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Abstract There have been recent disagreements in the philosophy of neuroscience
regarding which sorts of scientific models provide mechanistic explanations, and
which do not (e.g. computational models, dynamical models, topological models).
These disagreements often hinge on two commonly adopted, but conflicting, ways of
understanding mechanistic explanations: what I call the “representation-as” account,
and the “representation-of” account. In this paper, I argue that neither account does
justice to neuroscientific practice. In their place, I offer a new alternative that can
defuse some of these disagreements. I argue that individual models do not provide
mechanistic explanations by themselves (regardless of what type of model they are).
Instead, individual models are always used to complement a huge body of background
information and pre-existingmodels about the target system.With this inmind, I argue
that mechanistic explanations are distributed across sets of different, and sometimes
contradictory, scientific models. Each of these models contributes limited, but essen-
tial, information to the same mechanistic explanation, but none can be considered a
mechanistic explanation in isolation of the others.

Keywords Mechanistic explanation · Action potential · Computational models ·
Topological models · Dynamical models · Representation-as · Representation-of

In recent years, there has been a surge in support for mechanistic theories of explana-
tion within the philosophy of science, especially in regards to the life and cognitive
sciences (see Machamer et al. 2000; Bechtel and Abrahamsen 2005; Craver 2006,
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2007; Piccinini 2006, 2015; Eliasmith 2010, 2013; Zednik 2011; Kaplan and Craver
2011; Milkowski 2011). Despite its many advocates however, no clear consensus
exists regarding what sorts of scientific models provide mechanistic explanations,
or even what exactly a model must do in order to provide such explanations. This
lack of consensus has resulted in disagreements regarding whether or not we should
interpret certain kinds of scientific models, such as computational models, dynami-
cal models, and topological models, as providing mechanistic explanations (see, for
example: Piccinini 2006, 2015; Rusanen and Lappi 2007; Eliasmith 2010; Huneman
2010; Milkowski 2011, 2013; Zednik 2011; Kaplan and Craver 2011; Jones 2014;
Chirimuuta 2014; Ross 2015).

I propose that these disagreements stem in part from the fact that there are two
distinct ways of understanding mechanistic explanations in the philosophy of science
literature.Under one account, in order to provide amechanistic explanation, a scientific
model must represent the system as being a set of component parts organized such
that their interactions bring about the explanandum phenomenon. I refer to this as
the “representation-as” account of mechanistic explanation, since it requires that we
interpret, or represent, the system as being amechanism. In otherword,we interpret the
system as being a collection of component parts and operations that together produce
a given phenomenon.

Under the second account, a model need not represent the target system as amecha-
nism in order to provide a mechanistic explanation, just so long as it provides essential
information about the workings of some actual mechanism in the world. I refer to this
as the “representation-of” account of mechanistic explanation, since it requires only
that the model in question provides us with information of the ontic mechanism we
wish to study, and not that it interprets or represents the system mechanistically.

While both accounts of mechanistic explanation are frequently invoked as a means
of making sense of neuroscientific practice, I argue in this paper that neither is in
fact sufficient to account for the way in which mechanistic explanations are employed
within neuroscience. If we adhere too closely to the first view, then we commit our-
selves to the fact that we have virtually no mechanistic explanations in neuroscience.
On the other hand, if we adhere too closely to the second view, then we have the oppo-
site problem, and commit ourselves to the idea that virtually any and every model
employed within neuroscience is trivially a mechanistic explanation. Both of these
views fail to account for mechanistic explanatory practices in neuroscience.

The problem with both accounts is that each is concerned with what a scientific
model must do in order to provide a mechanistic explanation. Yet this assumes that
a single scientific model or representation is capable of instantiating such an expla-
nation. In contrast, I argue that individual models rarely, if ever, provide mechanistic
explanations. Instead, a mechanistic explanation is distributed across sets of scientific
models, including some that abstract away from virtually all the structural details of
the system, and others that idealize the system in extreme ways. Each of these models
contributes limited, but essential, information to the same mechanistic explanation,
but none can be considered a mechanistic explanation in isolation of the others.

In Sect. 1 of the paper, I highlight how the two distinct ways of thinking about
mechanistic explanations have manifested themselves in current debates within the
philosophy of science. In Sect. 2, I focus on the “representation-as” account, and
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demonstrate why it cannot adequately be used to characterize mechanistic explana-
tions within neuroscience. In Sect. 3, I focus on the “representation-of” account, and
how it fails for different reasons. Finally, in Sect. 4, I argue that we should think of
mechanistic explanations as collections of disparate models, and rarely as individual
models. To claim that a particular model provides a mechanistic explanation is an
elliptical way of saying that this model, in conjunction with all other background
information and pre-existing models of the system, provides a mechanistic explana-
tion. This way of thinking about mechanistic explanation allows us to defuse many of
the current disagreements within the philosophy of science regarding the mechanistic
explanatory status of certain types of scientific models.

1 Mechanistic explanation and scientific models

1.1 Do computational, dynamical, and topological models provide mechanistic
explanations?

To begin, consider an ongoing debate regarding the mechanistic status of computa-
tional models within the field of computational neuroscience. Many computational
models characterize complex systems in terms of the sorts of computational functions
they carry out, but do not describe the causal structure of the system that implements
them. With this in mind, some have argued that computational models of this sort
do not provide mechanistic explanations given that they are not intended to inter-
pret or describe the system mechanistically; they represent neither the structure, nor
the causal dependencies, of the systems under investigation (Sejnowski et al. 1988,
p. 1300; Rusanen and Lappi 2007; Shagrir 2006, 2010; Chirimuuta 2014). To illustrate
this point, Chirimuuta (2014) offers the example of Heeger’s contrast normalisation
model of the primary visual cortex (Heeger 1992; Carandini and Heeger 1994, 2012).
She notes that Heeger considers the model to be a “canonical neural computation” (or
“CNC”)1 and not a mechanistic explanation. More specifically, she claims that:

The central point of Carandini and Heeger’s (2012) account is that CNC’s do not
attempt to describe mechanisms—which vary significantly from one instance of
a CNC to another, even when described in a very abstract manner—but rather
a universal feature of the different systems to which the one CNC model, like
normalisation, will apply. This feature is a computation. They write, for exam-
ple, that “it is unlikely that a single mechanistic explanation [for normalization
phenomena] will hold across all systems and species: what seems to be common
is not necessarily the biophysical mechanism but rather the computation.” It is
worth noting that the distinction between computation and mechanism is rather
commonplace in neuroscience. (2014, p. 141)

By focusing only on the information processing capacities of systems, these sorts of
models make no attempt to describe the way in which these capacities are instantiated

1 Carandini and Heeger (2012) define CNCs as “standard computational modules that apply the same
fundamental operations in a variety of contexts” (p. 51).
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in any one system. In this respect, the variables of the computational model will
often not correspond to the structural or causal features of any particular neurological
system. In other words, it abstracts away from the sort of information that is thought
to be required in order to generate a mechanistic explanation.

It is for this reason that Chirimuuta argues that computational models violate
one of the central normative guidelines for mechanistic explanation, the “models-
to-mechanism mapping” (or “3M”) requirement proposed by David Kaplan (2011;
Kaplan and Craver 2011). Kaplan defines the 3M requirement in the following way:

(3M) In successful explanatory models in cognitive and systems neuroscience
(a) the variables in the model correspond to components, activities, properties,
and organizational features of the target mechanism that produces, maintains,
or underlies the phenomenon, and (b) the (perhaps mathematical) dependencies
posited among these variables in the model correspond to the (perhaps quantifi-
able) causal relations among the components of the target mechanism. (2011,
p. 347)

It isworth noting that the 3Mrequirement is intended byKaplan to bewhatWeisberg
(2007) refers to as a “representational ideal”, one which is intended to “guide the
direction of theoretical inquiry” and to “regulate which factors are to be included in
models” (Kaplan 2011, p. 347). Chirimuuta suggests that the 3M requirement acts as
a necessary condition on successful mechanistic explanations, and argues that many
computational models (such as Heeger’s model, as well as the Gabor model of V1
receptive fields) violate this requirement. From this, she concludes that these models
fail to provide mechanistic explanations (Chirimuuta 2014).

Before proceeding further, it should be noted that Chirimuuta’s goal is not merely to
show that Heeger’s model fails to provide a mechanistic explanation, but also to argue
that it provides a different type of explanation altogether (what she calls an “efficient
coding explanation”). For the purposes of this paper, the question of what is required
in order for a model to provide such non-mechanistic explanations is one that can be
left aside. It may well be that computational models can provide both efficient coding
explanations and mechanistic explanations, or that it only provides one and not the
other, or that it fails to explain altogether. My primary interest here is to understand
the conditions under which a scientific model can, and does, provide a mechanistic
explanation in particular (irrespective of whether the model does or does not provide a
different kind of explanation). And for Chirimuuta, computational models that do not
identify the structural and causal features of the system, as is the case with Heeger’s
model, do not meet the appropriate conditions needed for a mechanistic explanation.

In contrast, others have argued that such models in fact can, and do, provide mech-
anistic explanations, albeit in a limited or abstract form (e.g. Piccinini 2006, 2015;
Piccinini and Craver 2011; Milkowski 2011, 2013). It has been argued that even in
contexts where such computational models fail the 3M requirement, they can still
provide us with important insights about the mechanism under investigation, often by
providing essential constraints on the sorts of structures and processes that are pos-
sible for implementing them. In so doing, they act as abstract or limited mechanistic
explanations by provided information necessary for the discovery and understanding
of such mechanisms. As Piccinini and Craver argue:
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A final objection [against the position that computational models provide mech-
anistic explanations] might be that some computational models focus on the
flow of information through a system rather than the mechanisms that process
the information (cf. Shagrir 2006, 2010). In such cases, nothing is added to the
explanation by fleshing out the details of how the information is represented
and processed. Certainly, many computational explanations in psychology and
neuroscience have this form. Our point, however, is that such descriptions of a
system place direct constraints on any structures that can possibly process such
information—on how the different states of the system can be constructed, com-
bined, andmanipulated—and are in turn constrained by the structures to be found
in the system. It is, after all, an empirical matter whether the brain has struc-
tural components that satisfy a given informational description, that is, whether
the neuronal structures in question can sustain the information processing that
the model posits (under ecologically and physiologically relevant conditions).
(2011, p. 296)

Not any kind of neurological mechanism will be successfully characterized by a given
computational model under existing environmental and physiological conditions. As
a result, a computational model allows us to identify what sorts of neurological imple-
mentations are likely, and allows us to test hypotheses about possible mechanisms
by seeing whether a postulated mechanism conforms to the computational descrip-
tion provided under known constraints. In this respect, such models do play a role in
mechanistically explaining the system.

The fact that such computational models do not directly identify the mechanistic
details of the system being modeled just means that we ought to treat them as mecha-
nism sketches or schemas; incomplete accounts of mechanismswith absent details (for
more, see, Machamer et al. 2000; Craver 2006; Piccinini and Craver 2011). Despite
omitting the structural details of the system, such models are still considered to offer
abstract mechanistic explanations in virtue of providing some degree of insight into
what the structure and operations of the system are likely to be.

For those who adopt this view of mechanistic explanation, the 3M requirement acts
more as a general guideline than a strict necessary condition on mechanistic expla-
nation. This guideline tells us that, in general, the more our model has variables that
map to the structure and causes of the system, the better a mechanistic explanation it
becomes. However, this does not mean that any model which violates the 3M require-
ment can never carry explanatory information about the mechanism. They can often
provide insight into how the mechanism must be structured, or how it must function,
given other known conditions. Suchmodels therefore still provide limited mechanistic
explanations in virtue of providing constraints on possible mechanisms, and playing a
role in the discovery of those mechanisms (Piccinini and Craver 2011; Zednik 2011;
Craver 2014; Povich, forthcoming).2

Similar types of disagreements in the philosophy of science surround the mecha-
nistic status of other types of scientific models. For instance, consider a parallel debate

2 This is arguably still consistent with Kaplan’s claim that the 3M requirement is intended as a tool to help
“guide the direction of theoretical inquiry” (2011, p. 347).

123



1392 Synthese (2016) 193:1387–1407

regarding the mechanistic status of dynamical models. Dynamical models employ sets
of differential equations to characterize theway inwhich complex systems change over
time, often modeling systems as vectors moving through a state space. These models
frequently attempt to characterize the dynamics of complex systems without consid-
eration as to their underlying physical implementation (see Thelen and Smith 1994;
Van Gelder and Port 1995; Chemero and Silberstein 2008; Walmsley 2008). This has
resulted in some claiming that such models fail to provide mechanistic explanations
(Eliasmith 2010; Stepp et al. 2011; Ross 2015). Despite this fact, such models can
often play an important role in helping to discover the underlying mechanisms of a
system, and are often the first step in fleshing out more detailed mechanistic accounts.
Based on this, some have defended the claim that such models do provide abstract
mechanistic explanations (Zednik 2011).

A similar debate surrounds the application of topological models in neuroscience.
Topological models characterize complex systems by representing them in terms of
relations between spatial entities, usually in the form of a graph, network, or state
space. These spatial entities often do not correspond to the physical components of
mechanisms, and are used instead to represent highly abstract, or mathematical, struc-
tures. Given this, many topological models can violate the 3M requirement. This has
resulted in some claiming that such models do not provide mechanistic explanations
(Huneman 2010; Jones 2014). Others, however, have retorted that such models can
often play an important role in learning about, and understanding, the structure and
operation of mechanistic systems. When they are used in this way, they do provide
limited mechanistic explanations (Craver 2015, under review).

These debates all hinge on the same underlying issues: What must a scientific
model do in order to provide a mechanistic explanation? Do computational mod-
els, dynamical models, and topological models represent systems in the appropriate
sort of way to adequately instantiate a mechanistic explanation? I propose that there
are in fact two different accounts of mechanistic explanation at work in the philos-
ophy of science literature, and that these accounts differ in their answers to these
questions.

1.2 Mechanistic explanation: “representation-as” versus “representation-of”

Before proceeding further, it is worth noting that debates about mechanistic explana-
tions should not be confused with debates about what mechanisms are more generally.
Many theorists disagree aboutwhether certain types of scientificmodels providemech-
anistic explanations while still being largely in agreement as to what mechanisms are
supposed to be (at least very broadly speaking). As Milkowski notes,

While mechanisms are defined variously, the core idea is that they are organized
systems, comprising causally relevant component parts and operations (or activ-
ities) thereof. Parts of the mechanism interact and their orchestrated operation
contributes to the capacity of the mechanism. (2013, p. 3050)

This general account of a mechanism has become the standard way of thinking about
mechanisms among philosophers of science over the past two decades (for just a
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small sampling, see Machamer et al. 2000; Piccinini 2006, 2015; Craver 2006, 2007;
Rusanen and Lappi 2007; Bechtel 2008; Zednik 2011; Hochstein 2012, 2013).

If we accept this general account, then it follows that a mechanistic explanation
will be one that explains the occurrence of some phenomenon by showing how it
is produced and sustained by the target mechanism. Such an explanation involves
decomposing a complex system into parts and operations for better understanding. As
William Bechtel notes, “a mechanistic explanation is, in an important sense, reduc-
tionistic” in so far as it “emphasizes the contributions made by parts of a mechanism
to its operations” (2008, p. 21). With this in mind, one common way of thinking about
mechanistic explanation is that amodel provides such an explanationwhen it identifies
four essential features of the mechanistic system:

(1) The parts of the system.
(2) The way in which these parts are spatially and temporally organized within the

system.
(3) The operations that go on between the relevant component parts.
(4) The resulting phenomenon produced by the system.3

In addition, the characterization of these features cannot be too abstract or idealized.
An explanationmust be detailed enough to provide uswith an understanding of how the
mechanism is in fact put together, and how it works. Of course, the issue of what counts
as “too abstract” or “too idealized” is a controversial one (see Eliasmith and Trujillo
2014). However, a general guideline that is commonly adopted is that the model must
provide enough detail to allow for intervention, manipulation, and control over the
structural workings of the system so as to determine its counter-factual behaviours
(see, Woodward 2002; Bechtel 2008; Eliasmith 2010; Raerinne 2011; MacLeod and
Nersessian 2015). This means that a model fails to provide a mechanistic explanation
if it is so abstract or idealized that it cannot identify the four different aspects of
the mechanism, or cannot describe them in sufficient detail needed for manipulation,
intervention, and control. As Chris Eliasmith notes:

In the case of cognitive and brain sciences, useful explanations are those that
appeal to subpersonal mechanisms. This is because it is precisely such explana-
tions which provide a basis for both intervention in behaviour and the artificial
reproduction of those behaviours. These mechanisms must be specific enough
to allow for intervention. That is, the mechanisms must be specified in a way
that relates to the measurable and manipulable properties of the system. (2010,
p. 316)

To put this in slightly different terms, a scientific model provides a mechanistic
explanation under this account when it describes a complex system in terms of being
a collection of component parts organized so that their operations generate the target
phenomenon. While other sorts of scientific models may tell us important information
about the mechanism, a mechanistic explanation involves interpreting and analyzing

3 For more on the idea that mechanistic explanation requires the identification of these four features,
see, Machamer et al. (2000), Bechtel and Abrahamsen (2005), Craver and Bechtel (2006), Bechtel (2008),
Colombo et al. (2015).
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the system as a mechanism (i.e. understanding what the parts and operations of the
system are, and how they are organized so as to produce the phenomenon). With
this in mind, I will refer to this as the “representation-as” (hereafter “R-A”) view of
mechanistic explanation.

Note that according to this view of mechanistic explanation, a model might satisfy
the 3M requirement, and yet still fail to provide a mechanistic explanation. This is
because the model may have variables that map on to components or operations of
a mechanism, and yet does not characterize these features in ways that allow for
intervention in their workings.4

Returning for a moment to the debates surrounding computational, dynamical,
and topological models, it becomes apparent why such models would fail to provide
mechanistic explanations under the R-A account. If these models do not identify the
four aspects of a mechanism in sufficient detail for manipulation and control, then
they do not provide the required information for a mechanistic explanation. They
might provide information needed for a different kind of explanation, or they might
fail to provide explanations altogether, but they do not interpret the system in an
appropriate manner to be a mechanistic explanation. Chirimuuta’s claim that “there
can be principled reasons for analyzing neural systems computationally rather than
mechanistically” (2014, p. 139) suggests that she has something like the R-A account
in mind; such models are not mechanistic explanations because they do not analyze
systems as mechanisms, even if they happen to be descriptions of mechanisms.

This view of mechanistic explanation can be contrasted with another that has
intuitive appeal for very different reasons. Consider that mechanisms are frequently
thought to exist out in the world, independent of how we interpret them. Bechtel and
Abrahamsen, for instance, claim “mechanisms are real systems in nature” (2005, pp.
424–425). Likewise, Craver argues that mechanistic explanations “describe real com-
ponents, activities, and organizational features of the mechanism that in fact produces
the phenomenon” (Craver 2006, p. 361). Many neuroscientists consider the human
brain to be a mechanistic system independent of whether they use a mechanistic
model to represent it that way or not.5

With this in mind, there is a distinct sense of mechanistic explanation that is also
found in the literature: a model provides a mechanistic explanation when it is used
to help us learn about, and understand, how some actual mechanism in the world
operates, or how it is structured. According to this view,mechanistic explanations need
not represent the system in terms of being a set of component parts and operations
in order for it to provide information needed in the study and understanding of those
parts and operations. Models can provide abstract or limited mechanistic explanations
by providing information needed to test hypotheses about possible mechanisms, by
providing constraints on the sorts of mechanisms at work in a given system, and by
helping us to discover the causal workings of the system (see Zednik 2011; Piccinini
and Craver 2011; Craver 2014; Povich, forthcoming). Mechanistic explanation is not

4 Eliasmith, for instances, explicitly argues that most kinds of statistical, dynamical, and computational
models fail to provide mechanistic explanations on these grounds (2010).
5 Although it is worth noting that this idea is not uncontroversial. There are some who deny that we should
always think of mechanisms as out in the world in this manner (e.g. Colombo et al. 2015; Bechtel 2015).
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tied to the way in which we represent or analyze the system, but to whether our
model provides important information about the mechanism in the world we wish to
study.

Consider the practice of task-analysis in cognitive science. Task analysis involves
understanding the capacity of a system by decomposing it into sub-capacities with
the eventual goal of mapping these sub-capacities to structures and operations of the
brain. Task analysis is taken by some to be a form of abstract mechanistic explanation
in virtue of the fact that by identifying sub-capacities, thesemodels allow us to identify
constraints on the sorts of structures and processes that can carry them out. In doing
so, they play a direct role in the discovery and understanding of causal mechanisms.
As Piccinini and Craver argue,

A task analysis is a mechanism sketch in which the capacity to be explained is
articulated into sub-capacities, and most of the information about components
is omitted. Nevertheless, the sub-capacities do place direct constraints on which
components can engage in those capacities. For each sub-capacity, we expect a
structure or configuration of structures that has that capacity. This guiding image
underlies the very idea that these are explanations, that they reveal the causal
structure of the system. (2011, p. 294).

Note that the mechanistic status of such models does not stem from the fact that they
describe the parts and operations of the system, but from the fact that they help us
to reveal the causal structure of the system, often by identifying constraints on what
sorts of mechanisms are possible. More importantly, Piccinini and Craver argue that
this can be the case even in situations where the task analysis does not allow us to
map sub-capacities onto the different parts and operations of the mechanism (thus
violating the 3M requirement). As a concrete example of this, consider the problem
of task-analysis when dealing with general purpose computers:

General purpose computers can do an indefinite number of things depending
on how they are programmed. Thus, one might think, a task analysis of a gen-
eral purpose computer’s capacities places no direct constraints on its structural
components and the structural components place no direct constraints on task
analysis, because the components are the same regardless of which capacity a
computer exhibits. The only constraint is indirect: the computer must be general
purpose, so it must have general purpose components. By extension, if the same
kind of autonomous task analysis applies to human behavior, then the type of
task analysis with which the received view is concerned is not a mechanism
sketch.
This objection makes an important point but draws the wrong conclusion. True,
general purpose computers are different from most other systems precisely
because they can do so many things depending on how they are programmed.
But general purpose computers are still mechanisms, and the explanation of
their behavior is still mechanistic (Piccinini 2007, 2008). Furthermore, the task
analysis of a general purpose computer does place direct constraints on its mech-
anistic explanation and vice versa; in fact, even the task analysis of a general
purpose computer is just an elliptical mechanistic explanation. […] Whether
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human brains contain this kind of mechanism is an empirical question, and it
can only be resolved by investigating whether brains have this kind of organiza-
tion. (2011, p. 294)

Even in these cases, the task analysis model can still provide constraints on the sorts
of mechanisms likely to be involved, and thus can contribute to the discovery and
understanding of those mechanisms. The model’s status as a mechanistic explanation
according to Piccinini and Craver is thus not tied to how it analyzes the system, but
to whether it provides information about the mechanisms that we can use to better
understand its workings.

To further elaborate on this idea, consider Mark Povich’s (forthcoming) argument
that some cognitive models (such as the JIM, SUSTAIN, and ALCOVEmodels) count
as providing limited mechanistic explanations even if they have variables which fail to
map to any actual structures or causes in the brain. He notes that while these variables
in isolation do not provide any explanatory information about the structure or causes of
the mechanism, the model as a whole carries mechanistic explanatory content in virtue
of being used as a means of “suggesting, constraining, and sharpening questions about
mechanisms” (p. 8), and because they are used to “suggest new lines of investigation”
about causalmechanisms (p. 10).He concludes from this thatweought to interpret such
models as mechanism sketches. Likewise, Carlos Zednik argues that the application
of Artificial Neural Networks (ANNs) in cognitive science ought to be interpreted
as abstract mechanistic explanations, even if the nodes and connections of the model
cannot be mapped to any particular neural structures or organizations of the brain. He
argues that ANNs still provide abstract mechanistic explanations in virtue of the fact
that suchmodels “capture basic neurobiological principles” (such as Hebbian learning
and spreading activation) that can be used to “reveal the mechanism responsible for
that phenomenon” (2011, p. 241).

With this in mind, I will refer to this alternative way of thinking about mechanistic
explanations as the “representation-of” (or “R-O”) view of mechanistic explanation,
since it requires only that the model in question provides us with explanatory infor-
mation of the ontic mechanism we wish to study, and not that it interprets or analyzes
the system mechanistically. While the R-A view ties mechanistic explanation to way
in which we represent or analyze a system, the R-O view ties mechanistic explanation
to whether our models tell us important information about a mechanistic system.

If we return once again to the debates surrounding computational, dynamical, and
topological models, we can see a very different answer emerging from the R-O view as
to whether such models provide mechanistic explanations. Even if such models do not
interpret systems as mechanisms, they can still frequently be used to identify essential
constraints on the structure and function of mechanistic systems, and are often used
as a first step in developing more detailed mechanistic accounts. In this respect, they
provide limited mechanistic explanations.

So which account of mechanistic explanation should we adopt? Both attempt to
justify their position by appealing to the actual practices and commitments of working
neuroscientists and biologists. Yet, I propose that if we use neuroscientific practice as
our guide, then neither option provides a helpful account of mechanistic explanation in
neuroscience. In order to make this point, I will demonstrate in the following sections
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why both the R-A account and the R-O account run into problems when accounting
for neuroscientific practice.

2 The problems with the “representation-as” account

Recall that according to the R-A view, a scientific model provides a mechanistic
explanation on the condition that it describes the parts, operations, organization, and
resulting phenomenon of amechanism in sufficient detail for manipulation and control
over its structural workings. The problem with the R-A account is that this is often not
possible within one single model.

To illustrate how this problem has manifested itself within neuroscientific practice,
consider the variousmodels of the action potential that have beendeveloped throughout
the history of neuroscience and biology. During the twentieth century, various different
modeling techniques were used to generate different kinds of models of the action
potential, yet eachwas only partial in its characterization of the underlyingmechanism,
with no single model able to represent the various aspects of it simultaneously. The
Hodgkin andHuxleymodel (1952)was an early attempt tomathematically characterize
electrical features of the action potential (specifically the ion flow of sodium and
potassiumchannels), butwas unable to identify the underlying physiological structures
and operations that produced them. While Hodgkin and Huxley made conjectures as
to the possible underlying causal structures involved, the model they provided simply
lacked the relevant information by itself to confirm any sort of structural story. This
was complicated further by the fact that they lacked the ability to measure sodium and
potassium conductance in a direct manner.

This changed in the 1970s with the development of single-channel recording. This
new electrical recording technique allowed for far more accurate and fine-grained
representations of the sodium and potassium channels. Despite such advancements
however, the models of the action potential that were developed using this new tech-
nique still focused primarily on representing electrical features of the action potential
without characterizing the system’s underlying causal structure (as an example, see,
Aldrich et al. 1984).

To compensate, other sorts of scientific models from physiology and protein chem-
istrywere used to characterize other aspects of themechanism.One suchmodelwas the
Fluid Mosaic Model of cell membranes developed by Singer and Nicholson in 1972.
This model focused on characterizing some of the structural aspects of the mechanism
responsible for the action potential by representing the general organization and struc-
ture of proteins and lipids in the cell’s membrane (Singer and Nicolson 1972, p. 720).
By focusing on these structural aspects of the system however, the model was unable
to represent the more dynamic features and operations of the action potential that
electrical models were needed to capture. Biologists and neuroscientists were thus left
with a collection of different models from different domains, each providing different
kinds of information about the different aspects of the mechanism, but without a single
model able to represent them all. As Hans Meves noted in regards to the models being
created based on single-channel recording:
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Single channel measurements like those reported by Aldrich and colleagues
give us a much deeper insight into the function of the sodium channel than
previously possible, but undoubtedly many problems still remain to be solved.
The essential problem is to combine the information obtained by the different
techniques (single channel recording, total current measurements, fluctuation
analysis) into a coherent picture of the sodium channel. (1983, p. 425)

With the invention of computer modeling techniques, a new set of tools brought
renewed promise for integrating different representations into a single model that
could represent the parts, organization, operations, and resulting phenomena of the
system in sufficient detail for intervention and control. Yet such attempts met with
limited success. Integrating many different representations of a given mechanism into
a single computer model still required that some essential features of the mechanism
had to be left out in order for the model to successfully represent others.

To understand why this problem persists, consider the sort of issues facing any
model that attempts to provide a mechanistic explanation of complex neurobiological
or cognitive mechanisms. It turns out that representing the organization of neurolog-
ical mechanisms often requires models which deliberately exclude details about the
structure and interaction of its component parts, making it impossible to use a single
model to represent both features at the same time. Levy and Bechtel, for example,
argue that “to understand organization, one often needs to abstract from the structural
specifics of a mechanism and represent it in a skeletal, coarse-grained manner” (2013,
p. 241). They argue that certain kinds of mechanistic organizations (such as complex
feedback loops) require the use of large scale graph-based modeling which, by neces-
sity, abstracts away from the structural and causal features of the mechanism (ibid, p.
246).

In addition to abstractions of this sort, incompatible sets of idealizations are often
required to represent different features of the same causal mechanism. These ideal-
izations can range from the use of “point neurons” (simulated neurons with no spatial
properties), to the positing of infinite neural populations. Different neuroscientific
models will frequently invoke conflicting sets of idealizing assumptions depending
on which causal or structural features of the mechanism they wish to identify and
study. This practice, which Weisberg refers to as “Multiple-Models-Idealization”, is
commonplace when representing complex mechanisms:

Multiple-models idealization (hereafterMMI) is the practice of buildingmultiple
related but incompatible models, each of which makes distinct claims about the
nature and causal structure giving rise to the phenomenon. […] One most com-
monly encounters MMI in sciences dealing with highly complex phenomena.
(2013, p. 103)

In these situations, there is no one single model that can be used to provide a mecha-
nistic explanation, since different models must be employed which adopt conflicting
idealizations in order to represent different features of that mechanism needed for the
explanation.

Yet another complication is that the way in which a complex mechanism behaves
is heavily dependent on context, and understanding how the parts of a system interact
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to produce the phenomenon often must include relevant details of the surrounding
environment. Yet, any individual model of a mechanism will only be informative as
to its behaviour under those specific conditions. Thus we often must rely on different
models which characterize the mechanism under varying conditions in order to gain
a sufficient understanding of its workings (see, Bechtel 2008, p. 22; Bechtel 2009).

But if a single model in neuroscience is rarely, if ever, able to simultaneously rep-
resent all four aspects of a neurophysiological mechanism needed for an explanation,
or represent them in sufficient detail for intervention and control, then the R-A view
of mechanistic explanation becomes much too restrictive. By insisting that a mecha-
nistic explanation must be provided by a single scientific model, it sets up standards
of explanation that are frequently impossible to meet, and means that the majority of
neurological and cognitive phenomena that neuroscientists study cannot be explained
mechanistically. Yet if this is the case, then this cannot be the sense of mechanistic
explanation that philosophers of science invoke when they claim that neuroscientists
primarily explain phenomena by way of a model of the mechanism.

3 The problems with the “representation-of” account

The R-O account of mechanistic explanation manages to avoid the overly-restrictive
demands on mechanistic explanation that plague the R-A account, and so initially
appears to better respect the pragmatics of scientific practice. Under the R-O account,
no single model needs to identify all four features of a mechanism in sufficient detail
for control and manipulation in order to provide a mechanistic explanation. Instead,
it only requires that the model provides us with information of or about the target
mechanism that we can use to better understand it.

The problem with the R-O account is that it overcompensates for the R-A account.
It is too permissive instead of being too restrictive. Under the R-O account, virtually
any and every model that neuroscientists use in the study of the brain will trivially be
an abstract mechanistic explanation. In order to see why, consider the arguments for
why some computational, dynamical, and topological models are thought to provide
abstract mechanistic explanations, even in contexts where they may violate the 3M
requirement. According to Piccinini and Craver (2011), such models provide mech-
anistic explanations because they “place direct constraints on any structures that can
possibly process such information—on how the different states of the system can be
constructed, combined, andmanipulated—and are in turn constrained by the structures
to be found in the system” (p. 296). This idea fits with Povich’s argument that var-
ious biologically implausible cognitive models can still provide limited mechanistic
explanations in virtue of “constraining and sharpening questions about mechanisms”
(forthcoming, p. 8), and Zednik’s claim that such models provide abstract mechanis-
tic explanations because they help us to “reveal the mechanism responsible for that
phenomenon” (2011, p. 241).

While it is indeed true that these sorts of models can provide such constraints, and
thus help us discover and understand the underlying mechanisms of the system, it is
important to note this will also be true of virtually every model that characterizes the
input/output relations of the system. As long as we know the environmental conditions
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underwhich a behaviour takes place, and the time it takes for the behaviour to be carried
out, then any account of its inputs and outputs will provide direct constraints on the
sorts of causal architectures that are possible.

The reason for this is that changes to the structure of a mechanism will always
translate into performances differences in its overall behaviour. These changes will
affect how the system performs, under what conditions, and the time frame in which it
carries out behaviours (see, Le Cun and Denker 1992; Keeley 2000; Eliasmith 2002,
2013; Shapiro 2004; Syropoulos 2008, p. 111; Craver 2009, p. 586). This means that
any model that characterizes the inputs and outputs of the system, when combined
with information regarding environmental conditions and time constraints, will pro-
vide information as to the causal structure of the system, since only very particular
causal structures and processes will be capable of carrying out those behaviours under
those very particular conditions and temporal constraints (for further discussion, see,
Eliasmith 2002). In this respect, any model of the brain that characterizes it in terms
of inputs and outputs will trivially count as an abstract mechanistic explanation under
the R-O account.

This charge of triviality is made even worse by the fact that even models which
are not predictively adequate, or which mischaracterize the structure of the system
entirely, can still provide constraints on possible mechanisms in this same way. After
all, such accounts can tell us something important about the causal structure of the
system by telling us conditions under which the phenomenon is not generated, by
narrowing down lists of possible implementations by eliminating those which fail to
fit with the occurrence of the phenomenon, and by adding further constraints on our
understanding of the actual mechanisms and the principles they obey. As such, it now
appears that any and all models of the brain, regardless of whether they are predictive
or not, whether they correctly describe the structure of the system or not, or whether
they decompose the system or not, are all abstract mechanistic explanations in virtue of
providing non-trivial information that can be used in the discovery and identification
of mechanisms. But if every model of the system is a mechanistic explanation in some
limited fashion, then the claim that neuroscientists provide mechanistic explanations
amounts to nothing more than the claim that neuroscientists study the brain, and use
models to do so. Yet no one would ever deny such a claim. Mechanistic explanation
becomes trivial and uninformative under this account.

4 A distributed account of mechanistic explanation

It seems that we are pulled in two directions. On the one hand, the R-A view avoids the
triviality of theR-Oviewby insisting that an explanation of amechanism involvesmore
than just providing informative about the mechanism. It must provide information
sufficient to understand what the mechanism is, and how it operates to produce the
phenomenon. On the other hand, the R-O view avoids the impossibly high standards
of the R-A view, and correctly notes that as a matter of descriptive fact, neuroscientists
often do not describe all four essential features of a mechanism within a given model
when they consider themselves to be engaging in mechanistic explanation. So how
then do we proceed?
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The real confusion in this debate centers on the assumption that a mechanistic
explanation can be adequately conveyed by any single scientific model or represen-
tation. The debate about what a model must do in order to provide a mechanistic
explanation assumes that such an explanation can be adequately captured by such a
model. This is an idea that we must abandon. While it is undeniably through the use
of models that we develop mechanistic explanations, we need to keep in mind that an
individual model is rarely applied in isolation, and is often used to complement a huge
body of background information and pre-existing models about the target system. As
Colombo, Hartmann, and van Iersel note,

This modelling process relies on relevant background knowledge, well-
established empirical results about the target mechanism, inferential methods
connecting background knowledge to such results, and on practical ends and
epistemic interests. (2015, p. 196)

With this in mind, I propose that we should think of mechanistic explanations as
distributed across sets of scientific models, with each model in the set contributing a
piece to the same overall explanatory whole. Some of these models will be extremely
abstract in their characterization of the mechanism, while others will invoke numerous
idealizing assumptions. Each provides insights into the mechanism being studied, and
in doing so becomes part of one and the same overarching distributed explanation.

To illustrate, let us return to our example of the action potential. Instead of appealing
to any one model of the action potential as a mechanistic explanation, scientists have
historically used a collection of different models and representations to instantiate
such an explanation.6 Many physiology textbooks, for instance, have used different
kinds of representations of the action potential side-by-side in order to provide a more
comprehensive account of the mechanism, instead of attempting to integrate them
into a single representation or model (e.g. Ruch and Fulton 1960, p. 49; Hille 1984,
p. 15; Kandel et al. 1991, p. 70. See, Trumpler 1997 for discussion). Even the more
integrative models of the action potential always implicitly invoke other models and
theories as background assumptions, and frequently use them as a means of filling in
details of the mechanism that they leave out. Colombo, Hartmann, and van Iersel, for
example, argue that:

The parts comprised by the mechanism of the action potential will always be
defined against a background of relevant accepted knowledge with which they
must cohere, as well as of relevant evidence, with which they must fit. This
background knowledgewill be reflected in variousmodelling rules,which should
be taken into consideration both in the definition of mechanistic parts and in the
assessment of the resulting mechanistic model. (2015, pp. 198–199)

Some, like Maria Trumpler, have concluded from this that a truly integrative account
of the mechanism of the action potential exists only in the minds of working scientists
(1997). I propose that this idea is not quite correct. Instead, I suggest that scientists

6 Another historical example is the study of the mechanism for protein synthesis. The mechanism for
protein synthesis was not explained by any single representation, but by the piecemeal collection of various
different models generated within different fields (Machamer et al. 2000, pp. 18–21).
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do not need an integrated model of the mechanism in order to provide a mechanistic
explanation. Instead, as long as our collection of models together allows us to identify
the relevant features of the mechanism needed to explain it, then we can appeal to
individual models within the collection as the need arises to gain an understanding of
some restricted aspect of it that we wish to focus on.

An interesting consequence of this account is that mechanistic explanations will
often be fractured or fragmented in nature. In other words, themodels that constitute an
explanation will sometimes partially overlap with one another, and sometimes conflict
with one another (in virtue of adopting incompatible sets of idealizing assumptions).
In this respect, thesemodels should not be thought of as seamlessly fitting together like
puzzles pieces combining to form a unified picture. Instead, we come to conclusions
about the unified mechanism in the world by drawing relevant inferences from the
different and sometimes contradictory models in our collection used to represent the
different facets of the system.We move between the different models in our collection
as the need arises, drawing information from each when appropriate (see, for example:
Longino 2006, 2013; Potochnik, unpublished).

This account of mechanistic explanation allows us to salvage the virtues of both
the R-A and R-O accounts of mechanistic explanation, while largely avoiding their
pitfalls. The R-A account claims that a mechanistic explanation must identify the
four features of the mechanism in sufficient detail for manipulation, intervention,
and control. The account I propose likewise adopts this condition on mechanistic
explanation, and thus avoids the triviality of the R-O account. Not any model, or even
any collection of models, will be sufficient to constitute a mechanistic explanation
unless it can provide this information about the mechanism. Where the R-A account
goes wrong is its insistence that all of this must be captured within the same model.
By adopting a distributed account, we can avoid this by noting that this information
is provided by the multitude of different models at our disposal, even if we cannot
integrate them into a single account. It is the collection of models that provide the
mechanistic explanation together, and not any individual model in isolation.

When neuroscientists refer to a scientific model as a mechanistic explanation, this
is an elliptical way of saying that the model, when embedded within a collection of
pre-existing models about the system, provides a mechanistic explanation. Therefore,
whether we treat a model as a mechanistic explanation or not can often depend entirely
onwhat other background information, and pre-existingmodels of the system,we have
available.

One potential worry with this account is that we need some way to determine which
sorts ofmodels we are permitted to include in our distributed set, andwhichwe are not.
For instance, we may have many different conflicting models from different research
traditions at our disposal, each of which may be informative of the mechanism in
some ways, but may have serious deficits in others. How do we determine which
of these models to include? To make this problem more concrete: imagine some
model M is to be assessed as a mechanistic explanation based on the collection of
background models we bring to bear on its interpretation. How can we tell which
models should go into this background collection? Suppose, for instance, some of these
models (from one research tradition) are predictive of certain behaviours in certain
contexts, but are biologically implausible. Others (from different research traditions)
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are biologically plausible in different ways, but fail to predict. The researchers behind
M do not specify their own research tradition at all. How should we then assess M’s
status as a mechanistic explanation? It seems that one could arbitrarily pick some set
of models as the background, but they will all clearly be deficient in different ways.
How then do we proceed?7

The solution is to realize that we do not pick our background models arbitrarily,
or restrict ourselves to a single research tradition, but justify the inclusion of models
into our collection based on their ability to meet the constraints of other models
that we know empirically can successfully represent different restricted facets of the
system. For instance, despite being biologically implausible, the predictive models
from one research tradition will provide behavioural data that the more biologically
plausible models from the other research tradition will have to conform to. Not any
account of the structure of the system will be capable of producing the behavioural
regularities identified by the predictive model given known environmental conditions,
and this gives us a means of deciding between different biologically plausible models.
Likewise, knowing more details about the structures and causes of the system from
our biologically plausible models will allow us to better refine and alter the predictive
models from the other research tradition by providing new boundary conditions based
on the known structural limitations of the system.

Recall the earlier point that the way in which a mechanism is structured effects
the sorts of behaviours it can carry out, the time they can be carried out in, and the
contexts in which they can occur. Different types of models will provide different
information about these features, and so can be used to inform one another. Statistical
models, dynamical models, topological models, control theoretic models, computa-
tional models, and others all provide different constraints on what the structure and
function of the mechanism is by characterizing different causal, organizational, or
behavioural properties that will allow us to rule out some models, and refine others.
The more constraints we identify, the more we can narrow the list of models suitable
for inclusion into our distributed explanatory set.

To illustrate, consider once again the different scientific models of the action poten-
tial. The Hodgkin and Huxley model developed in the 1950s was able to accurately
represent some aspects of the mechanism under investigation, but not others. In partic-
ular, it correctly noted that sodium and potassium conductances had specific voltage
and time dependencies. Once this was discovered, these dependencies became one of
the primary constraints on developing new scientific models of the action potential
after that point (Trumpler 1997, p. 63). Models which attempted to represent other
features of the mechanism needed to provide data that fit with the electrical constraints
identified by the Hodgkin and Huxley model.

This fact, however, did not mean that the Hodgkin and Huxley model itself was
immune from revision. With the invention of single channel recording, far more
detailed accounts of these dependencies were made possible. This, in addition to
new insights provided by other models from other domains regarding structural fea-
tures of the system (such as the Fluid Mosaic Model), allowed scientists to produce

7 I would like to offer special thanks to a blind referee for highlighting this worry.
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electrical representations which were much more consistent with the biological con-
straints identified by those models. This resulted in the replacement of the Hodgkin
and Huxley model with these more refined representations (Trumpler 1997, p. 68).
Thus the collection of models used to constitute the mechanistic explanation of the
action potential were not taken at random, but were chosen based on their ability to
conform to the parameters and boundary conditions identified by other models from
different domains and research traditions.

This means that the process of mechanistic explanation will often be a long drawn
out process where models are continually altered and refined over years before we can
develop an appropriate distributed collection of models needed for the explanation.
This is why mechanistic explanations are often only ever clear in hindsight, after
decades of refinements and interactions between models of different types.

This framework for selecting models can be further supplemented with a criterion
of non-redundancy. Note that with the invention of single channel recording, we were
able to create models that captured the dependencies of the Hodgkin and Huxley
model, while also refining and improving upon them. As a result, these newer models
“marked the replacement of the series of Hodgkin–Huxley conductance curves with
the single-channel trace as the established representation of sodium conductance”
(Trumpler 1997, p. 68). While the Hodgkin and Huxley model remains important as
a historical example, it is no longer included within the set of models that constitute
our best mechanistic explanation of the action potential, since the content it provides
is redundant with the information provided by the more accurate models generated
through single channel recording. In this respect, having a mechanistic explanation
that is composed of hundreds of models that provide virtually the same information is
unhelpful. Thus, a useful guide is that themodels in our collectionmust provide at least
some information about the parts, operations, organization, and resulting phenomenon
of the mechanism that is not already provided by other models in the set (i.e. they must
provide information that is relevant and non-redundant).

5 Conclusion

In this paper, I have argued that we should not think of mechanistic explanations as
being captured by any one model or representation. Mechanistic explanations span
sets of different models which all contribute to the same overall explanation. These
models can often invoke different idealizing assumptions, and describe the system at
different grains of abstraction.

With this in mind, let us revisit one last time the ongoing debates about whether
computational, topological, and dynamical models provide mechanistic explanations.
Thosewho argue that they do not, do so on the grounds that suchmodels do not identify
the relevant structural and causal features of a mechanism needed to be a mechanistic
explanation. And indeed, if we consider such models in isolation, this is true. A
computational model by itself does not provide the appropriate information needed
for a mechanistic explanation. On the other hand, if we think of the computational
model as adding to our pre-existing set of models about the system, then it can become
an essential part of our mechanistic explanation (see, Piccinini 2015; Eliasmith and
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Trujillo 2014, p. 4). Even though the computational model by itself does not describe
the essential parts and operations of the system, it candefer to other pre-existingmodels
for this information, and use them as constraints on its own account of the mechanism.
When this happens, the differentmodels informone another, and contribute to the same
overall mechanistic explanation.

When scientists claim that a model is a mechanistic explanation, they are implicitly
embedding the model within a collection of pre-existing models, and judge that this
collection provides the mechanistic explanation they seek. Thus, under this account,
we can claim both that a model is and is not a mechanistic explanation depending
on what sort of additional background information we currently have available, and
whether we bring this information to bear on our interpretation of the model. Once we
recognize this, many of these disputes within the philosophy of science dissolve.
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