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Abstract Many efforts have been made in recent years to construct formal systems
for mechanizing general mathematical reasoning. Most of these systems are based
on logics which are stronger than first-order logic (FOL). However, there are good
reasons to avoid using full second-order logic (SOL) for this task. In this work we
investigate a logic which is intermediate between FOL and SOL, and seems to be a
particularly attractive alternative to both: ancestral logic. This is the logic which is
obtained from FOL by augmenting it with the transitive closure operator. While the
study of this logic has so far been mostly model-theoretical, this work is devoted to its
proof theory (which is much more relevant for the task of mechanizing mathematics).
Two natural Gentzen-style proof systems for ancestral logic are presented: one for
the reflexive transitive closure, and one for the non-reflexive one. We show that these
systems are sound for ancestral logic and provide evidence that they indeed encompass
all forms of reasoning for this logic that are used in practice. The two systems are
shown to be equivalent by providing translation algorithms between them. We end
with an investigation of two main proof-theoretical properties: cut elimination and
constructive consistency proof.

Keywords Ancestral logic · Proof theory · Gentzen-style system · Cut elimination

1 Introduction

Due to recent advances in the field of automated reasoning, formal systems for mech-
anizing mathematical reasoning are attracting a lot of interest [see, e.g., Kamareddine
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(2003), Campbell et al. (2008), Constable et al. (1986), Rudnicki (1992)].Most of these
systems go beyond first-order logic (FOL), because the latter is too weak for this task:
one cannot even provide in it a categorical characterization of the most basic concept
of mathematics—the natural numbers. While FOL is too weak, using second-order
logic (SOL) for this task has many disadvantages too. First of all, SOL has doubtful
semantics, as it is based on debatable ontological commitments. Moreover, it does not
seem satisfactory that dealingwith basic notions (such as the natural numbers) requires
the use of the strong notions involved in SOL, such as quantification over all subsets
of infinite sets. In addition, SOL is difficult to deal with from a proof-theoretical point
of view.

The above considerations indicate that the most suitable framework for mechaniz-
ing mathematical reasoning should be provided by some logic which is intermediate
between FOL and SOL. There are several natural candidates for this task that have
been suggested in the literature, such as weak second-order logic, ω-logic, cardinality
logic, etc. In Shapiro (1991) it was shown how the natural numbers can be cate-
gorically characterized in all these logics. We believe that the most suitable choice
among them for the task of formalizingmathematics is ancestral logic (AL)—the logic
obtained by augmenting FOLwith the concept of transitive closure of a given relation.
Indeed, ancestral logic provides the most suitable framework for the formalization of
the recursive definitions of fundamental concepts which are characteristic for basic
mathematics [see, e.g., Avron (2003), Shapiro (1991), Smith (2008)].

The expressive power of ancestral logic is equivalent to that of the other candidates,
in the sense that any class of infinite structures definable by one of them can be defined
by ancestral logic. However, there are several reasons to prefer it over the others. One
of them is that it seems to be the easiest choice from a proof-theoretic point of view.
Another important reason is simply the simplicity of the notion of transitive closure.
Any person, even with no mathematical background whatsoever, can easily grasp the
concept of the ancestor of a given person (or, in other words, the idea of transitive
closure of a certain binary relation).

Here are some examples of the use of transitive closure in every day life:

– The transitive closure of the relation “x is a child of y” is: “x is a descendant of
y”. We often use this transitive relation to make inferences, such as: if a disease is
hereditary, i.e. transferred from parent to child, and one of my ancestors had this
disease, then I’ll have this disease too.

– A mathematical example: Understanding the concept of the natural numbers is
basically understanding that every number is a descendant of zero through the
successor relation. Also, understanding the concept of a well-formed formula in
formal logic involves applying certain operations again and again starting from a
class of atoms. Thus, the understanding of basic arithmetic and basic logic relies
on the understanding of the idea of the transitive closure.

The examples above (especially the last one) show that any system designed for cap-
turing the ability to do mathematics must provide the means to create the transitive
closure of a relation and to make appropriate inferences regarding it. The examples
also show that our basic understanding of the transitive closure operator involves two
components: the ability to construct a new binary relation from a given one (the tran-
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sitive closure of the given relation), and the ability to infer that if a certain property is
hereditary between objects in a given relation, then it will also be hereditary between
objects which are related by the new relation.

Most of the works on ancestral logic have so far been carried out in the context
of finite model theory [see, e.g., Ebbinghaus et al. (1995)]. Clearly, the focus on
finite structures renders these works irrelevant for the task of formalizing mathemat-
ics. Moreover, most of this research has been dedicated to model theory, while for
mechanizing mathematics we need useful proof systems.

In this paper we suggest a complementary view of ancestral logic by investigating
it from a proof-theoretical point of view. We first review the basic definitions and
present some of the most important model-theoretic properties of ancestral logic.
Then, we go on to develop useful proof systems for ancestral logic. A first step in
this direction was done in Avron (2003) where a Gentzen-style system for the non-
reflexive transitive closure operator was presented. Therein it was stated that: “a major
research task here is to find out what other rules (if any) should be added in order
to make the system ‘complete’ in some reasonable sense”. The main goal of this
work is to provide an answer to this question. We show that the system proposed in
Avron (2003) is too weak, as it fails to prove certain fundamental properties of the
transitive closure operator. We then take further steps towards a useful proof system
for ancestral logic by proposing a stronger system, TCG , which is sound for this
logic and apparently encompasses all forms of reasoning for this logic that are used in
practice. TCG is proven to be equivalent to Hilbert-style systems previously suggested
in the literature for the reflexive transitive closure, in the sense that there are translation
algorithms between them that preserve provability. In the context of our systemwe also
investigate two crucial proof-theoretical properties: cut elimination and the existence
of a constructive consistency proof. Unfortunately, it turns out that the generalization
of PA’s induction rule employed in our system for ancestral logic renders Gentzen’s
standard methods for analyzing PA inapplicable. Nevertheless, we do show that in
the case of arithmetic the ordinal number of the systems is ε0, like the ordinal of PA.

2 First-order languages augmented by a transitive closure operator

A standard mathematical definition of the transitive closure of a binary relation is as
follows.

Definition 1 Let X be a set and R ⊆ X × X be a binary relation on X . The transitive
closure operator TCR of the relation R is the smallest relation TCR ⊆ X × X such
that the following holds:

1. R ⊆ TCR .
2. TCR is transitive.

The relation TCR exists for any binary relation R. To see this, note that there exists
at least one transitive relation containing R, the trivial one: X × X . Furthermore, the
intersection of any family of transitive relations is again transitive. Hence, the transitive
closure of R is the intersection of all transitive relations containing R.
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Definition 1 is an impredicative definition. A more constructive, predicative char-
acterization can be obtained as follows:

Definition 2 Let X be a set and R ⊆ X × X be a binary relation on X . The transitive
closure operator TCR of the relation R is defined by

TCR =
⋃

n∈N+
Rn,

where Rn is defined by

Rn =
{
R, if n = 1,

Rn−1 ◦ R, otherwise.

Ancestral logic is an extension of first-order logic obtained by augmenting FOLwith a
transitive closure operator. The essential idea in embedding the concept of the transitive
closure operator into a logical framework is that one may treat a first-order formula
with two (assigned) free variables as a definition of a binary relation. Below are the
corresponding formal definitions of a first-order logic augmented by the transitive
closure operator, and its semantics.

In this paper σ denotes a first-order signature with equality and L1 (σ ) is the first-
order language based on σ . A structure for a first-order language based on σ is an
ordered pair M = 〈D, I 〉, where D is a non-empty set of elements (the domain) and I
is an interpretation function on σ . To avoid confusion regarding parentheses, we use
( , ) for parentheses in a formal language, and [ , ] for parentheses in the metalanguage.

Definition 3 Let σ be a signature for a first-order language with equality, and let
M = 〈D, I 〉 be a structure for σ and v an assignment in M .

– The language LTC (σ ) is defined as the first-order language based on σ , with
the addition of the TC operator defined by: for any formula ϕ in LTC (σ ), x, y
distinct variables, and s, t terms,

(
TCx,yϕ

)
(s, t) is a formula in LTC (σ ). The free

occurrences of x and y in ϕ become bound in this formula.
– The pair 〈M, v〉 is said to satisfy

(
TCx,yϕ

)
(s, t) if there exist a0, ..., an ∈ D

(n > 0) such that v[s] = a0, v[t] = an , and ϕ is satisfied by M and v[x :=
ai , y := ai+1]1 for 0 ≤ i ≤ n − 1.

The logic obtained is called Ancestral Logic and it is denoted by LTC .

The first (as far as we know) to suggest expanding first-order logic by the TC operator
was Martin in Martin (1943, 1949). Actually, Martin used a generalized form of the
transitive closure operator. He expanded first-order logic by adding for each n ∈ N

a TCn operator which, when applied to an 2n-ary predicate, produce a new 2n-ary
predicate. InMyhill (1952),Myhill presented a first-order logic augmented only by the
operator TC1, but together with the introduction of ordered pairs into the language.

1 v [x := a] denotes the x-variant of v which assigns to x the element a from D.
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The expressive power of the logic presented by Martin turns out to be the same as that
of the logic presented by Myhill.

In the semantics presented in this paper,
(
TCx,yϕ

)
(s, t) requires that there should

be at least one ϕ-step between s and t . However, another well-studied form of the
transitive closure operator is its reflexive form, RTC .

Definition 4 Let σ be a first-order signature, and let M = 〈D, I 〉 be a structure for σ

and v an assignment in M .

– The language LRTC (σ ) is defined as LTC (σ ) with TC replaced by RTC .
– Thepair 〈M, v〉 is said to satisfy (

RTCx,yϕ
)
(s, t) if s = t or there exista0, ..., an ∈

D (n > 0) such that v[s] = a0, v[t] = an , and ϕ is satisfied by M and v[x :=
ai , y := ai+1] for 0 ≤ i ≤ n − 1.

Similarly, the logic obtained is denoted by LRTC .

In the presence of equality, the two forms of the transitive closure operator are definable
in terms of each other. The reflexive transitive closure operator is definable using the
non-reflexive form by

(
RTCx,yϕ

)
(s, t) := (

TCx,yϕ
)
(s, t) ∨ s = t,

while the non-reflexive TC operator is definable by either one of the following forms
(which can be easily shown to be equivalent):

(
TCx,yϕ

)
(s, t) : = ∃z

(
ϕ

{
s

x
,
z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)

= ∃z
((

RTCx,yϕ
)
(s, z) ∧ ϕ

{
z

x
,
t

y

})

= ∃z∃u
((

RTCx,yϕ
)
(s, z) ∧ ϕ

{
z

x
,
u

y

}
∧ (

RTCx,yϕ
)
(u, t)

)
,

where u, z are fresh variables.2

One difference between the two forms is the ability to define quantifiers. As shown
in Avron (2003), the existential quantifier can be defined using the TC operator by:

∃xϕ :=
(
TCu,v

(
ϕ

{u
x

}
∨ ϕ

{v

x

}))
(s, t)

However, it cannot be defined using the RTC operator, as proven below.

Proposition 1 The existential quantifier is not definable in the quantifier-free fragment
of LRTC .

2 ϕ
{
t1
x1

, ...,
tn
xn

}
denotes the formula obtained from ϕ by simultaneously substituting ti for each free

occurrence of xi in ϕ, assuming that t1, ..., tn are free for x1, ...xn in ϕ.
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Proof Take σ to consist of a constant symbol 0 and a unary predicate symbol P . It
can be easily shown by induction that each quantifier-free sentence ψ in Lσ

RTC
3 is

logically equivalent to one of the following sentences: P (0),¬P (0), 0 = 0, or 0 �= 0.
Since ∃x P (x) is clearly not logically equivalent to any of these four sentences, we
conclude that the existential quantifier cannot be defined in the quantifier-free fragment
of LRTC . �
A simple compactness argument shows that in general the transitive closure oper-
ator, TC , is not first-order definable [see, e.g., Fagin (1974), Aho and Ullman
(1979)]. However, there are cases in which there is a first-order sentence equiva-
lent to

(
TCx,yϕ

)
(s, t). The obvious case is when ϕ is a valid formula, since then(

TCx,yϕ
)
(s, t) is also a valid formula. This case is a special case of the following

type of formulas.

Definition 5 Let ϕ be a formula in L1 (σ ). ϕ is called transitive (w.r.t x and y)
if for every structure M for σ , every assignment v for M , and every a, b, c ∈
D: if M, v [x := a, y := b] |� ϕ and M, v [x := b, y := c] |� ϕ, then M,

v [x := a, y := c] |� ϕ.

Example 1 The formula P (x) ∧ P (y) is transitive, while P (x) ∨ P (y) is not.

Proposition 2 If ϕ is a transitive formula in L1 (σ ), then
(
TCx,yϕ

)
(s, t) is definable

in L1 (σ ).

Proof The result follows immediately from the fact that for every transitive formula

ϕ and s, t terms in L1 (σ ), M, v |� (
TCx,yϕ

)
(s, t) iff M, v |� ϕ

{
s
x , t

y

}
, for every

structure M for σ and assignment v for M . �
As mentioned, ∃x P (x) is definable by the formula

(
TCu,v (P (u) ∨ P (v))

)
(s, t).

Thus, P (u)∨ P (v) is an example of a non-transitive formula whose transitive closure
is first-order definable. Thus far, there is no complete characterization of the set of
first-order logic formulas whose transitive closure is definable in first-order logic.

Though the TC operator cannot be defined in first-order logic, it is definable in
second-order logic. Thus, the formula

(
RTCx,yϕ

)
(s, t) can be defined by the second-

order formula ∀X ((Xs ∧ ∀x∀y (ϕ (x, y) ∧ Xx → Xy)) → Xt), from which follows
that the TC operator is also second-order definable.

The concept of the transitive closure operator is embedded in our understanding of
the natural numbers. Therefore, it is only natural to explore the expressive power of
various first-order languages for arithmetic augmented by the TC operator. Let 0 be a
constant symbol and s a unary function symbol. It is known that inL{0,s}

TC , together with
the standard axioms for the successor function, the following sentence categorically
characterizes the natural numbers:

∀x (
x = 0 ∨ (

TCw,u (s(w) = u)
)
(0, x)

)
(1)

3 For a logic L we write Lσ to denote the logic where the language is based on the signature σ .
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In Avron (2003) it was shown that all recursive functions and relations are definable in
L{0,s,+}
TC , where + is a binary function symbol, though in the absence of ordered pairs,

one cannot define addition in L{0,s}
TC . This implies that the upward Lwenheim–Skolem

theorem fails for ancestral logic, and AL is finitary, i.e. the compactness theorem fails
for it. Moreover, AL is not even arithmetic, thus any formal deductive system which
is sound for AL is incomplete.

Though more expressive than FOL, ancestral logic does not offer all the wealth
of SOL. Thus, it follows from the downward Lwenheim–Skolem theorem that the
real numbers cannot be characterized up to isomorphism in it (while they can be
characterized in SOL). The same is true for the notion of well-ordering.

An important indication that the expressive power of ancestral logic captures a
very significant and natural fragment of SOL is provided by the fact that it is equiva-
lent Shapiro (1991) to several other intermediate logics between first-order logic and
second-order logic that have been suggested and investigated in the literature. This
includes weak second-order logic, logics with a “cardinality quantifier”, and logics
with Henkin quantifiers [see Shapiro (1991), Henkin (1961), Yasuhara (1966)]. The
advantages of ancestral logic over these logics are that it is particularly natural (as
explained above), and, no less important, it seems much easier to develop an adequate
proof system for it than for the other logicsmentioned above. Thiswill be demonstrated
in the next section.

3 Formal proof systems for ancestral logic

3.1 Gentzen-style systems for ancestral logic

Among the various intermediate logics between FOL and SOLmentioned in the intro-
duction, ancestral logic seems to be the easiest choice from a proof-theoretical point of
view. We now turn to substantiate this claim. Ideally, we would like to have a consis-
tent, sound, and complete axiomatic system for ancestral logic. However, since there
can be no sound and complete system for it, one should instead look for useful and
effective partial formal systems that are still adequate for formalizing mathematical
reasoning. The systems defined in this section are extensions of Gentzen-style system
for classical first-order logic with equality, LK= Gentzen (1935).

In what follows the letters Γ,� represent finite (possibly empty) multisets of
formulas, ϕ,ψ, φ arbitrary formulas, x, y, z, u, v variables, and r, s, t terms. For con-
venience, we shall denote a sequent of the formΓ ⇒ {ϕ} byΓ ⇒ ϕ, and employ other
standard abbreviations, such asΓ,� instead ofΓ ∪�. To improve readability, in some
derivations we omit the context from the sequents. Also, for readability, frequently
we shall not distinguish between the sequents ϕ ∧ ψ,Γ ⇒ � and ϕ,ψ, Γ ⇒ �,
or Γ ⇒ �,ϕ ∨ ψ and Γ ⇒ �,ϕ,ψ , as they are provable from one another using
cuts. We employ the following standard abbreviation for a sub-proof P ending with
the sequent S:

.... P
S
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In Martin (1943, 1949), Myhill (1952) Martin and Myhill suggested two equiva-
lent Hilbert-style systems for ancestral logic in which the reflexive transitive closure
operator was taken as primitive. Below is a Gentzen-style proof system for the RTC
operator which is equivalent to the Hilbert-style systems presented in these original
papers.

Definition 6 (The system RTCG) The system RTCG is defined by adding to LK=
the axiom

Γ ⇒ �,
(
RTCx,yϕ

)
(s, s) (2)

and the following inference rules:

Γ ⇒ �,ϕ
{
s
x , t

y

}

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t) (3)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, r) Γ ⇒ �,

(
RTCx,yϕ

)
(r, t)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t) (4)

Γ,ψ (x) , ϕ (x, y) ⇒ �,ψ
{ y
x

}

Γ,ψ
{ s
x

}
,
(
RTCx,yϕ

)
(s, t) ⇒ �,ψ

{ t
x

}
(5)

In all three ruleswe assume that the termswhich are substituted are free for substitution
and that no forbidden capturing occurs. In Rule (5) x should not occur free in Γ and
�, and y should not occur free in Γ,� and ψ .

Rule (5) is a generalized induction principle which states that if t is a ϕ-descendant
of s or equal to it, then if s has some hereditary property which is passed down from
one object to another if they are ϕ-related, then t also has that property.

We next show that RTCG is adequate for RTC , in the sense that it does give the
RTC operator the intended meaning of the reflexive transitive closure, and can derive
all fundamental rules concerning the RTC operator that have been suggested in the
literature (as far as we know).

Proposition 3 The following rules are derivable in RTCG
4:

Γ ⇒ �,ϕ
{
s
x , r

y

}
Γ ⇒ �,

(
RTCx,yϕ

)
(r, t)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, r) Γ ⇒ �,ϕ

{
r
x , t

y

}

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

(6)

4 These rules were suggested in Avron (2003), and they are counterparts of the Hilbert-style rules suggested
in Martin (1943, 1949), Myhill (1952).
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Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

Γ ⇒ �, s = t, ∃z
((

RTCx,yϕ
)
(s, z) ∧ ϕ

{
z
x , t

y

})

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

Γ ⇒ �, s = t, ∃z
(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

) (7)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

Γ ⇒ �,
(
RTCy,xϕ

)
(t, s)

(
RTCx,yϕ

)
(s, t) , Γ ⇒ �

(
RTCy,xϕ

)
(t, s) , Γ ⇒ �

(8)

Γ ⇒ �,
(
RTCx,yϕ

)
(s, t)

Γ ⇒ �,
(
RTCu,vϕ

{
u
x , v

y

})
(s, t)

(
RTCx,yϕ

)
(s, t) , Γ ⇒ �

(
RTCu,vϕ

{
u
x , v

y

})
(s, t) , Γ ⇒ �

(9)

Γ, ϕ ⇒ �,ψ

Γ,
(
RTCx,yϕ

)
(s, t) ⇒ �,

(
RTCx,yψ

)
(s, t)

(10)

(
RTCx,yϕ

)
(s, t) , Γ ⇒ �

(
RTCu,v

(
RTCx,yϕ

)
(u, v)

)
(s, t) , Γ ⇒ �

(11)

ϕ
{ s
x

}
, Γ ⇒ �

(
RTCx,yϕ

)
(s, t) , Γ ⇒ s = t,�

ϕ
{
t
y

}
, Γ ⇒ �

(
RTCx,yϕ

)
(s, t) , Γ ⇒ s = t,�

(12)

Conditions:

– In all the rules we assume that the terms which are substituted are free for substi-
tution and that no forbidden capturing occurs.

– In (7) z should not occur free in Γ,� and ϕ
{
s
x , t

y

}
.

– In (9) the conditions are the usual ones concerning the α-rule.
– In (10) x, y should not occur free in Γ,�.
– In (11) u, v should not occur free in ϕ.
– In (12) y should not occur free in Γ,� or s in the left rule, and x should not occur
free in Γ,� or t in the right rule.

Proof In the following proof we omit the contexts Γ,� from the sequents in the
derivations.

– The first rules in (6):

⇒ ϕ
{
s
x , r

y

}

⇒ (
RTCx,yϕ

)
(s, r)

(3) ⇒ (
RTCx,yϕ

)
(r, t)

⇒ (
RTCx,yϕ

)
(s, t)

(4)

The proof of the second rule in (6) is analogous.
– The first rule in (7): Consider the following proof P1:
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⇒ (
RTCx,yϕ

)
(y, y)

s = y ⇒ (
RTCx,yϕ

)
(s, y) ϕ

{
y
x , z

y

}
⇒ ϕ

{
y
x , z

y

}

s = y, ϕ
{
y
x , z

y

}
⇒ (

RTCx,yϕ
)
(s, y) ∧ ϕ

{
y
x , z

y

}

s = y, ϕ
{
y
x , z

y

}
⇒ ∃w

((
RTCx,yϕ

)
(s, w) ∧ ϕ

{
w
x , z

y

})

The sequent
(
RTCx,yϕ

)
(s, w) , ϕ

{
w
x ,

y
y

}
⇒ (

RTCx,yϕ
)
(s, y) is provable in

RTCG using (6). Thus, we can construct the following P2:

....(
RTCx,yϕ

)
(s, w) ∧ ϕ

{
w
x ,

y
y

}
⇒ (

RTCx,yϕ
)
(s, y)

∃w
((

RTCx,yϕ
)
(s, w) ∧ ϕ

{
w
x ,

y
y

})
⇒ (

RTCx,yϕ
)
(s, y) ϕ

{
y
x , z

y

}
⇒ ϕ

{
y
x , z

y

}

∃w
((

RTCx,yϕ
)
(s, w) ∧ ϕ

{
w
x ,

y
y

})
, ϕ

{
y
x , z

y

}
⇒ (

RTCx,yϕ
)
(s, y) ∧ ϕ

{
y
x , z

y

}

∃w
((

RTCx,yϕ
)
(s, w) ∧ ϕ

{
w
x ,

y
y

})
, ϕ

{
y
x , z

y

}
⇒ ∃w

((
RTCx,yϕ

)
(s, w) ∧ ϕ

{
w
x , z

y

})

Denote by A (y) the formula ∃w
((

RTCx,yϕ
)
(s, w) ∧ ϕ

{
w
x ,

y
y

})
∨ s = y. From

P1 and P2 weobtain a proof of the sequent A (y) , ϕ
{
y
x , z

y

}
⇒ A

{
z
y

}
, fromwhich,

using Rule (5), we get (∗) A
{
s
y

}
,
(
RTCx,yϕ

)
(s, t) ⇒ A

{
t
y

}
. Since ⇒ A

{
s
y

}

is derivable from the equality axiom ⇒ s = s, applying a cut on it and on (∗),
followed by another cut on the results and the premiss of Rule (7), we get the
desired sequent.

The proof of the second rule in (7) is symmetric.

– The left rule in (8): Clearly, s = t ⇒ (
RTCy,xϕ

)
(t, s) is provable in RTCG

using Axiom (2). The sequent ϕ (x, y) ,
(
RTCy,xϕ

)
(x, s) ⇒ (

RTCy,xϕ
)
(y, s)

is also provable in RTCG using (6). Thus, we can construct the following proof:
ϕ

{
z
y , s

x

}
⇒ ϕ

{
z
y , s

x

}

ϕ
{
z
y , s

x

}
⇒ (

RTCy,xϕ
)
(z, s)

(3)
ϕ (x, y) ,

(
RTCy,xϕ

)
(x, s) ⇒ (

RTCy,xϕ
)
(y, s)

(
RTCx,yϕ

)
(z, t) ,

(
RTCy,xϕ

)
(z, s) ⇒ (

RTCy,xϕ
)
(t, s)

(5)

ϕ
{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t) ⇒ (

RTCy,xϕ
)
(t, s)

∃z
(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)
⇒ (

RTCy,xϕ
)
(t, s)

The sequent
(
RTCx,yϕ

)
(s, t) ⇒ s = t, ∃z

(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)
is

provable in RTCG using Rule (7). From this, by two cuts, we obtain:

�RTCG

(
RTCx,yϕ

)
(s, t) ⇒ (

RTCy,xϕ
)
(t, s)

An additional cut on the premiss of Rule (8) results in the desired sequent. The
proof of the right rule is symmetric.
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– The left rule in (9): In RTCG the sequent s = t ⇒
(
RTCu,vϕ

{
u
x , v

y

})
(s, t) is

provable. By a method similar to the one used in the proof of (8) we get:

�RTCG ∃z
((

RTCx,yϕ
)
(s, z) ∧ ϕ

{
z

x
,
t

y

})
⇒

(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

Applying cuts and Rule (7) results in:

�RTCG

(
RTCx,yϕ

)
(s, t) ⇒

(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

An additional cut on the premiss of Rule (9) results in the desired sequent. The
proof of the right rule is symmetric.

– Rule (10): Consider the following two proofs: P1:

ϕ ⇒ ψ

ϕ
{
s
x , z

y

}
⇒ ψ

{
s
x , z

y

}
⇒ (

RTCx,yψ
)
(z, z)

ϕ
{
s
x , z

y

}
⇒ (

RTCx,yψ
)
(s, z)

(6)

P2 :

(
RTCx,yψ

)
(s, z) ⇒ (

RTCx,yψ
)
(s, z)

ϕ ⇒ ψ

ϕ
{
z
x , u

y

}
⇒ ψ

{
z
x , u

y

}

(
RTCx,yψ

)
(s, z) , ϕ

{
z
x , u

y

}
⇒ (

RTCx,yψ
)
(s, u)

(6)

(
RTCx,yψ

)
(s, z) ,

(
RTCx,yϕ

)
(z, t) ⇒ (

RTCx,yψ
)
(s, t)

(5)

Thus from P1 and P2 we can obtain a proof of the sequent ϕ
{
s
x , z

y

}
∧ (

RTCx,yϕ
)

(z, t) ⇒ (
RTCx,yψ

)
(s, t), from which we can obtain a proof of ∃z

(
ϕ

{
s
x , z

y

}
∧

(
RTCx,yϕ

)
(z, t)

) ⇒ (
RTCx,yψ

)
(s, t). Clearly, the sequent s = t ⇒(

RTCy,xψ
)
(s, t) is provable in RTCG using Axiom (2). Using Rule (7) we

get
(
RTCx,yϕ

)
(s, t) ⇒ s = t, ∃z

(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)
, and two cuts

result in a proof of
(
RTCx,yϕ

)
(s, t) ⇒ (

RTCx,yψ
)
(s, t).

– Rule (11): Rule (4) entails the existence of a proof in RTCG of the sequent(
RTCx,yϕ

)
(s, u) ,

(
RTCx,yϕ

)
(u, v) ⇒ (

RTCx,yϕ
)
(s, v). Applying Rule (5)

results in a proof of
(
RTCx,yϕ

)
(s, s) ,

(
RTCu,v

(
RTCx,yϕ

)
(u, v)

)
(s, t) ⇒(

RTCx,yϕ
)
(s, t). Since ⇒ (

RTCx,yϕ
)
(s, s) is an axiom of RTCG , a cut results

in a proof of
(
RTCu,v

(
RTCx,yϕ

)
(u, v)

)
(s, t) ⇒ (

RTCx,yϕ
)
(s, t).

– The left rule in (12): From the sequent ϕ
{ s
x

} ⇒, by standard rules of LK=,
we can derive the sequent: ∃z

(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)
⇒, where z is

a fresh variable. By Rule (7) we can obtain �RTCG

(
RTCx,yϕ

)
(s, t) ⇒
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s = t, ∃z
(
ϕ

{
s
x , z

y

}
∧ (

RTCx,yϕ
)
(z, t)

)
. Thus, a cut results in a proof of

(
RTCx,yϕ

)
(s, t) ⇒ s = t . The proof of the right rule in (12) is analogous.

�
In Avron (2003) a Gentzen-style system for the non-reflexive transitive closure oper-
ator was presented. Below is a proof system for the non-reflexive transitive closure
operator which is an extansion of the one suggested in Avron (2003).5

Definition 7 (The system TCG ) The system TCG is defined by adding to LK= the
axiom

(
TCx,yϕ

)
(s, t) ⇒ ϕ

{
s

x
,
t

y

}
∨ ∃z

(
ϕ

{
s

x
,
z

y

}
∧ (

TCx,yϕ
)
(z, t)

)
(13)

and the following inference rules

Γ ⇒ �,ϕ
{
s
x , t

y

}

Γ ⇒ �,
(
TCx,yϕ

)
(s, t) (14)

Γ ⇒ �,
(
TCx,yϕ

)
(s, r) Γ ⇒ �,

(
TCx,yϕ

)
(r, t)

Γ ⇒ �,
(
TCx,yϕ

)
(s, t) (15)

Γ,ψ (x) , ϕ (x, y) ⇒ �,ψ
{ y
x

}

Γ,ψ
{ s
x

}
,
(
TCx,yϕ

)
(s, t) ⇒ �,ψ

{ t
x

}
(16)

The same restrictions on the rules in RTCG apply here, and in Axiom (13) z is a fresh
variable.

Proposition 4 In TCG all the TC-counterparts of the rules in Proposition 3 are
derivable.

We denote the system presented in Avron (2003), which is obtained from TCG by
discarding Axiom (13), by TC ′

G . We start by showing that the system TCG suggested
here is indeed a proper extension of TC ′

G .

Proposition 5 Axiom (13) is independent of the other rules in TCG, i.e. it is unprov-
able in TC ′

G.

Proof Suppose the sequent (13) is derivable in TC ′
G . It is easy to see that all the rules

in TC ′
G remain valid and derivable in RTCG if we replace the operator TC with

RTC . Hence, the corresponding sequent for RTC is provable in RTCG . However, it
is obviously not valid, since

(
RTCx,yϕ

)
(s, s) holds for all s and ϕ. In general, any

sequent that is valid only for the TC operator and not for the RTC operator will not
be derivable in TC ′

G . �

5 A different extension of the proof system suggested in Avron (2003), which is equivalent to the system
presented in this paper, is described in Cohen and Avron (2014).
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Since each of the two forms of the transitive closure operator can be expressed in terms
of the other, it is interesting to explore the connection between the two systems.

Definition 8 Define recursively two interpretations, ′ from LRTC to LTC and ∗ from
LTC to LRTC , as follows:

– ϕ′ = ϕ∗ = ϕ, for ϕ atomic formula.
– (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.
– (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ ′, where ◦ ∈ {∧,∨,→}.
– (Qxϕ)∗ = Qxϕ∗ and (Qxϕ)′ = Qxϕ′, where Q ∈ {∀, ∃}.
–

((
TCx,y A

)
(s, t)

)∗ = ∃z
(
A∗

{
s
x , z

y

}
∧ (

RTCx,y A∗) (z, t)
)

–
((
RTCx,y A

)
(s, t)

)′ = (
TCx,y A′) (s, t) ∨ s = t

We use the standard abbreviations: Γ ∗ for {ϕ∗|ϕ ∈ Γ } and Γ ′ for
{
ϕ′|ϕ ∈ Γ

}
.

First we show that the above interpretations preserve provability (i.e., any theorem
of TCG can be translated into a theorem of RTCG , and vice versa), and as such, they
are considered as translations between the two systems [see, e.g. Prawitz andMalmnäs
(1968)].6

Proposition 6 The following holds:

1. �TCG Γ ⇒ � implies �RTCG Γ ∗ ⇒ �∗.
2. �RTCG Γ ⇒ � implies �TCG Γ

′ ⇒ �
′
.

Proof The proof of (1) is carried out by induction on the proof in TCG . We state here
only the cases concerning the TC operator.

– Axiom (13): We need to show that ∃z
(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)
⇒

ϕ∗
{
s
x , t

y

}
∨ ∃z

(
ϕ∗

{
s
x , z

y

}
∧ ∃w

(
ϕ∗

{
z
x , w

y

}
∧ (

RTCx,yϕ
∗) (w, t)

))
is prov-

able in RTCG . This can easily be obtained from Rule (7) using the standard rules
of LK=.

– Rule (14): An application of Rule (14) can be transformed into the following
derivation:

⇒ ϕ∗
{
s
x , t

y

}
⇒ (

RTCx,yϕ
∗) (t, t)

⇒ ϕ∗
{
s
x , t

y

}
∧ (

RTCx,yϕ
∗) (t, t)

⇒ ∃z
(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)

– Rule (15): Rule (6) entails the existence of a proof in RTCG of the sequent

∃z
(
ϕ∗

{
r
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)
⇒ (

RTCx,yϕ
∗) (r, t). A cut on the hypoth-

6 It should be noted that in some texts [see, e.g., Da Silva et al. (1999), D’Ottaviano and Feitosa (2012)] a
more general notion of a translation, which includes the demand that the interpretation preserves derivability
and not only provability, is used.
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esis⇒ ∃z
(
ϕ∗

{
r
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)
results in a proof of⇒ (

RTCx,yϕ
∗)

(r, t). Then, we can construct the following derivation:

ϕ∗
{
s
x , z

y

}
⇒ ϕ∗

{
s
x , z

y

}
(
RTCx,yϕ

∗) (z, r) ⇒ (
RTCx,yϕ

∗) (z, r) ⇒ (
RTCx,yϕ

∗) (r, t)
(
RTCx,yϕ

∗) (z, r) ⇒ (
RTCx,yϕ

∗) (z, t)
(4)

ϕ∗
{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, r) ⇒ ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

ϕ∗
{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, r) ⇒ ∃z

(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)

∃z
(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, r)

)
⇒ ∃z

(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)

The desired sequent is now obtained by one more cut on the second hypothesis

⇒ ∃z
(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, r)

)
.

– Rule (16): An application of Rule (16) can be transformed into the following
derivation:

ψ∗ (x) , ϕ∗ (x, y) ⇒ ψ∗ { y
x

}

ψ∗ { s
x

}
, ϕ∗

{
s
x , z

y

}
⇒ ψ∗ { z

x

}
ψ∗ (x) , ϕ∗ (x, y) ⇒ ψ∗ { y

x

}

ψ∗ { z
x

}
,
(
RTCx,yϕ

∗) (z, t) ⇒ ψ∗ { t
x

} (5)

ψ∗ { s
x

}
, ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t) ⇒ ψ∗ { t

x

}

ψ∗ { s
x

}
, ∃z

(
ϕ∗

{
s
x , z

y

}
∧ (

RTCx,yϕ
∗) (z, t)

)
⇒ ψ∗ { t

x

}

The proof of (2) is also carried out by induction, and again, we only present here
the cases concerning the RTC operator.

– Axiom (2): The interpretation of the axiom is ⇒ (
TCx,yϕ

′) (s, s) ∨ s = s, which
is easily derivable from the equality axioms.

– Rule (3): An application of Rule (3) can be transformed into the following deriva-
tion:

⇒ ϕ′
{
s
x , t

y

}

⇒ (
TCx,yϕ

′) (s, t)
(14)

⇒ (
TCx,yϕ

′) (s, t) ∨ s = t

– Rule (4): By classical reasoning, to show that ⇒ (
TCx,yϕ

′) (s, t) , s = t is prov-
able from ⇒ (

TCx,yϕ
′) (s, r) , s = r and ⇒ (

TCx,yϕ
′) (r, t) , r = t , it suffices

to show that the following four sequents are provable:

–
(
TCx,yϕ

′) (s, r), r = t ⇒ (
TCx,yϕ

′) (s, t) , s = t , which is derivable using
equality rules and Weakening.

–
(
TCx,yϕ

′) (r, t), s = r ⇒ (
TCx,yϕ

′) (s, t) , s = t , which is derivable using
equality rules and Weakening.

–
(
TCx,yϕ

′) (s, r),
(
TCx,yϕ

′) (r, t) ⇒ (
TCx,yϕ

′) (s, t) , s = t , which is deriv-
able using rule (15) and Weakening.
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– r = t, s = r ⇒ (
TCx,yϕ

′) (s, t) , s = t , which is derivable using equality
rules and Weakening.

Using cuts we obtain a proof of ⇒ (
TCx,yϕ

′) (s, t) , s = t .
– Rule (5): An application of rule (5) can be transformed into the following deriva-
tion:

ψ ′ (x) , ϕ′ (x, y) ⇒ ψ ′ { y
x

}

ψ ′ { s
x

}
,
(
TCx,yϕ

′) (s, t) ⇒ ψ ′ { t
x

} (16)
ψ ′ { s

x

}
, s = t ⇒ ψ ′ { t

x

}

ψ ′ { s
x

}
,
(
TCx,yϕ

′) (s, t) ∨ s = t ⇒ ψ ′ { t
x

}

�
Proposition 7 The following holds:

1. �TCG (ϕ∗)′ ⇒ ϕ and �TCG ϕ ⇒ (ϕ∗)′.
2. �RTCG

(
ϕ′)∗ ⇒ ϕ and �RTCG ϕ ⇒ (

ϕ′)∗
.

Proof The proofs of both (1) and (2) are carried out by induction on ϕ. If ϕ does not
contain the TC or RTC operator, then

(
ϕ′)∗ and (ϕ∗)

′
are equal to ϕ, hence provably

equivalent to it.
For (1) assume that ϕ := (

RTCx,y A
)
(s, t). Thus,

(
ϕ′)∗ is the formula

∃z
((

A′)∗ {
s
x , z

y

}
∧ RTCx,y

(
A′)∗

(z, t)
)

∨ s = t . By the induction hypothesis

we have �RTCG

(
A′)∗ ⇒ A, thus by (10) the sequent

(
RTCx,y

(
A′)∗)

(s, t) ⇒(
RTCx,y A

)
(s, t) is also provable in RTCG . It is easy to check that the sequent

∃z
((

A′)∗ {
s
x , z

y

}
∧ RTCx,y

(
A′)∗

(z, t)
)

∨ s = t ⇒ (
RTCx,y

(
A′)∗)

(s, t) is prov-

able in RTCG [(using (6) and (2)]. A cut on the last two sequents results in a

proof of ∃z
((

A′)∗ {
s
x , z

y

}
∧ RTCx,y

(
A′)∗

(z, t)
)

∨ s = t ⇒ (
RTCx,y A

)
(s, t).

For the converse, denote ∃z
((

A′)∗ {
u
x , z

y

}
∧ RTCx,y

(
A′)∗

(z, w)
)

∨ s = t by

ψ (notice that
(
ϕ′)∗ is ψ

{ s
u , t

w

}
). It is easy to see that ψ

{ s
u , x

w

}
,
(
A′)∗ ⇒

ψ
{ s
u ,

y
w

}
is provable in RTCG . Applying Rule (5) results in a proof of the

sequent ψ
{ s
u , s

w

}
,
(
RTCx,y

(
A′)∗)

(s, t) ⇒ ψ
{ s
u , t

w

}
. The sequent ⇒ ψ

{ s
u , s

w

}

is clearly provable using the equality axiom, thus, a cut entails a proof of the
sequent

(
RTCx,y

(
A′)∗)

(s, t) ⇒ (
ϕ′)∗. As before, by the induction hypothesis

we have that �RTCG A ⇒ (
A′)∗, so by (10) the sequent

(
RTCx,y A

)
(s, t) ⇒(

RTCx,y
(
A′)∗)

(s, t) is also provable in RTCG , and by one cut we obtain a proof of(
RTCx,y A

)
(s, t) ⇒ (

ϕ′)∗.
For (2) assume that ϕ := (

TCx,y A
)
(s, t). Hence, (ϕ∗)′ is the formula

∃z
(
(A∗)′

{
s
x , z

y

}
∧ (

TCx,y (A∗)′ (z, t) ∨ z = t
))
. It is easy to check that the sequent

∃z
(
(A∗)′

{
s
x , z

y

}
∧ (

TCx,y (A∗)′ (z, t) ∨ z = t
)) ⇒ (

TCx,y (A∗)′
)
(s, t) is prov-

able in TCG . By the induction hypothesis we have �TCG (A∗)′ ⇒ A, so by
the TC-counterpart of (10) the sequent

(
TCx,y (A∗)′

)
(s, t) ⇒ (

TCx,y A
)
(s, t)

is also provable in TCG . Applying a cut results in a proof of the sequent
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∃z
(
(A∗)′

{
s
x , z

y

}
∧ (

TCx,y (A∗)′ (z, t) ∨ z = t
)) ⇒ (

TCx,y A
)
(s, t). For the con-

verse, notice that Axiom (13) entails the provability of
(
TCx,y (A∗)′

)
(s, t) ⇒

(A∗)′
{
s
x , t

y

}
∨ ∃z

(
(A∗)′

{
s
x , z

y

}
∧ (

TCx,y (A∗)′
)
(z, t)

)
. Clearly, the sequent (A∗)′

{
s
x , t

y

}
⇒ ∃z

(
(A∗)′

{
s
x , z

y

}
∧ z = t

)
is provable in TCG , and again, using the

induction hypothesis on A together with the TC-counterpart of (10) we get that(
TCx,y A

)
(s, t) ⇒ (

TCx,y (A∗)′
)
(s, t) is provable in TCG . By cuts we get �TCG(

TCx,y A
)
(s, t) ⇒ ∃z

(
(A∗)′

{
s
x , z

y

}
∧ (

TCx,y (A∗)′ (z, t) ∨ z = t
))
. �

Theorem 1 TCG and RTCG are equivalent in the following sense:

1. �RTCG Γ ⇒ � iff �TCG Γ
′ ⇒ �

′
.

2. �TCG Γ ⇒ � iff �RTCG Γ ∗ ⇒ �∗.

Proof The left-to-right implications are simply Proposition 6. For the right-to-left
implication, consider �TCG Γ

′ ⇒ �
′
. By 6 we get that �RTCG

(
Γ ′)∗ ⇒ (

�′)∗.
Since by Proposition 7 we have that �RTCG

(
ϕ′)∗ ⇒ ϕ and �RTCG ϕ ⇒ (

ϕ′)∗ for
any formula ϕ, using cuts we get that �RTCG Γ ⇒ �. The proof of (2) is similar. �

3.2 On cut elimination and constructive consistency proofs

Next we examine some fundamental proof-theoretical properties of TCG , the most
important of which is cut elimination.7 The cut rule is the following:

Γ ⇒ �,ϕ ϕ, Γ ⇒ �

Γ ⇒ �
(cut)

The formula ϕ is called the cut formula. Intuitively, we may view this rule as allowing
the use of lemmas, such as ϕ, in proofs.

The cut-elimination theorem (also known as Gentzen’s Hauptsatz) is a central
proof theoretical property of a sequent calculus, originally proved byGerhard Gentzen
(1935) for the system LK and for the system LJ for intuitionistic logic. The cut
elimination theorem states that any proof can be effectively transformed into a proof
with the same end-sequent without using the cut rule. Thus, a cut-free proof is “direct”
in the sense that it avoids intermediate results (which may be more general than the
final theorem). The cut elimination theorem has some immediate consequences. Any
system which admits cut elimination enjoys the sub-formula property, which states
that given a cut-free proof of a sequent, every formula that appears in the proof is a
sub-formula of a formula in the end-sequent. Another consequence is the separation
property: any provable sequent has a proof using only the logical rules or axioms
for the logical operators occurring in the end-sequent. These properties are essential
for a system which aims to have an effective proof search procedure. For LK=, an
alternative version of the cut elimination theorem must be used due to the presence
of the equality axioms. A cut is said to be inessential if the cut formula is of the form

7 In this section we refer to TCG , though similar considerations apply to RTCG as well.
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s = t , otherwise it is called an essential cut. A system with equality is said to admit
cut elimination if all essential cuts are admissible.

In semantical proofs of cut elimination one usually establishes not only closure
under cut, but also completeness. However, this type of proof does not provide a
constructive method for eliminating cuts from a given proof. In contrast, syntactic
proofs of cut elimination do not just show that the cut rule remains admissible if
it is deleted from the list of the rules of the system, they provide algorithms for
transforming any proof containing essential cuts into an essential-cut-free proof. The
standard syntactic cut elimination proofs Gentzen (1935), Takeuti (2013), Pohlers
(2009), Troelstra and Schwichtenberg (2000) use a method of going over a given
proof and “reducing” it to a proof which is less complicated in some sense, until
all essential cuts are eliminated. What is reduced can be the complexity of the cut
formula, the “depth” of the proof, the ordinal of the proof, or some other measure for
the complexity of the proof.

For example, Gentzen’s classic proof of the cut-elimination theorem for first-order
logic Gentzen (1935) uses a double induction: the main induction is on the number
of logical connectives and quantifiers in the cut formula, and the sub-induction is on
the “rank” of the cut, which is some measure depending on the place of the cut in the
proof. A reduction step is defined for every derivation ending with an application of
the cut rule. For instance, a cut on a compound formula is replaced by cuts on its sub-
formulas, which necessarily contain a smaller number of connectives. For example,
the derivation

.... P1
Γ ⇒ �,ϕ

.... P2
Γ ⇒ �,ψ

Γ ⇒ �,ϕ ∧ ψ
(∧R)

.... P3
ϕ, Γ ⇒ �

ϕ ∧ ψ,Γ ⇒ �
(∧L)

Γ ⇒ �is reduced to

.... P1
Γ ⇒ �,ϕ

.... P3
ϕ, Γ ⇒ �

Γ ⇒ �

By the induction hypothesis, this cut on ϕ can be eliminated, hence the original cut
on ϕ ∧ ψ can also be eliminated.

Following this standard method in the case of TCG , a reduction step should be
defined for every derivation ending with an application of the cut rule. Consider, for
example, the following derivation. (For convenience, we shall omit the context from
the sequents in all the derivations from this point on.)

.... P1

⇒ ϕ
{
s
x , t

y

}

⇒ (
TCx,yϕ

)
(s, t)

(14)

.... P2
ψ(x), ϕ(x,y) ⇒ ψ

{ y
x

}

ψ
{ s
x

}
,
(
TCx,yϕ

)
(s, t) ⇒ ψ

{ t
x

} (16)

ψ
{ s
x

} ⇒ ψ
{ t
x

}
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The natural reduction of this derivation is

.... P1

⇒ ϕ
{
s
x , t

y

}

.... P2
ψ(x), ϕ(x,y) ⇒ ψ

{ y
x

}

ψ
{ s
x

}
, ϕ

{
s
x , t

y

}
⇒ ψ

{ t
x

}

ψ
{ s
x

} ⇒ ψ
{ t
x

}

The cut on the formula
(
TCx,yϕ

)
(s, t) is replaced by a cut on the formula ϕ

{
s
x , t

y

}
,

which is of smaller complexity. Hence, in this case we have a natural reduction of the
proof.

However, let us examine the following derivation:

.... P1
⇒ (

TCx,yϕ
)
(s, r)

.... P2
⇒ (

TCx,yϕ
)
(r, t)

⇒ (
TCx,yϕ

)
(s, t)

(15)

.... P3
ψ(x), ϕ(x,y) ⇒ ψ

{ y
x

}

ψ
{ s
x

}
,
(
TCx,yϕ

)
(s, t) ⇒ ψ

{ t
x

} (16)

ψ
{ s
x

} ⇒ ψ
{ t
x

}

The natural reduction is carried out by constructing the derivation

.... P3
ψ(x), ϕ(x,y) ⇒ ψ

{ y
x

}

ψ
{ s
x

}
,
(
TCx,yϕ

)
(s, r) ⇒ ψ

{ r
x

} (16)

.... P3
ψ(x), ϕ(x,y) ⇒ ψ

{ y
x

}

ψ
{ r
x

}
,
(
TCx,yϕ

)
(r, t) ⇒ ψ

{ t
x

} (16)

(
TCx,yϕ

)
(s, r) ,

(
TCx,yϕ

)
(r, t) , ψ

{ s
x

} ⇒ ψ
{ t
x

}

and using the sub-proofs P1 and P2 to obtain a proof of ψ
{ s
x

} ⇒ ψ
{ t
x

}
by applying

two cuts. Hence the cut on the formula
(
TCx,yϕ

)
(s, t) is replaced here by three cuts

on the formulas
(
TCx,yϕ

)
(r, t),

(
TCx,yϕ

)
(s, r), and ψ

{ r
x

}
. It is unclear what kind

of measure can be used here in order to achieve a reduction in the proof. The number of
applications of Rule (15) has gone down by one, yet the duplication of the derivation
P3 and the application of the induction rule might offset this. Moreover, while the two
new cut formulas,

(
TCx,yϕ

)
(r, t) and

(
TCx,yϕ

)
(s, r), are of complexity equal to that

of the original cut formula and there is reduction of the depth, the real difficulty is that
the new cut formula ψ

{ r
x

}
is not related at all to the original cut formula. Thus it can

be of larger complexity than
(
TCx,yϕ

)
(s, t), unless we force some constraints on the

applicability of the induction rule.
This difficulty is not unique to TCG . It occurs often in systems with an induction

rule, since the use of the induction rule often complicates the reduction of cuts. In
order to avoid this problem Gentzen applied a different method for PAG [Gentzen-
style system for PA Gentzen (1969), Takeuti (2013)]. Instead of proving full cut
elimination for PAG , Genten proved a weaker version of the cut elimination theorem
from which follows the consistency of PAG . A system is said to be consistent if it
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does not admit a proof of the absurd, i.e. the empty sequent. In PAG , as well as in
TCG , formulas never disappear, except in cuts (the only other simplification allowed
is contraction, in which a repetition is reduced). From this follows that there can be
no cut-free proof of the empty sequent. Thus, by proving a weaker version of the
cut elimination theorem which provides an algorithm for eliminating cuts only from
proofs endingwith the empty sequent, one establishes a constructive consistency proof
of the system.8

A crucial step in Gentzen consistency proof for PAG is the elimination of all
occurrences of PAG ’s induction rule from the end-piece of the proof.9 First, all free
variableswhich are not used as eigenvariables in the end-piece of the proof are replaced
by constants. Then, any application of the induction rule up to a specific natural number
is replaced by a corresponding number of structural inference rules. The transformation
is done in the followingway.Assume that the following applicationof PAG ’s induction
rule appears within an end-piece

.... P ′

ψ
{ a
x

} ⇒ ψ
{
s(a)
x

}

ψ
{ 0
x

} ⇒ ψ
{ t
x

}

Since all free variables were eliminated, t is a closed term and hence there is a term
s(. . . (s(0)) such that ⇒ s(. . . (s(0)) = t is provable in PAG without essential cuts or
induction. Therefore, there is also a proof ofψ(s(. . . (s(0))) ⇒ ψ(t)without essential
cuts or induction. Let P ′ (b) be the proof which is obtained from P ′ by replacing a
by b throughout the proof. Each occurrence of the induction rule is replaced by

.... P ′(0)
ψ

{ 0
x

} ⇒ ψ
{
s(0)
x

}
.... P ′(s(0))

ψ
{
s(0)
x

}
⇒ ψ

{
s(s(0))

x

}

ψ
{ 0
x

} ⇒ ψ
{
s(s(0))

x

}
.... P ′(s(s(0)))

ψ
{
s(s(0))

x

}
⇒ ψ

{
s(s(s(0)))

x

}

ψ
{ 0
x

} ⇒ ψ
{
s(s(s(0)))

x

}

8 Gentzen’s proof is constructive in the sense that it provides an effective algorithm for transforming any
proof of the empty sequent into a cut-free one. There is a debate to what extent themethod used to justify that
Gentzen’s procedure always terminates (transfinite induction up to ε0) is acceptable from a pure constructive
point of view. We shall not enter this discussion here, but only note that in Takeuti (2013) there is a detailed
argument that it is not only constructive, but in fact justified even from a finitist standpoint.
9 The end-piece of a proof Gentzen (1969) consists of all the sequents of the proof encountered if we ascend
each path starting from the end-sequent and stop when we arrive to an operational inference rule. Thus the
lower sequent of this inference rule belongs to the end-piece, but its upper sequents do not.
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These consecutive cuts are carried on up to the sequentψ
{ 0
x

} ⇒ ψ
{
s(...(s(0))

x

}
. Then

one more cut is used on the sequent ψ(s(. . . (s(0))) ⇒ ψ(t) to obtain a proof of
ψ

{ 0
x

} ⇒ ψ
{ t
x

}
.

Can a similar method be applied to the TC-induction rule? The problem is that
Gentzen’s transformation uses special features of the natural numbers that generally
do not exist in TCG . To see this, notice that the induction rule Rule (16) entails all
instances of PAG ’s induction rule by taking ϕ to be s (x) = y. However, in the general
caseϕ is an arbitrary formula. Thus, unlike in PAG , we do not have a “built in”measure
for the ϕ-distance between two arbitrary closed terms s and t , . The path from s to t
through ϕ-steps is not known apriori. Moreover, it does not have to be unique.

Unfortunately, this generalization of the induction principle renders this standard
method for analyzing PAG inapplicable. Thus, one should look for useful fragments
of TCG in which cuts can be eliminated from proofs of the empty sequent. One such
fragment can be obtained via restricting TCG ’s induction rule by allowing only ϕ’s
of the form y = t , where x is the only free variable in t . In this way we force a
deterministic path of ϕ-steps between any two closed terms. Obviously, this system is
still adequate for the task of mechanizing mathematics, as its restricted induction rule
still includes that of PAG . Exploring this direction is left for future research.

Another key proof-theoretical method which arises from Gentzen’s consistency
proof for PAG is the assignment of ordinals to proof systems. In Gentzen’s method,
each system is assigned the least ordinal number needed for its constructive consistency
proof. This provides a measure for a complexity of a system which is useful for
comparing different proof systems. The constructive consistency proof of PAG entails
that the ordinal number of PAG is at most ε0, and another theorem ofGentzenGentzen
(1943) shows that it is exactly ε0.

Definition 9 The system TCA is obtained by augmenting TCG with the standard
axioms for successor, addition, and multiplication, together with the axiom character-
izing the natural numbers in ancestral logic Axiom (1).10

We next show that for the standard language of PA the system TCA is equivalent to
PAG , in the sense that there is a provability preserving translation algorithm between
them.11 For the translation we use a beta function which allows us to encode in PA
finite sequences [(this idea is taken from Smith (2008)]. Recall that we can express
facts about sequences of numbers in PA by using a β-function such that for any
finite sequence k0, k1, ..., kn there is some c such that for all i ≤ n, β(c, i) = ki .
Thus, our motivation is that

(
TCx,yϕ

)
(s, t) holds iff for some n, there is a sequence

k0, k1, ..., kn such that k0 = I [s], kn = I [t], and each pair of consecutive terms are
in the relation defined by ϕ. Accordingly, let B be a wff of the language of PA with
three free variables which captures in PA a β-function. For each formula ϕ of the
language of PA define ϕβ := ϕ, and define

((
TCx,yϕ

)
(s, t)

)β to be the formula:

10 Note that the addition of the axioms for multiplication to TCA is not really necessary, as they are
derivable using the TC-formula which defines multiplication given in Avron (2003).
11 If L is a language that expands the language of PA, and S and T are two systems expanding TCA and
PAG for the language L by the same set of additional axioms, then, using practically the same method we
can prove that S and T are equivalent.

123



Synthese (2019) 196:2671–2693 2691

∃z∃c (B (c, 0, s) ∧ B (c, s (z) , t) ∧ ∀u ≤ z∃v∃w

×
(
B (c, u, v) ∧ B (c, s (u) , w) ∧ ϕβ

{
v

x
,
w

y

}))

Proposition 8 �TCA ϕ ⇒ ϕβ and �TCA ϕβ ⇒ ϕ.

Proof The proof is carried out by induction. If ϕ does not contain the TC oper-
ator, ϕβ is equal to ϕ. Let ϕ be

(
TCx,yψ

)
(s, t). Denote by φ (a, b) the formula

∃z∃c(B (c, 0, s) ∧ B (c, s (z) , t) ∧ ∀u ≤ z∃v∃w
(
B (c, u, v) ∧ B

(
c, s (u) , w

) ∧ ϕβ

{
v
x , w

y

} ))
. It is easy to check that ψβ

{
a
x , b

y

}
⇒ φ (a, b) is provable and from

this follows that φ
{ s
a , x

b

}
, ψβ ⇒ φ

{ s
a ,

y
b

}
is also provable. Hence, by Rule (16)

we get φ
{ s
a , z

b

}
, ψβ

{
z
x , t

y

}
⇒ φ

{ s
a , t

b

}
. Now, using Axiom (13) we can get

a proof of
(
TCx,yψ

β
)
(s, t) ⇒ φ

{ s
a , t

b

}
(notice that φ

{ s
a , t

b

}
is exactly ϕβ ).

By the induction hypothesis we have �TCA ψ ⇒ ψβ and by (10) the sequent(
TCx,yψ

)
(s, t) ⇒ (

TCx,yψ
β
)
(s, t) is also provable in TCA. Thus, a cut results

in a proof of
(
TCx,yψ

)
(s, t) ⇒ ϕβ . For the converse, notice that in TCA all

instances of PAG ’s induction rule are derivable. Denote by G (z) the formula
∃c(B (c, 0, s) ∧ B (c, s (z) , a) ∧ ∀u ≤ z∃v∃w

(
B (c, u, v) ∧ B

(
c, s (u) , w

) ∧ ϕβ

{
v
x , w

y

} )) → (
TCx,yψ

β
)
(s, t). It is straightforward to verify that G (0) is provable

using Rule (14) and G (z) ⇒ G (s (z)) is provable using the TC-counterpart of Rule
(6). By applying PA’s induction rule and one cut we get a proof of G (z). We can then
substitute t for a and introduce ∀ to get a proof of ∀zG { t

a

}
, from which by standard

LK rules we can infer ϕβ ⇒ (
TCx,yψ

β
)
(s, t). By the induction hypothesis we have

�TCA ψβ ⇒ ψ thus by (10) the sequent
(
TCx,yψ

β
)
(s, t) ⇒ (

TCx,yψ
)
(s, t) is also

provable in TCA. Hence, a cut results in a proof of ϕβ ⇒ (
TCx,yψ

)
(s, t). �

We use the standard abbreviations: Γ β for
{
ϕβ |ϕ ∈ Γ

}
.

Theorem 2 �TCA Γ ⇒ � iff �PAG Γ β ⇒ �β . In particular, for Γ,� in the
language of P A, �TCA Γ ⇒ � iff �PAG Γ ⇒ �.

Proof It is easy to check that all the inference rules for the TC-operator apply equally
to their β-translated formulas in PAG , and the β-translated analogue of Axiom (1)
is also a theorem of PAG . Therefore corresponding to any proof of Γ ⇒ � in TCA

there is a parallel proof in PAG of Γ β ⇒ �β . For the right-to-left implication first
notice that TCA is an extension of PAG , i.e. any TC-less formula that is provable
in PAG is also provable in TCA (since Rule (16) together with Axiom (1) entail all
instances of PAG ’s induction rule). From this together with Prop. 8 using cuts we can
convert any proof of Γ β ⇒ �β in PAG to a proof of Γ ⇒ � in TCA. �
Corollary 1 The ordinal number of the system TCA is ε0.

Proof Using the translation algorithm between TCA and PAG and the constructive
proof of Proposition 8 (which obviously requires ordinal less than ωω), any construc-
tive proof of the consistency of PAG with transfinite induction up to some ordinal
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greater thatωω can be transformed into a constructive proof of the consistency of TCA

which uses transfinite induction up to the same ordinal, and vice versa. Hence, TCA

and PAG have the same ordinal, which is known to be ε0. �

4 Conclusions and further research

In this paper we reviewed the expressive power of logics augmented by a transitive
closure operator and explored their reasoning potential. This work focused on work-
ing out this potential by presenting effective sound proof systems for ancestral logic
that are strong enough for various mathematical needs. Our next goal is to improve
the computational efficiency of these systems, in order to make them suitable for
mechanization.

In the last section the property of cut-elimination for TCG was discussed. Further
research is required in order to determine what kinds of useful fragments of TCG

do admit cut-elimination. One possible option (already mentioned) is to restrict the
induction rule of TCG by allowing only ϕ’s of the form y = t where x is the only
free variable that occurs in t . Another option is to find out what are the conditions
on a formula ϕ and terms s, t so that there is a proof in TCG for the sequent ⇒(
TCx,yϕ

)
(s, t) without the induction rule, and then restrict the induction rule by

those conditions.
The consistency of TCA certainly implies the consistency of TCG , and the ordinal

of TCG is therefore at most ε0. It seems almost certain that it is exactly ε0. However,
presenting a full rigorous proof that the ordinal of TCG is not less than ε0 is left for
future work.

As declared, we believe that ancestral logic should suffice for most of applicable
mathematics. Substantiating this claim by creating formal systems based on AL and
formalizing in them large portions of mathematics, is a further future work. A promis-
ing candidate for serving as the basis for the system is the predicative set theory PZF ,
presented in Arnon (2004, 2008), which resembles ZF and is suitable for mecha-
nization. The key element of PZF is that it uses syntactic safety relations between
formulas and sets of variables. The underlying logic of PZF is ancestral logic, which
makes it possible to provide inductive definitions of relations and functions which are
sets. An important criterion for the adequacy of AL for the task of formalizing math-
ematics is the extent to which this will be done in a natural way, as close as possible
to real mathematical practice.
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