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Abstract In the first year of the twentieth century, in Gottingen, Husserl delivered two
talks dealing with a problem that proved central in his philosophical development, that
of imaginary elements in mathematics. In order to solve this problem Husserl intro-
duced a logical notion, called “definiteness”, and variants of it, that are somehow
related, he claimed, to Hilbert’s notions of completeness. Many different interpreta-
tions of what precisely Husserl meant by this notion, and its relations with Hilbert’s
ones, have been proposed, but no consensus has been reached. In this paper I approach
this question afresh and thoroughly, taking into consideration not only the relevant
texts and context, as others have also done before, but, more importantly, Husserl’s
philosophy, his intuition-based epistemology in particular. Based on a systemof clearly
defined concepts that I here present, I reinforce an interpretation—definiteness as a
form of syntactic completeness—that has, I believe, some advantages vis-à-vis alter-
native interpretations. It is in conformity with the available texts; it makes clear that
Husserl’s notion of definiteness is indeed close to Hilbert’s notions of completeness;
it solves the important problem of imaginaries for which it was created; and last, but
not least, it fits naturally into Husserl’s system of concepts and ideas.

Keywords Husserl · Hilbert · Definiteness · Completeness · Imaginary elements in
mathematics

Few things are more frustrating than trying to make things fit where they don’t. This is
the risk one takes when attempting to interpret concepts and ideas of yesterday within
conceptual systems of today. Anyone facing this challenge must carefully consider
the advantages and pitfalls of the task.
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The problem that will concern me here is the concept of logical completeness
(or definiteness) of both axiomatic systems and manifolds as introduced by Edmund
Husserl, its correct interpretation vis-à-vis our modern conceptions of completeness
and its relation to other notions of completeness of the time (end of the nineteenth
century, beginning of the twentieth), in particular those of Hilbert. This problem has
been approached by many authors before, among them Hill (1995), Majer (1997),
Silva (2000), Hartimo (2007), Centrone (2010), and Okada (2013), and my reason to
revisit it are multiple. First, the issue is far from being settled1; second, a clarification
of this problem can illuminate some aspects of the development of modern logic; third,
it helps to understand Husserl’s and Hilbert’s differing approaches to axiomatics and
the influence one may have exerted on the other; fourth, the problem has intimate
connections with a central question in Husserl’s epistemology, the justification of
symbolic knowledge. We simply cannot afford to be unclear about so important a
question and my goal here is to investigate it more thoroughly than the authors just
mentioned have done.

Contrary to some of them, who emphasize textual and contextual analyses, I prefer
to concentrate on conceptual analyses. Of course, text and context are important and
will be taken into consideration, but sometimes they can mislead rather than lead. A
good deal of attention must be given first to the problems Husserl was facing and
what they involved conceptually. From my point of view, two stand out, the problem
of imaginary elements in mathematics and Husserl epistemological dissatisfaction
with the way Hilbert secured completeness of axiomatic systems. Husserl’s notions
of definiteness (completeness) were born in the attempt to solve these problems and
must be approached from this perspective.

From his early days as a philosopher, Husserl was deeply concerned with
axiomatics and its role in mathematics. It all began with his efforts to provide logical-
epistemological justification for arithmetic, that of natural numbers, but also that of
more general numerical concepts, from 1887 (the date of his Habilitationsschrift)
onwards. After realizing that general concepts of number could not be derived from
the concept of natural number, that is, that the bottom-up “genetic” approach was no
longer the adequate one, Husserl turned to the top-down strategy of axiomatization.2 A
particularly puzzling question was, for him, the successful use of numerical concepts

1 There is no consensus on what Husserl meant by definiteness or what exactly was the relation of his and
Hilbert’s notions of completeness related to his axioms of completeness, a relation that Husserl believed
should be obvious to all.
2 Initially, Husserl had the idea of basing more general concepts of number on the notion of cardinal
number, favoring, that is, a genetic, bottom-up approach. This was the project for the second volume of
Philosophy of Arithmetic (Husserl 2003), which never saw the light of day for, supposedly, Husserl realized
that this could not be done. He, then, turned to the axiomatic, top-down approach [see, for instance, Husserl
(1970a, p. 378) , where general arithmetic is characterized as a formal science]. Husserl axiomatic approach
to set theory of 1891 (Husserl 1970a, pp. 385–407) and geometry of 1893 (Husserl 1983, pp. 285–293),
where he shows how the fundamental concepts and truths of axiomatic geometry, such as congruence, are
grounded on intuition) show how much involved with the axiomatic method the early Husserl was [see
Centrone (2010) for a careful historical account of the philosophical development of the early Husserl and
Ortiz Hill, in Hill and Silva (2013, pp. 93–114), for the role Husserl allowed to the axiomatic method in
his approach to arithmetic]. For the purposes of this paper, however, this discussion is irrelevant; Husserl’s
notion of definiteness, which is a property of axiomatic systems, is without doubt part of his treatment of
the axiomatic method, particularly in its complex relations with intuition.
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of greater generality in the theoretical investigation of numerical concepts of lower
degrees of generality (for instance, complex numbers in the theory of real numbers).
He called this the problem of “imaginaries”; the terminology is justified, for “imag-
inary” entities not only do not exist, but could not exist from the perspective of the
domains into where they are introduced.

In his efforts to justify logically and epistemologically the use of imaginaries,
Husserl introduced two notions of completeness (or definiteness, as he called them),
relative and absolute, each splitting in two related notions, the apophantic one, rela-
tive to axiomatic systems, and the ontological one, relative to their “domains”. The
discussion and interpretation of these notions will occupy most of this essay. The
notion of a definite system of axiom and the correlate notion of a definite manifold
(definit Mannigfaltigkeit) served also, from Husserl’s perspective, as alternatives to
the “inauthentic” axioms of completeness of Hilbert’s axiomatization of arithmetic
and geometry (the term “inauthentic” is Husserl’s own).3

Clearly, Husserl’s privileged interlocutor on these issues was Hilbert, particularly
after he moved to Gottingen in 1901 and became close to the great mathematician.
Hilbert had just then provided axiomatic foundations for the arithmetic of real numbers
(1900) and Euclidean geometry (1899), which, given Husserl’s interest in axiomatics,
were bound to attract his attention. The issues of extendibility and non-extendibility
of theories and their “domains”, and “completeness”, in some sense or other, were
salient in both Hilbert’s and Husserl’s approaches to axiomatics at the time (around
1900).

Hilbert is to this day considered a champion of the axiomatic method, a reputation
that his contributions to it—the above mentioned axiomatizations, the invention of
metamathematics, which turned metamathematical questions such as the consistency
of axiomatic systems and the independence of the axioms of a system with respect
to each other into real mathematical problems, and the project of axiomatization of
physics that he launched with the sixth problem of his famous list—undoubtedly
justify. Husserl’s contributions to axiomatics, on the other hand, which may have
influenced Hilbert, and which were certainly influenced by him, were almost com-
pletely forgotten for a long time, resurfacing only recently. They are, however, still
absent from history of logic books and articles.4 To interpret Husserl’s views on mat-
ters of axiomatics, and confront themwith Hilbert’s against the background of modern

3 “Dieser [i.e. Hilbert’s] Begriff der Vollständigkeit soll als unechte [my emphasis] Vollständigkeit beze-
ichnet werden.” (Husserl 1970a, p. 442). I translate “unecht” as “inauthentic”, but it can also be translated
as “false”, “artificial”, “counterfeit”, in short, inadequate.
4 Awodey and Reck (2002) and Corcoran (1980), for example, who follow with care the appearance
and maturing of certain logical notions, categoricity and completeness in particular, in early efforts of
axiomatization from Dedekind onwards, completely ignore Husserl and his work on axiomatics. This
is to some extent understandable, since Husserl did not produce a mathematically relevant pioneering
axiomatization that made its way into the mainstream of mathematical logic. But philosophically it is
an error to ignore him, for Husserl was probably the philosopher better equipped to provide the correct
interpretation of the axiomatic method advanced by Hilbert and himself, much better than the “game”
interpretation that gained prominence [see, for instance, Hill and Silva (2013), in particular chapters 3 and
5, and Silva (2012, pp. 115–136)].
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axiomatics is then an effort that I believe justified, either from the perspective of the
development of modern formal logic and some of its central concepts or that of the
development of Husserl’s thought.

Husserl’s work on axiomatics does indeed occupy a central position in his phi-
losophy. Husserl’s struggle with the problem of imaginaries is, I believe, essential to
understand his change of philosophical orientation around the middle nineties of the
XIX century, which brought the problem of objectless representations and the role
of symbolic thinking, among other logical questions, to the center of his philosophi-
cal concerns.5 These issues are recurrent in his philosophy, from his opera magna of
1900–1901, the Logical Investigations, to his last book, theCrisis of European Science
and Transcendental Phenomenology (Hua VI 1954, containing previously published
and unpublished texts from 1935 to 1936). So, a clear understanding of the problems
Husserl was facing at the beginning of his philosophical career and how he dealt with
them, including his contributions to axiomatics, is central to the correct assessment of
Husserl’s philosophical development and the genesis of some of his main philosophi-
cal ideas (particularly that of intentionality, a concept inherited from Brentano which
Brentano himself had borrowed from medieval thinkers to characterize the mental in
opposition to the physical, and the use Husserl made of it, after having conveniently
“depsychologized” the concept, in his theory of knowledge in general and science in
particular).

So, I believe, historical and exegetical interests in logic and philosophy justify that
we take the risk of interpreting Husserl’s (and Hilbert’s) contributions to axiomatics
from the perspective of modern logic.

Let us beginwith explicit definitions and fixing the terminology. Let L be a language
in which mathematical statements can be written. L need not be a formal language,
either in Husserl’s sense of a language devoid of material meaning (but preserving
the formal meaning implicit in the rules for the “blind” manipulations of its sym-
bols) or in the modern sense of a non-interpreted symbolic language in which the
notions of symbol, term and formula are decidable. L can simply be the traditional
language of mathematics. Let us suppose that a notion of deduction is available, not
necessarily in the modern formal sense of a “mechanical” output of formulas of a
formal language by the action of explicit rules of inference on a basis of logical and
non-logical axioms, but in a larger sense, closer to that familiar to mathematicians,
that is, mathematical reasoning based on “obvious” truths and largely implicit rules of
derivation (including maybe higher-order and infinitary rules such as ω-rule). I will
denote the fact that a statement ϕ of L is derivable from a set � of statements from L
by � � ϕ.

5 “Above all it was its [i.e. arithmetic’s, my note] purely symbolic procedural techniques, in which the
genuine, original insightful sense seemed to be interrupted and made absurd under the label of the trans-
lation through the ‘imaginary’, that directed my thoughts to the significance and to the purely linguistic
aspects of the thinking – and knowing – processes and from that point on forced me to general ‘inves-
tigations’ which concerned universal clarification of the sense, the proper delimitation, and the unique
accomplishment of formal logic” (Husserl’s draft introduction to Logical Investigations apudMoran 2005,
90). There is, then, a direct link between the problem of “imaginaries” and the Logical Investigations and
further attempts of clarification and delimitation of formal logic; for example, Formal and Transcendental
Logic.
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Let us also suppose that notions of interpretation of L and satisfaction of sentences
of L in some interpretation are available. An interpretation is a specific mathematical
context where sentences of L acquire a sense and a truth-value, not necessarily amodel
in the Tarskian sense (for this reason I use the term “interpretation” not “model”). I
will take the notion of a sentence ϕ of L being true in some interpretation as primitive;
“true”means “according to the facts”. I will denote the fact that a sentenceϕ of L is true
in an interpretation A by A |� ϕ. Sentences of L can be devoid of interpretation and
differently reinterpreted, more or less in the sense that Hilbert reinterprets geometrical
assertions arithmetically. If a set � of sentences is given, by � |� ϕ I mean that ϕ is
true in all interpretations where all the sentences of � are also true.

By axiomatic system I mean a set of axioms, the basic unproved truths of a theory.
For Husserl, axiomatic systems must be finite, but I will not presuppose this much
here (or even that the notion of axiom is decidable).

Definition 1 � is complete with respect to |� if for any set � of sentences and any
sentence ϕ of the language: � |� ϕ ⇒ � � ϕ. I will take the converse for granted;
that is, that deduction preserves truth. The reason is that no deduction “technology”
is acceptable in mathematics or science that does not preserve truth.

Definition 2 An axiomatic system T is logically complete (l-complete) if, for any
sentence ϕ,T |� ϕ implies T � ϕ. In words, what is true in all interpretations of a
theory must follow deductively from the axioms of this theory.

Definition 3 An axiomatic system T is categorical if all its interpretations are iso-
morphic in the usual algebraic sense. Although the notion of categoricity is not clear
until, as some argue, Huntington’s works of 1902 and 1903, it is implicit in Dedekind,
the Hilbert of 1899–1900 and others.6 Boole, Husserl, and even Leibniz were aware
that mathematical theories can have different interpretations (Husserl explicitly notes
that Schroder’s calculus can be differently interpreted as a calculus of classes and a
calculus of judgments). Some of them realized (I am not sure that Husserl did) that
different interpretations can, nonetheless, be “essentially the same”. By “essentially
the same” they almost certainly had in mind what we call isomorphic, although this
is never explicitly stated. Husserl sometimes refers to a mathematical theory that has
been devoid of interpretation and formalized (thus becoming a theory-form or the form
of a theory) as “equiform” with the original theory. But by this he only means that
both, the theory and its form have the same logical form.7

Definition 4 An axiomatic system (or theory) T is semantically complete (s-complete)
if for any sentence ϕ, either T|� ϕ or T |� ¬ϕ (either the sentence or its negation, but
not both if the system is consistent, is a semantic consequence of the axioms of the
system; that is, either the sentence is true in all interpretations of T or it is false in all
of them).

6 For details and references see Awodey and Reck (2002).
7 Mahnke (1923) uses terms that were translated by “logically isomorphic” and “formally equivalent” to
refer to the relation between contentual theories and their formalizations, derived for metamathematical
purposes (he mentions consistency proofs).
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Theorem 1 The following assertions are equivalent (proofs are trivial):

(1) T is s-complete.
(2) All interpretations of T are logically equivalent, that is, exactly the same set of

sentences of L is satisfied in any interpretation ofT. In a sense, s-complete theories
characterize their interpretations uniquely as far as the expressive powers of the
language are concerned.

(3) Given any sentence ϕ, either T∪ {ϕ} (for short: T,ϕ) or T,¬ϕ does not have an
interpretation.

(4) For no sentence ϕ, both T,ϕ and T,¬ϕ have interpretations.

Theorem 2 If T is categorical, then T is s-complete.

Proof If T is categorical, then (2) of Theorem 1.
Note 1: The converse is not true; for example, the first-order theory of real closed

fields is s-complete but not categorical.8 In fact, no first-order theory with infinite
models is categorical [by the cardinality theorem–see Shoenfield (1967, p. 88)]. So,
axiomatic systems can completely characterize interpretations up to logical equiv-
alence without characterizing them categorically, i.e. up to algebraic equivalence
(isomorphism). ��
Definition 5 T is syntactically or deductively complete (d-complete) (relative to �)
if, for any sentence ϕ of the language, either T � ϕ or T � ¬ϕ. Since, as supposed,
T � ϕ implies T |� ϕ (deductions preserve truth), then d-completeness implies s-
completeness.

Definition 6 T is d-complete relative to an interpretation A of T (d-A-complete) if all
sentences that are true in A are provable in T.

Theorem 3 The following are equivalent:9

(1) For some interpretation A of T (also written A |� T), T is d-A-complete.
(2) T is d-complete.
(3) For all sentences ϕ: either T � ϕ or T,ϕ is inconsistent (a theory is inconsistent

if it proves both a sentence and its negation).
(4) There is no sentence ϕ such that T,ϕ and T,¬ϕ are both consistent.

Proof (1) ⇒ (2): Let ϕ be any sentence of the language. Either A |� ¬ϕ or A |� ϕ.
In the first case T � ¬ϕ, in the second T � ϕ. (2) ⇒ (1): Let A be an interpretation
of T and ϕ a sentence such that A |� ϕ (ϕ is true in A). Suppose ad absurdum that T
does not prove ϕ; then it must prove ¬ϕ and so ¬ϕ must be true in A. Contradiction,
since ϕ is true in A. Therefore, T � ϕ.

2) ⇒ 3): If T does not prove ϕ, it must prove ¬ϕ, by definition of d-completeness.
So, T,ϕ is inconsistent.

8 Vide Shoenfield pp. 87–88.
9 In order to show that 4) implies 2) I assume from the start that a theorem of deduction is valid for the
calculus; i.e. if T, ϕ � ψ, then T � ϕ → ψ, for any sentences ϕ and ψ.
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3) ⇒ 4): Suppose T,ϕ and T,¬ϕ are both consistent for some ϕ. The consistency
of T,¬ϕ implies that T cannot prove ϕ; therefore T,ϕ is consistent and T does not
prove ϕ, denying 3).

4) ⇒ 2): If T is not complete, there is a sentence ϕ such that neither ϕ nor ¬ϕ

are theorems of T. I claim both T,ϕ and T,¬ϕ are consistent. Indeed, suppose that
T,¬ϕ is inconsistent; then T,¬ϕ � F, for some absurd sentence F (F = ψ ∧¬ψ, for
some ψ). By the deduction theorem (see Note 9), T � ¬ϕ → F, which is logically
equivalent to ϕ, a contradiction (because T does not prove ϕ). Analogously for T,ϕ.

Note 2: Neither Peano arithmetic (first and second order) nor the theory of complete
ordered fields (first and second order) are d-complete. But Tarski’s axiomatization of
the arithmetic of real numbers is both s- and d-complete.

Note 3: If T is d-complete, then the set of all deductive consequences of T (the
apophantic domain of T) is maximal in the sense that for any sentence ϕ, either ϕ

or ¬ϕ (but not both if T is consistent) belongs to it. So, the apophantic domain of a
d-complete theory is non-extendable in the sense that no sentence that does not belong
to it can be consistently added to it. ��
Theorem 4 Suppose T is s-complete. Given two interpretations A and B such that
the universe of A is contained in the universe of B and there is a formula ψ(x) in one
free variable such that B |� ∃x((ψ(x) ∧ ∀y(ψ(y) → y = x)) (i.e. there is only one
element in B satisfying ψ), then the element in B satisfying ψ must belong to A.

Proof Let b the only element in B satisfying ψ. By (2) of Theorem 1 there must be a
unique element in A satisfying ψ, call it a. Since A is contained in B, a is in B. Since
b is the only element in B satisfying ψ, a = b and so b belongs to A. In general, if an
existential assertion is satisfied in some interpretation of T (maybe not uniquely), and
T is s-complete, it is also satisfied in any other interpretation (by possibly different
elements). So, if an element satisfying a certain condition expressible in the language
of an s-complete T does not exist in some interpretation of T, no such element exists in
any other interpretation. Thismeans that interpretations of s-complete theories are non-
extendable to interpretations of the same theory by the adjunction of new definable
elements. The same is a fortiori true of d-complete theories, since d-completeness
implies s-completeness. ��
Definition 7 Let S be a set of sentences of the language, T is d-complete relative to S
(d-S-complete) is for any ϕ in S, either T � ϕ or T � ¬ϕ.

Note 4: If T is d-S-complete, where S contains all existential assertions of the
language, then no interpretation of T is extendable to other interpretations by the
adjunction of elements definable by formulas of the language. The reason is that no
element a, definable by a condition ϕ, can exist in one but not in another interpretation
of T (an interpretation can only be extended by the adjunction of a new element to its
domain).

Definition 8 Let’s introduce a unary predicate symbol R in L. For any sentence ϕ, let
ϕR(ϕ restricted to R) denote the sentence ϕ with ∀x(. . .x . . .) replaced by ∀x(R(x) →
. . .x . . .) and ∃x(. . .x . . .) replaced by ∃x(R(x) ∧ . . .x . . .). Let A be an interpretation
of T and D a subset of the universe of A, we say that ϕR refers to D in A if RA = D.
In particular, ϕR refers to the universe of an interpretation A if RA = A.
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Note 5: Obviously, if R refers to A, then ϕR and ϕ are either both true or both false
in A (notation: ϕR ≡A ϕ).

Note 6: Suppose t (x) and t ′ are terms such that ∃x(t (x) = t ′) is false in an
interpretation A of T. So, T cannot prove ∃x(t (x) = t ′) and, a fortiori, ∃x(R(x) ∧
t (x) = t ′). Suppose that T is d-S-complete, where S is the set of all the sentences
of the language restricted to R. T must then prove ∀x(R(x) → t (x) �= t ′); so, in no
interpretation M of T there is an element a in RM such that t (a) = t ′. This, however,
does not rule out the existence of interpretations B whose universe extends that of A,
where RB = the universe of A and in which there is b in B-A so that t (b) = t ′. Suppose
there is such an interpretation. Then, T cannot prove ∀x(t (x) �= t ′) = ¬∃x(t (x) = t ′).
Hence,∃x(t (x) = t ′) is deductivelyundecidable inT (despite the fact that its restriction
∃x(R(x) ∧ t (x) = t ′) is decidable). It is then possible an axiomatic system T to exist
that is d-S-complete with respect to the set S of sentences restricted to R, but not
d-complete.

Example Let T be the set of all sentences ϕD in the language {D, c,+, x}, D a
unary predicate symbol and c a constant, true in Z = 〈Z;Z,−1,+, x〉, where
Z = {. . .,−2,−1, 0, 1, 2, . . .},DZ = Z and cZ = −1. Note that T is actually d-
S-complete, because given any sentence of this language, either this sentence or its
negation (but not both) is true in Z, and so belongs to T. Putting t(x) = x2 and
t ′ = c, ∃x(t (x) = t ′) is false inZ. Consider nowZ[i], the ring of numbers a+bi, where
a, b are integers and i is the imaginary unit. Now, let Z′ = 〈Z[i];Z∗,−1 + 0i,+, x},
where Z∗ = {a + 0i : a is in Z};Z′ is also an interpretation of T, but ∃x(t (x) = t ′) is
true in Z[i] (take x = 0+ 1i). So, T decides any sentence that refers to Z, but it is not
d-complete, for the sentence ∃x(t (x) = t ′) is undecidable in T.

Definition 9 A theory T is d-R-complete if it is d-S-complete where S = {ϕR: R a
fixed unary predicate of the language}.

Note 7: Since a theory can be deductively complete with respect to all the sentences
restricted to some specific predicate and not be deductively complete, it is inter-
esting, considering Theorem 3, which asserts the equivalence of d-A-completeness
with d-completeness, to compare the notion of d-R-completeness with that of d-A-
completeness. The latter guarantees T-deducibility of all sentences that are true in
A; the former, of all sentences whose quantifiers range only over the domain of
a specific unary predicate. If ϕ is true in A, ϕR is also true in A - it is enough
to interpret R as A -, but ϕR true in A (for some other interpretation of R) does
not imply that ϕ is also true in A. So, even if T can deductively decide all the
sentences ϕR (d-R-completeness) and so prove all the sentences ϕR that are true
in A, it may not be capable of proving all sentences ϕ that are true in A (d-A-
completeness). On the other hand, if T is d-A-complete it must, in particular, prove all
the ϕR’s that are true in A; hence, it must decide all the ϕR’s (d-R-completeness),
for either ϕR or ¬ϕR is true in A. Then, in this sense, d-R-completeness is a
weaker notion than d-A-completeness. However, if the axiom ∀xR(x) is added to
a d-R-complete theory the resulting theory is d-complete (and so d-A-complete),
since the enlarged theory proves that any sentence ϕ is equivalent to its restriction
ϕR.
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Definition 10 An interpretation A of a theory T is non-extendable if there is no inter-
pretation of T of which A (or, in general, some interpretation isomorphic to A) is a
sub-interpretation.

Note 8: This is a very strong condition, which no first-order theory with infinite
models, not even s-complete or d-complete theories, satisfies. Indeed, let A be an
infinite model of a first-order theory T, consider the diagram � of A, that is, the set
of all quantifier-free sentences of the language of the theory, extended with constants
a for all the elements a of A, that are true in A. Add to the extended language a new
constant c and to � all the sentences c �= a. Any finite subset of this extended theory
has a model, and so, by the theorem of compactness, the entire theory has a model B’.
The reduction B of B’ to the original language (without the extra constants) is a model
of T in which A can be isomorphically embedded; moreover, B extends A, since the
interpretation of c does not belong to the copy of A in B.

If T is a categorical theory, all interpretations of T are trivially non-extendable.
However, non-extendibility of interpretations does not imply the categoricity of the
theory. For example, consider a language with only a binary relation symbol R and
the theory T with the axioms (1) there are exactly two things and (2) R is reflexive. T
obviously has non-isomorphic models (for example, R can be symmetric in one and
asymmetric in another), but each of them is non-extendable. So, although categoricity
guarantees non-extendibility, the converse is not true.

Let’s now define an interpretation to be non-extendable by definitions if no inter-
pretation can be extended by the adjunction of definable elements. More precisely, an
interpretation A of T is non-extendable by definitions if (1) there is an interpretation
B of T such that A (or, more generally, an isomorphic copy of it) is contained in B, (2)
there is an element b in B-A and a formula ψ(x) in one free variable such that ψ(x) is
not satisfiable in A but ψ(b) is true in B. The idea is that an interpretation is extend-
able by definitions when it can be extended into another interpretation of the same
theory by the adjunction of elements satisfying certain properties that are expressible
in the language but not satisfied in A. For example, Z, the ring of integers, can be
extended by definition to the ring Z[i] by the adjunction of the element i satisfying
ψ(x) ≡ (x2 = −1) in Z[i];ψ(x), however, is not satisfied in Z.

Now, as already observed, if T is either s- or d-complete, no interpretation of T is
extendable by definitions.

I will offer below, within the conceptual context sketched above, an interpretation
of the many notions of completeness that Hilbert and Husserl have put forward. But
first we must understand the purpose for which they have introduced them. Although
the conceptions are essentially the same, they were differently motivated. Hilbert was
primarily concerned with providing adequate axiomatizations of fundamental mathe-
matical concepts (number and space, for example), and his notions of completeness
were devised as means to this end; Husserl, rather, was driven by philosophical con-
cerns related to the logical-epistemological justification of the axiomatic method and
the problem of imaginaries, and his notions of completeness were devised with this
goal in mind. Both, however, probably believed that the philosophical approach of one
was a necessary complement to the foundational perspective of the other.

From Husserl’s point of view, Hilbert’s axiomatics was not immune to philosoph-
ical criticism. Although Hilbert allowed desinterpretation and reinterpretations of
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axiomatic systems for the sake of logical investigations—the relative consistency and
logical independence of axioms, for example, he did not raise the important problems
relative to the ontological correlates and epistemological relevance of purely for-
mal axiomatic systems that figured so prominently in Husserl’s logical-philosophical
agenda.10

Husserl did not believe that all axioms of Hilbert’s axiomatizations were adequately
justified either. Despite the latter’s claim that the choice of axioms of his Grundlagen
der Geometrie (1899), for example, was determined by “a logical analysis of our
perception of space” (Hilbert 1971),Husserl had difficulties in accepting that the axiom
of completeness could indeed be so justified. ForHusserl, as I read him (Husserl 1970a,
pp. 441–442), this axiom was a purely ad hoc accretion to an otherwise intuitively
justified system. The completeness of the system must, Husserl thought, be attained
by other means. But before seeing how, we must get a better understanding of what
both understood by “completeness”.

For Hilbert, axiomatic systems must provide complete descriptions of their
domains; geometry (by which I think Hilbert meant physical geometry), for exam-
ple, is for him a description of perceptual space in terms of relations such as “lies
on”, “between” and “congruent” as applied to objects such as “points”, “lines” and
“planes”; this description, moreover, must be complete. By such a requirement Hilbert
clearly implies some notion of deductive completeness. For instance, in the following
quote:11

The necessary task then arises of showing the consistency and the completeness
of these axioms, i.e. it must be proved that the application of the given axioms can
never lead to contradictions, and, further, that the system of axioms is adequate
to prove all geometrical propositions [my italics]. We shall call this procedure
of investigation the axiomatic method.

Awodey and Reck (2002) offers two possible readings of Hilbert’s completeness
requirement; first, the axioms should be sufficient to derive all known theorems of
geometry; second, they should be sufficient to derive all theorems of geometry. If by
“theorems of geometry” Hilbert meant, as is reasonable to suppose, assertions true
of our representation of space, then the first reading of “complete” coincides with
d-S-completeness where S is the set of “known” theorems, and the second with d-
A-completeness, where A is our representation of space (in view of Theorem 3, this
coincides with d-completeness).

But, to complicate the matter, the notion of completeness associated with the axiom
of line completeness seems to point in a different direction. This axiom requires that
it should “not be possible to extend the system of points on a line” in such a way that
order and congruence relations are preserved and all the other axioms still satisfied.

10 For Husserl, purely formal (i.e. non-interpreted) axiomatic systems are theory-forms, that is, forms of
theories, whose objective correlates are formal manifolds determined as to form but indeterminate as to
(material) content. Hence, for him, formal theories belong to formal ontology, the province of formal logic
concerned with the formal properties of objects, conceived exclusively as such and merely as possibilities.
11 From Hilbert’s On the Concept of Number, in Ewald (1996, pp. 1092–93).
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Clearly, this notion of completeness is related to non-extendibility, in the following
way: the only acceptable interpretation of the notion of “line” is one in which “lines”
are maximal sets of “points”. Let us be more precise. Let A be a given interpretation of
the axioms of geometry excluding line-completeness. The question is whether A can
be taken as an interpretation of the whole system, including line-completeness. The
answer is that it can, provided that there is no interpretation B extending A in which
B-lines, as sets of B-points, properly include A-lines as sets of A-points.

This was not the first version of the axiom of completeness. An earlier version
required that there should be no two interpretations, one extending the other, of the
remaining axioms. By imposing non-extendibility Hilbert’s axiom of completeness
grants uniqueness of domain, or, to use a concept neitherHilbert norHusserl possessed,
categoricity. But although implying categoricity, the axiom is not aimed at categoricity;
in either version, the axiom is included to secure non-extendibility of the domain,
uniqueness is a consequence.

However, as observed before, neither d-(or s)-completeness guarantees non-
extendibility of the domain of the theory, nor does non-extendibility guarantee
d-completeness. If Hilbert wanted, as indicated in the quote above, d-completeness,
why did his axioms require non-extendibility? The answer, I believe, must be sought
along the following lines. Hilbert obviously realized that d-completeness could not be
granted directly by axiomatic stipulation; it is a condition of adequateness of axiomatic
systems, not itself an axiom; axioms refer to domains of objects, not domains of
axioms. It is to be expected, however, that an exhaustive or, better, complete intu-
itive survey of the concept that governs the relevant domain should be sufficient
for a complete set of axioms to be obtained (for how else could it be obtained?).
Hilbert probably believed that a system strong enough to single out essentially one
interpretation, the intended one, would necessarily be complete (d-complete). If I am
correct, Hilbert implicitly presupposed that non-extendibility (categoricity) implied
d-completeness.12

Husserl agreed that adequate axiomatizations must be d-complete. This can actu-
ally be shown: for him, a priori theories are conceptual theories founded on conceptual
intuition.13 Now, axiomatization can only be considered adequate. i.e. to serve the pur-
pose for which axiomatizations are devised, if conceptual intuition is confined to the
axiomatic basis, theorems following by logical deduction from the axioms (this divi-

12 This is certainly true if logical consistency implies the existence of interpretations (for example, in first-
order logic). For if a system is categorical but not d-complete, one can obtain two consistent extensions of it,
a particular sentence belonging to one and its negation to the other. If they both have interpretations, one has
a contradiction; the same sentence being true in one interpretation but false in another, both interpretations,
however, being isomorphic to each other.
13 See Husserl (1970a, p. 382), where after claiming that arithmetic is, by general consensus, an a priori
science, he says that “darin liegt, dass sie nicht mit singulären Tatsachen beginnt, um sich durch Induk-
tion zu wahrscheinlichen Allgemeinheiten zu erheben, sondern alsbald mit gewissen, und zwar apodiktisch
gewissen und unmittelbar evidenten Allgemeinheiten, die sie durch blosse Vergegenwärtigung gewisser
,Grundbegriffe’ und die auf dem Wege mittelbarer Evidenz und Gewissheit alle weiteren Sätze der Wis-
senschaft liefern”. In short, a priori theories do not begin with induction but conceptual intuition, from
where they proceed by the way of logic alone. See also Husserl (1984, Sect. 13) and Husserl (1994, p. 37).
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sion of labor characterizesmodern axiomatics).14 So, for Husserl, conceptual intuition
must be capable of delivering enough conceptual truths from which all the remaining
truths should follow by logical deduction. In other words, adequate axiomatizations
must be d-complete; d-completeness stands as the ideal to which axiomatization must
strive.Despite formalist readings, forHilbert too axioms are conceptual truths obtained
by inquiring intuitively given concepts (that of space in the case of geometry); desinter-
pretation servingmetalogical purposes only.15 For bothHusserl andHilbert, axiomatic
systems describe their domains by describing the concepts under which they fall.
Axiomatization proceeds by assembling self-evident axioms in the hope of eventually
obtaining a basis of just enough truths (not too many, not too few) from which all
relevant conceptual truths can be obtained by logical means (intuition leaving, then,
the scene). Hence, axiomatizations that are not d-complete fall short of an ideal, for
Husserl, Hilbert, and, for that matter, ourselves.

Consider, for example, Dedekind’s informal axiomatization of the arithmetic of nat-
ural numbers. The most salient structural property of natural numbers (to be arranged
in a chain in Dedekind’s terminology), despite its intuitive foundation, does not sin-
gle out the chain of natural numbers; Dedekind had then to add the requirement that
the intended chain be the “smallest” one (which requires second-order logic to be
fully expressed).16 Dedekind’s second-order arithmetic is categorical, but in virtue of
Gödel’s first incompleteness theorem it is not d-complete. Obviously, neither Husserl
norHilbert had, around 1900, the information provided byGödel’s theorem, andwould
have no reason to believe that d-completeness could not be universally attainable or
that non-extendibility (categoricity) would not be sufficient for attaining it (although,
for Husserl, illicitly so). But even if categoricity logically implied d-completeness,
completeness could not be obtained, or so Husserl believed, as one can infer from
his reaction to Hilbert’s completeness axiom, the way Dedekind did, by simply fixing
one intended interpretation axiomatically. The goal is d-completeness, but by means
of conceptual analyses.

Hilbert also had to add “selection” axioms (also second-order) to his axiomatiza-
tions of geometry and the arithmetic of the real numbers. He, however, contrary to
Dedekind, wanted to ensure that the intended domain was the “largest”, with a max-
imum of elements. So, his “selection” axiom was designed to pick among the many
interpretations that which was non-extendible.

Husserl was very critical of such ad hoc axioms, which works, so to speak, from the
outside.17 For him, as already observed, axioms had to be obtained by a conceptual
analysis of the concept presiding over the domain the axiomatic system is designed

14 See e.g. Husserl (1984, Sect. 8), where Husserl says that “after mathematicians [...] have formalized their
work , they proceed pure mechanically [...]” (ibid, 26); see also ibid, 32. As for the secondary literature,
see, for example, Ortiz Hill’s ”Husserl on Axiomatization and Arithmetic”, in Hill and Silva (2013, pp.
93–114) .
15 Likewise Husserl, Hilbert gave conceptual intuition a fundamental role in mathematical axiomatics.
In metamathematics, however, one is allowed to take axiomatic systems as intuition-free “games” with
symbols.
16 See his Was sind und was sollen die Zahlen, of 1888.
17 See Husserl (1970a, pp. 441–442).
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to master theoretically. The only way an axiomatic system can be erected entirely a
priori is by submitting the concept presiding over its domain to conceptual analysis in
conceptual intuition. Only by reflecting on a concept given in full clarity can a system
of fundamental conceptual truths be derived from which all the truths of the domain
over which this concept presides can be deduced by strictly logical means. Axioms,
for Husserl, are not based on induction, nor can they be, as for Dedekind and Hilbert,
means of getting what one wants by brute force. According to Husserl, despite starting
on the right track, by submitting “our perception of space” to “logical analysis”,Hilbert
eventually abandoned that approach by adding an axiomof completeness to the system.
Husserl believed that epistemologically adequate axiomatizations could not resort to
selection axioms, even at the price of admitting non-intended interpretations. In short,
for Husserl, as for Hilbert, d-completeness was still the goal, even if, and here is where
Husserl’s logical approach diverges from Hilbert’s, uniqueness of domain cannot be
granted.

Since Husserl insisted on intuitive foundations for axiomatics, but did not believe
that selection axioms qualified as such, he had to face a problem that Hilbert did not:
how to guarantee that the theory designed to describe a given domain (circumscribed
by its ruling concept), and that has failed to singularize it (by allowing interpretations
that extend the intended one), can nonetheless accomplish the task of theoretically
mastering the intended domain in a complete manner? In what follows I shall present
what I believe to be Husserl’s treatment of this problem, translated into the conceptual
apparatus I introduced earlier.

Let T be our theory and A its intended interpretation. Ideally, from Husserl’s per-
spective, the concept presiding over A (that of number, for example, or space) must
have been “dissected” to the point of providing T with enough conceptual truths, its
axioms, so that it can be the undisputed “master” of its domain.18 Such a theory is,
in some sense, complete. But there are, as we know, many senses of completeness.
One, however, imposes itself, given Husserl’s understanding of the purpose for which
theories are designed. For him, a theory is first and foremost a provider of truths, of
a given concept or, derivatively, its extension (its domain). The primary task of an
axiomatic system is to organize a domain of truths (an apophantic domain) so that all
truthswould follow by logical necessity from a basis of axiomatic (intuitive) truths, not
necessarily, and certainly not primarily, to capture the intended interpretation descrip-
tively.19 So, ideally, T should be d-A-complete, capable, that is, of deciding as to its
“truth” or “falsity” any relevant assertion concerning its domain A (whatever T proves
must be true in A and any assertion true in A must be provable in T). So, the condition
of completeness for a theory translates naturally, given Husserl’s own understanding
of axiomatic theories, into d-A-completeness or, equivalently, d-completeness.

18 By “domain” I here mean the intended interpretation or, more specifically, its universe, the collection of
objects falling under the concept the theory is designed to scrutinize. Husserl often uses this term (Gebiet)
in a slightly different sense, as the collection of objects the theory explicitly or implicitly requires to exist.
We must keep this ambiguity in mind. The concept of relative definiteness applies to either conception of
domain.
19 Since we know from the start to which domain the theory refers, to capture it descriptively (categorically)
can only be a means to an end, namely, to describe it exhaustively (completely).
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Now, Husserl might have realized, given what he knew of the efforts of Dedekind
and Hilbert to axiomatize three of the most basic mathematical theories, the arith-
metic of natural numbers, the arithmetic of real numbers (analysis) and geometry,
whose basic concepts are, respectively, natural number, real number, and space, that
this goal is not easily attainable. Dedekind and Hilbert could only fulfill the ideal by
adding ad hoc axioms which guaranteed d-completeness by the way of categoricity.20

But Husserl explicitly rejected such an approach; “selection axioms” for the sake of
completeness were, for him, out of the question. He then had to face the possibil-
ity that a theory, no matter how diligently and carefully designed, had unintended
interpretations, in particular interpretations extending the intended one.

Husserl always believed that d-completeness is an ideal to be pursued by diligent
conceptual analyses.21 Butwhile stillmaintaining this ideal he had to find a solution for
the problem posed by d-incomplete theories, particularly if they admitted unintended
interpretations, since he could not accept “selection axioms”. The problem he was
facing can, then, be put thus: can theorieswith non-intended interpretations (extending,
in particular, the intended one), and so d-incomplete, be nonetheless d-complete at least
relative to their intended interpretations?

My interpretation of Husserl’s treatment of this question takes as starting point the
fact that, for him, a priori axiomatic systems, to the extent they have intended interpre-
tations, are conceptual systems, that is, systems of conceptual truths.22 A concept, like
any intentional object in the phenomenological perspective, is conceived (or concep-
tualized) with a certain sense, its intentional meaning; it counts as a characterization
of the concept (or, if put into words, an explicit definition of it). But the intentional
meaning is only a sort of identity card of its associated intentional object. In order
to “bring out” the truth the object may contain, we must go beyond its intentional
meaning, bring the object itself as meant to intuition, if the theory of the object is to
have intuitive foundations, and examine it from up close. There is, then, a meaning
associated with a concept and conceptual truths spelling out this meaning. As we
shall see, (superficial) meaning, as well as (deeper) conceptual truths, play a role in
my reading of Husserl’s treatment of the phenomenon of d-incompleteness, to which
I now turn.

Let us add to the language of T an extra unary relation symbol R whose task is to
restrict the domain of quantification to the domain of the theory. In order to guarantee
that the scope of the quantifiers is confined to the domain of the theory, extra axioms
(in the extended language including the new symbol R) are added to T, which, in some
sense, “express” the intentional meaning attached to the concept presiding over the

20 Dedekind, of course, did not come up with a d-complete theory, but he did not know that and we can
conjecture that he believed he had attained this ideal.
21 Gödel, a thinker influenced by Husserl, also believed so. For him, the independence of certain assertions
concerning set theory (given its d-incompleteness) could be overcome by a better intuition of its ruling
concept, that of set (the incompleteness of the theory, however, as he himself had shown, can never be
completely overcome). Gödel took very seriously Husserl’s notion of conceptual intuition and its role in
axiomatics.
22 A priori non-interpreted axiomatic systems, those that do not have intended interpretations, are an
altogether different matter. For Husserl, as already mentioned, they belong to formal ontology, that part of
logic that cares about the form with which object in general can present themselves to us.
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domain. Let us call this extended theory T,R. These extra axioms are added to T with
a single purpose, to guarantee that the interpretation of R in A is the universe of A and
that in any interpretation B extendingA the interpretation of R in B is still the universe
of A. Even if T admits non-intended interpretations extending A, they can only be
expanded to interpretations of T,R if R is interpreted as the universe of A. In short,
in all interpretations of T,R extending A, the interpretation of R contains the same
collection of objects, the “intended” ones. I claim that according to Husserl a theory T
is definite relative to its domain A (the intended interpretation, its universe or, still, its
existential domain, that is, the collection of objects the theory requires to exist) if T,R
is d-R-complete; i.e. given any sentence ϕ in the language of T, either T,R � ϕR or
T,R � ¬ϕR. In words, the theory, extended with axioms that fix an intended domain,
can decide as to its “truth” or “falsity” any sentence of the language that “refers” to
this domain.

In addition to Husserl’s explicit definitions and comments (quotes below), I add the
following in support of this interpretation. First, Husserl distinguishes between relative
and absolute definiteness, implying that a theory can be definite relative to its domain
and not be absolutely definite. Since for him, as I claim, an absolutely definite theory
is one that is d-complete, then relatively definite theories need not be d-complete (and
so, a fortiori, they need not be categorical; i.e. relatively definite theories may admit
non-intended interpretations, which the criticized axiom of completeness of Hilbert
tries to eliminate bymeans that Husserl deemed inappropriate). Secondly, For Husserl,
despite possibly being d-incomplete, relatively definite theories must decide what is
and what is not true in their domains. By forcing R to refer to the intended universe
of discourse, via the new axioms, one forces the restriction of any arbitrary sentence
to R to refer to the intended domain. So, by requiring T,R to be d-R-complete one
grants that every sentence that refers to the intended domain is deductively decidable,
which is precisely what Husserl required of theories that are definite relative to their
domains.

This interpretation tries to capture Husserl’s intentions in contemporary terms, as
inferred from his own words. I, however, do not claim that this is a “better” logical
solution than Dedekind’s and Hilbert’s selection axioms, even though Husserl himself
thought so throughout his entire philosophical career. My only claim is that, despite
of what one may think of it, this, or something very close to this, better translates
Husserl original notions of definiteness into more modern terms. My goal is not to
vindicate Husserl’s conceptions, as I read them, as the absolutely correct or most
convenient way of dealing with the problem he had on his hands, but to make the point
convincingly that the solution to the problem which I interpret as his is the one that
best suits Husserl’s philosophical outlook.

For Husserl, a theory must be “master in its domain”, that is, ideally, absolutely
definite (d-complete). A theory with unintended interpretations can only fulfill this
desideratum by being definite relative to its intended interpretation. If T is not
absolutely definite (d-complete) there may be sentences that are undecidable in T.
If, however, T is definite relative to its domain (d-R-complete) a decision can nonethe-
less be reached insofar as these sentences refer to the domain of the theory.

The d-incompleteness of a relatively definite theory Tmay even be of some heuristic
interest. Suppose that a given sentence ψ is false in A but true in some interpretation
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B of T extending A. This, of course, implies that ¬ψR is derivable in T,R but that
neither ψ nor ¬ψ are derivable in T. Let T′ = T ∪ {ψ}, which, by the previous
observation, is a logically consistent extension of T.23 Suppose now that ϕ is derivable
in T’. Is ϕR true in A? Since T’ is a consistent extension of T, T cannot prove ¬ϕ,
but this is not inconsistent with T,R proving ¬ϕR. So, since this cannot be granted,
ϕR is not necessarily true in A. For instance, suppose that ϕ requires a certain object
to exist. In all interpretations of T’, that is, all interpretations of T where ψ is true,
such an object must exist. In A, however, it may not. In this case, in all interpretations
of T that extend A where ψ is true the object that ϕ requires to exist cannot be in
the universe of A. From the point of view of A this object is imaginary. But it may
happen that ϕR is true in A. In this case the object that ϕ requires to exist does exist
in A and the T-undecidable sentence ψ played an important heuristic role, revealing
the existence of an object in A maybe before the theory expressly designed for the
theoretical investigation of A could detect it. The extension of T into T’ may prove
to be an efficient heuristic instrument for the derivation of conjectures regarding the
intended interpretation, which, given the relative definiteness of T, can be put to test
(in T,R) and either confirmed or refuted.24

Now, more importantly, Husserl clearly saw how the notion of a theory that is
not d-complete, but that is d-complete relative to its domain, can solve the important
problem of “imaginaries”. Suppose that ϕR, a sentence referring to the domain of T, is
derived in the theory T’ as defined above. Suppose T,R � ¬ϕR, then T,R,ψ � ¬ϕR;
but T,ψ � ϕR, by hypothesis, and so T,R,ψ � ϕR. A contradiction, for the theory
T,R,ψ has an interpretation, namely, the expansion of B, the interpretation of T where
ψ is true and R is interpreted as the universe of A. Hence, T,R � ϕR and, consequently,
ϕR is true in A. The conclusion is that the adjunction as extra axioms to T of assertions
that are false in A, but true in some extension of A, provided that T is definite relative
to its domain, can be used to derive assertions that, if referring to the domain of T, are
necessarily true in A. This vindicates logically the appeal to “absurdities” as logical
tools for the derivation of truths, thus solving what Husserl called “the problem of
imaginaries”.

Let us produce some textual evidence for my interpretation.

This comes from Husserl’s 1901 talks at Göttingen (in the version of Elisabeth and
Karl Schuhmann). These talks are the locus classicus of Husserl’s treatment of the
concept of definiteness (completeness). He says:25

23 I am supposing a logical context in which a theory can be consistently extended by the adjunction of
sentences that are logically independent of the theory.
24 I find this observation relevant to understand the heuristic role of mathematical manipulations in purely
mathematical extensions of empirical theories, the famously called “unreasonableness” of mathematics in
empirical science.
25 “Eine axiomatisch definierte Mannigfaltigkeit kann die Eigenschaft haben, daβ jedes ihrer Objekte
operativ bestimmbar ist, und zwar eindeutig. D. h. jedes Objekt, das für sie als existierend definiert ist
(in die Sphäre der Existenz gehört, welche die Axiome umschreiben), ist durch die zugrunde liegenden
oder eine endliche Zahl willkürlich anzunehmender bestimmter Existenzen unmitteelbar oder mittelbar
zu bestimmen, und zwar eindeutig. Eine solche Mannigfaltigkeit ist eine mathematische und ist definit
(d.h. ihr Axiomensystem ist definit). […] Relativ definit ist ein Axiomensystem, wenn es zwar für sein
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An axiomatically defined manifold can have the property that each of its objects
is operationally determinable univocally. This means that every object that is
defined for it as existing (belongs to the sphere of existence circumscribed by
the axioms) is to be directly or indirectly univocally determined by the under-
lying ones, or a finite number of existing ones to be assumed arbitrarily. Such a
manifold is mathematical and definite (i.e. its axiom system is definite). [...] An
axiomatic system is relatively definite if, of course, it does not admit any more
axioms for its existential domain but allows that the same, and then naturally
also new, axioms hold for another domain, new axioms because the old axioms
alone really determine only the old domain. Relatively definite are the domains
of integers, of fractions, of rational numbers, as well as the discrete double-row
numbers (complex numbers). I call a manifold absolutely definite if there is no
other manifold that has the same axioms as it (taken all together). Continuous
numbers series, continuous double-row numbers.

In this quote Husserl defines definiteness for both a theory and its domain. He
also characterizes mathematical domains, but this notion will not concern us here.
A domain is definite when its axiom system is definite. Here, however, Husserl does
not take “domain” to refer to the intended interpretation, or its universe, but to the
collection of entities the axiom system requires to exist. For example, the arithmetic
of natural numbers requires the existence of 0 and the successor of every number
that exists; so, 1, the successor of 0, 2, the successor of 1, and so on, must all exist;
geometry requires points, lines and planes to exist.26 I believe that we can, without
causing any serious damages, maintain the ambiguity and understand by “domain”
either the totality of objects of the intended interpretation or those the system requires
to exist, its existential domain.

An axiomatic system is relatively definite, he continues, when (1) it does not admit
extra axioms for its domain but (2) admits extra axioms for non-intended interpreta-
tions. A few things are worthy of notice in this definition. First, a relatively definite
axiom system can be consistently extended by the adjunction of new axioms, and so
it is not necessarily d-complete. Second, since the narrower system T has an inter-
pretation (its domain) that is different from interpretations of its extension T’ by the
adjunction of new axioms, and since these interpretations are also interpretations of T
(for T’ extends T), T has non-intended interpretations, and so cannot be categorical.27

Footnote 25 continued
Existentialgebiet keine Axiome mehr zuläβt, aber es zuläβt, daβ für ein weiteres Gebiet dieselben und dann
natürlich auch neue Axiome gelten. Neue Axiome, denn die bloβ alten Axiome bestimmen ja nur das alte
Gebiet. Relativ definit ist die Sphäre der ganzen, der gebrochenen Zahlen, der rationalen Zahlen, ebenso der
diskretenDoppelreihenzahlen (komplexenZahlen).Absolut definit nenne ich eineMannigfaltigkeit,wenn es
keine andere Mannigfaltigkeit gibt, welche dieselben Axiome hat wie sie (alle zusammen). Kontinuierliche
Zahlenreihe, kontinuierliche Doppelzahlenreihe” (Schuhmann and Schuhmann 2001, pp. 101–102).
26 A mathematical domain is one in which all the elements that exist are obtained as the closure of a basis
of given elements by some set of operations. The idea is close to our notion of a freely generated structure.
27 Gauthier (2004, p. 124) also denies that by definiteness Husserl meant categoricity. He believes, however,
that what was meant was semantic completeness. Frommy point of view, he is not so off the mark, but since
I think Husserl clearly operates with a syntactic notion of deduction, syntactic completeness is, I believe,
the correct reading.
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My interpretation of Husserl’s notion of relative definiteness (that is, definiteness
relative to the domain of the theory) has both properties 1 and 2 above. The quote
closeswith a definition of absolute definiteness formanifolds. Amanifold is absolutely
definite, Husserl says, if there is no other manifold with the same axioms. It is, I admit,
tempting to read this as requiring that the theory of an absolutely definite manifold
is categorical, and so, supposing that an absolutely definite manifold is one whose
theory is absolutely definite, that absolutely definite theories are categorical theories.
If, however, we interpret, as I propose and as Husserl explicitly says in other places,
that an absolutely definite theory is a d-complete theory, then the set of sentences (of
the language of the theory) that are true in two different interpretations of such a theory
must coincide. Hence, from the perspective of the relevant language, that is, of what
can be said, there is essentially only one interpretation of an absolutely definite theory.
This may be what Husserl had in mind here, that all interpretations of an absolutely
definite axiom system are theoretically indistinguishable.

But there is another, possibly better reading of this. Suppose T is absolutely definite,
i.e. in my interpretation, d-complete. Let’s now by “domain” understand “existential
domain”, that is the set of objects whose existence the theory implicitly or explicitly
requires. Since no element of a domain can exist that is not required to exist by its axiom
system, as Husserl seems to demand here (first part of the quote), and since every ele-
ment an absolutely definite system can define has already been defined and introduced
in its “existential domain” (d-completeness), this domain cannot be enlarged and so
given rise to another domain with the same system of axioms. Hence, an absolutely
definite axiom system can have only one existential domain. Absolute definiteness is,
then, in this reading, categoricity of a sort, but only with regard to existential domains.

So, no matter which interpretation one favors (I believe the second accords better
with the letter and spirit of the quote), one is relieved of the burden of having to force
uponHusserl an interpretation that he never explicitly allowed or could have implicitly
meant.

Still in the Gottingen talks [Husserliana version, Husserl (1970a, pp. 441–442)],
Husserl says that a domain of things (ein Sachgebiet) can be delimited (umgrenzt) (the
term “umgrenzt” indicates, I believe, that Husserl has non-extendibility in mind) by
an axiom system in either a complete or incomplete (vollständig und unvollständig)
manner. The axiom system is complete, he continues, if it contains an axiom of com-
pleteness stating that “by these and only these axioms the domain is determined and
no other [axiom, JJS] is therein valid”).28 If no such axiom belongs to the system,
he claims, new axioms can be added to it and, as a consequence “the objects of the
domain can be formally defined by new determinations”.29 However, to grant non-
extendibility of the domain directly by means of an axiom of completeness, as Hilbert
does, is for Husserl an inauthentic (unechte) way of proceeding, for, as he says, any
axiom system can be so completed. Although the inauthentic axiom of completeness
can assure non-extendibility, and, more importantly d-completeness, it does so in a
trivial manner that does not interest Husserl.

28 “Durch die und die Axiome ist das Gebiet bestimmt und altere gelten nicht”, Husserl (1970a, p. 442).
29 “Die Objekte des Gebietes formal durch neue Bestimmungen definiert sein können”, Husserl (1970a, p.
442).
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He faced, then, a problem: “We ask, then, if there are axiom systems that do not
contain the axiom of closure but can, for each proposition, decide whether it belongs
to the domain of deduction as to its truth or falsity”.30 This problem obviously has
to do with deductive decidability of every proposition referring to the domain. An
authentic way of granting non-extendibility of a system’s existential domain is by
requiring its apophantic domain to be non-extendible, that is, the absolute complete-
ness (d-completeness) of the system. But, even if this is a sufficient condition for
non-extendibility, it is not a necessary one, a weaker notion can accomplish the task,
and this is where relative definiteness comes in. An axiom system that is definite
relative to its existential domain cannot be enlarged by the adjunction of any inde-
pendent sentence referring to this domain. So, no new object can be introduced in the
system’s existential domain; it is non-extendible. The problem is solved. Authentic
non-extendibility is achieved in the most economic way.

The explicit definitions of definiteness in the Gottingen talks are the following:31

Definite in a restricted manner or relatively definite = definite in the sense so far—
absolutely definite:

(1) An axiom system is relatively definite if each assertion that has a sensewith respect
to it is decided relative to its domain. An axiom system is absolutely definite if any
assertion that has a sense with respect to it is decided in general. So, absolutely
definite = complete in Hilbert’s sense.

(2) If not only no axiom can be added for the objects of the domain (which receives
its sense from the axioms already in place), but if no axiom in general can be
added.

(3) But this implies that the multiplicity (the domain) cannot be enlarged and such
that for the enlarged domain the same axioms are valid that are valid for the old
one.

In (1) of this quote Husserl explicitly characterizes relative definiteness of an axiom
system as decidability of sentences referring to its domain and absolute definiteness
as decidability tout court, just as I interpret him. The comment that follows identifies
absolute definiteness with completeness “in Hilbert’s sense”. What Husserl seems to
have in mind is completeness as non-extendibility as expressed in Hilbert’s axiom of
completeness. Obviously, no interpretation of a d-complete theory can be extended by
the adjunction of definable elements.32

30 “Wir fragen nun also, ob es Axiomensysteme gibt, die keine Schliessungsaxiom enthalten und doch,
nämlich aufgrund ihrer besonderen Natur, es jedem Satz ansehen lassen, ob er in die Sphäre ihrer Deduktion
nach Wahrheit und Falschheit gehört”.
31 “Beschränk definit oder relativ definit = definit im bisherigen Sinn—absolut definit: (1) Relativ definit ist
ein Axiomensystem, wenn jeder nach ihm sinnvolle Satz in Beschränkung auf sein Gebiet entschieden ist.
Absolut definit ist ein Axiomensystem, wenn jeder nach ihm sinnvolle Satz überhaupt entschieden ist. Also
ist absolut definit = vollständig in Hilbertschen Sinn. (2) Wenn nicht nur für die Objekte des Gebietes kein
Axiom hinzugefügt werden kann (das durch schon gegebene Axiome Sinn erhält), sondern wenn überhaupt
kein Axiom hinzugefügt werden kann. (3) Darin liegt aber, dass die Mannigfaltigkeit (das Gebiet) nicht so
zu erweitern ist, dass für das erweiterte dasselbe Axiomensystem gilt wie für das alte.” (Schuhmann and
Schuhmann 2001, p. 103).
32 Compare with the interpretation I advanced above of Husserl’s claim that another manifold cannot exist
with the same theory of an absolutely definite manifold.
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In (2) Husserl gives the immediate consequences of both notions, namely, the
impossibility of adding new axioms to a relatively definite theory that refer to its
domain, which in the previous quote appears as the essential trait of relative definite-
ness, and the impossibility tout court of extending an absolutely definite system by
the adjunction of new independent axioms.

In (3) Husserl makes explicit the association of absolute definiteness with non-
extendibility: the domain of an absolutely definite axiom system cannot be enlarged
and still satisfy the same axioms. Although an absolutely definite system cannot be
enlarged at all, provided one preserves the language, a relatively definite system can be
enlarged by the adjunction of new axioms. But, first, these axiomsmust be undecidable
in the narrower theory and, second, any new element they introduce cannot belong to
the original “existential domain”. So, in both cases, relative or absolute definiteness,
the original “existential domain” cannot be enlarged.

Let’s now consider a later work, Formal and Transcendental Logic (Husserl 1969),
particularly Sect. 31. In it, Husserl gives an unambiguous characterization of the notion
of definiteness, and it is clear that it is still the same of his earlier days. He first defines
amultiplicity, that is, a domain of being,33 to be definite if the “whole infinite system”
of assertions that are true in it can be derivable from a finite set of axioms. In other
words, a multiplicity is definite if its theory (the set of all assertions true in it) is finitely
axiomatizable. This axiom system is then necessarily d-complete. The definiteness of
a domain of being, Husserl says, fulfills the Euclidean ideal of a domain whose truths
are “fully disclosed in a theory”.

The notion of definiteness can be extended to formal multiplicities, that is, multi-
plicities defined by non-interpreted axiom systems. A formal multiplicity is definite
if the axiom system that characterizes it (defines it “implicitly”) is d-complete; only
thus the “whole science-form […] can be derived by pure deduction”. “‘Theoretically
explainable province”’ Husserl says, “and ‘definite system of axioms’ are equivalent”.
The idea of a province completelymastered by a theory requires, for Husserl, that this
theory be complete, that is, that it is able to derive all that is true in the province. This
is the Euclidean ideal, which, if extended to formal domains, requires their theories to
be d-complete.

After characterizing definiteness formultiplicities, Husserl says that the term “com-
plete systemof axioms” he uses in this section ofFTL as a synonym for “definite system
of axioms” derives from Hilbert, who, he says, “attempts […] to complete a system of
axioms by adding a separate ‘axiom of completeness”’ Since Hilbert axioms of com-
pleteness make the axiom systems to which they are added categorical, some may feel
tempted to conclude that, for Husserl, definiteness meant categoricity. But in keep-
ing with what I said earlier, I reaffirm that the primary goal of Hilbert completeness
axioms is to ensure non-extendibility. Hilbert’s axioms of completeness, moreover,
ensured d-completeness of the systems (or so both Hilbert and Husserl believed), and
it is this that Husserl found relevant and synonymous to his notion of definiteness.

The same ideas reappear in Husserl 1970b, especially section 9f, where Husserl
says: “Among multiplicities those that are called ‘definite multiplicities’ distinguish

33 “Multiplicity means properly the form-idea of an infinite object-province for which there exists the unity
of a theoretical explanation or, in other words, the unity of a nomological science” (Husserl 1969, p. 95).
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themselves, whose definition by a complete system of axioms give the formal object-
substrata therein contained, in all their deductive determinations, a totality of a
particular nature, with which one constructs, so to speak, the logic-formal idea of a
world in general”. The idea is clear; the formal domain of a non-interpreted theory is
definitewhen this theory is d-complete in the sense that it gives the domain of the theory
the character of a “world”, that is, a realm of being inwhich every assertion about it that
has a sense is either true (deducible in the theory) or false (its negation is deducible).

The concepts of definiteness are, moreover, just what he needed to solve the “prob-
lem of imaginaries”. In his words, the problem is this34: ”The tendency towards
formalization manifested in arithmetical algebra led to forms of operation [Opera-
tionsformen] that were arithmetically meaningless, but which showed the noteworthy
[merkwürdige] property of being, nonetheless, capable of being employed in the calcu-
lus”. In other words, one can write in the language of the arithmetic of positive integers
meaningless terms such as (2–3) or

√ − 1 (denoted, respectively, by −1 and i) that
do not denote anything, or better, denote imaginary entities. The problem originated
in the fact that by pretending these symbols denote numbers proper and manipulating
them as equal to denoting symbols a more powerful calculus can be obtained. But,
Husserl asks, and this is, for him, where the problem lies, if a meaningful assertion
can be derived in this calculus, are we justified in taking it as true?

In Husserl’s words35:

The narrow domain D has axioms AD, the ensemble of purely logical conse-
quences CD, the rest of the domain � for example AD +A′ = A�; or A� ⊃ AD,
so the consequence (C = consequence): C� = CD +CA′ = CD+A′ . If a proposi-
tion does not contain enlarged operation complexes [Operationskomplexionen]
[imaginary numbers, my note], it is not self-evident that it belongs to CD.

Husserl supposes than that a narrow domain D is enlarged, by the adjunction of
imaginary elements, into a domain � such that the axioms of the extended domain
constitute a consistent extension of the axioms of the narrow one. Now, he says,
it is not self-evident that a sentence in the language of AD proved in A� can be
proved in AD. In contemporary terminology, it is not obvious that any consistent
extension is conservative. (Husserl commits an error here, it is not always the case
that CD + CA′ = CD+A′ . In general CD + CA′ ⊆ CD+A′).

For Husserl, the solution of this problem is the following36:

A passage through the imaginary is allowed: (1) if the imaginary can be formally
defined in a larger consistent system of deduction and if (2) the formalized
original domain of deduction has the property that any sentence belonging to

34 Husserl (1970a, p. 432).
35 Husserl (1970a, pp. 439–440).
36 “Ein Durchgang durch die Imaginäre ist gestattet: (1) wenn das Imaginäre sich in einem konsistenten
umfassenden Deduktionssystem formal definieren lässt und wenn, (2) das ursprüngliche Deduktionsgebiet
formalisiert die Eigenschaft hat, dass jeder in dieses Gebiet fallende Satz entweder aufgrund der Axiome
dieses Gebietes wahr oder aufgrund derselben falsch, d.i. mit den Axiomen widersprechend ist“ (Husserl
(1970a, p. 441)).
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this domain is either true on the basis of the axioms of the domain or else, it is
false on the same basis, i.e. is in contradiction with the axioms.

In other words, imaginaries are allowed provided the original axiom system is
definite relative to its domain.

For both Husserl and Hilbert, axiomatic systems, designed to organize domains
of knowledge according to the Euclidean (or Aristotelian) ideal of theory, must obey
some criteria of adequacy. The question is which. There are different criteria of success
for axiomatic system, categoricity, s-completeness, d-completeness, to name the most
important, and different perspectives from where to judge the degree of success of a
determinate axiomatization. Do all the truths referring to a particular domain of being
(for example, the natural numbers) follow by logical necessity from the basic axioms
of the domain (d-A-completeness)? Is this domain exhaustively characterized up to
logical equivalence (d-completeness)? Is it exhaustively characterized up to formal
or algebraic equivalence (categoricity)? Does the system characterize the intended
domain itself, not merely a sub-domain of it that happens to satisfy the same axioms
(non-extendibility)? These notions differ subtly one from another and, even when
logically equivalent, they display different shades of meaning. To make things worse,
they can all be given the same denomination: completeness. The word “complete”,
when referring to axiomatic systems, seems naturally interpretable as meaning that the
system does not need further axioms, that it is complete (“to say that an axiomatization
is complete is […] to say that the axiomatization has achieved its goal, in particular
that no further addition of ‘new axioms’ is called for”—Awodey and Reck 2002,
p. 5). Misinterpretations are bound to arise, particularly in relation to texts written
when these notions were not clearly distinguished and, some of them, not even clearly
formulated (or even formulated at all).

By about 1899–1900, both Husserl and Hilbert knew that axiomatic systems could
be desinterpreted and differently reinterpreted, but seemingly neither had a clear idea
of the extent to which reinterpretations could be carried out. There was not at the
time a clear distinction between syntax and semantics and, despite Frege, no very
careful delimitations of valid logical axioms and rules of inference; neither Hilbert
nor Husserl were particularly concerned about making explicit the logical context in
which axiomatizations were to be carried out. There was no distinction made between
first and higher-order languages and obviously no sign of the modern obsession with
first-order logic (in fact, the traditional conception of logic as the theory of concepts,
not first-order logic, naturally dominated). So, confusion and misinterpretations are
almost inevitable. The interpretation I put forward here, however, is I believe not only
the one that better accords with Husserl’s words but, more importantly, the one that
better accords with his philosophy.
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