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Abstract Characterizing different kinds of representation is of fundamental impor-
tance to cognitive science, and one traditional way of doing so is in terms of the
analog–digital distinction. Indeed the distinction is often appealed to in ways both
narrow and broad. In this paper I argue that the analog–digital distinction does not
apply to representational schemes but only to representational systems, where a rep-
resentational system is constituted by a representational scheme and its user, and that
whether a representational system is analog or non-analog depends on facts about that
user. This aspect of the distinction has gone unnoticed, and I argue that the failure to
notice it can be an impediment to scientific progress.
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1 Introduction

Characterizing different kinds of representation is of fundamental importance to cog-
nitive science, and one traditional way of doing so is in terms of the analog–digital
distinction (the a/d distinction, from here on). Indeed the distinction is often appealed
to, in order to explain both specific facts about cognition, and general features of
cognitive architecture. For example, some authors have asked whether the brain is
best characterized as analog or digital,1 the dispute between symbolicists and network
theorists is sometimes described as one about whether cognition employs analog or

1 See e.g., Von Neumann (1958).
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digital representation,2 the debate concerning mental imagery is often described as
one concerning analog mental processes,3 and more recently, several authors have
employed the notion of analog representation in characterizing innate representations
of number.4

An important fact about the a/d distinction is that it is not agreed upon how best to
characterize it. According to the received view, analog representations are continuous,
while digital representations are discrete. According to the alternative view, analog
representations are structurally similar to thatwhich they represent, while digital repre-
sentations are not. In this paper, I will present two versions of the received view and two
versions of the alternative view. I will argue that all four imply that the a/d distinction
does not apply to representational schemes, but only to representational systems, where
a representational system is constituted by a representational scheme and its user, and
that whether a representational system is analog or non-analog depends on facts about
how that user employs the representational scheme. In particular, Iwill argue that all the
accounts surveyed imply that a given representational schememaybe employed in such
a way as to constitute an analog system, or in such a way as to constitute a non-analog
system.Moreover, I will argue that there is good reason to conclude that any account of
the distinction will imply the same result. Finally, I will argue by way of example that
the failure to appreciate this aspect of the distinction can impede scientific progress,
at least in the sense that it can obscure possible solutions to unsolved problems.

I will take no stand on the question whether the received or alternative view is the
correct account of the a/d distinction, nor indeed on whether either of the versions of
each is better than the other. To be sure, the authors I discuss present their versions as
being correct or more appropriate or more useful than other versions, but I will not be
concernedwith the soundness of those arguments here.Also, I amnot going to offermy
own, competing account with those described here. Rather, I will argue that all those
surveyed imply that representational schemes are neither analog nor non-analog, and
that whether a representational system is analog or not depends on facts about the user.

Moreover, all the accounts surveyed here agree that there are systems that are
neither analog nor digital. Therefore my conclusion is not equivalent to the claim that
whether a representational system is analog or digital depends on facts about how the
user employs the representational scheme. A systemmay be non-analog and also non-
digital. It would take further arguments to show that whether a representational system
constitutes a digital or non-digital system turns on how its representational scheme
is employed by its user, and I will not provide those here. Thus while the accounts I
describe define both analog and digital representation, where possible I will discuss
only those portions of the accounts that pertain to analog representation.

It is critical of course to begin with a description of the concepts of representational
schemes, users, and systems. A representational scheme is a set of representations that
formagroup, such that rules for creating and interpreting themapply to all themembers
of the group. Representational schemes are employed by someone, or something, and

2 See e.g., Churchland and Churchland (2000).
3 See e.g., Pylyshyn (1984) and Tye (1991).
4 See e.g., Wynn (1992) and Gallistel et al. (2006).
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whatever it is that employs a scheme, in a given case, I will call the user of that scheme.
More specifically, the user creates (“writes”) and interprets (“reads”) the individual
representations that constitute a scheme. A representational system is constituted by
a scheme and its user.

For example, consider a machine that performs the following simple task: it takes
as input any positive integer, and returns that number multiplied by two. Moreover,
suppose the machine is implemented using a supply of tennis balls, two buckets, and
one person. An individual representation of a number is just that number of tennis
balls in one of the buckets. The representational scheme is just the collection of all
such representations. We feed the machine a given positive integer as input by placing
that number of tennis balls in the first bucket. The person takes one tennis ball from
the first bucket and places it, along with another ball from the general supply, into
the second bucket. This process is repeated until there are no tennis balls remaining
in the first bucket. The output, i.e., double the input, is just the number of tennis
balls in the second bucket when the process is complete. Again, the set of individual
representations is the scheme. The person manipulating them is the user. The scheme
and user together constitute the system.

The user need not and often will not be a human being. For instance, representations
in a personal computer are stored bits of data. They are created and interpreted by other
parts of the computer (e.g., the CPU). In some cases there may be more than one user.
Thus while the CPU is the user in a personal computer, the computer as a whole also
has a user—most likely a human being. Thus it can be useful to distinguish between
the primary user, and the secondary user.5 In the case of the personal computer, some
internal part of the machine is the primary user, and the human is the secondary user.6

There is another sense in which a scheme may have more than one user. The part of
the system that creates representations may not be the same part that interprets them.
Consider for instance a communications network, in which representations are sent
from a transmitter to a receiver. Here the transmitter creates representations, and the
receiver interprets them. In such a case, it may be useful to describe the transmitter as
the writing user and the receiver as the reading user. I will normally just refer to “the
user” of a scheme, except where it is necessary to distinguish between for example
the writing user and reading user.

It is important to note here the distinction between artificial and naturally occur-
ring representational systems. Artificial systems are, obviously, designed with specific
purposes, and the ways in which representations are created and read in such systems
are part of the design. Thus it would be unusual for a given scheme to be employed in
such a way as to constitute an analog system and also in such a way as to constitute
a non-analog system. Nevertheless, I’ll argue below that it is possible, given all the
accounts of the a/d distinction that I’ll survey. Since naturally occurring schemes are
not intentionally designed, it may not be as unusual for them to be simultaneously
employed by multiple users in multiple ways, and thus to partly constitute multiple

5 If necessary it is also possible to talk of the tertiary user, and so on.
6 In this case of course, the primary user and the secondary user do not create and interpret the same
representations. The primary user creates and interprets representations in the machine language. The
human user creates and interprets representations in the computer’s input–output language.
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representational systems, some of which may be analog and some non-analog. My
claim in the last section of the paper is that this possibility has gone unnoticed, and
that this has been something of an impediment to scientific progress.

The rest of the paper will have three main sections. In the first I will describe
two versions of the received view, those provided by Goodman (1968) and Haugeland
(1998). In the second Iwill describe twoversions of the alternative view, those provided
by Maley (2011) and Montemayor and Balci (2007). In all four cases, I will argue
that the account described implies that representational schemes are neither analog
nor non-analog, that the distinction only applies to representational systems, and that
a given scheme may partly constitute both analog and non-analog systems, and that
whether a system is analog or non-analog depends on facts about how the user employs
the scheme. I will conclude, moreover, that there is good reason to suppose that no
matter how the distinction is drawn, the same result will follow. In the third section I
will argue by way of one example that the failure to appreciate this fact can impede
scientific progress, at least in the sense that it can obscure possible solutions to unsolved
problems.

2 The received view

The received view of the a/d distinction holds that analog representation is continuous,
while digital representation is discrete. It is not difficult to find appeals to this view
in a variety of contexts.7 Both Goodman (1968) and Haugeland (1998) have offered
detailed philosophical accounts of the distinction that at heart rely on the notions of
continuity and discreteness. I will begin with Goodman’s view. In particular, I will
argue that Goodman’s view implies that there are no analog representations. This is
an intolerable result, as we know there are such representations. I will argue further
though, that when the account is remedied, it implies that the a/d distinction applies
to systems and not schemes, and that whether a system is analog or not depends on
how the representations are employed by their user.8

2.1 Goodman

Goodman’s view is that a representational scheme9 is analog just in case it is dense and
finitely undifferentiated both syntactically and semantically. A scheme is syntactically

7 The view grows out of the history of the development of computing technology. Thus, Newell (1983)
writes, “When computerswere first developed in the 1940s theywere divided into two large families. Analog
computers represented quantity by continuous physical variables, such as current or voltages…Digital
computers represented quantities by discrete states…”(p. 195). See also Von Neumann (1958).
8 The accounts offered by Haugeland (1998), Maley (2011), andMontemayor and Balci (2007) do not face
this same problem of implying that there are no analog systems. Thus in those cases I will argue directly
that the accounts as they are imply that whether a system is analog or not depends on facts about its user.
Therefore the discussion of Goodman’s account is considerably longer than each of the others.
9 Goodman does not draw the distinction between schemes and systems in the way I am. But it will be part
of the burden of my argument that his account of the a/d distinction implicitly assumes the notion of a user.
I’m attributing the distinction as I use it to him, so as to make that argument clearer.
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dense if and only if between any two characters (representational types) there is a
third, and it is semantically dense if and only if between any two represented objects
there is a third.10 A scheme is syntactically finitely differentiated if and only if, for
any two characters K and K ′, and any inscription (representational token) m, it must
be theoretically possible to determine either that m does not belong to K or that m
does not belong to K ′. Similarly, a scheme is semantically finitely differentiated if and
only if, for any two characters K and K ′, and any object h, it must be theoretically
possible to determine either that h is not denoted by K or that h is not denoted by K ′.11
It is important to note, and Goodman is quite clear, that he does not confound what is
theoretically possible withwhat is possible in practice.12 I will return to this distinction
below, for it forms the basis of my argument that Goodman’s account implies that there
are no analog representations.

Consider for example an air pressure gauge that has a circular display face with
no markings on it, and a single pointer that moves smoothly around the face as the
pressure increases. It should fit most intuitions that such a gauge is analog. Indeed it is
paradigmatically so. And according to Goodman, it fits the four criteria he describes.
Between any two positions of the pointer, there is a third,13 so the representations are
syntactically dense. Between any two states of affairs represented by the system, there
is a third, so the representations are semantically dense. And according to Goodman,
the representations are neither syntactically nor semantically finitely differentiated. I
am going to argue however, that this scheme is in fact finitely differentiated, and so
despite what Goodman claims is not on his account analog. Moreover, I will argue
that on his account there are no analog representations.

Recall that on the syntactic side finite differentiation means that for any two char-
acters and any inscription, it must be theoretically possible to determine either that
the inscription does not belong to one of the characters, or that it does not belong to
the other. For instance, Goodman notes that a scheme in which straight marks differ
in character if they differ in length “by even the smallest fraction of an inch” would
be a scheme in which finite differentiation of character is theoretically impossible.
The reason is because, “no matter how precisely the length of any mark is measured,
there will always be two (indeed, infinitely many) characters, corresponding to differ-
ent rational numbers, such that the measurement will fail to determine that the mark
does not belong to them” (1968, p. 135). But here Goodman appears to have made a
quantifier-alternation error.

The requirement of syntactic finite differentiation, as Goodman states it, is as fol-
lows:

10 Goodman at times suggests continuity and not density, but the distinction will not be relevant to my
argument.
11 Goodman’s account of the a/d distinction grows out of an account of notational systems for art, which
according to Goodman serve to “[mark] off performances that belong to the work from those that do not”
(1968, p. 128). There are further requirements that Goodman identifies for notational systems.
12 For present purposes, it will suffice that a technique for differentiating characters and inscriptions is
theoretically possible if it is imaginable, even if it does not exist.
13 Note that here and elsewhere Goodman assumes that space–time is infinitely divisible. I take it this in
fact remains an open question, but it will not affect my argument, so I grant it for present purposes.
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∀K∀K ′∀m∃µ((K �= K ′) ⊃ (V (µ,m,K) ∨ V (µ,m,K ′))) (FD)

where K and K ′ are characters, m is a mark, µ is a measurement technique, and
V (µ,m,K) is read as “µ verifies that m is not in (is not a token of) K”. In English
it reads: for any two characters and any mark, there is a measurement technique that
is such that, if the two characters are not identical, the measurement technique will
verify either that the mark does not belong to one of the characters, or that the mark
does not belong to the other character.

The failure of this requirement—its negation— is as follows:

∃K∃K ′∃m∀µ ∼ ((K �= K ′) ⊃ (V (µ,m,K) ∨ V (µ,m,K ′))) (NFD)

It reads: there are two characters and a mark that are such that for any measurement
technique, it is not the case that if the two characters are not identical, themeasurement
technique will verify either that the mark does not belong to one of the characters, or
that the mark does not belong to the other character.

Goodman’s concern with the set of straight marks is as follows14:

∃m∀µ∃K∃K ′ ∼ ((K �= K ′) ⊃ (V (µ,m,K) ∨ V (µ,m,K ′))) (G)

This reads: there is a mark such that for any measurement technique there are two
characters that are such that, it is not the case that if the two characters are not identical,
the measurement technique will verify either that the mark does not belong to one of
the characters, or that the mark does not belong to the other character.

Notice that (G) is the result of reversing the order of the two innermost and two
outermost quantifiers in (NFD).But because this reversal involvesmoving the universal
quantifier on µ from the inside of the existential quantifiers on K and K ′ to the outside
of them, it changes the meaning.15 Goodman’s worry concerns a case in which a mark
and a measurement technique are held constant. But since any given measurement
techniquewill be precise towithin somemargin of error, therewill always be characters
that can be chosen that are such that the measurement technique cannot verify either
that the mark does not belong to one character, or that the mark does not belong to the
other.

Finite differentiation, however, requires that two characters and a mark be held
constant, but not themeasurement technique.A failure offinite differentiationwouldbe
a case inwhich given two characters and amark, no theoretically possiblemeasurement
technique would be able to determine either that the mark did not belong to one of the
characters, or that it did not belong to the other. But given two characters and a mark,
there will always be theoretically possible measurement techniques able to determine

14 The wayGoodman states this worry (quoted above) in fact employs a universal quantifier in the left-most
position. But such a formulation will imply the one in-text, with the existential quantifier. The latter makes
clear that the problem is an alternation of the universal quantifier on µ with the existential quantifiers on K
and K ′.
15 More specifically, although (G) is true of the set of straight marks, (G) does not imply (NFD), and
(NFD) is not true of the set. In other words, although (G) is true of it, the set of straight marks is finitely
differentiated.

123



Synthese (2016) 193:851–871 857

which of the characters the mark does not belong to. These techniques simply involve
looking at the marks under ever-higher magnification, so as to measure their length
with ever-greater accuracy. In short, despite what Goodman claims, the set of straight
marks he envisions is in fact syntactically finitely differentiated, on his account of
syntactic finite differentiation.

Now consider again the air pressure gauge. This representational scheme also is
syntactically finitely differentiated. For given any two characters (pointer position
types) and any inscription (a pointer position token) there are theoretically possible
techniques for determining either that the inscription does not belong to one of the
characters or that it does not belong to the other. Those techniques again simply involve
looking at the gauge under ever-higher magnification. Indeed, it would appear that on
Goodman’s account, there cannot be any schemes that are not syntactically finitely
differentiated, since that would require that no theoretical measurement technique
could determine that a given mark did not belong to one character or to another. But
given two characters and a mark, it is not difficult to imagine theoretical—even if
non-actual—techniques that will make that determination.

Given that analog schemes require a failure of syntactic finite differentiation, and
given that on Goodman’s account there are no such schemes, it follows that on his
account there are no analog representations. But this is clearly false. As I noted above,
the air pressure gauge is paradigmatically analog, and there are many other examples.
Thus, Goodman’s account is unacceptable, at least as is. I will now argue that it can be
remedied, but that when it is it implies that representational schemes, aside from their
users, are neither analog nor non-analog. The remedied account implies that systems of
representations—schemes and their users—are analog or not, and that when employed
by different users a given representational scheme may constitute either an analog or
non-analog system.

Consider again the set of straight marks Goodman describes. It is syntactically
finitely differentiated, because given two characters and a mark, there are theoreti-
cally possible measurements that will determine that the mark is not a token of one
of the characters, or that it is not a token of the other. However, in the case of some
given characters, and some given marks, it will not be true that there are measure-
ment techniques that are possible in practice that will determine that the mark is
not a token of one of the characters or that it is not a token of the other. In gen-
eral, it is in relying on the notion of theoretical possibility that Goodman renders
it the case that there are no representational schemes that are not finitely differen-
tiated, and thus that there are no analog representations. If on the other hand the
notion of what is possible in practice is part of the account, then there will be rep-
resentational schemes that are not finitely differentiated, and there will be analog
representations.16

16 In fact, I think the notion of possibility in practice is more in the spirit of Goodman’s account anyway.
After all, his account of the a/d distinction grows out of an account of the distinction between notational
and non-notational systems, where notational systems are those systems that allow for unique identification
of artwork. His project is thus at root pragmatic, even though Haugeland accuses him of “betray[ing] a
mathematician’s distaste for the nitty-gritty of practical devices” (1998, p. 80). It therefore seems at odds
with his project that some of the criteria he sets for notational systems are wholly theoretical.
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Ifwhatmatters in termsof finite differentiation iswhat is possible in practice though,
then the notion of a user is implicit in the account. For what can be determined in
practice depends on who or what is creating and interpreting the representations, and
what technology is available to them. Return once more to the set of straight marks.
Given two characters and a mark, some users will have acute enough measurement
techniques (which may just include normal vision) and some will not, to determine
either that the mark does not belong to one character or that it does not belong to the
other. For the former user the set will be finitely differentiated, and for the latter it will
not. But if a representational scheme is finitely differentiated for some users but not for
others, and if whether a scheme of representations is analog or not depends on whether
or not it is finitely differentiated, then whether a scheme is analog or not depends on its
user. Or in other words, the a/d distinction does not apply to representational schemes,
but to representational systems.

Consider once more the air pressure gauge. My conclusion is that Goodman’s
account implies that the gauge is neither analog nor non-analog. Rather it partly con-
stitutes an analog system when employed by a user for whom the representations
are not finitely differentiated, and a non-analog system when employed by a user for
whom the representations are finitely differentiated. This should seemcounterintuitive.
Indeed, I said above that the gauge is paradigmatically analog. I said that because we
normally envision a human user, with normal eyesight, using the gauge under normal
lighting conditions. Indeed, the gauge was designed for just such a user. And for such
a user under such conditions, there will be position types and position tokens that that
user cannot differentiate. When employed by such a user, the system constituted by
that user and the gauge is analog. Still, the gauge could be employed by a being with
supernatural eyesight. In that case, the system constituted by both the scheme and user
would be non-analog. Indeed, we could imagine the gauge having been designed for
such users. In that case, the gauge might intuitively seem non-analog.

In short, Goodman’s account implies that there are no analog representations, and
is therefore unacceptable. It can however, be remedied by supplanting a notion of
possibility in practice for the notion of theoretically possible that is present is Good-
man’s description of finite differentiation. When that is done, the account implies
that representational schemes are neither analog nor non-analog, and that whether a
system is analog or not depends on facts about how the user employs the represen-
tational scheme. Specifically, it depends on whether the representations are finitely
differentiated, given the manner in which the user employs them. I will now argue that
Haugeland’s account implies this same result.

2.2 Haugeland

Haugeland (1998) offers a general account of the distinction between analog anddigital
“devices,” where he is “noncommittal” about what qualifies as a device. However, as
will become clear, it is obvious that the notion of a user is implicit in his account.
The burden of my argument therefore, will be to show that on his account whether a
device (system in my terminology) is analog or not depends on facts about how the
user employs the representational scheme, and indeed, that a given scheme may partly
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constitute an analog system when employed in some ways and a non-analog system
when employed in other ways. Moreover, while the present concern is with analog
representations, the part of Haugeland’s account that pertains to analog devices is built
in contrast with the part of his account that pertains to digital devices, so I will first
describe that part of the account.

Haugeland claims that digital devices are defined by the following four features:

(i) a set of types,
(ii) a set of feasible procedures for writing and reading tokens of those types,

and
(iii) a specification of suitable operating conditions, such that
(iv) under those conditions, the procedures for the write–read cycle are positive

and reliable. (1998, p. 78)

Since Haugeland’s account of digital devices is based in part on how representations
are written and read, and since a user is whoever or whatever reads and writes the
representations, it is clear that Haugeland’s account implies the notion of a user. The
same will be true of his account of analog devices. His idea of a positive procedure
is one that “can succeed absolutely and without qualification.” A reliable procedure
is one that “under suitable conditions, can be counted on to succeed virtually every
time” (1998, p. 77). He explains that “Parking the car in the garage (in the normal
manner) if getting it all the way in is all it takes to succeed [and] cutting boards six feet,
plus or minus an inch,” (1998, p. 77) are examples of positive procedures. So too are
“raising the dead, writing poetry, winning at roulette, or counting small piles of poker
chips” (1998, p. 84). Some of these will be reliable, others not. Standard examples of
digital devices then, include “Arabic numerals, abacuses, electrical switches, musical
notation, poker chips, and (digital) computers” (1998, p. 75). Indeed, at least some of
these are paradigmatic examples of digital devices.

Haugeland thinks of analog devices as also employing write–read cycles (1998,
p. 83) but he thinks of these procedures as “approximation” procedures that are defined
by margins of error, such that:

(v) the smaller the margin of error, the harder it is to stay within it,
(vi) available procedures can (reliably) stay within a pretty small margin,
(vii) there is no limit to how small a margin better (future, more expensive) pro-

cedures may be able to stay within, but
(viii) the margin can never be zero—perfect procedures are impossible. (1998,

p. 83)

Since Haugeland allows that analog devices employ representational types and write–
read cycles, it follows that analog devices also have the features (i)–(iv), but with a
modification on (iv). In the case of analog devices, it should read as follows:

(via) under those conditions, the procedures for the write–read cycle are approximate
and reliable.

Here the notion of “approximate” is the idea that the device will employ a margin
of error, and (v)–(viii) explain the relationship between a margin of error and the relia-
bility of a write–read cycle. In general, the smaller the margin of error, the less reliable
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the cycle. Examples of approximation procedures, Haugeland explains, include “all
ordinary (and extraordinary) procedures for parking the car right in the center of the
garage, cutting six-foot boards, measuring out three tablespoons of blue sand, and
copying photographs” (84).17 Examples of analog devices “include slide rules, scale
models, rheostats, photographs, linear amplifiers, string models of railroad networks,
loudspeakers, and electronic analog computers” (1998, p. 82). Again, at least some of
these are paradigmatic examples of analog devices.

However, consider again Haugeland’s claim that cutting a board to six feet, plus or
minus an inch is a positive procedure. This claim does not sit well with the general idea
that approximation procedures involve margins of error while positive procedures do
not, since “plus or minus an inch” is a margin of error. Moreover, Haugeland writes
that whether a procedure “can succeed [absolutely and without qualification]. . . will
depend on the technology and resources available” (1998, p. 77). That is, whether a
procedure is positive or not will depend on the available technology and resources.
But this suggests that the difference between positive procedures and approximation
procedures is not that only the latter involve margins of error, but that the latter involve
relatively narrow margins of error while the former involve relatively broad margins
of error. The difference between cutting a board to six feet plus or minus an inch and
cutting a board to exactly six feet, after all, is that the typical carpenter using typical
tools is able to cut a board to the former specifications but not to the latter.18

If this is correct though, then it is not difficult to show that whether a write–read pro-
cedure is an approximation procedure or a positive procedure depends on facts about
who or what does the writing and reading, and thus, that whether the representational
system based on that procedure is analog or not depends on facts about its user. For
given some margins of error, some users will be able to stay within them and others
will not. Keeping with the example, as noted above the typical carpenter using typical
tools is able to cut a board to six feet plus or minus an inch. But she is not able to cut a
board to six feet plus or minus one one-hundredth of an inch. In contrast, technology
companies brag about their ability to cut plastic and metal to specifications within
just a few microns. Cutting a board to six feet plus or minus one one-hundredth of an
inch is an approximation procedure for a typical carpenter, and any representational
system based on a carpenter cutting boards to within one one-hundredth of an inch is
an analog system. But the same procedure will be a positive procedure for a company
that can cut boards to within microns, and any representational system based on such
a company cutting boards to within one one-hundredth of an inch will be non-analog.

Haugeland himself gives an example that seems to make this clear. He writes,

It is common digital electronics practice to build pulse detectors that flip ‘high’
on signals over about two and a half volts, flipping ‘low’ on smaller signals. . .
What saves the day for engineers is that pulse generators produce only signals
very close to zero and five volts respectively, and the whole apparatus can be

17 Of course, Haugeland developed his account well before the mass availability of “digital” photography.
18 This is not quite precise enough. If space–time is not infinitely divisible, then it is possible for a typical
carpenter using typical tools to cut a board to exactly six feet, but it is not possible for her to know that she
has done so.
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well shielded against static, so the detectors never actually get confused. (1998,
pp. 79–80)

Because the pulse detectors respond in one way to anything below two and half volts
and respond in another way to anything above two and a half volts, the pulse generators
need not generate exactly zero or exactly five volts. Instead, they are allowed a margin
of error of two and a half volts, and they have no difficulty staying within those
margins. That relatively wide margin of error, given the abilities of both the writing
and reading users (the generators and detectors, respectively) is what makes this a
positive procedure, and any representational system based on it non-analog. Were the
abilities of the users different, it might be an approximation procedure and an analog
system of representation (or more specifically, were the system designed with other
users, with different abilities, the proceduremight well be an approximation procedure
and the system might well be analog).

Someone might object here, however, that Hagueland in fact intends something
different by “margin of error” in the digital case than he does in the analog case.
Therefore, my argument above equivocates on “margin of error” and the conclusion
does not follow. The objection runs that in the digital case, there are allowable differ-
ences among representational tokens that are to be interpreted as being of the same
type, and a margin of error is the boundary within which any token will be interpreted
as being of a certain type. By keeping the margins wide relative to users’ abilities
(e..g, in Haugeland’s example in the above quotation) the system ensures reliability.
In the analog case, the objection continues, there are no allowable differences in tokens
that are to be interpreted as being of the same type, or as Haugeland puts it, “every
difference makes a difference” (1998, p. 83). A margin of error, therefore, marks the
amount of deviation there may be between the content in response to which a represen-
tation was created, and the content that representation will be interpreted as carrying
(e.g., if voltage represents number, with xV representing x, 4V will be interpreted as
representing 4, but may have been created in response to 3 or 5). By keeping margins
narrow relative to the amount of allowable error (given the proper functioning and use
of the device as a whole), reliability is again ensured.

Again, it is clear that Haugeland’s account implies the notion of a user—the account
is aimed at devices, not just representational schemes, and includes the idea that tokens
must be written and read. So the burden here is to show that whether a device (system)
is analog or not depends on facts about how the representations are employed by their
user, and indeed, that a given scheme may partly constitute an analog system when
employed by some users and a non-analog system when employed by others. And
even granting the objection, Hagueland’s account implies this. For whether or not
there are allowable differences between tokes that are to be typed together is a matter
of how the representations are to be employed by their users. More specifically, it is a
matter of how the system was designed, and a system may be designed with a set of
representations to be used in one way, or in another. Return once more to Haugeland’s
example of cutting boards to particular lengths. Someone designing a representational
system may use boards of various lengths. The representational scheme is just the
collection of boards. Consider all the boards that are between 5′11′′ and 6′1′′. One
user may type these all together and another may type them to their measured length.

123



862 Synthese (2016) 193:851–871

On Haugeland’s account, the system including the former user will be non-analog and
the system including the latter user will be analog. Even allowing the objection, that
is, Hagueland’s account implies that whether a system is analog or not depends on
facts about how the user employs the representations.

3 The alternative view

Thus I have argued that on both versions of the received view surveyed here, represen-
tational schemes are neither analog nor non-analog, and thatwhether a representational
system is analog or not depends on facts about how the user employs the representa-
tions. I will now argue that on each of two versions of the alternative view, the same
result follows. The alternative view holds that analog representation bears a structural
similarity to that which it represents, and digital representation does not. As with the
received view, it is not difficult to find examples of this view in the literature.19 Both
Maley (2011) and Montemayor and Balci (2007) have offered detailed accounts in
these terms.

3.1 Maley

OnMaley’s view analog representations are physical quantities that vary linearly with
that which they represent. More technically, he writes,

A representation R of a number 20 Q is analog if and only if:
(1) There is some property P of R (the representational medium) such that the

quantity or amount of P maps onto Q; and
(2) As Q increases (or decreases) by an amount d, P increases (or decreases) as

a linear function of Q + d (or Q − d) (2011, p. 8).

Suppose for example we want to use a container of water to represent the number
of people in a room, and we do so by pouring one ounce of water into the container
for each person in the room. Such representations fit with intuition as analog and
according to Maley’s account they would be. The amount of water maps onto the
number represented, and that amount varies linearly with the number represented.
Now consider the familiar base-ten system of Arabic numerals. These are everyone’s
idea of digital representations, and they are certainly non-analog according to Maley’s
account (as we’ll see in a moment, they are digital on his account). Numbers are not
represented by quantities (the size or weight or etc. of the numerals has no bearing on
what number they represent). It is true that as the numbers represented grow in size,
so too does the number of digits needed to represent those numbers, but this growth
is not linear. It takes no more digits to represent the number ninety, for example, than
it does to represent the number ten.

19 See for example Horak (2000).
20 Maley holds that the a/d distinction applies only to representations of number. Though they do not argue
for it, most authors disagree, assuming that representations with all manner of content may be either analog
or digital. Maley gives historical reasons for his view, but I will not address the topic here.
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My argument will require discussion of Maley’s account of digital representations
as well. He writes that,

. . . we can. . . precisely characterize digital representation as
(1) A series of digits, each of which is a numeral in a specific place in the series;

and
(2) A base, which determines the value of each digit as a function of its place,

as well as the possible number of numerals that can be used for each digit.
(2011, pp. 9–10)

As I noted above, this characterization captures our normal usage of the Arabic
numerals, as of course it should. That’s no surprise either, since Maley builds his
account specifically around the Arabic numerals. Now imagine the same base-ten set
of representations, but using cups of water instead of the Arabic numerals. Suppose for
example we let a cup with one ounce of water replace the numeral ‘1’, a cup with two
ounces replace the numeral ‘2’, and so on. An array of three cups in which the furthest
left cup had two ounces of water, the middle cup had seven ounces, and the right cup
had five ounces, for example, would represent the number two-hundred-seventy-five.
These representations are also digital on Maley’s account. That makes perfect sense,
since they differ from the Arabic numerals only in that cups of water are used as
numerals, in place of the familiar symbols.

However, imagine the same cups of water, but with the following modification: the
temperature of the water in the cups varies, such that when the number represented is n
the temperature is n ◦C. OnMaley’s account these representations are both digital and
analog. Numbers are represented by series of digits together with a base, but also there
is a property of the medium that maps onto the number represented and that varies
linearly with it. I said above that on all the accounts discussed here, the a/d distinction
is not exhaustive, but it is mutually exclusive. No account is intended to allow for
representations to be both analog and digital, and indeed, no account should.21 What
has gone wrong here?

The source of the problem is that Maley’s characterizations of both analog and
digital representation depend on the simple possession, by representational schemes,
of certain kinds of properties. But there is no demand that those properties play any
role in the creation or interpretation of individual representations. According to the
account, if a representational scheme possesses a property of the medium that varies
linearly with that which is represented then the representations are analog, regardless
of whether that property is relevant to the interpretation of individual representations.
Similarly, according to the account, if a scheme is a series of digits with a base then
the representations are digital, regardless of whether that feature of the representations
plays any role in their interpretation.

Of course, one would normally assume that if a representational scheme possesses
such features asMaleydescribes then those features determine the content of individual
representations. Indeed, Maley seems to have made that assumption. But the example

21 Again, on my view a representational scheme is neither analog nor non-analog, but may with some users
constitute an analog system and with others constitute a non-analog system. But no system will be both
analog and non-analog.
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shows that that need not be the case. Moreover, the features that determine content
are the features that users rely on in creating representations with particular contents,
and interpreting representations as having particular contents. That is, the assumption
implies the notion of a user, and that whether a system of representations is analog or
digital rests on facts about how the user employs the representations. Specifically, it
rests on which properties of the representations the user considers when creating and
interpreting them.

Again, how the system is designedwill determinewhether it is analogor non-analog.
My point is that a given scheme may be employed by both analog and non-analog
systems. The cups of water might have been designed so as to be interpreted in terms
of the base ten nature of the representations, or they might have been designed so as to
be interpreted in terms of the temperature of the water in the cups. the former system
would be digital, the latter analog. Maley’s account could include explicitly the idea
that the features of the representations that render them analog or digital be the very
same features that determine content. That would be do build the notion of a user, and
the idea that the a/d distinction applies to representational systems (and not merely
schemes), explicitly into the account.

3.2 Montemayor and Balci

Montemayor and Balci (2007) think of analog representations as representations that
possessmetric structure, as opposed to representations that possess linguistic structure.
Whereas the latter are composed of atomic constituents and get their content from the
content and structure of those atomic components, the former either have no atomic
components or have atomic components that play no role in the content of the whole.
And whereas the latter may bear no resemblance to what they represent, the former
do. Specifically, Montemayor and Balci define analog representations as follows:

A representation R is magnitude-based 22 if and only if the rules of composition
governing R do not require the existence of atomic constituents. Computations
on these representations

(a) Produce no syntactic compositions and decompositions and
(b) Must bear a causal or structural isomorphism to what they represent: they

preserve metric structure.23 (2007, pp. 55–56)

Thus, compare the Arabic numerals as normally used to represent the positive inte-
gers, and amounts of sand to represent the same. The numerals include compound
representations that are composed of atomic parts, whose content and structure deter-
mine the content of the whole. For example, ‘345’ represents the number it does in
virtue of the content of the individual component representations ‘3’, ‘4’, and ‘5’, and
in virtue of their arrangement (were those components rearranged, the whole would
have a different content). So the numerals fail to meet Montemayor and Balci’s first

22 Note that Montemayor and Balci use ‘analog’, ‘metric’, and ‘magnitude–based’ interchangeably.
23 Indeed, Montemayor and Balci call this the “resemblance constraint”.
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requirement for analog representation. Moreover, there is no causal or structural iso-
morphism that preserves the metric structure of the numbers represented. In particular,
while the binary asymmetric relation ‘greater-than’ holds among the integers, no such
relation holds among the numerals. Hence, they fail to meet Montemayor and Balci’s
second requirement as well.

In contrast, suppose we allow n ounces of sand to represent the number n. Here
we have representations that meet both requirements. A pile of sand has no syntactic
structure, so the first requirement is met. Moreover, the asymmetric binary relation
‘heavier-than’ will hold between two piles of sand a and b, representing the numbers
i and j respectively, just in case ‘greater-than’ holds between i and j. So the second
requirement is met as well.

Consider though, how a user might determine what number a given pile of sand
represents. One way of doing so would be to weigh the sand. In this case it makes
no difference whether or not the pile was formed by combining individual one-ounce
piles. That is, used in this way there is no syntactic structure to the pile; no syntactic
structuring is needed. But imagine instead that in order to determine the content of a
representation, the user must count the number of one-ounce piles of sand. In that case
the representations do have syntactic structure, at least in the sense that they must be
composed of atomic components (each component being a one-ounce pile of sand).
But then the representations turn out not to be analog on Montemayor and Balci’s
account, since computations on them require atomic constituents.

Once again, the representations themselves are neither analog nor non-analog.
Rather, if employed in one way then the system they partly compose is analog, and if
employed in another way the system they partly compose is non-analog. If the user
relies on the number of one-ounce piles of sand, the system is not analog. If the user
relies on the total weight of the sand, then the system is analog. Thus, whether the
system is analog or not turns on facts about the user. Specifically, it turns on facts
about how the user interprets the content of the representations. And again, we would
normally expect a given scheme to be designed to be employed in a particular manner.
That will determine whether the resulting system is analog or non-analog. But still,
a given set of representations may be part of analog system or part of a non-analog
system, depending on how they are used.

4 One example

So far I have argued that each of the views presented implies that representational
schemes are neither analog nor non-analog, and that whether or not a representational
system is analog depends on facts about how the user employs the representations. To
be sure, there are other extant accounts.24 But I believe that the foregoing discussion
suggests that any account of the a/d distinction will imply the same result. That is
because any account of the distinction must ultimately rest on some salient feature of

24 See e.g., Lewis (1971), Blachowicz (1997), Frigerio et al. (2013), and Schonbein (2014). See Dretske
(1981) for a non-standard account, and for a closely related discussion see Cummins (1996) and Cummins
et al. (2001).
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the representations, which determines how they are to be interpreted or how computa-
tions on themwill be performed.But interpretation implies an interpreter—auser—and
different users may employ different salient features. And so a given scheme may be
employed in different systems, where what distinguishes the systems are differences
among users and specifically what salient features of the scheme the users rely on in
creating and interpreting them. Thus for example, a system might be designed such
that the user employs the base-ten structuring of an array of water-filled cups, while
another may be designed such that the user employs the temperature of the water in
the very same cups. Or, one system may be designed such that the user exploits the
differences in length of straight lines that differ by millimeters, while another may be
designed such that the user need not exploit such small differences in the same lines.

I will use the rest of this section to discuss, by way of one example, part of the
significance of this result. In general, I will argue that the failure to notice that the a/d
distinction applies to representational systems and not representational schemes can
impede scientific progress, at least in the sense that it can obscure possible solutions
to unsolved problems. The example comes from the literature on the acquisition of
number concepts.

In particular, recent experimental evidence suggests that human infants possess
an innate cognitive mechanism that represents cardinality and can perform various
arithmetic operations. Much of the discussion surrounding this system has focused
on whether and in what way it may play a role in the acquisition of mature natural
number concepts. Many authors have argued though, that this system cannot be the
sole source of natural number concepts, because it is “approximate”, or indeed because
it is “analog”, while natural number concepts are “precise” or “digital”. Some authors
have argued that this system must work in concert with other systems in generating
natural number concepts, while others have argued that human beings must possess
innate natural number concepts. I will argue, however, that these views overlook a
way in which the representations that partly constitute this this system could be the
sole source of natural number concepts, and they do so because they fail to recognize
that these representations by themselves are neither analog nor non-analog, but rather
partly constitute an analog system, given how they are employed by their user.

Recent decades have seen a massing of evidence (from a variety of looking-time
methods)25 that infants are able to compare the cardinalities of sets of objects, and
to compute sums and differences. However, these abilities appear to be dependent on
the relative cardinalities of the sets. For example, although six-month-olds distinguish
between sets containing eight and sixteen objects, they fail to distinguish between
sets containing eight and twelve objects.26 Infants’ abilities to compute sums and
differences also appear dependent on the relative sizes of the cardinalities involved.27

This suggests that infants’ numerical abilities conform to Weber’s Law, which states
that whether or not a subject can discriminate two stimuli depends not on the absolute
values of the stimuli, but on the ratio between the two.

25 See Carey and Spelke (1996) for a useful discussion of looking-time methods and results.
26 See Xu and Spelke (2000).
27 See McCrink and Wynn (2004).
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In order to account for these abilities, many authors posit an innate system ofmental
magnitudes. Sometimes termed an accumulator, the model was originally proposed
by Meck and Church (1983) to explain numerical competencies in rats. Meck and
Church originally described the system as having three parts: a pacemaker, a switch,
and several basins. The pacemaker creates pulses at a (somewhat) constant rate. When
the switch is closed, these pulses are transferred into a basin, where they are stored.
The switch may close and open again at periodic intervals, thus increasing in steady
increments the pulses that are passed into the basin. If n objects are observed, n
increments may be passed from the pacemaker to the basin.

There are several features of this system that are important to mention. First, the
representations are distinguished by their size, and in particular they grow in size
in proportion to the number represented. Second, the increments that compose the
representations are inherently variable in size, such that any two increments are only
roughly equivalent in size. Because the increments compose to form completed rep-
resentations, the result is that two representations of the same number may differ in
size. Third, because representations of larger numbers are composed of more incre-
ments than representations of smaller numbers, they are subject to more variability
than representations of smaller numbers. More exactly, the standard deviation of the
sizes of magnitudes representing a given number is a linear function of the size of that
number. This feature of the system is known as scalar variability. An effect of scalar
variability is that, at a certain point, the range of magnitudes which may denote a given
number becomes large enough that there is overlap with the ranges of magnitudes that
may denote other nearby numbers. Thus two representations with the same magnitude
may differ in content.28

An accumulator can be used to compare sets of objects by cardinality, by filling
one basin for each set, and comparing the levels of fullness of the basins. It can
be used for addition, by combining the contents of two or more basins. It can also
be used for subtraction, multiplication, division, and so on. Notice, moreover, that
the model provides an especially powerful explanation of why infants’ numerical
abilities are subject to Weber’s Law. In particular, because the system exhibits scalar
variability, it cannot reliably distinguish between nearby cardinalities, where what
counts as “nearby” is proportional to the size of the given cardinalities.

In explaining both of these features of the system, authors have appealed to both
the received and alternative accounts of analog representation. For example, Wynn
(1992) appeals to shared structure between representation and content in describing
how the system explains infants’ numerical abilities. She writes,

In the accumulator mechanism, numerosity is inherently embodied in the struc-
ture of the representations... the relationships between the representations exactly
reproduce the relationships between the quantities they represent. For example,
four is one more than three, and the representation for four (the magnitude of
fullness of the accumulator) is one more increment than the representation for
three (p. 219).

28 Other models posit a system in which representations compress logarithmically as the number repre-
sented grows. See for example, Dehaene et al. (2008).
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Gallistel et al. (2006) appeal explicitly to the difference between analog and digital
representation to describe how the system explains why infants’ numerical abilities
are subject to Weber’s Law. They write,

When a device such as an analog computer represents [numbers] by different
voltage levels, noise in the voltages leads to confusions between nearby numbers.
If, by contrast, a device represents [numbers] by [discrete] symbols, as digital
computers and written number systems do, then one does not expect to see the
kind of variability seen [in the experiments described]. For example, the bit-
pattern symbol for 15 is 01111 while for 16 it is 10000. Although the numbers
are adjacent, the discrete binary symbols for themdiffer in all five bits. Jitter in the
bits (uncertainty about whether a given bit was 0 or 1) would make 14 (01110),
13 (01101), 11 (01011), and 7 (00111) all equally and maximally likely to be
confused with 15, because the confusion arises in each case from the misreading
of one bit. These dispersed numbers should be confused with 15 much more
often than is the adjacent 16. Similarly, a scribe copying a handwritten English
text is presumably more likely to confuse seven and eleven than to confuse seven
and eight (p. 252).

However, authors also appeal to the analog and approximate nature of the system
in arguing that it cannot be the sole source of natural number concepts. For example,
Spelke (2003) writes,

[The system of mental magnitudes] represents. . . numbers of objects or events
as sets with cardinal values, and it allows for numerical comparison across sets.
This system, however, fails to represent sets exactly. . . and therefore it fails to
capture the numerical operations of adding or subtracting one (p. 299).

Similarly, Margolis and Laurence (2008) write that mental magnitudes “are by their
nature approximate and hence incapable of expressing a difference of exactly one”
(p. 935). These and other authors conclude therefore, that the system either works in
concert with other innate systems to produce natural number concepts, or indeed that
human beings must innately possess natural number concepts.

It is important to notice though, that the arithmetic calculations the mechanism is
able to perform require positing some part or parts of the overall system that serve
to, for example, compare levels of fullness of basins. Meck and Church (1983) did
indeed posit a “comparator” in addition to other functional parts of the system. Given
the present terminology, the comparator is the system’s reading user. The reason
the system seems approximate or analog, is because the comparator only “looks at”
completed representations, which are subject to scalar variability, such that compar-
ing them will not allow discrimination between nearby cardinalities. However, there
is nothing approximate in the number of increments that compose to form a given
magnitude. Again, if n objects are observed, n increments may be passed from the
pacemaker to the basin, and there is nothing approximate about n, whatever n is. What
this means is that if there were someway for the comparator to “look at” the number of
increments that were composed to form a magnitude, rather than only the completed
magnitude itself, it would be able to discriminate between nearby cardinalities. This
would be a different system, employing the same representations, and it would not be
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approximate or analog (on at least some accounts of the a/d distinction). And thus,
the major premise in the argument for why the accumulator cannot be the sole source
of natural number concepts would not be true. Or more exactly, what would emerge
is a way in which the representations that partly constitute the accumulator may also
partly constitute another system, and this other system may indeed be the sole source
of natural number concepts.

Elsewhere I have argued29 that learning the number words may allow for this very
adjustment to take place. In particular, children first come to learn the number words
as a meaningless string of symbols, and only later do they associate them with exact
cardinalities.30 This process takes considerable time, and proceeds in recognizable
steps. Children first learn the meaning of “one”, then “two”, then “three”, and finally
all the rest at once. The hypothesis I propose is that this process is one whereby the
child learns to use the number words to mark in memory the number of increments
that were composed to form a mental magnitude. The idea is that the child then has
a record in memory of the precise number of objects or events that were observed,
and can compare that to other similar records, rather than just being able to compare
the completed magnitudes. This would in essence provide the child with a precise
representation of the number of objects or events that were observed, since the number
of increments composing a magnitude is precise. These representations then, would
be natural number concepts, and the sole innate source for them would be the same
representations that partly constitute the accumulator.

I do not intend to present and defend this hypothesis in detail here. I intend only to
note that by recognizing the difference between comparing completed mental mag-
nitudes and comparing the number of increments in mental magnitudes, we reveal
an otherwise overlooked hypothesis, according to which mental magnitudes are after
all the sole source of natural number concepts. Or to put the point another way, by
failing to recognize that mental magnitudes must be interpreted, and that describing
them as approximate or analog assumes that they are interpreted in a specific way,
contributors to the literature have failed to appreciate possible hypotheses for their
role in the acquisition of natural number concepts. In short, the failure to recognize
that representations have users, and that how those users interpret representations can
determine whether the systems constituted by both representations and users are ana-
log or not, approximate or not, and so on, has been something of an impediment to
scientific progress—at least insofar as one considers exploring the space of possible
hypotheses a component of progress.

5 Conclusion

I have considered four accounts of the a/d distinction, and I have argued that all four
imply that representational schemes are neither analog nor non-analog, that represen-
tational systems—which are constituted by schemes and their users—are, and that a
given scheme may partly constitute both analog and non-analog systems, depending

29 Katz (2013).
30 See Spelke (2003) for a description of the process.
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on facts about how the users of those systems employ the representations. Again, there
are other accounts of the distinction, but it seems likely that any account will imply
this same result. The reason is because any account of the distinction will invariably
rest on some salient feature of the representations, which determines how they are to
be interpreted. But interpretation implies an interpreter—a user—and different users
may exploit different salient features of representations. I have also argued, by way
of the literature on number concept acquisition, that a failure to appreciate this result
can impede scientific progress, at least insofar as it can obscure possible solutions to
unsolved problems.
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