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Abstract In the causal inference framework of Spirtes,Glymour, andScheines (SGS),
inferences about causal relationships aremade from samples from probability distribu-
tions and a number of assumptions relating causal relations to probability distributions.
The most controversial of these assumptions is the Causal Faithfulness Assumption,
which roughly states that if a conditional independence statement is true of a proba-
bility distribution generated by a causal structure, it is entailed by the causal structure
and not just for particular parameter values. In this paper we show that the addition of
the Causal Faithfulness Assumption plays three quite different roles in the SGS frame-
work: (i) it reduces the degree of underdetermination of causal structure by probability
distribution; (ii) computationally, it justifies reliable (constraint-based) causal infer-
ence algorithms that would otherwise have to be slower in order to be reliable; and
(iii) statistically, it implies that those algorithms reliably obtain the correct answer at
smaller sample sizes than would otherwise be the case. We also consider a number of
variations on the Causal Faithfulness Assumption, and show how they affect each of
these three roles.

Keywords Causal inference · Bayes nets · Faithfulness · Graphical models

J. Zhang
Department of Philosophy, Lingnan University, Room HSH201, Ho Sin Hang Building,
Tuen Mun, N.T., Hong Kong
e-mail: jijizhang@ln.edu.hk

P. Spirtes (B)
Department of Philosophy, Carnegie Mellon University, 135D Baker Hall,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
e-mail: ps7z@andrew.cmu.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-015-0673-9&domain=pdf


1012 Synthese (2016) 193:1011–1027

1 Introduction

In the causal inference framework of Spirtes, Glymour, and Scheines (SGS, 2000),
inferences about causal structures are made from patterns of conditional independence
and dependence relations that are estimated from samples. The inference procedures
are justified by, among other things, assumptions relating causal structures to probabil-
ity distributions. Among these assumptions the two best known are the Causal Markov
Assumption (CMA) and the Causal Faithfulness Assumption (CFA). Roughly, the
CMA states that the causal structure of a suitably chosen set of variables entails a set
of conditional independence statements that must be satisfied by the joint probability
distribution of these variables, and the CFA states that the joint probability distribution
satisfy only those conditional independence statements that are entailed by the causal
structure according to the CMA.

Both assumptions have been occasions of debates (e.g., Woodward 1998; Hausman
and Woodward 1999; Cartwright 2001; Hoover 2001; Steel 2006; Andersen 2013),
but the CFA is generally regarded as more questionable and is often defended as a
methodological assumption in the philosophical literature (Hitchcock 2010). In this
paperwewill not enter the debate on themerits of the assumption (thoughwhatwehave
to say will be relevant to that debate), but aim to clarify the consequences of adding
the CFA by distinguishing three roles it plays in the SGS framework: first, it serves
to reduce underdetermination of causal structure by probability distribution; second,
computationally it justifies reliable (constraint-based) causal inference algorithms that
would otherwise have to be slower; third, statistically it allows those algorithms towork
at smaller sample sizes than would otherwise be the case. Our discussion will draw
on recent results on a number of variations on the CFA, and we show how they affect
each of these three roles.

We will proceed as follows. In Sect. 2, we review the basics of the SGS framework
of causal inference. In Sect. 3, we examine the role of reducing underdetermination
of causal structure by probability distribution, and show that in a way some weaker
versions of the CFA play this role even better. However, superiority in playing the
first role comes with inferiority in playing the second and the third roles, as we shall
explain in Sects. 4 and 5. We conclude in Sect. 6.

Wewill not argue that theCFA can be justified by appealing to its computational and
statistical consequences, and it is not our present purpose to defend the CFA against
the weaker assumptions. Our intention is rather to clarify the prices one may have
to pay to adopt the weaker assumptions. Whether or not they are worth paying is a
separate issue and is in all likelihood context dependent.

2 Preliminaries

In the SGS framework, a causal system is characterized by a set of random variables
V, and the causal structure over V is understood as the set of direct causal relations
between variables relative to V. It is convenient to represent the causal structure by
a directed graph: variables in V are represented by distinct nodes in the graph, and
a directed edge or arrow (→) is drawn from the node representing variable X to the
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Fig. 1 An acyclic causal structure over five variables

node representing variable Y if and only if X has a direct causal influence on Y relative
to V. We call this representation a causal graph, and we assume that direct causation
between variables is irreflexive and antisymmetric, so that in a causal graph there is
no arrow from a node to itself and there is at most one arrow between any two nodes.
For convenience, we use “causal structure” and “causal graph” interchangeably (as
well as “variables” and “nodes”), as their differences do not matter for our purposes.

Some graph terminology will be helpful. In a directed graph, nodes X and Y are
adjacent if there is an arrow between them in either direction. If the arrow is X → Y, X
is called a parent of Y and Y a child of X . A directed path is an ordered sequence of two
or more distinct nodes such that every node except for the last one in the sequence is a
parent of its successor in the sequence. X is called an ancestor of Y and Y a descendant
of X if X = Y or there is a directed path from X to Y .1 A directed cycle occurs in
the graph if there are two distinct nodes that are ancestors of each other. A directed
graph is called acyclic if there is no directed cycle in the graph. For example, the graph
in Fig. 1 is acyclic. In the graph, V1 has no parent, and every node is its descendant.
V2 has a single parent V1, and has three descendants {V2, V4, V5}. Similarly, V3 has a
single parent V1, and has three descendants {V3, V4, V5}. V4 has two parents {V2, V3},
and two descendants {V4, V5}. Finally, V5 has one parent V4, and one descendant V5.

In this paper we consider only causal structures that can be properly represented
by directed acyclic graphs (DAGs). Given a causal DAG G and a joint probability
distribution P over a set of variablesV,G and P satisfy the (local)Markov property—
in which case we also say P is Markov to G and G is Markov to P— if and only if
according to P , every variable is conditionally independent of the set of variables that
are neither its descendants nor its parents in G given the set of its parents in G. For
example, if G is the DAG in Fig. 1, then according to the Markov property, each of
the five variables is independent of its non-descendants given its parents 2:

(1) V1 __|| ∅|∅, i.e., V1 is independent of the empty set conditional on the empty set.
(2) V2 __|| V3|V1, i.e., V2 is independent of V3conditional on V1.
(3) V3 __|| V2|V1, i.e., V3 is independent of V2 conditional on V1.
(4) V4 __|| V1|{V2, V3}, i.e., V4 is independent of V1 conditional on {V2, V3}.
(5) V5 __|| {V1, V2, V3}|V4, i.e., V5 is independent of {V1, V2, V3} conditional on V4.

1 The stipulation that a node counts as its own ancestor and descendant has some technical convenience.
2 For three disjoint sets of random variables X,Y,Z, we write X __||Y|Z for the statement that X and Y
are conditionally independent given Z. The statement is satisfied by a probability distribution P or true
according to P iff P(X = x |Y = y,Z = z) = P(X = x |Z = z) for every (vector) value x of X, y of Y, z
of Z s.t. P(Y = y,Z = z) > 0. When Y is an empty set, X __|| ∅|Z is trivially satisfied by all probability
distributions. When Z is empty, we often just write X __||Y, short for X __||Y|∅. For singleton sets, we will
abuse notation and omit the curly brackets. See e.g., Dawid (1979) and Pearl (1988) for detailed discussions
of conditional independence.
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Fig. 2 Causal structures that are Markov equivalent to the structure in Fig. 1

These five conditional independence statements are what the (local) Markov property
explicitly requires. Not every one of the five is nontrivial: every probability distri-
bution trivially satisfies (1). Some DAGs, i.e. complete DAGs in which every two
nodes are adjacent, do not entail any nontrivial conditional independence statement
by theMarkov property.Moreover, the nontrivial conditional independence statements
explicitly required by the Markov property, such as (5), may entail other nontrivial
conditional independence statements by the axioms of probability calculus, such as
V5 __|| V1|V4. We will refer to all these nontrivial conditional independence statements
that follow from theMarkov property as conditional independence statements entailed
by the DAG.3

The CMA states that the true causal structure of V and the true probability distrib-
ution of V satisfy the Markov property. Throughout the paper we assume that we are
working with a suitably chosen set of variables V that satisfies the CMA.4

Under the CMA, some hypotheses of the causal structure can be refuted by a
probability distribution. But the assumption by itself is unable to rule out enough
hypotheses to justify interesting causal inference. For example, as already mentioned,
a complete DAG does not entail any nontrivial conditional independence statement,
and so no structure represented by a complete DAG is falsifiable by any distribution
given only the CMA. Then every causal arrow remains a possibility because it appears
in some complete structure.

This radical underdetermination is significantly reduced when we add the CFA.
A probability distribution P is faithful to a DAG G if and only if all conditional
independence statements satisfied by P are entailed byG. The CFA states that the true
distribution is faithful to the true causal structure. Under this assumption, a complete
structure, for example, is refuted whenever a nontrivial conditional independence
statement is true of the given distribution.

Under the CMA and the CFA, for many distributions, the underdetermination of
causal structure is sufficiently reduced to allow informative causal inference. For exam-
ple, suppose we are given a distribution that is both Markov and faithful to the DAG in
Fig. 1. Then under the two assumptions, the only (acyclic) causal structures over the
five variables that are compatible with the distribution are (a), (b), and (c) in Fig. 2.
These candidates share interesting structural features, including adjacencies and most
conspicuously, the arrows V2 → V4, V3 → V4, and V4 → V5.

3 All the entailed conditional independence statements can be easily read off a given causal structure by a
graph criterion called d-separation (Pearl 1988).
4 This will generally be the case if V does not leave out any common causes of two variables in V, there
is no selection bias in the sampling, and the true causal structure is either acyclic or linear.
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Computationally, various algorithms have been developed to search for these com-
patible causal structures given a distribution (or more realistically, samples from a
distribution). One approach, known as the constraint-based approach and championed
by SGS, is to systematically recover features of the underlying causal structure from
conditional independence facts that are (judged to be) true of the distribution.

Recently, it has been shown that given the assumption of no unmeasured common
causes together with a variety of distributional assumptions, [e.g. non-Gaussian linear
models (Shimizu et al. 2006), or models with additive noise (Peters et al. 2011; Hoyer
et al. 2008)], but without assuming the CFA, there are causal inference algorithms that
can both reduce the amount of underdetermination of causal models from data and
improve the accuracy of the output, as compared to constraint-based algorithms. In
cases where the distributional assumptions and the causal assumptions are warranted
there is good reason to apply these alternative algorithms in place of constraint-based
algorithms. However, there are a number of advantages of constraint-based algorithms
that still make them useful for certain domains of applications.

(1) Constraint-based algorithms apply quite generally. As long as consistent tests of
conditional independence are available, constraint-based algorithms can be reli-
ably (in the large sample limit) applied. Distribution free tests of conditional
independence using kernel methods (Zhang et al. 2011) have recently been devel-
oped (although they typically require large sample sizes to be reliable and are
computationally slow).

(2) For theGaussian andmultinomial distributionswe are not aware of any alternatives
to constraint-based algorithms that can handle as many variables in a feasible
amount of time. This is important for cases such as inferring genetic regulatory
networks, where the number of variables can easily run into the many thousands.

(3) There are extensions of constraint-based methods to the case where there may be
hidden common causes and selection bias (e.g. theRFCI and the FCI+ algorithms),
which also can run on hundreds of variables (in the Gaussian ormultinomial case),
and on smaller sets of variables where further distributional assumptions are not
warranted. Although there have been a few attempts to extend some alternatives
to constraint-based algorithms to cases where there may be unmeasured common
causes (e.g. in the case of linear non-Gaussian models) they have required large
sample sizes and cannot be applied to large numbers of variables.

(4) Someof the distributional assumptions that aremade for the case of nounmeasured
common causes (e.g., additive noise models) are not preserved under marginal-
ization of hidden variables.

Our subsequent discussions will focus on the constraint-based approach, which
exploits, among other things, two facts:

Proposition 1 (Spirtes et al. 2000, p. 47): Two variables are adjacent in a DAG if
and only if they are not entailed to be independent conditional on any subset of other
variables in the DAG.

The other fact has to do with unshielded triples in a DAG. An ordered triple of
variables <X,Y, Z> is unshielded in a DAG if X and Z are both adjacent to Y , but
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X and Z are not adjacent. The triple is called an unshielded collider if the two arrows
both point to Y (i.e., X → Y ← Z); otherwise it is an unshielded noncollider.

Proposition 2 (Spirtes et al. 2000, p. 47): Let<X,Y, Z> be any unshielded triple in
a DAG. Then

(1) <X,Y, Z> is an unshielded collider if and only if X and Z are not entailed to be
independent conditional on any subset of other variables that contains Y .

(2) <X,Y, Z> is an unshielded non-collider if and only if X and Z are not entailed to
be independent conditional on any subset of other variables that does not contain
Y .

These two facts immediately suggest a causal discovery procedure known as the
SGS algorithm (Spirtes et al. 2000, p. 82). The algorithm, however, is computationally
and statistically inefficient. Fortunately, the CFA also justifies more efficient proce-
dures such as the well-known PC algorithm. Thus the CFA plays a role in boosting
computational efficiency and statistical efficiency, besides its role of reducing under-
determination of causal structure by probability distribution. These roles should be
distinguished, for some weaker assumptions of faithfulness play the role of reducing
underdetermination even better, but they do not play the other roles as well.

3 The role of reducing underdetermination of causal structure by probability
distribution

For any probability distribution P of V, let M(P) denote the set of causal structures
(which, recall, are restricted to DAGs) over V to which P is Markov, and M-F(P)
denote the set of causal structures to which P is both Markov and faithful. Given
a distribution P , if we just assume the CMA, the set of causal structures that is
underdetermined by P isM(P). If we further add the CFA, the set of causal structures
that is underdetermined by P isM-F(P).M-F(P) is a subset ofM(P) for every P , and
is a proper subset unless P does not satisfy any nontrivial conditional independence
statement.5 This is the sense in which adding the CFA reduces underdetermination of
causal structure by a probability distribution.

There is a catch. AlthoughM(P) is always non-empty,M-F(P) is empty for some
P . That is, some distributions are not Markov and faithful to any causal structure
(Zhang and Spirtes 2008). Consider the following:

Example 3.1 Among the distributions that areMarkov to the causal structure in Fig. 1,
some can satisfy one (and only one) extra independence statement: V1 __|| V4, due
perhaps to an exact balancing out of the two causal paths, V1 → V2 → V4 and
V1 → V3 → V4. Such a distribution is not only unfaithful to the structure in Fig. 1,
it is not both Markov and faithful to any DAG over the five variables. (Recall that we
consider only DAG structures in this paper).

5 If P does not satisfy any nontrivial conditional independence statement, then M(P) = M-F(P) is the
set of complete causal structures.
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Fig. 3 An example that violates Adjacency-Faithfulness (Example 3.2)

When M-F(P) is empty, it is obviously inappropriate to say that the underdeter-
mination of causal structure by P is reduced by adding the CFA. Rather, under the
supposition of the CMA, the emptiness ofM-F(P)means that the CFA cannot be true
for that probability distribution, or say, in a methodological description, that the CFA
does not apply to that probability distribution.

So the overall picture is that the CFA applies to some but not all distributions. For
those it applies to, that is, for those P such that M-F(P) is non-empty, adopting the
CFA in addition to the CMA reduces underdetermination of causal structure from
M(P) toM-F(P).

From this perspective, several weaker variations on the CFA actually play the role
of reducing underdetermination even better: they apply to more distributions than the
CFA does, and reduce underdetermination as much as the CFA does when the latter
applies.

Let us consider an increasinglyweaker sequence of variations. The first is named the
Adjacency-Faithfulness assumption (Ramsey et al. 2006; Zhang and Spirtes 2008).6

It states that if two variables are adjacent in the true causal structure, then they are
not independent conditional on any subset of other variables. This assumption follows
from the CFA (in view of Proposition 1), and is strictly weaker. For example, the
case in Example 3.1 does not satisfy the CFA but satisfies the Adjacency-Faithfulness
assumption. Since the distribution in Example 3.1 is one to which the CFA does not
apply, the Adjacency-Faithfulness assumption applies to more distributions than the
CFA does.7

There are, however, also probability distributions that are both Markov and
Adjacency-Faithful to no causal structure.

Example 3.2 Consider the causal structure in Fig. 3. Among the distributions that are
Markov to this structure, some satisfy one and only one extra conditional independence
statement V1 __|| V4, due for example to an exact balancing out of the two causal paths,
V1 → V2 → V3 → V4 and V1 → V4. Such a distribution is not both Markov and
Adjacency-Faithful to any DAG over the four variables.8

6 Another consequence of the CFA, named Orientation-Faithfulness, is often discussed alongside
Adjacency-Faithfulness. The Adjacency-Faithfulness assumption, as we will show, can reduce underde-
termination as much as the CFA does without Orientation-Faithfulness, but the Orientation-Faithfulness
assumption cannot do without Adjacency-Faithfulness.
7 Interested readers can check that given the CMA and the Adjacency-Faithfulness assumption, the causal
structures that are compatible with the said distribution remain the three structures in Fig. 2.
8 Basically the reason is that no DAG with just three adjacencies (one between V 1 and V2, one between
V2 and V3, and one between V3 and V4) is Markov to the said distribution. Adding any other adjacency
yields a DAG to which the said distribution is not Adjacency-Faithful.
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Fig. 4 An example that violates Triangle-Faithfulness (Example 3.3)

Hence the Adjacency-Faithfulness assumption does not apply to all distributions,
and it is worth considering even weaker assumptions. The next in line is a conjunc-
tion of two assumptions, both of which are entailed by the Adjacency-Faithfulness
assumption. One is known as the causal Minimality assumption (Spirtes et al. 2000,
p. 31), which states that no proper subgraph of the true causal DAG is Markov to
the true probability distribution. Suppose the distribution is Adjacency-Faithful to the
causal structure. Taking away any arrow, say X → Y , would yield a structure that
entails a conditional independence between X and Y , but as a logical consequence of
Adjacency-Faithfulness, no statement of conditional independence between X andY is
true of the distribution. So the resulting substructure is not Markov to the distribution.

The other is named the Triangle-Faithfulness assumption (Zhang and Spirtes 2008):
Let X,Y, Z be any three variables that form a triangle in the causal structure ofV (i.e.,
they are adjacent to one another):

(1) If Z is a non-collider on the path <X, Z ,Y>, then X and Y are not independent
conditional on any subset of V\{X,Y } that does not contain Z ;

(2) If Z is a collider on the path <X, Z ,Y>, then X and Y are not independent
conditional on any subset of V\{X,Y } that contains Z .

Clearly the Triangle-Faithfulness assumption is also a logical consequence of the
Adjacency-Faithfulness assumption. Thus the conjunction of the causal Minimality
assumption and the Triangle-Faithfulness assumption is entailed by the Adjacency-
Faithfulness assumption. The former is strictlyweaker. For example, the case in Exam-
ple 3.2 violates the Adjacency-Faithfulness assumption, but satisfies the causal Mini-
mality assumption and the Triangle-Faithfulness assumption.

However, the weaker conjunction still does not apply to all distributions. An
example:

Example 3.3 Among the distributions that areMarkov to the causal structure depicted
in Fig. 4, some imply one (and only one) extra conditional independence statement:
V1 __|| V2|V3. Such a distribution is then not Triangle-Faithful to the structure in Fig. 4.
Moreover, it is not both Markov and Triangle-Faithful to any DAG over the four
variables.9

Finally, there is another minimality assumption formulated in Pearl (2009) that
is closely related to the CFA. Following Zhang (2013), we will refer to it as the P-
Minimality (Pearl’s minimality) assumption. For any two DAGs Gand H over V, call

9 Basically the reason is that every DAG to which the said distribution is Markov and Triangle-Faithful
must have at least the three arrows V1 → V3, V2 → V3, and V3 → V4 (cf. the VCSGS algorithm we will
describe in the next section). Since it is not true that V1 __|| V2, an edge between V1 and V2 has to be added in
order to beMarkov to the distribution. Then the triangle<V1, V3, V2>would fail the Triangle-Faithfulness.
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Table 1 Examples that illustrate the applicability of the sequence of assumptions

Example 3.1 Example 3.2 Example 3.3

M-F(P) = ∅ = ∅ = ∅

M-AF(P) �= ∅ = ∅ = ∅

M-M-TF(P) �= ∅ �= ∅ = ∅

M-PM(P) �= ∅ �= ∅ �= ∅

H an I-submodel (Independence-submodel)10 of G if every conditional independence
statement entailed byG is also entailed by H ; H is a proper I-submodel ofGif H is an
I-submodel ofG but not vice versa. The P-Minimality assumption states that no proper
I-submodel of the true causal DAG is Markov to the true probability distribution.

As shown in Zhang (2013), the conjunction of the causal Minimality assumption
and the Triangle-Faithfulness assumption entails the P-Minimality assumption, but not
vice versa. For example, the case in Example 3.3 violates the Triangle-Faithfulness
assumption, but satisfies the P-Minimality assumption.

It is also easy to see that the P-Minimality assumption applies to all distributions,
for given any distribution, there is always a minimal DAG in the I-submodel ordering
that is Markov to the distribution.

Let M-AF(P) denote the causal structures that are compatible with P under the
causal Markov and Adjacency-Faithfulness assumptions,M-M-TF(P) denote the set
of causal structures that are compatible with P under the causal Markov, Minimal-
ity, and Triangle-Faithfulness assumptions, and M-PM(P) denote the set of causal
structures that are compatible with P under the causal Markov and P-Minimality
assumptions. What we have said so far implies that for every P ,

M-F (P) ⊆ M-AF (P) ⊆ M-M-TF (P) ⊆ M-PM (P) ,

for the sequence of assumptions is increasingly weaker. Moreover, for some
P,M-F(P) is empty but M-AF(P) is not; for some P,M-AF(P) is empty but
M-M-TF(P) is not; and for some P,M-M-TF(P) is empty butM-PM(P) is not. In
other words, the increasingly weaker assumptions apply to increasingly more distrib-
utions, with the weakest P-Minimality assumption applying to all. (See Table 1 for a
summary with respect to the distributions described in the previous examples.)

For example, for the distribution in Example 3.1, the set of causal structures that
are Markov and Faithful to the distribution is empty, but the set of causal structures
that are Markov and Adjacency-Faithful to the distribution is not.

We nowcome to themain point.Wewill show thatwheneverM-F(P) is non-empty,

M-F (P) = M-AF (P) = M-M-TF (P) = M-PM (P) .

10 It is a sub-model in that it entails a superset of conditional independence constraints and so is compatible
with a subset of probability distributions.
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Given the subset relationship established above, it suffices to show that ifM-F(P) �=
∅, then M-PM(P) ⊆ M-F(P). In words, this says that if there is a causal structure
to which P is both Markov and faithful, then for every structure G, G and P satisfy
the Markov and P-Minimality assumptions only if G and P satisfy the Markov and
Faithfulness assumptions.

This is fairly easy to prove. Suppose G and P satisfy the Markov and P-Minimality
assumptions. Let H be one of the causal structures to which P is both Markov and
faithful. Since G is Markov to P , all conditional independence statements entailed
by G are satisfied by P . Since P is faithful to H , all conditional independence state-
ments satisfied by P are entailed by H . Thus, all conditional independence statements
entailed by G are entailed by H . Therefore H is an I-submodel of G. But H is not
a proper I-submodel of G, for otherwise G and P do not satisfy the P-Minimality
assumption. Hence G entails the exact same conditional independence statements as
Hdoes, which means that P is also Markov and faithful to G.

Therefore, for every probability distribution to which the CFA applies, any of the
aforementioned weaker assumptions reduces underdetermination of causal structure
by the distribution to the same extent as the CFA does.

Note that assumptions that are even weaker than the P-minimality assumption do
not have this effect. In particular, if one adopts the causalMinimality assumption alone
on top of the CMA (without also making the Triangle-Faithfulness assumption), the
reduction of underdetermination is not nearly as great: M-M(P) is typically much
bigger than M-F(P).11

We end this discussion with an open question. It is unclear whether it is the case
that if M-AF(P) �= ∅, then M-M-TF(P) = M-AF(P). In other words, we do not
knowwhether for those distributions to which the Adjacency-Faithfulness assumption
applies, it is always the case that the conjunction of the causal Minimality assumption
and the Triangle-Faithfulness assumption reduces underdetermination to the same
extent as the Adjacency-Faithfulness assumption does.12

In any case, it is fair to say that on the role of reducing underdetermination of causal
structure by probability distribution, some weaker variations on the CFA actually do
better. The extra strength of the CFA is to be seen in its other roles.

4 The computational role

Throughout this section, we assume that the input to causal discovery algorithms is a
perfectly reliable oracle that can tell which conditional independence statements about
V are satisfied and which are not by the probability distribution of V. In practice the
oracle is replaced by statistical tests of conditional independence based on samples
from the distribution, and we will discuss some relevant issues in the next section.

11 One way to see this is that the causal Minimality assumption, by itself, cannot rule out any causal order:
for every ordering of the variables, there is a minimal DAG that satisfies the CMA.
12 We do know that it is not true that whenever M-M-TF(P) �= ∅,M-PM(P) = M-M-TF(P). That is,
there are cases in which the conjunction of the causal Minimality assumption and the Triangle-Faithfulness
assumption reduces underdetermination to a greater extent than the P-Minimality assumption does. Raskutti
and Uhler (2014) presented such an example in the proof of their Theorem 2.8. (b).
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As we mentioned in Sect. 2, the facts stated in Propositions 1 and 2 suggest the
following procedure:

SGS algorithm

S1. Form the complete undirected graph H on the given set of variables V.
S2. For each pair of variables X and Y in V, search for a subset S of V\{X,Y } such

that X and Y are independent conditional on S. Remove the edge between X and
Y in H if and only if such a screening-off set is found.

S3. Let K be the graph resulting from S2. For each unshielded triple <X,Y, Z>,
(i) If X and Z are not independent conditional on any subset of V\{X,Y } that

contains Y , then orient the triple as a collider: X → Y ← Z .
(ii) If X and Z are not independent conditional on any subset of V\{X,Y } that

does not contain Y , then mark the triple as a non-collider.
S4. Execute some further orientation rules (the details of which do not matter here).

Basically, S2 is the step of inferring adjacencies and non-adjacencies, and S3 is the
key step of inferring some arrow orientations. In light of Propositions 1 and 2, the two
steps are obviously sound given the CMA and the CFA, but they are computationally
expensive in that they almost always require a number of checks/tests of conditional
independence that is exponential in the number of variables. Fortunately, the CFA
allows both steps to speed up, as exemplified by the PC algorithm (Spirtes et al. 2000,
pp. 84–85).

For S2, two strategies are employed in PC. First, for each of pair of variables
X and Y , the search for a screening-off set for them is confined to their potential
parents, i.e., subsets of other variables that are currently adjacent to X or subsets of
other variables that are currently adjacent to Y . As adjacencies are pruned during
the search, the number of conditioning sets that need be checked can be significantly
reduced. Second, the search is done in stages, starting with the conditioning set of size
0 (i.e., the empty set), gradually increasing the size of conditioning sets, and stopping
when the number of adjacent variables is smaller than the required size of conditioning
sets. Call this procedure PC-S2.

For example, suppose we are given an oracle that is Markov and faithful to the
causal structure in Fig. 1. In PC-S2, the procedure starts by checking, for each pair of
variables, whether they are independent conditional on the empty set. The answer is no
for every pair, so no adjacency is removed. Then it increases the size of conditioning
sets to 1, and finds that V2 __|| V3|V1, V1 __|| V5|V4, V2 __|| V5|V4, and V3 __|| V5|V4. So the
adjacencies between V2 and V3, between V1 and V5, between V2 and V5, and between
V3 and V5 are removed. It then increases the size of conditioning sets to 2, and finds
that V4 __|| V1|{V2, V3}. So the adjacency between V1 and V4 is removed. Now the size
of conditioning sets is increased to 3, but no more check is needed, because for every
pair of the still adjacent variables, the number of other variables that are adjacent is
fewer than 3. Hence, the search will not check any conditional independence statement
with a conditioning set of size 3, in contrast to the SGS algorithm.

There are two main reasons why these strategies work in general. First, the CMA
entails that two variables that are not adjacent in the causal DAG are either condition-
ally independent given one variable’s parents or conditionally independent given the
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other variable’s parents. So if a screening-off set for two variables can be found, it
can be found when the search is restricted to their parents. Second, the CFA, or the
weaker Adjacency-Faithfulness assumption, entails that any conditional independence
between two variables is sufficient to imply their non-adjacency. So at any stage, the
true parents of a variable remain adjacent to that variable.

For S3, the PC algorithm simply checks, for each unshielded triple <X,Y, Z>,
whether the screening-off set for X and Z found in PC-S2 contains Y or not. If the set
does contain Y , the triple is inferred to be a non-collider. If the set does not contain Y ,
the triple is inferred to be a collider. Call this simplified step PC-S3.

To illustrate, in the previous example, consider the two (among several others)
unshielded triples:<V2, V1, V3> and<V2, V4, V3>. The PC algorithm simply recalls
the screening-off set for V2 and V3 found in PC-S2, which is {V1}. Since {V1} con-
tains V1,<V2, V1, V3> is inferred to be a non-collider. Since {V1} does not contain
V4,<V2, V4, V3> is inferred to be a collider. It is much more efficient than S3 in the
SGS algorithm.

This significant simplification is justified by theCFA. For in view of Proposition 2 in
Sect. 2, the CFA entails that either the antecedent of clause (i) in the original S3 or the
antecedent of clause (ii) in the original S3 obtains. Since any conditional independence
between X and Z is sufficient to either falsify the antecedent of (i) or falsify that of
(ii), it is sufficient to either verify the antecedent of clause (ii) or verify that of clause
(i).

In terms of bounds on the runtime complexity, a loose bound for the PC algorithm
is O(pq), where p is the number of variables, and q is the maximal degrees (i.e.,
number of adjacent variables) of any variable in the true causal structure (Kalisch
and Bühlmann 2007).13 Thus for sufficiently sparse structures (i.e., with sufficiently
small q), the PC algorithm is much more efficient than the SGS algorithm; the latter’s
complexity is almost always exponential in p.

Therefore, the CFA warrants a more efficient procedure than the original SGS
procedure. This role, however, is not played as well by the weaker assumptions.

Consider first the Adjacency-Faithfulness assumption. It can still justify PC-S2.
For that step only requires that any conditional independence between two variables
imply non-adjacency, which is guaranteed by the Adjacency-Faithfulness assumption.
However, it does not warrant PC-S3. The Adjacency-Faithfulness assumption does not
entail Proposition 2 in Sect. 2. It leaves open the possibility that for an unshielded triple
<X,Y, Z>, X and Z are both independent conditional on some set that contains Y
and independent conditional on some set that does not contain Y . In other words, it is
possible under the Adjacency-Faithfulness assumption that neither the antecedent of
clause (i) in S3 nor the antecedent of clause (ii) in S3 is true. It follows that the simple
check in PC-S3 is not sufficient.

One way to modify PC-S3 to make it work under the CMA and the Adjacency-
Faithfulness assumption is presented in Ramsey et al. (2006). First, note that both
clause (i) and clause (ii) of S3 are sound given the CMA alone. When the CFA is
weakened to the Adjacency-Faithfulness assumption, we need to acknowledge the

13 For the sample version of the PC algorithm, this bound holds with high probability.
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possibility that neither clause (i) nor clause (ii) is applicable, in which case we should
suspend judgment on whether the triple in question is a collider or a non-collider. Sec-
ond, clause (i) and clause (ii) can still be improved under the Adjacency-Faithfulness
assumption. Since the Adjacency-Faithfulness assumption implies that all the non-
adjacencies resulting from PC-S2 are correct, we need only check, for each unshielded
triple <X,Y, Z>, conditioning sets that are confined to subsets of X ’s potential par-
ents (i.e., variables that are adjacent to X) and subsets of Z ’s potential parents (i.e.,
variables that are adjacent to Z). The rationale is essentially the same as that behind the
similar strategy in PC-S2. The resulting procedure is called Conservative PC (CPC),
on account of the possibility of it suspending judgment onwhether an unshielded triple
is a collider or not.

Consider again the example in which we are given an oracle Markov and faithful
to the causal structure in Fig. 1. In CPC-S3, <V2, V1, V3> is not inferred to be a
non-collider simply because the screening-off set for V2 and V 3 found earlier, namely
{V1}, contains V1. Rather, it has to also confirm that V2 and V3 are not independent
given any subset of V2’s potential parents that does not contain V1 or of V3’s potential
parents that does not contain V1. (In this case, those relevant subsets are ∅ and {V4}.)
We note, however, that despite the more involved CPC-S3, the overall complexity of
the CPC algorithm is still bounded by O(pq), as is the PC algorithm.

More complications arise if theAdjacency-Faithfulness assumption is furtherweak-
ened. Suppose we adopt the causal Minimality and Triangle-Faithfulness assump-
tions instead of the Adjacency-Faithfulness assumption. An immediate consequence
is that the non-adjacencies inferred from S2 are not necessarily correct, for conditional
independence between two variables does not entail non-adjacency if Adjacency-
Faithfulness fails. We hasten to add, however, that the adjacencies inferred from the
original S2 are still correct, which follows from the CMA alone. But if we use the
more efficient PC-S2, then it is not even clear that the inferred adjacencies will be
correct, for the current justification of PC-S2 depends crucially on the correctness of
non-adjacencies. The worry is that if some adjacency is mistakenly removed, then
some parent of some variable may be excluded in the search for a screening-off set for
that variable and some other variable, which may lead to a false adjacency by failing
to check some relevant conditioning sets. For these reasons, we suspect that PC-S2
is not always correct regarding adjacencies, though we have not found a concrete
counterexample.

Exploiting the fact that S2 is correct on adjacencies (but may be incorrect on non-
adjacencies), we proposed an algorithm named Very Conservative SGS (VCSGS) in
Spirtes andZhang (2014),which is provably correct under theCMA, causalMinimality
assumption and the Triangle-Faithfulness assumption. The idea is that even though
non-adjacencies resulting from S2 are only “apparent” (i.e., not necessarily correct),
the original S3—with the added proviso that if neither the antecedent of (i) nor that of
(ii) obtains, then the triple ismarked as “ambiguous” or “unknown”—is still correct (by
the CMA if the triple in question is really unshielded or by the Triangle-Faithfulness
assumption if the triple in question is “apparently” unshielded but actually a triangle).
In the end, the VCSGS algorithm checks whether every DAG compatible with the
resulting (partial) graph is Markov to the input oracle. If yes, it confirms the non-
adjacencies; if no, the non-adjacencies are marked as “ambiguous” or “unknown”.
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The exact proof of the correctness of the VCSGS is not important for our purpose
here. The point is that VCSGS is more involved computationally than PC or CPC,
or indeed SGS (though the worst case bound for VCSGS is on the order of that for
SGS). Therefore, as we adopt increasingly weaker versions of the CFA, the computa-
tional costs of causal discovery increase significantly, at least for the constraint-based
approach.14

5 The statistical role

The CFA entails that any conditional independence between two variables is sufficient
to imply that they are not adjacent in the causal structure, and that, for an unshielded
triple <X,Y, Z>, any conditional independence between X and Z is sufficient to
decide whether it is a collider or a non-collider. These consequences imply not only
that the number of conditional independence statements that need be checked can be
much smaller than what is done in the SGS algorithm, but also that the search for
a screening-off set for two variables X and Y need not go beyond the smallest size
at which a screening-off set can be found. The PC algorithm, for example, always
finds, for any X and Y that are not adjacent in the true causal graph, a minimal Z such
that X __|| Y |Z (in the sense that there is no set Z’ such that |Z′| < |Z| and X __|| Y |Z′,
where |Z| denotes the number of variables in Z). Moreover, the maximum size of a
conditioning set checked by the PC algorithm is bounded above (with high probability)
by the maximum degrees of any variable in the true causal graph, for by the time the
algorithm is about to check conditioning sets of a size bigger than themaximal degrees,
a screening-off set for each pair of non-adjacent variables will have been found, and
so the adjacencies will have been sufficiently pruned that no variable is adjacent to
sufficiently many variables to let the search continue.

The tendency to avoid checking conditional independence with a large conditioning
set has important statistical advantages, for in practice, determining whether X and Y
are independent conditional on Z depends upon performing statistical tests. When |Z|
is large, the tests that are commonly used are statistically infeasible or inefficient for
at least two reasons.

First, when the sample size is much smaller than the number of variables in Z,
standard statistical tests of conditional independence cannot be applied in a number
of parametric families, including Gaussian, multinomial, and additive noise mod-
els. This is easiest to see in the multinomial case. X __|| Y |Z entails that for every
value z of Z (that has non-zero probability), P(X = x,Y = y|Z = z) = P(X =
x |Z = z)P(Y = y|Z = z). Standard statistical tests of X __|| Y |Z estimate these three
quantities and estimate the probability that the observed deviation from the equal-
ity is due to sampling error. It is possible to make maximum likelihood estimates of
P(X = x,Y = y|Z = z), P(X = x |Z = z), and P(Y = y|Z = z) by counting the
relative frequencies of X = x and Y = y for each value z of Z. However, if |Z| is

14 As we stress at the end, our discussion here is limited to the known constraint-based algorithms. We do
not know whether similar points can be made for the score-based or the Bayesian approach, or even how
weakening of the CFA bears on that approach. We thank an anonymous referee for raising this issue, and
hope to explore it in future work.
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large, then there are many possible values of Z even if all of the variables in Z are
binary. For example, if there are 100 binary variables in Z, there are on the order of
1060 different possible values for Z. Even if the sample size is quite large, say on the
order of 106, the vast majority of those possible values of Z will necessarily contain
no sample points, and hence there is no unique maximum likelihood estimate of the
relevant probabilities. Similarly, in the Gaussian case, a maximum likelihood estimate
of the correlation of X and Y conditional on Z can be obtained by i) using the sample
correlation matrix among X , Y , and Z to obtain a maximum likelihood estimate of
the correlation matrix among X , Y , and Z, and ii) inverting the sample correlation
matrix among X , Y , and Z. However, when the number of variables in X , Y , and
Z exceeds the number of sample points, the sample correlation matrix is a singular
matrix, and hence cannot be inverted to find an estimate of the partial correlation of X
and Y conditional on Z. This is a practical issue in domains such as genetic regulatory
networks, where there are thousands of variables, but only dozens of sample points:
SGS is not applicable in these domains, whereas PC is.

Second, other things being equal, the power of the relevant statistical tests decreases
as |Z| increases. In the Gaussian case, the power of a test increases with the “effective
sample size”, and the “effective sample size” is equal to the actual sample size minus
|Z|. In the Gaussian case, this entails that it is possible to perform statistical tests of
conditional independence even for large |Z| (on the order of hundreds), as long as the
sample size is also large (on the order of thousands), although rounding errors in the
computation may make this practically infeasible. The problem is much more severe
in the multinomial case, where the power of the standard (chi-squared) test is directly
a function of |Z| (via the degrees of freedom of the chi-squared distribution), and
when the sample sizes are in the thousands, tests of conditional independence with
reasonable power are typically not feasible when |Z| is greater than 4 or 5.

In addition, we suspect that deviations from the parametric assumptions made by
standard statistical tests have bigger effects on the reliability of the tests for larger |Z|,
but this requires more investigation.

We hasten to add that although the point here is related to the point on the compu-
tational role we made previously, both having to do with avoiding tests of conditional
independence, they are distinct points. The computational point is about the number of
tests, based mainly on the CFA’s implication that one independence suffices to imply
non-adjacency (and to imply orientations for unshielded triples); the statistical point
is about the order of tests, based mainly on the CFA’s implication that any indepen-
dence (and so an independence with a small conditioning set, if any) suffices to imply
non-adjacency.

To see it in another way, consider those algorithms that seek to first infer an undi-
rected independence graph (a.k.a moralized graph), where there is an undirected edge
between two variables if and only if they are independent conditional on all other
variables, and then recover the DAG as much as possible from the undirected inde-
pendence graph (Spirtes et al. 2000, pp. 124–125; Loh and Bühlmann 2013). When
the undirected independence graph is sufficiently sparse, such a procedure can be
computationally efficient, but thanks to the high-order conditional independence tests
in the first step, can at the same time be statistically inefficient. Thus computational
efficiency and statistical efficiency do not necessarily go together.
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6 Conclusion

We have distinguished three perspectives to discuss the consequences of the CFA.
From the perspective that philosophers are most sensitive to, that of reducing under-
determination of causal structure by probability distribution, the CFA is unnecessarily
strong. However, its strength carries significant computational and statistical advan-
tages.

Our discussion was limited to the known constraint-based algorithms in the liter-
ature. Whether similar points can be made for the score-based approach is an open
question. Regarding computational complexity, a more ambitious project is to seek
general results on the complexity of causal discovery under the CFA versus the com-
plexity of causal discovery under the weaker assumptions (given certain bounds on
the density of the causal structure).
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