such that: for all hypotheses H and evidence E if 1 > Pr(E) > 0 and Pr(H) > 0,
then

epPr(H, E)

⎧
⎪⎨

⎪⎩

> r, Pr(E |H) > Pr(E)

= r, Pr(E |H) = Pr(E)

< r, Pr(E |H) < Pr(E)

The idea that the more a hypothesis increases the probability of the evidence, the
better it explains the evidence, brings with it a third requirement. In particular, if two
hypotheses H1 and H2 explain the evidence E , but E is more probable in the light
of H1 than in the light of H2, then H1 has more explanatory power with respect to E
than H2. More formally4:

Requirement 3 (measures of explanatory power 3) If function epPr(·, ·) is a measure
of explanatory power relative to probability function Pr and Pr(E |H1) > Pr(E |H2),
then epPr(H1, E) > epPr(H2, E).

An important advantage of this last requirement is that it links measures of explana-
tory power with the likelihood of the evidence in the light of the hypothesis. More
specifically, many, if not all, Bayesians believe that the likelihood Pr(E |H) is less
subjective than the posterior Pr(H |E) and the prior probabilities Pr(E) and Pr(H).
Thus, Requirement 3 ensures that comparative judgments of the form ‘with respect to
the evidence E hypothesis H1 displays a higher explanatory power than hypothesis
H2’ are less subjective than judgments of the form ‘in the light of the evidence E
hypothesis H1 displays a higher posterior probability than hypothesis H2’.

In the spirit of these three requirements, various measures of explanatory power
have been suggested. The three most popular measures of explanatory power will
now be introduced and then be shown to satisfy requirements 1–3. Popper (1959)
introduced the first measure of explanatory power, which is ordinally equivalent to the
following one, ep1, by Good (1960)5:

Definition 3 (explanatory power 1) If hypothesis H explains evidence E , then the
explanatory power of H regarding E with respect to probability function Pr is:

ep1Pr(H, E) = Pr(E |H)

Pr(E)

if Pr(H) > 0 and Pr(E) > 0.

3 I adopt the following notational convention with respect to function terms: I use gothic fonts for function
variables and normal calligraphic fonts for function constants.
4 A closely related requirement can already be found in the work of Harman (1967) in connection with
the inference schema IBE (even though it is restricted to statistical probabilities and statistical hypothe-
ses). Harman calls it the generalized maximum likelihood condition. Crupi calls a related requirement for
measures of confirmation the Final Probability requirement. For a discussion of the latter requirement see
Crupi (2013).
5 The original formulation of Popper’s (1959) measure of explanatory power is this: epPopper

Pr (E, H) =
Pr(E |H)−Pr(H)
Pr(E |H)+Pr(H)

.
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Recently, Schupbach and Sprenger (2011) and Crupi and Tentori (2012) have sug-
gested alternative measures. More specifically, for quantifying the explanatory power
provided by a hypothesis regarding some evidence, Schupbach and Sprenger propose
to employ the following measure, ep2:

Definition 4 (explanatory power 2) If hypothesis H explains evidence E , then the
explanatory power of H regarding E with respect to probability function Pr is:

ep2Pr(H, E) =
[
Pr(H |E) − Pr(H |¬E)

Pr(H |E) + Pr(H |¬E)

]

if Pr(H) > 0 and 1 > Pr(E) > 0.

The measure of explanatory power suggested in Crupi and Tentori (2012) is the
following, ep3:

Definition 5 (explanatory power 3) If hypothesis H explains evidence E , then the
explanatory power of H regarding E with respect to probability function Pr is:

ep3Pr(H, E) =
{Pr(E |H)−Pr(E)

1−Pr(E)
if Pr(E |H) ≥ Pr(E) > 0

Pr(E |H)−Pr(E)
Pr(E)

if Pr(E |H) < Pr(E)

For all threemeasures of explanatory power one can show that they not only capture
the spirit of requirements 1–3, but that they satisfy them.

Theorem 1 (ep1, ep2, ep3 and theRequirements 1–3)For all probability functionsPr,
the three measures of explanatory power ep1Pr, ep2Pr, and ep3Pr satisfy the requirements
1–3.
(The proof for this theorem can be found in the appendix.)

On the basis of each of these measures of explanatory power, one can define under
which conditions a hypothesis can be considered the best explanation, for some evi-
dence, of all the available hypotheses. Three possible definitions come to mind.

Definition 6 (best explanation 1) For all probability functions Pr, all measures of
explanatory power epPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies of
evidence E with Hi ∈ A and E ∈ A:
Hi is the best available explanation for E with respect to the set of available hypotheses
{H1, . . . , Hn} iff Hi explains E and for all hypotheses Hj that explain E (with i �= j):
epPr(Hi , E) > epPr(Hj , E).

According to this definition, the best explanation for the evidence is simply the hypoth-
esis that displays the highest explanatory power with respect to that evidence of all
the hypotheses that explain the evidence. However, since we do not know whether
explanatory power is truth conducive, one might argue that this conception of ‘best
explanation’ is not adequate. A hypothesis might display considerable explanatory
power with respect to the evidence even though it is very implausible. In that case, one
might argue that it is not a good explanation and, therefore, that it is possibly not the
best explanation for the evidence. An alternative definition, which takes these worries
into account, is the following:
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Definition 7 (best explanation 2) For all probability functions Pr, all measures of
explanatory power epPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies of
evidence E with Hi ∈ A and E ∈ A:
Hi is the best available explanation for E with respect to the set of available hypotheses
{H1, . . . , Hn} iff Hi explains E and for all hypotheses Hj that explain E (with i �= j):
EepPr(Hi , E) > EepPr(Hj , E), where EepPr(Hi , E) =de f Pr(Hi |E) × epPr(Hi , E).
(Note that for calculating and comparing expected explanatory power, measures of explanatory power that

allow for negative values of explanatory power have to be rescaled in order to exclude these negative values

and to ensure that the minimal value is 0. This applies in particular for the measures ep2Pr and ep3Pr.)

The following alternative definition also takes the plausibility of the hypotheses
into account. In addition, it is considerably simpler than the previous one and closer
to the one suggested by Harman (1967):

Definition 8 (best explanation 3) For all probability functions Pr, all measures of
explanatory power epPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies of
evidence E with Hi ∈ A and E ∈ A:
Hi is the best available explanation for E with respect to the set of available hypotheses
{H1, . . . , Hn} iff (i) Hi explains E , (ii) Pr(Hi |E) > .5, and (iii) epPr(Hi , E) >

epPr(Hj , E), for all hypotheses Hj such that Pr(Hj |E) > .5 and Hj explains E (with
i �= j).

It is important to stress that these measures presuppose that we apply them to
explanatory hypotheses and that according to the above definitions the best available
explanation among the available hypotheses H1, . . . , Hn is indeed an explanation
of the evidence E . Accordingly, the presented theories of explanatory power must
presuppose that we have an adequate theory of explanation at our disposal. However,
even if an adequate theory of the qualitative notion of explanation is available, there is
another more troublesome problem. In the context of rational inference from evidence
to hypothesis, it is usually the case that a hypothesis does not explain all the evidence
available to the agent. Consider the following toy example: suppose on a flat and level
piece of ground there are two flagpoles p1 and p2. Let the background knowledge B
say this and that p1 is 10m tall (the length of p2 is not specified in the background
knowledge) and that at t2 the length of the shadow of p2 is 15m. Then we receive
three pieces of evidence: e1 states that at t1 the length of the shadow of p1 is 8391m,
e2 states that the length of flagpole p2 is 21.422m, and e3 states that at t1 the shadow
of flagpole p2 was 17.975. From this evidence we can conclude that the following
hypothesis must be true. H : between t1 and t2 the sun’s elevation changed from 50
to 55. Nevertheless, in the light of B the following holds: (i) H explains e1, (ii) H
predicts, but does not explain e2 (H predicts e2 in the sense that one can derive the
latter from the former. H does not explain e2 because the length of the shadow of a
flagpole mentioned in B does not explain the pole’s length, and since e2 is about the
length of the flagpole p2, which presumably is the same at t1 and at t2, H and B can
be considered to provide a retrodiction of the length of the flagpole p2 at t1 and a
prediction of its length at t2.), and finally (iii) H retrodicts, but neither explains nor
predicts e3 (H does not predict e3 because e3 takes place before the relevant conditions
mentioned in B take place. H does not explain e3 because the length of the shadow
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of a flagpole at t2 mentioned in B and H do not explain the pole shadow’s length at t1
as mentioned in e3, H retrodict e3 in the sense that one can derive the latter from the
former given the background B and e3 happens before the relevant conditions stated in
B). Thus, even though our hypothesis H does not explain all the available evidence, it
is nevertheless able to “systematize” the available evidence in the light of the specified
background knowledge and we do not hesitate to infer its truth.

More generally, it is possible that the evidence E available to the scientists con-
sists of three different pieces of evidence e1, e2, and e3, but that the hypothesis H
under consideration explains e1, predicts but does not explain e2, and retrodicts e3. By
assumption, H is not an explanation of E in this case and thus none of the measures
of explanatory power introduced above can be employed to measure the explanatory
power of H with respect to E . Even more importantly, this shows that the above mea-
sures of explanatory power typically can only be applied if the evidence is restricted;
comprehensive bodies of evidence typically cannot be completely explained by any
hypothesis and, thus, IBE is typically not applicable to large bodies of evidence.
Already Harman (1967), who suggested the best developed formal account of IBE so
far, sees this problem. He writes:

I have not presented a set of sufficient conditions [for the acceptance of hypothe-
ses], indeed a version of the lottery paradox is not met by the set of conditions I
have mentioned. For it is possible that there are N different explanations, each
accounting for a different fraction of the total evidence, each satisfying the con-
ditions so far mentioned, even though the evidence also ensures that one of these
explanations cannot be correct. (Harman 1967, p. 410)

And this diagnosis is also in line with Rescher (2005), who argues that

[t]he inference from explanatory optimality of truth is impeded by the consider-
ation that explanatory optimality is generally a local phenomenon whereas truth
is by nature global and context-independent. In terms of the practical politics of
the matter, optimal systematization is the best we can do. (Rescher 2005, p. 100)

It is important to note that Rescher does not have a specific measure of explanatory
power or a certain specified inference schema in mind when he criticizes IBE; nor
does he have in mind a specific measure of systematic power or a certain inference
schema when he defends IBS. For agreeing with his conclusion, the only important
consideration is that typically hypotheses cannot explain the total evidence available
to the agent, but only parts of this evidence. However, for scientific inference the agent
should take into account the total evidence available to her and not just the part of the
evidence which her hypotheses can explain. Thus, the conclusion is acceptable if and
only if the respective notion of explanation is not very permissive. In his discussion
of systematization and IBE, however, Weisberg (2009) notes that

[a]ccording to the best-systems view, something is a law of nature just in case
it is a theorem in all of the true deductive systems that best balance simplicity
and informative strength (Lewis 1973). […] One way to explain, says the best-
systems advocate, is to locate the explanandum in a simple and orderly overall
picture. So when the Humean explains the color of this emerald by appeal to
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the general law, she explains by locating this particular, local matter of fact in
a simple, unifying, and informative picture of all the particular, local matters of
fact. (Weisberg 2009, p. 139)

If one follows the Humeans, as portrayed by Weisberg, in this regard, then one could
argue that prediction and retrodictions also locate “a particular, local matter of fact
in a simple, unifying, and informative picture of all the particular, local matters of
fact” and that therefore they are in a wide sense explanatory as well. One also might
insist that we keep on calling the relevant inference schema ‘Inference to the Best
Explanation’ even though not all matters of facts can be explained in the sense of the
more restrictive causal theories of explanation. Summing up, if we do not have a very
permissive notion of explanation, we can follow Rescher who concludes:

Systematization is a resource of cognitive validation that is significantly different
fromexplanation. Explanation is a retail commodity: one generally explains facts
one at a time. But systematization is a wholesale commodity. […] We cannot
appropriately “infer” the best explanation E1 of a fact f1 precisely because there
may be some other fact f2 whose best explanation E2 is incompatible with that
aforementioned E1. But with systematization the matter stands differently. By
its very nature as such, systematization must be coherent overall. (Rescher 2005,
p. 103)

2.2 Systematic power

Discussing Rescher’s conceptions of IBE and IBS and all his arguments against or
respectively for themwould take us beyond the scope of the present paper.6 Instead, the
goal is to offer a precise notion of systematic power and IBS that supersedes Rescher’s
vague notions. To start with, we suggest that the above measures of explanatory power
can quantify the systematic power of H with respect to E , if we drop the assumption
that the hypothesis explains the evidence. Indeed, this is the natural proposal in the
light of Hempel and Oppenheim’s famous symmetry thesis concerning explanations
and predictions, which was first introduced in their seminal 1948 paper, “Studies in
the Logic of Explanation”.

[I]t seems sometimes possible to compare different theories, at least in an intu-
itive manner, in regard to their explanatory, or predictive powers: Some theories
seempowerful in the sense of permitting the derivation ofmany data from a small
amount of initial information, others seem less powerful, demanding compara-
tively more initial data, or yielding fewer results. Is it possible to give a precise
interpretation to comparisons of this kind by defining, in a completely general
manner, a numericalmeasure for the explanatory or predictive power of a theory?
[…] Since explanation and prediction have the same logical structure, namely

6 Especially since such an undertaking would not only require a great deal of interpretational work, but we
would also have to elaborate the basis upon which we disagree with Rescher’s arguments.
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that of a deductive systematization, we shall use the neutral term “systematic
power” to refer to the intended concept. (Hempel and Oppenheim 1948, p. 164)

In his 1958 “The Theoretician’s Dilemma—A Study in the Logic of Theory
Construction”, Hempel makes a more fine-grained distinction between explana-
tions, predictions, and retrodictions—or as he calls them, following Reichenbach,
“postdictions”— and still upholds the symmetry thesis:

Scientific explanations, predictions, and postdictions all have the same logical
character: they show that the fact under consideration can be inferred fromcertain
other facts by means of specified general laws. In the simplest case, the type of
argument may be schematized as a deductive inference of the following form:

C1, C2, …, Ck

L1, L2, …, Lr

E
HereC1,C2,…,Ck are statements of particular occurrences (e.g., of the position
and momenta of certain celestial bodies at a specified time), and L1, L2, …, Lr

are general laws (e.g., those of Newtonian mechanics); finally E is a sentence
stating whatever is being explained, predicted, or postdicted. And the argument
has its intended force only if its conclusion, E , follows deductively from the
premises. (Hempel 1958, pp. 37–38)

More importantly, Hempel admits the possibility of probabilistic explanations, pre-
dictions and postdictions, though all the while upholding the symmetry thesis.
Consequently, Hempel proposes to distinguish between deductive and inductive sys-
tematization. In particular, there are cases in which:

the statement E describing the occurrence under explanation or prediction
or postdiction (for example, Johnny’s catching the measles) is not logically
deducible from the explanatory statements adduced (for example, (C1) Johnny
was exposed to the measles; (C2) Johnny had not previously had the measles;
(L) For persons who have not previously had the measles and are exposed to it,
the probability is .92 that they will contract the disease); rather, on the assump-
tion that the explanatory statements adduced are true, it is very likely, though
not certain, that E is true as well. This kind of argument, therefore, is inductive
rather than strictly deductive in character […]. An argument of this kind—no
matter whether it is used for explanation, prediction, or postdiction, or for yet
another purpose—will be called an inductive systematization. (Hempel 1958,
pp. 39–40)

Following philosophers such as Hempel and Salmon, we now reject Hempel and
Oppenheim’s original suggestion concerning the deductive structure of explanations,
retrodictions, and predictions and we also allow for probabilistic or inductive expla-
nations, predictions, and retrodictions. Following the above considerations we might
rephrase the original quote by Hempel and Oppenheim and say that “since explana-
tion[, retrodiction,] and prediction have the same logical [or probabilistic] structure,
namely that of a deductive [or inductive] systematization, we shall use the neutral
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term “systematic power” to refer to the intended concept.” Finally, the idea that “the
notions of explanatory and predictive power can be combined within the notion of sys-
tematic power” (Niiniluoto 2011, Sect. 3.3) is still sound and is generally accepted.
The reason for this is that if Pr(E |H) > Pr(E), but H is not an explanation for E ,
then H is a more or less good retrodiction or prediction of E , and how well H pre-
dicts or retrodicts E depends on how much H increases the probability of E (i.e.,
how much H increases our expectation of the data). If Pr(E |H) ≤ Pr(E), we might
discuss whether we want to say that hypothesis H is an explanation (see footnote 2),
retrodiction, or prediction of the evidence E in the qualitative sense of these words.
However, it is natural to use the quantitative notions of degree of explanatory, retrod-
ictive, or predictive power even in these cases. (At least it is as natural as in the case
of confirmation, where it is standard to speak of degree of confirmation even though
in the qualitative sense of the word E does not confirm H in case Pr(H |E) ≤ Pr(H).)
Accordingly, given our assumption that the measures introduced above are indeed
adequate measures of explanatory power, it is fair to presuppose that they can be used
as measures of systematic power in those contexts in which the hypothesis does not
explain the total evidence available to the agent. Indeed, from a Bayesian perspective
the only consideration that would speak against such a generalization would be if one
argued that though some measure of explanatory power is an adequate measure of
explanatory power, given that H explains E , it is not a measure of H ’s predictive
power with respect to E , given that H predicts, but does not explain E . However,
given that measures of explanatory power are closely related to confirmation mea-
sures, it seems implausible that such argumentation is possible. For example, in the
context of measures of explanatory power, Schupbach, one of the modern champions
of theories of explanatory power, says: “these measures are structurally equivalent to
the confirmation measures” (Schupbach 2011, p. 814). In particular, measures of con-
firmation quantify how much the evidence increases the probability of the hypothesis,
and measures of explanatory power quantify howmuch the explanans (the hypothesis)
increases the probability of the explanandum (the evidence). The measure of explana-
tory power endorsed by Schupbach and Sprenger (2011), for example, is structurally
equivalent to the measure of factual support proposed by Kemeny and Oppenheim
(1952), the measure of explanatory power suggested by Crupi and Tentori (2012) is
structurally equivalent to the measure of confirmation suggested by Crupi (2007), and
the measure of explanatory power suggested by Popper (1959) is structurally equiv-
alent to measures of confirmation endorsed by Horwich (1982), Keynes (1921), and
Milne (1996). Thus, the picture that these champions of explanatory power advocate
is this: if some hypothesis H explains the evidence, then we can gauge the explana-
tory power of some hypothesis concerning the evidence by measuring how much the
hypothesis confirms the evidence. In a second step, it is only natural to say that if the
hypothesis does not explain the evidence, we can use the samemeasure of confirmation
to determine how strongly the hypothesis predicts or retrodicts the evidence.

Suppose the notions of explanatory, retrodictive, and predictive power can be
combined within the notion of systematic power. This raises the question whether
considerations of systematic power should play a crucial role in scientific inference.
In the context of rational inference from evidence to hypothesis, it is a natural idea that
we select a hypothesis on the basis of its systematic power (which, of course, includes
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its explanatory power) and not just its explanatory power alone. This is already indi-
cated in the quote by van Fraassen, when he writes that “explanatory power is certainly
one criterion of theory choice”, thereby implying that there are other criteria aswell. To
further motivate this idea, consider the following example: Newton’s theory of grav-
itation is typically considered to describe the effects of gravitation satisfactorily, but
not to explain how or why gravity can be causally effective. As Newton himself puts
it in his General Scholium from the Mathematical Principles of Natural Philosophy:

I have not been able to discover the cause of those properties of gravity from
phœnomena, and I frame no hypothesis. …to us it is enough, that gravity does
really exist, and acts according to laws which we have explained, and abundantly
serves to account for all the motions of the celestial bodies, and of our sea.
(Newton 1729, pp. 506–507)

According to causal theories of explanation, Newton’s theory does not explain the
motions of the planets in our system, although with the help of his theory we can
describe, predict and retrodict the motions of the planets. However, we cannot explain
them satisfactorily, since Newton’s theory does not state the cause of these motions.
Nevertheless, we are strongly inclined to consider Newton’s theory to have a high
systematic power with respect to our evidence concerning the motion of planets inde-
pendently of the question of whether Newton’s theory can causally explain these
motions or not. This systematic power of Newton’s theory of gravitation concerning
the motion of planets led us to consider it the best theory available until Einstein’s
theory of relativity. This illustrates that the inference schema that we use in the context
of theory choice is best described as IBS. Therefore, let us drop the presupposition
that the hypotheses in question actually explain the evidence and rename the measures
ep1Pr–ep3Pr as sp1Pr–sp3Pr, for systematic power. Then, we can define which hypothesis
is the best (available) systematization of the evidence as follows:

Definition 9 (best systematization 1) For all probability functions Pr, all measures of
systematic power spPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies of
evidence E with Hi ∈ A and E ∈ A:
Hi is the best available systematization for E with respect to the set of available
hypotheses {H1, . . . , Hn} iff for all hypotheses Hj (with i �= j): spPr(Hi , E) >

spPr(Hj , E).

Note that the only difference between Definition 6 and Definition 9 is that for the
former we presuppose that the hypotheses in question actually explain the evidence
and in the latter definition this presupposition is dropped.

Again, one might want argue that this conception of ‘best systematization’ is not
adequate. A hypothesis might display a high systematic power with respect to the
evidence even though it is very implausible. In that case, one might argue that it is not
a very good systematization and therefore possibly not the best systematization for the
evidence. Alternative definitions, that take this worry into account, are the following:

Definition 10 (best systematization 2) For all probability functions Pr, all measures
of systematic power spPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies
of evidence E with Hi ∈ A and E ∈ A:
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Hi is the best available systematization for E with respect to the set of available
hypotheses {H1, . . . , Hn} iff for all hypotheses Hj (with i �= j): EspPr(Hi , E) >

EspPr(Hj , E), where EspPr(Hi , E) =de f Pr(Hi |E) × spPr(Hi , E).
(Note that for calculating and comparing expected systematic power, measures of systematic power that

allow for negative values of systematic power have to be rescaled in order to exclude these negative values

and to ensure that the minimal value is 0. This applies in particular for the measures sp2Pr and sp3Pr.)

Definition 11 (best systematization 3) For all probability functions Pr, all measures
of systematic power spPr(·, ·) and all sets of hypotheses {H1, . . . , Hn} and all bodies
of evidence E with Hi ∈ A and E ∈ A:
Hi is the best available systematization for E with respect to the set of available
hypotheses {H1, . . . , Hn} iff (i) Pr(Hi |E) > .5 and (ii) for all hypotheses Hj :
Pr(Hj |E) ≤ .5 or epPr(Hi , E) > epPr(Hj , E).

On the basis of Definitions 9–11, we can also provide the definition of the correspond-
ing inference schema Inference to the Best Systematization:

Inference to The Best Systematization (IBS)

E
H is the best systematization for E with respect to the set of available hypotheses {H1, . . . , Hn}

Therefore: Hi

Given these definitions, the question is now whether systematic power can serve as a
criterion of theory choice and whether the inference schema IBS leads us to accept
true hypotheses.

3 From systematic power to theory choice

As discussed above, in most cases the inference schema that we use in the context
of theory choice is better described as Inference to the Best Systematization instead
of Inference to the Best Explanation. The inference schema should be understood as
Inference to the Best Explanation if and only if the hypothesis explains the agent’s
total evidence—because then the systematic power of the hypothesis is nothing other
than its explanatory power. However, in general this presupposition is not satisfied
and there are theoretical virtues besides explanatory power, i.e., the predictive and
retrodictive power of the hypothesis. We can now turn to the questions of (i) whether
systematic power can serve as a criterion of theory choice and (ii) whether we can
justify the inference from the premise that a given hypothesis would provide the
best systematization for the evidence to the conclusion that the given hypothesis is
acceptable or true. To begin, let us concentrate on the first question.

3.1 Systematic power as a criterion for theory choice

Can systematic power serve as a criterion of theory choice? This question can indeed
be answered positively, at least for those Bayesians who consider the convergence
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theorems of, for example,Gaifman andSnir (1982) or Schervish andSeidenfeld (1990)
to be a success story of Bayesian epistemology that confers at least partial vindication
on the Bayesian norms of reasoning. In particular, we can utilize the convergence
theorems to prove that all three measures of systematic power introduced above are
truth-conducive. Since this result depends heavily on the convergence theorems, let
us review one of it briefly.

First, we present the Gaifman–Snir Theorem [for a proof see Gaifman and Snir
(1982)].

The Gaifman–Snir Theorem Let W be a set of possibilities and let A be some alge-
bra over W . Now let e1,…, en, …be a sequence of propositions of A which separates
W , and for all w ∈ W let ew

i = ei if w � ei , and ¬ei otherwise. Let Pr be a probability
function on A. Let Pr∗ be the unique σ -additive probability function on the smallest
σ -field A∗ containing the field A satisfying Pr∗(A) = Pr(A) for all A ∈ A.
Then there is a W ′ ⊆ W with Pr∗(W ′) = 1 so that the following holds for every
w ∈ W ′ and all propositions A of A:

limn �⇒ ∞ Pr(A|Ew
n ) = I(A, w)

where I(A, w) = 1, if w � A and 0 otherwise.

(The elements of the algebra A are interpreted as propositions expressible in some language L suitable

for arithmetic. In particular, let L be some first-order language containing the numerals ‘1’, ‘2’, ‘3’,

…as names, respectively, individual constants, and symbols for addition, multiplication, identity etc. In

addition, let L contain finitely many relations and functional symbols. Gaifman and Snir (1982) call them

the ‘empirical symbols’. Accordingly we can think of the possibilities in W as models for that language L,
which agree on the interpretation of the mathematical symbols but can disagree on the interpretation of

the empirical symbols. In addition, the elements of W are thought of as models that satisfy the following

property: if a statement of the form ∃xφ[x] is true in a model then there is an individual constant c such

that the proposition φ[c] is true in that model. This ensures that we can think of the proposition expressed

by the formula ∃xφ[x] as the infinite disjunction of the propositions expressed by formulae of the form φ[c].
In addition, Gaifman and Snir also require that the probability function Pr satisfies the following property:

Pr(∃xφ[x]) = limn→∞ Pr(
⋃

φ[ai ]))
It is part of the Bayesian folklore that these convergence theorems represent a vindi-

cation of Bayesian norms of reasoning. The standard interpretation of this theorem is
that it shows that in the long run the subjective probability of a proposition converges
to the proposition’s truth value (almost surely). To ensure that a Bayesian agent’s sub-
jective probabilities converge to the truth value of the respective propositions in some
possible world w ∈ W , three conditions must be satisfied.

First, there must be a sequence e1, …, en , …of propositions of A which separates
W (Of course the elements ofA are still to be interpreted as propositions expressible in
some languageL as required by the Gaifman–Snir Theorem (see above).). A sequence
of propositions e1,…, en , …separates the set of possibilities W if and only if for every
pair of worlds wi and w j ∈ W (with wi �= w j ) there is one proposition in the
sequence such that it is true in one of the possible worlds and false in the other. (Given
our interpretation of the elements of W , we can say that a sequence of propositions
e1, …, en , …separates the models of some language L—i.e., W—if and only if for
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all models M1 and M2 such that M1 �= M2 there is a statement ei in the sequence
that is true in one of the models but false in the other.) The assumption of the mere
existence of such a sequence is unproblematic (at least from a purely mathematical
point of view). Indeed, the sequence of all atomic sentences of the language L is such
a separating sequence.

Second, the agent must determine directly (i.e., without additional Bayesian infer-
ences), step by step for each of these propositions, whether it is true or false in a
respective world w, and thus the agent’s evidence ew

i at stage i of the sequence in
possible world w is ei if w � ei and ¬ei otherwise. This second condition is not
unproblematic. If an agent only misses one observation, there might be a proposition
such that our Bayesian agent’s degree of belief in that proposition does not converge
to its truth value. The assumption becomes obviously problematic if we consider that
there might be propositions in the sequence such that our Bayesian agent is not in a
position to directly determine its truth value. We recall, in line with the Gaifman–Snir
Theorem, that the elements ofA can be interpreted as propositions expressible in some
language L. If that language contains theoretical vocabulary, e.g., the predicate ‘neg-
atively charged particle’, then we cannot determine the truth value of a proposition
expressing that some object is negatively charged. Now suppose that there are two
possible worlds whose main difference is that a is a negatively charged particle in one
of the worlds but not in the other (and of course the differences that come with the
latter, let us suppose for the sake of the argument these differences are not observable).
Then, according to our separability requirement, there must be a proposition ei that
is true in one possible world and false in the other, where we can directly determine
the truth value. However, this seems to be impossible in this case, since the respective
predicate, ‘negatively charged particle’, is a theoretical predicate. Onemight argue that
this criticism is not problematic per se, since an inductive method is of course only
as good as its inductive basis: the evidence. Suppose you failed to observe the only
pink elephant that will ever exist and you only see grey ones. Nobody would blame
a given inductive method for not leading you to believe that there are pink elephants
given the evidence that in the past and in the future all observed elephants are grey. Or
suppose, for example, that the Bayesian agent is colorblind: no one then blames the
Bayesian norms of reasoning if this agent cannot learn the truth about specific animal-
color hypotheses, even though she follows the Bayesian norms. The point can be
generalized to deductive inferences, as has already been noted by Schupbach (2014):

[M]odus ponens itself provides us with no reason to believe that we will instan-
tiate it with true premises. The same point holds for any inference form: by
virtue of their formal character, they provide us with few constraints on the
quality of the material that may be used to instantiate them on any occasion.
But when working with bad material content, virtually any inference form will
likely commend a false conclusion. (Schupbach 2014, p. 58)

Thus, we should consider a given set of norms of inductive inference (in this case
systematic power as a criterion of theory choice) as justified if and only if following
these norms would lead us to true and informative hypotheses, provided the premises
(i.e., the evidence) of an inductive inference are true and sufficiently informative.
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Nevertheless, Bayesians have to admit that even if humans were Bayesian agents, the
Bayesian norms of reasoning would not guarantee epistemic success, since human
agents are not ideal observers either.

Third, the possible worldw ∈ W is not in a set of possible worlds withmeasure zero
with respect to the agent’s probability Pr. Or, to put it differently, there are possible
worlds in which the agent’s degrees of belief are not guaranteed to converge to the
truth value of the respective propositions, but these are possible worlds to which the
agent assigns an a priori probability of zero.

Here is not the place to take up the discussion of in how far the convergence results,
given the presuppositions that they make, provide a vindication for Bayesian norms
of reasoning. For detailed discussion of the claim that these convergence results (at
least partially) vindicate the Bayesian norms of reasoning, see Belot (2013), Earman
(1992), Hawthorne (2014), and Huttegger (2015a, b). For applications of these results
in Bayesian philosophy of science see for example Brössel (2008, 2014, 2015), Huber
(2008), and Huttegger (2015a, b). The following theorem shows that systematic power
as a criterion of theory choice is vindicated by the convergence theorems to the same
extent as Bayesian norms of reasoning in general are vindicated by these theorems:

Theorem 2 (truth-conduciveness of systematic power) Let W be a set of possible
worlds and let A be some algebra over W . The elements of A are interpreted as
propositions. Let e0, . . . , en, . . . be a sequence of propositions of A which separates
W , and let ew

i = ei if w � ei and ¬ei otherwise. Let Pr be a strict (or regular)
probability function on A.7 Let Pr∗ be the unique probability function on the smallest
σ -field A∗ containing the field A satisfying Pr∗(A) = Pr(A) for all A ∈ A. Then
there is a W ′ ⊆ W with Pr∗(W ′) = 1 so that the following holds for every w ∈ W ′
and all hypotheses H1, H2 ∈ A and for all spPr satisfying Requirements 1–3.

1. if w � H1 and w � ¬H2, then:
∃n∀m ≥ n : [spPr(H1, Ew

m ) > spPr(H2, Ew
m )].

2. if w � H1 ∩ H2 and H1 � H2 but H2 � H1, then:
∃n∀m ≥ n : [spPr(H1, Ew

m ) > spPr(H2, Ew
m )].

where Ew
m = ⋂

0≤i≤m ew
i .

7 In this theorem and in Theorem 3 and Corollary 1 below we assume that the probability function is a
strict or regular probability function. Thus, in Howson’s words, the theorems again confirm

Hume’s argument that there is no sound inductive argument from experiential data that does not
incorporate an inductive premise, and it also tells us what the inductive premise will look like: it
will be a probability assignment that is not deducible from the probability axioms. (Howson 2003,
p. 134)

Without the “inductive premise” that we are dealing with a strict or regular probability function, we would
have to replace the ‘>’ in Point 2 of Theorems 1–3 by ‘≥’. In consequence, considerations of systematic
power could not distinguish between a logically stronger true hypothesis H1 and a logically weaker true
hypothesis H2, if both of them had the same prior probability despite the difference in their logical strength.
Indeed no purely probabilistic inference rule could distinguish between them, since from a probabilistic
perspective there would be no discernible difference between the hypotheses, because in this case Pr(H2 →
H1) = 1 and, thus, Bayesians would treat (H2 → H1 ∧ H2) as if it were a logical truth. For a longer
and more comprehensive discussion of the connection between logical strength, prior probabilities (or
informativity) and theory choice see Brössel (2014).
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(The proof for this theorem can be found in the appendix.)

According to this theorem, allmeasures of systematic power that satisfy theminimal
requirements 1–3 assign a higher degree of systematic power to true hypotheses than to
false hypotheses if we confront themwith the total evidence available to an agent: after
receiving finitely many pieces of evidence (in a sequence of separating observational
statements), and for every piece of evidence thereafter, true hypotheses provide a higher
degree of systematic power than false hypotheses. In addition, we see that measures
of systematic power that satisfy the minimal requirements 1–3 allow us to further
distinguish between true hypotheses. In particular, if one compares two hypotheses,
both of which are true but where one is logically stronger, then after receiving finitely
many pieces of evidence (in a sequence of separating pieces of evidence) and for
every piece of evidence thereafter, the logically stronger hypothesis displays a higher
degree of systematic power with respect to the evidence than the logically weaker
hypothesis. This demonstrates that systematic power is a very powerful criterion of
theory choice. After finitely many pieces of evidence, and for every piece of evidence
thereafter, comparisons of systematic power reflect our preferences in theory choice.
In particular, systematic power reflects the two requirements on theory choice that
Hempel (1960), Huber (2008), and Levi (1967) agree upon8:

Requirement 4 (preference in theory choice) For all hypothesis H1 and H2, H1 is to
be preferred to H2 if: (i) H1 is true and H2 is false, or (i i) H1 and H2 are true, but H1
is logically stronger than H2.

Accordingly, we can conclude that systematic power is indeed a very promising
criterion of theory choice.More importantly, even though the debate concerningwhich
probabilistic measure is best suited for measuring explanatory and systematic power
is still ongoing, it is a simple corollary of the preceding considerations (Theorems 1
and 2) that the previously suggested measures of systematic power sp1–sp3 are use-
ful for guiding theory choice. After receiving finitely many pieces of evidence (in
a sequence of separating observational statements), and for every piece of evidence
thereafter, true hypotheses display a higher degree of systematic power than false
hypotheses; and if one compares two hypotheses, both of which are true but where
one is logically stronger, then after receiving finitely many pieces of evidence (in a
sequence of separating pieces of evidence) and for every piece of evidence thereafter,
the logically stronger hypothesis displays a higher degree of systematic power with
respect to the evidence than the logically weaker hypothesis.

Corollary 1 (truth-conduciveness of systematic power) Let W be a set of possible
worlds and let A be some algebra over W . The elements of A are interpreted as
propositions. Let e0, . . . , en, . . . be a sequence of propositions of A which separates
W , and let ew

i = ei if w � ei and ¬ei otherwise. Let Pr be a strict (or regular)
probability function on A. Let Pr∗ be the unique probability function on the smallest

8 Hempel (1960), and Levi (1967) and Huber (2008) disagree in their evaluation of false hypotheses.Where
Hempel prefers logically weaker false hypotheses to logically stronger false hypotheses, Levi and Huber
prefer logically stronger false hypotheses to logically weaker false hypotheses. For discussion, see Brössel
(2014).
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σ -field A∗ containing the field A satisfying Pr∗(A) = Pr(A) for all A ∈ A. Then
there is a W ′ ⊆ W with Pr∗(W ′) = 1 such that the following holds for every w ∈ W ′
and all hypotheses H1, H2 ∈ A.

1. if w � H1 and w � ¬H2, then:
∃n∀m ≥ n : [spPr(H1, Ew

m ) > spPr(H2, Ew
m )], if spPr ∈ {sp1, sp2, sp3}.

2. if w � H1 ∩ H2 and H1 � H2 but H2 � H1, then:
∃n∀m ≥ n : [spPr(H1, Ew

m ) > spPr(H2, Ew
m )], if spPr ∈ {sp1, sp2, sp3}.

where Ew
m = ⋂

0≤i≤m ew
i .

(This corollary is a simple consequence of the Theorems 1 and 2. The proof is omitted
here.)

3.2 Inference to the best systematization

Can we provide a similar vindication for the inference from the premise that a given
hypothesis is the best systematization for the evidence to the conclusion that the given
hypothesis is acceptable or true? More specifically, can we derive a vindication of the
inference schema IBS from the above vindication of systematic power as a criterion
of theory choice?

Inference to The Best Systematization (IBS)

E
H is the best systematization for E with respect to the set of available hypotheses {H1, . . . , Hn}

Therefore: Hi

In order to apply this inference schema at some arbitrary time point t0, it is required
that the hypothesis Hi is the best systematization of the evidence Et0 available at time
point t0 (in the sense of Definition 9, 10, or 11) if compared with the hypotheses in the
set {H1, . . . , Hn} under consideration. If the probabilities underlying the definition of
systematic power are interpreted as subjective probabilities, then it is trivial for the
agent to determine which hypothesis is the best systematization for the evidence Et0
available at time point t0. Thus, in that case we do not need an additional epistemology
for how agents learn which hypothesis is the best systematization for the evidence Et0
available at time point t0. However, if the probabilities underlying the definition of
systematic power are interpreted as objective chances, then thewe need additionally an
epistemology for how agents learn about these objective chances in order to determine
which hypothesis is the best systematization for the evidence Et0 available at time
point t0. In the following I presuppose that the agent is in the position to determine
the systematic power of a hypothesis with respect to the available evidence (thus I
ignore the epistemology of objective chances, as I ignore the topic of rule-following
concerning inference rules in general). One cannot apply the inference schema at time
point t0, if there is no hypothesis Hi that is the best systematization of the evidence Et0
with respect to the set of hypotheses {H1, . . . , Hn} under consideration (e.g., if two
or more hypotheses fare equally well in systematizing the evidence). In order to apply
IBS, it is not required that at time point t0 the agent already knows that Hi provides
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the best systematization for all future evidence Et1 where t1 is later than t0. It is only
required that the agent “knows” or is justified in believing that the hypothesis Hi is
the best systematization of the evidence Et0 presently available to the agent at time
point t0. Thus, it might be the case that after obtaining more evidence between t0 and
t1 the agent infers at t1 another hypothesis with the help of the inference schema IBS
because the second hypothesis displays higher systematic power with respect to the
evidence Et1 available at t1.

In the light of this understanding of IBS it follows from the considerations in the
preceding subsection that we can provide at least a partial vindication for IBS, given
certain assumptions. (i) If there is at least one true hypothesis in the set of available
hypotheses {H1, . . . , Hn}, then after finitely many pieces of evidence and for every
piece of evidence thereafter, IBS will allow us to infer a true hypothesis. (ii) If there is
a logically strongest true hypothesis in the set of available hypotheses {H1, . . . , Hn},
then after finitely many pieces of evidence, and for every piece of evidence there-
after, IBS will allow us to infer the logically strongest hypothesis. Of course, these
results are again subject to the same conditions as the convergence results. More
formally:

Theorem 3 (A (partial) vindication of IBS) Let W be a set of possible worlds and let
A be some algebra over W . The elements of A are interpreted as propositions. Let
e0, . . . , en, . . . be a sequence of propositions of A which separates W , and let ew

i = ei

if w � ei and ¬ei otherwise. Let Pr be a strict (or regular) probability function on
A. Let Pr∗ be the unique probability function on the smallest σ -field A∗ containing
the field A satisfying Pr∗(A) = Pr(A) for all A ∈ A. Then there is a W ′ ⊆ W
with Pr∗(W ′) = 1 so that the following holds for every w ∈ W ′ and all hypotheses
H1, . . . , Hn ∈ A and for all spPr satisfying Requirements 1–3.

1. If there is a Hj ∈ {H1, . . . , Hn} such that w � Hj , then:
∃n∀m ≥ n : if Hi is the best systematization for Ew

m with respect to the set of
hypotheses {H1, . . . , Hn}, then w � Hi .

2. If there is a Hj ∈ {H1, . . . , Hn} such that w � Hj and Hj � Hi for all Hi with
w � Hi , then:
∃n∀m ≥ n : Hj is the best systematization for Ew

m with respect to the set of
hypotheses {H1, . . . , Hn}.

where Ew
m = ⋂

0≤i≤m ew
i .

(The proof for this theorem can be found in the appendix.)

From a formal perspective, both assumptions—(i) that there is at least one true hypoth-
esis among the hypotheses under consideration and (ii) that there is a logically strongest
true hypothesis among the hypotheses under consideration—are weak. If the set of
available hypotheses contains a “catchall” hypothesis, i.e., the negation of the disjunc-
tion of all other hypotheses in the set, it is guaranteed that there is a true hypothesis
among the hypotheses under consideration. If the set of available hypotheses is a
finite sub-algebra of A, it is also guaranteed that there is a logically strongest true
hypothesis among the hypotheses under consideration. It should be noted that it is no
problem to close a finite set of hypotheses under negation and conjunction to form a
finite sub-algebra of A. That both assumptions are weak from a formal perspective
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indicates that it does not take much effort to ensure that these assumptions are actually
true. Indeed, given a very permissive sense of ‘under consideration’ it is extremely
plausible that both assumptions are actually satisfied, after all the language of sci-
ence allows for an unrestricted use of conjunctions and negations. In particular, one
could argue that especially the negation of a hypothesis is taken into consideration
whenever the hypothesis is under consideration. To not consider ¬H if one consid-
ers H is like not considering the possibility that one’s hypothesis is false. Scientists
usually consider the hypothesis that their initial hypothesis is false. One could also
argue that whenever two hypothesis H1 and H2 are under consideration, scientists
also consider the possibility that both of them are true, at least if they are logically
consistent with each other. Nevertheless, even if both assumptions are satisfied, one
has to admit that the inference schema IBS as portrayed above would be subject to van
Fraassen’s (1989) famous Best of a Bad Lot Objection if the latter objection had not
been rebutted by Schupbach (2014). As Schupbach convincingly argueswith respect to
IBE:

[T]he bad lot objection is powerless against the inference form of IBE (it is
powerless against other inference forms too); but in that case, the objection
provides no motivation for revamping the form of explanatory inference. On the
other hand, the bad lot objection is more compelling when framed as a problem
for particular inferences to the best explanation (e.g., those used by realists); but
in this case, the bad lot objection is not an objection to IBE, but rather an objection
to the material content involved in particular instances of IBE. In neither case
does the bad lot objection call for us to discard IBE and replace it with a more
modest formulation of explanatory inference. (Schupbach 2014, p. 63)

FollowingSchupbach, theBest of a Bad Lot Objection against IBSmight be compelling
against a particular inference to the best systematization, but in that case it is rather an
objection against the set of hypotheses considered, not against the inference schema
IBS itself. For example, one might argue that since in a particular instance of IBS the
uninformative catch-all hypothesis came out as the best systematization with respect
to the evidence, we should consider additional hypotheses. Or one might argue that the
finite sub-algebra ofA considered in a particular instance of IBS is too coarse-grained,
and thus the achieved conclusion too uninformative. Instead, one should consider a
more fine-grained sub-algebra of A. However, such objections would only meet the
set of hypotheses under consideration and not the inference schema IBS itself.

Interestingly, given the underlying notion of systematic power, scientists are also
in a position to judge whether the set of hypotheses considered contains only bad
hypotheses, respectively whether the choice of considered hypotheses is adequate or
appropriate for the scientist’s purposes at hand. If for an extended number of obser-
vations none of the hypotheses under consideration has a high systematic power with
respect to the evidence, then it is perhaps time to consider additional hypotheses or
more fine-grained algebras. Such judgments, should not be understood as some sort
of meta-inductive rule. In particular, we are not proposing to infer something about
the truth or falsity of a hypothesis from the fact that none of the hypotheses under
consideration displays a high systematic power. On the contrary, for a given set of
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hypotheses one should employ IBS and accept the hypothesis that displays the highest
systematic power. However, when it comes to the particular choice of the algebra or
the set of hypotheses under consideration it does not make sense to say that such a
decision is true or false. Instead the choice of the algebra or the set of hypotheses is
useful or not, and if none of the hypotheses displays a high systematic power with
respect to the evidence then scientists should ask whether their particular choice serves
their scientific purposes. In that sense the choice of the algebra or the set of hypothe-
ses under consideration is similar to Carnap’s problem of the choice of appropriate
linguistic frameworks. With respect to the question of the rationality of such changes
Carnap (1950) says the following:

After the new forms are introduced into the language, it is possible to formulate
with their help internal questions and possible answers to them. A question of
this kind may be either empirical or logical; accordingly a true answer is either
factually true or analytic. From the internal questions we must clearly distin-
guish external questions, i.e., philosophical questions concerning the existence
or reality of the total system of the new entities.[…] To be sure, we have to face
at this point an important question; but it is a practical, not a theoretical question;
it is the question of whether or not to accept the new linguistic forms. The accep-
tance cannot be judged as being either true or false because it is not an assertion.
It can only be judged as being more or less expedient, fruitful, conducive to the
aim for which the language is intended. (Carnap 1950, Sect. 3)

Friedman was one of the first to clearly recognize the importance of these observations
for the testing of scientific theories in actual science.

Just as, for Carnap, the logical rules of a linguistic framework are constitu-
tive of the notion of “correctness” or “validity” relative to this framework, so
a particular paradigm governing a given episode of normal science, for Kuhn,
yields generally-agreed-upon (although perhaps only tacit) rules constitutive of
what counts as a “valid” or “correct” solution to a problem within this episode
of normal science. Just as, for Carnap, external questions concerning which
linguistic framework to adopt are not similarly governed by logical rules, but
rather require a much less definite appeal to conventional and/or pragmatic con-
siderations, so changes of paradigm in revolutionary science, for Kuhn, do not
proceed in accordancewith generally-agreed-upon rules as in normal science, but
rather require something more akin to a conversion experience. (Friedman 2002,
p. 181)

We suggest the same holds true for considerations of the systematic power of the
hypotheses in a chosen algebra. The decision for a certain algebra or for a specific
set of hypotheses includes certain “conventional and/or pragmatical considerations”
since they depend crucially on the linguistic framework adopted by the scientist and
additional pragmatic constraints. Thus, followingCarnap andFriedman the acceptance
of a certain algebra or a specific set of hypotheses cannot be taken to be either true
or false but can “be judged as being more or less expedient, fruitful, conducive to
the aim for which the language is intended” (Carnap 1950, Sect. 3) and within the
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boundaries of the scientist’s pragmatic constraints. Based on the past development of
the systematic power of the available hypotheses, scientists can come to a decision
on whether the set of available hypotheses contains only unfruitful or inexpedient
hypothesis for the scientist’s purposes at hand. More specifically, if for an extended
number of observations none of the hypotheses under consideration displays a high
systematic power with respect to the evidence (even if there is, for example, a catchall
hypothesis that displays a slightly higher systematic power than the other hypotheses),
then it is perhaps time to rethink one’s linguistic framework or one’s pragmatically
motivated limitations and consider additional hypotheses or more fine-grained sub-
algebras. Thus, measures of systematic power can be considered a valuable tool that
informs but does not determine our conventional and/or pragmatical considerations.
However, this should not be understood as meta-inductive rule which we intend to
apply to infer something about the truth or falsity of the set of hypotheses under
consideration, but only about the usefulness of the given convention concerning what
hypotheses are considered to be relevant. Thus, considerations of systematic power
can be an important aid in coming to a decision concerning questions that resemble
Carnap’s external questions.

More importantly, from the preceding considerations we can conclude that IBS
is indeed a very fruitful inference schema in science. In particular, within the given
algebra, or respectively for the given set of hypotheses under consideration, IBS leads
us after finitelymany steps of observation and for every observation thereafter to accept
the logically strongest true hypothesis. Thus, IBS is the appropriate tool for answering
what Carnap calls the internal questions of science (at least for those Bayesians who
consider the convergence theorems of Bayesian epistemology to confer at least partial
vindication on the Bayesian norms of reasoning).

3.3 Inferences to the best explanation and inferences to the best systematization
in philosophy

Interestingly, the inference schema IBS and the related inference schema IBE are not
only used in science, but also in philosophy. As mentioned earlier, a classic example
from the philosophy of science is the debate surrounding scientific realism. Propo-
nents of scientific realism argue that we are justified in believing that the theoretical
terms of our best scientific hypotheses refer to objects in the world, and defend the
view that the hypothesis that these theoretical terms refer to objects in the world is
the best explanation for the apparent success of science. The existence of success-
ful theories whose theoretical terms did not refer to objects in the world would be a
miracle. A classic example from epistemology is the debate on external world skep-
ticism. Here, the opponents of external world skepticism argue that this hypothesis
must be false, since the existence of external world objects is the best explanation
for our perceptions. Given the structure and predictability of many of our percep-
tions, it would be a miracle if they were not caused by objects in the external world.
Given these so-called inferences to the best explanation, the question is whether the
Theorems 1–3 show that the inference schemas IBE and IBS are also fruitful within
philosophy.
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Before discussingwhether IBS or IBE are also useful within philosophy, it is impor-
tant to note that the results presented above are not decisive, as regards the debate about
scientific realism. In particular, in order to prove the above results, one assumption
is required that makes the results achieved irrelevant for the debate about scientific
realism. This assumption is that the sequence of pieces of evidence e0, . . . , en, . . .

must separate the set W , where a sequence of pieces of evidence separates the set of
possibilities W if and only if for every pair of worlds wi and w j ∈ W (with wi �= w j )
there is one piece of evidence in the sequence such that it is true in one of the possibili-
ties and false in the other. The assumption implies that the Theorems 1–3 do not speak
about scientific hypotheses that contain theoretical vocabulary, i.e., vocabulary which
includes non-observational terms. More specifically, if we allow for hypotheses that
contain theoretical vocabulary, then we allow for two possible worldswi and w j ∈ W
(with wi �= w j ), such that there is no piece of evidence in the sequence (that we can
obtain via observation) that is true in one of the worlds and false in the other. Thus,
these theorems do not prove that successful hypotheses—i.e., hypotheses that display
a strong systematic power after finitely many pieces of evidence and for every piece of
evidence thereafter—that contain theoretical vocabulary are true, and therefore they
are not decisive with respect to the debate about scientific realism. For discussion, see
Brössel (2014).

In a second step, one can also recognize that Theorems 1–3 do not settle the general
question whether IBS and IBE are fruitful inference schemas within philosophy. In
particular, the assumption that there is a sequence of pieces of evidence e0, . . . , en, . . .

that separates the set W becomes implausible if we assume that subsets of W are
philosophical hypotheses. Even if we assume that intuitions can serve as philosophical
evidence, and even if we additionally assume that these intuitions are fully reliable, it is
very implausible that such philosophical evidence can separate the set of possibilities
W . This would require that for every pair of philosophically conceivable possible
worlds, the following holds: there is some proposition e that is true in only one of
these two worlds and we intuit e in the world in which e is true and we intuit ¬e in
the world in which e is false. Furthermore, we cannot think of any other conception of
philosophical evidence that would make the satisfaction of this requirement plausible.
Thus, Theorems 1–3 do not settle the question whether IBS and IBE are fruitful
inference schemas within philosophy.

4 From systematic power to Bayes’ rule

Sections 3.1 and 3.2 demonstrated that IBS is a fruitful inference schema in science
(but not in philosophy, as discussed in Sect. 3.3). It leads us to accept the logically
strongest, true hypothesis within a set of available hypotheses. Here, it is important
to note that the neutral term ‘acceptance’ is used instead of the term ‘full belief’.
Clearly, for most philosophers, accepting a scientific hypothesis means fully believing
that the hypothesis is true. The above result can then be taken to show that fully
believing a hypothesis which is the best systematization of the evidence is justified:
after finitely many pieces of evidence, and for every piece of evidence thereafter,
the epistemic agent believes the logically strongest true hypothesis available. From an
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epistemological point of view, there is nothingwrongwith believing such a hypothesis.
Some philosophers reject the idea that accepting a hypothesis requires fully believing
that it is true. For example, according to scientific anti-realists like vanFraassen (1980),
accepting a hypothesis only requires fully believing that the hypothesis is empirically
adequate. Thus, using the neutral term ‘acceptance’ will allow scientific anti-realists
of this kind to employ IBS for scientific reasoning. For further discussion see also
Brössel (2014).

However, there are also philosophers who completely reject the idea that we are
allowed to believe or accept a given hypothesis. According to this view, all inductive
inference rules that make you believe or accept a hypothesis are unacceptable. In
particular, radical Bayesians like Jeffrey (1956, 1992) reject the notions of full belief
or acceptance. They would argue that even though IBS is based on some probabilistic
measure of systematic power, IBS is strictly speaking not Bayesian at heart. IBSmakes
agents believe or accept a hypothesis or reject it for another, where “[t]he framework of
probabilism replaces the twoCartesian options, affirmation and denial, by a continuum
of judgmental probabilities in the interval from 0 to 1, endpoints included” (Jeffrey
1992, p. 194). For these reasons in particular, radical Bayesians argue that, like the
notions of accepting or fully believing a hypothesis, IBS itself has to be rejected.

Suppose we follow radical Bayesians in rejecting the notions of full belief and
acceptance. Then we have to reject inference schemas such as IBE and IBS. More
generally, it seems that considerations of explanatory and systematic power are “in
conflict with other forms of change of opinion, that we accept as rational” as noted
by van Fraassen (1989). In particular, such considerations seem to be in conflict with
Bayes’ Rule.

Definition 12 (Bayes’ rule) If Prt0 is the agent’s probability function at time point
t0, E is the logically strongest proposition that the agent became absolutely certain
of between time points t0 and t1, and Prt0(E) > 0, the agent’s probability function
should change to Prt1 , which is defined as follows:

Pr
t1

(H) = Pr
t0

(H |E)

for all H ∈ A.

On the surface, it seems that neither the explanatory power nor the systematic power
of the hypothesis H with respect to the evidence E has any influence on the posterior
degree of belief in H at time point t1. However, closer considerations reveal that the
systematic power of the hypothesis with respect to the evidence E has a tremendous
effect on the posterior degree of belief in H at time point t1. The so-called Bayes’
Theorem is the following:

Theorem 4 (Bayes’ Theorem)

Pr
t0

(H |E) = Prt0(E |H) × Prt0(H)

Prt0(E)

(The proof is omitted here.)
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A trivial reformulation of Bayes’ Theorem shows what we want to prove, i.e., that
the systematic power of the hypothesis with respect to the evidence has a tremendous
effect on the new degree of belief in H at time point t1. The trivial reformulation of
Bayes’ Theorem is this:

Theorem 5

Pr
t1

(H) = Pr
t0

(H |E) = sp1Pr t0(H, E) × Pr
t0

(H)

(The proof is omitted here.)

Similar results can be obtained for the other two measures of systematic power.
The results are the following:

Theorem 6

Pr
t1

(H) = Pr
t0

(H |E)

=

e
tanh−1[sp2Pr t0

(H,E)]
Prt0(E)

e
tanh−1[sp2Pr t0

(H,E)]
Prt0(E) + e

tanh−1 sp2Pr t0
(H,¬E)

Prt0(¬E)

Prt0(E)
× Pr

t0
(H)

(The proof can be found in the appendix.)

Theorem 7

Pr
t1

(H) = Pr
t0

(H |E)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[Prt0(¬E)×sp3Pr t0(H, E)+Prt0(E)]×Prt0(H)

Prt0(E)
i f Prt0(E |H)≥Prt0(E)

[Prt0(E)×sp3Pr t0(H, E)+Prt0(E)]×Prt0(H)

Prt0(E)
i f Prt0(E |H)<Prt0(E)

(The proof is omitted here.)

Theorems 5–7 show that an agent’s degree of belief in some hypothesis depends
on her a priori degree of belief in that hypothesis and the systematic power of that
hypothesis with respect to the evidence. In the case of the measures of systematic
power sp2 and sp3 this depends additionally on the agent’s a priori degree of belief in
the evidence. These theorems therefore demonstrate that considerations of systematic
power are not in conflict with Bayes’ Rule. Rather, such considerations can be taken
to inform the agent’s posterior degree of belief in the hypothesis in the light of the
evidence E . Thus, even radical Bayesians, who reject all inference rules that allow
one to accept or fully believe a hypothesis, must admit that systematic power is an
integral component of Bayesian reasoning. The agent’s posterior degree of belief in
the hypothesis depends crucially on the hypothesis’s systematic power with respect
to the available evidence and, ceteris paribus, the higher the systematic power of the
hypothesis, the higher the agent’s posterior degree of belief in it.
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5 Putting the results in perspective: van Fraassen and the role of
explanatory and systematic power in scientific reasoning

It should be obvious that it is not the aim of this paper to give a comprehensive,
detailed, and historical account of van Frassen’s various arguments against IBE. For
this purpose other papers aremore pertinent: Okasha (2000) and Psillos (1996)must be
mentioned here. Naturally, this is also not the place to discuss comprehensively and in
detail in how far the results achieved here can be considered a rebuttal of van Fraassen’s
“attack” against IBE or its close cousin IBS. The latter task presupposes the former.
In addition, it would require intensive speculation about how van Fraassen would
formulate his criticism against IBS and systematic power. (Furthermore, it might be
evenmore interesting to investigate inmore detail the relations anddifferences between
the philosophical conclusions of Okasha (2000) and Weisberg (2009) and the results
presented here.) Nevertheless, because of van Fraassen’s importance for the debate a
few comments are in order (and these comments presuppose that van Fraassen would
raise any objection raised already against IBE and explanatory power, against IBS and
systematic power as well).

According to Okasha (2000, p. 692), “[t]o understand [van Fraassen’s] attack, it is
necessary to look briefly at van Fraassen’s views on induction.” So let’s do this! We
begin with van Fraassen’s general picture of induction and rational reasoning.

[V]an Fraassen is no inductive sceptic; he grants the rationality of our beliefs
about the unobserved. What enables van Fraassen to reject the traditional ideal
of induction without falling into inductive scepticism is a particular thesis about
rationality. Rationality is a concept of permission, not obligation, he maintains:
it concerns what you may believe, not what you must. Therefore, rational belief
change need not be governed by rules which tell you how to respond to evidence;
two agents can respond very differently to the same evidence, without one of
them being irrational. (Okasha 2000, p. 693)

Thus, the radical Bayesian’s criticism against IBE or IBS (see Sect. 4) is not backed
by van Fraassen. Nothing in van Fraassen’s general picture of induction forbids us
to believe or accept a hypothesis. In the light of this very general view of induction
and rational reasoning the crucial point for van Fraassen seems to be this: there are
no arguments that support the view that one ought to apply IBE, its close cousin IBS,
or any other inference rule. Since the paper neither proves nor claims that IBE or
IBS are the only inference rules that lead one to accept the logically strongest, true
hypothesis from among the available hypotheses, nothing in the present paper stands
in contradiction with this very general picture of inductive inference. In fact, there are
many inference rules that lead one to accept the logically strongest, true hypothesis of
all available hypothesis (see Huber 2008; Brössel 2014), and thus we must conclude
that these inference rules are just as justified as IBS. Thus, the paper establishes that
one is permitted to apply IBS and IBE, but certainly not that one ought to apply them.
However, van Fraassen (1989, p. 142) clearly thinks that his arguments against IBE
and IBS are stronger, when he writes that there are many charges to be laid against
IBE and IBS: “One is that it pretends to be something other than it is. Another is that
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it is supported by bad arguments. A third is that it conflicts with other forms of change
of opinion, that we accept as rational.” Thus, it is fair to interpret van Fraassen as
saying that IBE and, presumably, its close cousin IBS, are inference rules that you
are not even permitted to apply. In contrast to this, the paper argues that IBS is an
inference rule that one is permitted to apply in scientific inquiry. The basic premises in
support of this conclusion are: (i) Schupbach’s successful mitigation of the force of the
Best of a Bad Lot Objection against IBE, IBS, or other variants of inductive inference
rules (together with the fact the measures of systematic power are good indicators of
whether the available hypotheses are a Bad Lot) and (ii) the proof that after finitely
many steps of observation and for every observation thereafter IBS leads you to accept
the logically strongest, true hypothesis available. The only important premise that one
has to accept to obtain the proof is this: explanatory and systematic power and hence
IBE and IBS can be defined in terms of Bayesian probabilities.

Van Fraassen nevertheless thinks that in the light of his counterarguments advocates
of IBE and IBS at least have to retrench.

This retrenchment can take two forms. The first form is that the special features
which make for explanation among empirically unrefuted theories, make them
(more) likely to be true. The second form is that the notion of rationality itself
requires these features to function as relevant factors in the rules for rational
response to the evidence. […] Let us note beforehand that the first must lean on
intrinsic explanatoriness,which canbediscernedprior to empirical observations,
and the second specifically on explanatory success after the observational results
come in.What the criteria are for either, we shall leave up to the retrencher. (1989,
p. 146)

Thus, according to van Fraassen (1989, p. 146), it is not even possible to design a
retrenched IBE rule, which specifies how we should “allocate our personal probabili-
ties with due respect to explanation.” This indicates that van Fraassen thinks that there
is no room in Bayesian norms of reasoning for considerations of explanatory power.
Before going on we should take a look at what van Fraassen thinks about Bayesian
norms of reasoning. According to Okasha:

Van Fraassen […] is nonetheless a Bayesian of sorts. He accepts the Bayesian
representation of opinion in terms of degrees-of-belief, and he agrees that syn-
chronic probabilistic coherence is a necessary condition of rationality. However,
he does not accept the Bayesian thesis that conditionalization is the only ratio-
nal way to respond to new evidence; though he allows that it is a rational way.
(Okasha 2000, p. 693)

Thus, according to van Fraassen one might not be obliged to use strict conditionaliza-
tion for changing one’s degrees of belief in the light of evidence, but one is certainly
permitted to do so. Theorems 5–7 show that if one is permitted to use strict condition-
alization, then one is also permitted to update one’s degrees of belief by a rule which
allocates the agent’s degrees of beliefwith due respect to considerations of explanatory,
predictive, and retrodictive power, i.e., the hypothesis’s systematic power. In partic-
ular, these theorems show that one can design update rules with the following two
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important properties: (i) according to these update rules, an agent’s updated degrees
of belief in a hypothesis are a strictly increasing function (solely) from the agent’s old
degrees of belief in that hypothesis and its systematic power with respect to the evi-
dence (combining its explanatory, predictive, and retrodictive power), and (ii) these
update rules are logically equivalent to strict conditionalization. Thus, such update
rules can be plausibly understood as retrenched inferences to the best systematization
and one is permitted to apply them since they are logically equivalent to an update rule
that van Fraassen explicitly permits in his (1989) Laws of Symmetry. Thus, as long as
the relevant probabilistic measures can be understood as measures of a hypothesis’s
systematic power with regard to the evidence, van Fraassen is not only wrong in reject-
ing the inference rule IBS, he is also wrong in rejecting the retrenched versions of IBS
that specify how systematic power influences posterior beliefs in hypotheses. Again
the only important premise that one has to accept is this: explanatory and systematic
power and hence IBE and IBS aswell can be defined in terms ofBayesian probabilities.

It is presumably this last premise that van Fraassen either rejects or does not con-
sider. Van Fraassen considers only two possibilities regarding how to assign a role to
considerations of explanatory (and systematic) power within Bayesian epistemology.
According to the first, hypotheses that display a high explanatory (or systematic) power
with regard to the evidence are assigned a higher prior probability than hypotheses that
display less explanatory (or systematic) power. Since this would require that we know
a priori which hypotheses are more explanatory with regard to our future a posteriori
evidence, this approach is not tenable. Here we agree with van Fraassen. For a more
detailed and critical discussion of van Fraassen’s argument against this first variant
see Okasha (2000, Sect. 4) and Douven (2011). According to the second, we assign a
higher a posteriori probability to explanatory hypotheses when they display explana-
tory success after the observational results come in. “Combining the ideas of personal
probability and living by rules, the new rule of IBE would be a recipe for adjusting our
personal probabilities while respecting the explanatory (as well as predictive) success
of hypotheses” (van Fraassen 1989, p. 149). Van Fraassen claims that it is impossible
to construct such inference rules and maintain that they are rational. Van Fraassen’s
argument presupposes that such rules require one to adjust one’s probabilities in such
a way that one assigns extra probability to hypotheses that not only show a certain
amount of predictive success but that are also explanatory. Van Fraassen’s invites us to
imagine a conversation between a Preacher or Explanationism and a perfect Bayesian,
he calls him Peter:

[T]he Preacher goes on to say: in view of this explanatory success, you should
raise your credence in the more explanatory hypotheses.

‘What?’ exclaims Peter. ‘More than I would anyway?’ ‘Yes’, says the Preacher.
‘Our forefathers all inferred to the best explanation, and in daily commerce, our
humbler brothers still do. We who have seen the light of probability should not
disdain their insight, but give due respect to explanatory success.’ (van Fraassen
1989, p. 166)

Thus, according to van Fraassen, the retrenched rules of IBE should require the fol-
lowing: (i) an agent’s updated degrees of belief in a hypothesis are a strictly increasing
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function from the agent’s old degrees of belief in that hypothesis, its predictive or retro-
dictive power with respect to the evidence, and, in addition, some additional bonus
for explanatory success, in case the hypothesis explains the evidence; and (ii) these
update rules are logically equivalent to strict conditionalization if none of the hypothe-
ses explains the evidence, and they assign a higher degree of belief to a hypothesis
than strict conditionalization does, if the hypothesis does explain the evidence (and
thus a lower degree of belief if the hypothesis does not explain the evidence whereas
one of the alternative hypotheses explains it).

In contrast to van Fraassen, but in the spirit of Hempel and Oppenheim (1948)
and Hempel (1958) we presuppose a symmetry principle for measures of predictive,
retrodictive and explanatory power. In particular, we argued that if we can use a prob-
abilistic measure as a measure of the predictive power of the hypothesis with regard to
the evidence, then we can use the same measure to gauge the explanatory power of a
hypothesis with regard to the evidence if the hypothesis explains the evidence, and we
can use it to gauge the retrodictive power of a hypothesis with regard to the evidence
if the hypothesis retrodicts the evidence. Thus, when Bayesian Peter asks whether
he should raise his degree of belief in the hypothesis displaying explanatory success
more that he would anyway, the preacher of IBE and IBS should have said: ‘No, our
forefathers all inferred to the best systematization, discounting any difference between
prediction, retrodiction, and explanation, and in daily commerce, our humbler brothers
still do.Wewho have seen the light of Hempel’s and Oppenheim’s symmetry principle
should not disdain their insight and give equal respect to explanatory, predictive and
retrodictive success.’

6 Summary

For decades, the role of the inference schema Inference to the Best Explanation within
scientific reasoning has been hotly debated, and for decades philosophers have sug-
gested probabilistic measures of explanatory power. The present paper has shown
that both inference schemas—Inference to the Best Explanation and Inference to the
Best Systematization—can play a central role within scientific reasoning. Accepting
the hypothesis with the highest systematic power leads one to accept the logically
strongest true hypothesis among the available hypotheses, after finitely many pieces
of evidence and for every piece of evidence thereafter. Furthermore, even if we adopt
radical Bayesianism, and reject all qualitative notions of belief or acceptance and admit
only of degrees of belief, we can show that explanatory and systematic power play
an important role in scientific reasoning. In particular, the agent’s posterior degree
of belief in the hypothesis depends crucially on the hypothesis’s systematic power
with respect to the available evidence and, ceteris paribus, the higher the systematic
power of the hypothesis, the higher the agent’s posterior degree of belief in it. The
crucial assumptions for this are: (i) explanatory and systematic power, and IBE and
IBS, can be defined in terms of Bayesian probabilities; and (ii) a symmetry principle
for measures of predictive, retrodictive and explanatory power so that we can com-
bine these notions in one measure of systematic power. Certainly not all defenders of
IBE and related inference rules will be happy with this presupposition. For example,
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adopting the picture advocated here and with it the vindication of the application of
these measures and inference rules in induction might feel like a Pyrrhic victory for
Okasha (2000). Van Fraassen, on the other hand, a “Bayesian of Sorts”, might actually
be happy with the results achieved here. As long as explanatory and systematic power,
and IBE and IBS, are constrained by Bayesianism, he might rule that we are permitted
to use these inference rules.
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Appendix

Proof of Theorem 1

We have to show that ep1–ep3 satisfy requirements 1–3.

Proof for ep1

1. ep1 satisfies Requirement 1 trivially. It is defined in terms of probabilities.
2. ep1 satisfies Requirement 2 with marker 1:

ep1Pr(H, E) = Pr(E |H)

Pr(E)
=

⎧
⎪⎨

⎪⎩

> 1, Pr(E |H) > Pr(E)

= 1, Pr(E |H) = Pr(E)

< 1, Pr(E |H) < Pr(E)

3. ep1 satisfies Requirement 3: if Pr(E |H1) > Pr(E |H2), then

ep1Pr(H1, E) = Pr(E |H1)

Pr(E)
>

Pr(E |H2)

Pr(E)
= ep1Pr(H2, E).

Proof for ep2

1. ep2 satisfies Requirement 1 trivially. It is defined in terms of probabilities.
2. ep2 satisfies Requirement 2 with marker 0: First note that

ep2Pr(H, E) = Pr(H |E) − Pr(H |¬E)

Pr(H |E) + Pr(H |¬E)
=

⎧
⎪⎨

⎪⎩

> 0, Pr(H |E) > Pr(H |¬E)

= 0, Pr(H |E) = Pr(H |¬E)

< 0, Pr(H |E) < Pr(H |¬E)

Now we only have to see that

Pr(H |E)

>

=
<

Pr(H |¬E) ⇔ Pr(H |E)

>

=
<

Pr(H) ⇔ Pr(E |H)

>

=
<

Pr(E)
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3. ep2 satisfies Requirement 3: if Pr(E |H1) > Pr(E |H2), then

(a) Pr(E |H1)
Pr(E)

>
Pr(E |H2)
Pr(E)

(b) Pr(¬E |H1) < Pr(¬E |H2) and, thus, also:
Pr(¬E |H1)
Pr(¬E)

<
Pr(¬E |H2)
Pr(¬E)

(a) and (b) imply that:

[
Pr(E |H1)

Pr(E)
× Pr(¬E |H2)

Pr(¬E)

]

−
[
Pr(¬E |H1)

Pr(¬E)
× Pr(E |H2)

Pr(E)

]

>[
Pr(E |H2)

Pr(E)
× Pr(¬E |H1)

Pr(¬E)

]

−
[
Pr(¬E |H2)

Pr(¬E)
× Pr(E |H1)

Pr(E)

]

and that therefore:
[
Pr(E |H1)

Pr(E)
× Pr(E |H2)

Pr(E)
+ Pr(E |H1)

Pr(E)
× Pr(¬E |H2)

Pr(¬E)

]

−
[
Pr(¬E |H1)

Pr(¬E)
× Pr(E |H2)

Pr(E)
+ Pr(¬E |H1)

Pr(¬E)
× Pr(¬E |H2)

Pr(¬E)

]

>
[
Pr(E |H1)

Pr(E)
× Pr(E |H2)

Pr(E)
+ Pr(E |H2)

Pr(E)
× Pr(¬E |H1)

Pr(¬E)

]

−
[
Pr(¬E |H2)

Pr(¬E)
× Pr(E |H1)

Pr(E)
+ Pr(¬E |H1)

Pr(¬E)
× Pr(¬E |H2)

Pr(¬E)

]

and
[
Pr(E |H1)

Pr(E)
− Pr(¬E |H1)

Pr(¬E)

]

×
[
Pr(E |H2)

Pr(E)
+ Pr(¬E |H2)

Pr(¬E)

]

>[
Pr(E |H2)

Pr(E)
− Pr(¬E |H2)

Pr(¬E)

]

×
[
Pr(E |H1)

Pr(E)
+ Pr(¬E |H1)

Pr(¬E)

]

which implies:

[
Pr(E |H1)

Pr(E)
− Pr(¬E |H1)

Pr(¬E)

]

[
Pr(E |H1)

Pr(E)
+ Pr(¬E |H1)

Pr(¬E)

] >

[
Pr(E |H2)

Pr(E)
− Pr(¬E |H2)

Pr(¬E)

]

[
Pr(E |H2)

Pr(E)
+ Pr(¬E |H2)

Pr(¬E)

]

We can reformulate this as follows:
[
Pr(H1|E)

Pr(H1)
− Pr(H1|¬E)

Pr(H1)

]

[
Pr(H1|E)

Pr(H1)
+ Pr(H1|¬E)

Pr(H1)

] >

[
Pr(H2|E)

Pr(H2)
− Pr(H2|¬E)

Pr(H2)

]

[
Pr(H2|E)

Pr(H2)
+ Pr(H2|¬E)

Pr(H2)

]

Finally, by cancelling Pr(H1), respectively Pr(H2) out of these formulae we get the
desired result:

[
Pr(H1|E) − Pr(H1|¬E)

]

[
Pr(H1|E) + Pr(H1|¬E)

] >

[
Pr(H2|E) − Pr(H2|¬E)

]

[
Pr(H2|E) + Pr(H2|¬E)

]
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Proof for ep3

1. ep3 satisfies Requirement 1 trivially. It is defined in terms of probabilities.
2. ep3 satisfies Requirement 2 with marker 0:

First note that

ep3Pr(H, E) =
⎧
⎨

⎩

Pr(E |H)−Pr(E)
1−Pr(E)

if Pr(E |H) ≥ Pr(E) > 0
Pr(E |H)−Pr(E)

Pr(E)
if Pr(E |H) < Pr(E)

Thus,

ep3Pr(H, E)=

⎧
⎪⎪⎨

⎪⎪⎩

Pr(E |H)−Pr(E)
1−Pr(E)

=
{

> 0, Pr(E |H) > Pr(E)

= 0, Pr(E |H) = Pr(E)
if Pr(E |H)≥Pr(E)>0

Pr(E |H)−Pr(E)
Pr(E)

=
{

< 0, Pr(E |H) < Pr(E) if Pr(E |H) < Pr(E)

3. ep2 satisfies Requirement 3: if Pr(E |H1) > Pr(E |H2), then

(a) ep3Pr(H1, E)= Pr(E |H1)−Pr(E)
1−Pr(E)

> ep3Pr(H2, E)= Pr(E |H2)−Pr(E)
1−Pr(E)

, if Pr(E |H1) ≥
Pr(E) and Pr(E |H2) ≥ Pr(E).

(b) ep3Pr(H1, E)= Pr(E |H1)−Pr(E)
Pr(E)

> ep3Pr(H2, E)= Pr(E |H2)−Pr(E)
Pr(E)

, if Pr(E |H1) <

Pr(E) and Pr(E |H2) < Pr(E).

(c) ep3Pr(H1, E)= Pr(E |H1)−Pr(E)
1−Pr(E)

> ep3Pr(H2, E)= Pr(E |H2)−Pr(E)
Pr(E)

, if Pr(E |H1) ≥
Pr(E) and Pr(E |H2) < Pr(E).

Proof of Theorem 2

Let W be a set of possible worlds and let A be some algebra over W . The elements
ofA are interpreted as propositions. Let e0, . . . , en, . . . be a sequence of propositions
of A which separates W , and let ew

i = ei if w � ei and ¬ei otherwise. Let Pr be a
strict (or regular) probability function onA. Let Pr∗ be the unique probability function
on the smallest σ -field A∗ containing the field A satisfying Pr∗(A) = Pr(A) for all
A ∈ A. Then there is a W ′ ⊆ W with Pr∗(W ′) = 1 so that the following holds for
every w ∈ W ′ and all hypotheses H ∈ A and for all spPr satisfying Requirements
1–3.

Then, according to the Gaifman–Snir Theorem (1982), there is a W ′ ⊆ W with
Pr∗(W ′) = 1 so that the following holds for every w ∈ W ′ and all theories H of
A:

lim
n �⇒ ∞ Pr(H |Ew

n ) = I(H, w)

where I(H, w) = 1, if w � H and 0 otherwise.
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1. Suppose w � H1 and w � ¬H2. Then limn �⇒ ∞ Pr(H1|Ew
n ) = 1 and

limn �⇒ ∞ Pr(H2|Ew
n ) = 0 which implies that ∃n∀m ≥ n : Pr(H1|Ew

n ) >

Pr(H1)&Pr(H2|Ew
n ) < Pr(H2). The latter entails by symmetry of probabilistic

relevance that ∃n∀m ≥ n : Pr(Ew
n |H1) > Pr(Ew

n )&Pr(Ew
n |H2) < Pr(Ew

n ) and
that therefore ∃n∀m ≥ n : Pr(Ew

n |H1) > Pr(Ew
n |H2). Thus, with Requirement 3

on measures of explanatory and systematic power we can conclude that:

∃n∀m ≥ n : [spPr(H1, Ew
m ) > spPr(H2, Ew

m )].
2. Suppose w � H1 ∩ H2 and H1 � H2, but H2 � H1. We already know that

lim
n→∞

[
Pr(H |Ew

n )

Pr(H)

]

= 1

Pr(H)
, if lim

n �⇒ ∞Pr(H |Ew
n ) = 1.

and thus that

lim
n→∞

[
Pr(Ew

n |H)

Pr(Ew
n )

]

= 1

Pr(H)
, if lim

n �⇒ ∞Pr(H |Ew
n ) = 1.

The latter implies that

lim
n→∞

[
Pr(Ew

n |H1)

Pr(Ew
n )

]

= 1

Pr(H1)
> lim

n→∞

[
Pr(Ew

n |H2)

Pr(Ew
n )

]

= 1

Pr(H2)

since H1 � H2 implies that H2 � H1, Pr(H1) < Pr(H2). This means that

lim
n→∞

[
Pr(Ew

n |H1)
]

> lim
n→∞

[
Pr(Ew

n |H2)
]

and that therefore ∃n∀m ≥ n : Pr(Ew
n |H1) > Pr(Ew

n |H2). Thus, with Require-
ment 3 on measures of explanatory and systematic power we can conclude
that:

∃n∀m ≥ n : [spPr(H1, Ew
m ) > spPr(H2, Ew

m )].

where Ew
m = ⋂

0≤i≤m ew
i .

Proof of Theorem 3

Let W be a set of possible worlds and let A be some algebra over W . The elements
ofA are interpreted as propositions. Let e0, . . . , en, . . . be a sequence of propositions
of A which separates W , and let ew

i = ei if w � ei and ¬ei otherwise. Let Pr be a
strict (or regular) probability function onA. Let Pr∗ be the unique probability function
on the smallest σ -field A∗ containing the field A satisfying Pr∗(A) = Pr(A) for all
A ∈ A. Then there is a W ′ ⊆ W with Pr∗(W ′) = 1 so that the following holds for
every w ∈ W ′ and all hypotheses H ∈ A and for all spPr satisfying Requirements
1–3.
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1. Suppose there is a Hj ∈ {H1, . . . , Hn} such that w � Hj . Then according to
Theorem 2, for every false hypothesis Hi ∈ {H1, . . . , Hn} and all for all spPr
satisfying Requirements 1–3: ∃n∀m ≥ n : [spPr(Hj , Ew

m ) > spPr(Hi , Ew
m )] (note

Requirement 3 is the crucial requirement here). Since there are only finitely many
false hypotheses in {H1, . . . , Hn} we can conclude that:

∃n∀m ≥n such that ∃Hj ∈{H1, . . . , Hn} with w � Hj and ∀Hi ∈{H1, . . . , Hn} with w � ¬Hi :
[spPr(Hj , Ew

m ) > spPr(Hi , Ew
m )]

Thus, with Definition 9 we can conclude that: ∃n∀m ≥ n such that if Hi is the
best systematization for Ew

m with respect to the set of hypotheses {H1, . . . , Hn},
then w � Hi . For Definitions 10 and 11 we can show the same since according
to Theorem 2 the true hypothesis will be more probable than the false ones after
finitely many steps of observation and for every observation thereafter.

2. The proof for the second part proceeds along the same lines.

where Ew
m = ⋂

0≤i≤m ew
i .

Proof of Theorem 6

Pr
t0

(H |E) =

e
tanh−1

[
sp2 t0

(H,E)
]

Prt0 (E)

e
tanh−1

[
sp2 t0

(H,E)
]

Prt0 (E) + etanh
−1 sp2 t0

(H,¬E) Prt0 (¬E)

Prt0 (E)
× Pr

t0
(H)

=

e
1
2

[
log

[
sp2 t0

(H,E)+1
]
−log

[
1−sp2 t0

(H,E)
]]

Prt0 (E)

e
1
2

[
log

[
sp2 t0

(H,E)+1
]
−log

[
1−sp2 t0

(H,E)
]]

Prt0 (E) + e
1
2

[
log

[
sp2 t0

(H,¬E)+1
]
−log

[
1−sp2 t0

(H,¬E)
]]

Prt0 (¬E)

Prt0 (E)

× Pr
t0

(H)

=

e
1
2

[

log

[
sp2 t0 (H,E)+1

1−sp2 t0 (H,E)

]]

Prt0 (E)

e
1
2

[

log

[
sp2 t0 (H,E)+1

1−sp2 t0 (H,E)

]]

Prt0 (E) + e
1
2

[

log

[
sp2 t0 (H,¬E)+1

1−sp2 t0 (H,¬E)

]]

Prt0 (¬E)

Prt0 (E)
× Pr

t0
(H)

Now we know that

Prt0 (¬E |H)

Prt0 (¬E)

Prt0 (E |H)

Prt0 (E)

= e
1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

] (by the definition of e and log)

Prt0 (¬E |H)

Prt0 (E |H)
= Prt0 (¬E) × e

1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (¬E |H)

Prt0 (E |H)
+ Prt0 (E |H)

Prt0 (E |H)
= Prt0 (¬E) × e

1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

] + Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]
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1

Prt0 (E |H)
= Prt0 (¬E) × e

1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

+ Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Pr
t0

(E |H) = Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (¬E) × e
1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

+ Prt0 (E) × e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Pr
t0

(E |H) = e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (E)

e
1
2 log

[ Prt0 (H |E)

Prt0 (H |¬E)

]

Prt0 (E) + e
1
2 log

[ Prt0 (H |¬E)

Prt0 (H |E)

]

Prt0 (¬E)

and since
sp2 t0

(H,E)+1

1−sp2 t0
(H,E)

= Pr(H |E)
Pr(H |¬E)

we can conclude that

Pr
t0

(H |E) = Prt0(E |H)

Prt0(E)
× Pr

t0
(H)
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