
Synthese (2015) 192:3487–3507
DOI 10.1007/s11229-014-0598-8

Drift beyond Wright–Fisher

Hayley Clatterbuck

Received: 4 January 2014 / Accepted: 29 October 2014 / Published online: 20 November 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Several recent arguments by philosophers of biology have challenged the
traditional view that evolutionary factors, such as drift and selection, are genuine
causes of evolutionary outcomes. In the case of drift, advocates of the statistical
theory argue that drift is merely the sampling error inherent in the other stochastic
processes of evolution and thus denotes a mathematical, rather than causal, feature of
populations. This debate has largely centered around one particular model of drift, the
Wright–Fisher model, and this has contributed to the plausibility of the statisticalists’
arguments. However, an examination of alternative, predictively inequivalent mod-
els shows that drift is a genuine cause that can be manipulated to change population
outcomes. This case study illustrates the influence of methodological assumptions on
ontological judgments, particularly the pernicious effect of focusing on a particular
model at the expense of others and confusing its assumptions and idealizations for
true claims about the phenomena being modeled.

Keywords Genetic drift · Wright–Fisher · Semantic view of theories ·
Population genetics · Evolution

1 Introduction

Philosophers of science have paidmuch attention to the influence that judgments about
ontology have had on methodology, and rightly so, since the nature of the causes
and entities under scientific examination typically constrain the type of models and
methods that shouldbeused inmakingpredictions.On theother hand, the influence that
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scientific methodology has had on judgments about ontology has not been as widely
appreciated. I will argue that methodological commitments can distort ontological
judgments. As a case study, I will focus onmethodological commitments in population
genetics that have played an important, and sometimes pernicious, role in influencing
ontological judgments in evolutionary biology.

In this paper, I will argue that philosophers of biology and population geneticists
have paid undue attention to one particular methodologically useful but often unreal-
istic model of genetic drift, the Wright–Fisher model, and that this has led to mistaken
judgments about the ontological nature of drift. Due to the centrality of that model
in both the historical development and current practice of population genetics, some
philosophers have assumed that we can understand all we need to understand about
genetic drift from examinations of that model. However, I will argue that broadening
our analysis beyond Wright–Fisher uncovers novel features of drift and sheds new
light on its ontological status.

This case study points to a broader error lurking in efforts to read ontology directly
off of mathematical models. By its nature, a model of a process does not accurately
depict all of its real-world features; it contains abstractions and idealizations which
permit its users to reason about a particular phenomenon of interest. Any timewe focus
on a particular model to the exclusion of others, we risk mistaking an abstraction or
idealization of that model for a real feature of the phenomena it is modeling.

In what follows, I will show how this mistake has led to erroneous ontological
judgments in the case of drift. I will start in Sect. 2 by giving a characterization of
genetic drift that is neutral among its various ontological interpretations. In Sect. 3,
I will briefly explain two opposing theories about the causal nature of drift and the
main argumentative dialectic at the heart of the controversy between them. Then, in
Sect. 4, I will argue that both sides of the debate have relied on a single model of drift,
a model which has been shown to contain idealizations and ontological assumptions
that are inappropriate for many populations. In Sect. 5, I will argue that when we
consider alternative models of drift, one ontological view of drift—the view that drift
is a genuine cause of evolutionary outcomes—ought to be favored. In Sect. 6, I will
suggest some general lessons that can be applied to other cases of reasoning about
mathematical models.

2 What is drift?

Before we can discuss alternative ontological theories of genetic drift, it will be nec-
essary to get a handle on the type of phenomenon under examination. Drift is often
defined in terms of what it is not; drift denotes those changes in trait frequencies (or the
process that produces those changes) that can not be accounted for by differences in
fitness, mutation, migration, or the other causes that move populations in predictable
directions. This definition, commonly accepted (at least implicitly) by philosophers
and biologists, gives rise to two key features of drift. The first is that drift is “ran-
dom” in that it does not predict a directional change in trait frequencies. The second,
which is supposed to follow from the first, is that drift is more pronounced in small
populations.
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Anoverusedbut still useful examplewill suffice to illustrate a drift process.Consider
a population of mice living in a field that is occasionally and randomly hit by lightning
strikes. The population contains two types of mice, brown-coated and white-coated,
that are otherwise physically identical. Coat color is irrelevant to susceptibility to
lightning strikes. Types breed true and the population size is constant. At time k,
suppose that there are 6 brown-coated and 4white-coatedmice, so the trait frequencies
are 0.6 brown/ 0.4 white. Lightning then strikes the field at random, killing one white-
coated mouse. At time k+1, the population contains 6 brown-coated mice and 3 white
coated, so the trait frequencies have changed to 0.67 brown/0.33 white. The mice then
reproduce until the population size returns to 10, at which point the expectation is that
there will be 6.7 brown and 3.3 white mice.1

This change in trait frequencies was random because eachmouse was equally likely
to be struck and killed by lightning, regardless of its coat color. By chance, the lightning
happened to have a disproportionate effect on white mice, but it could have dispro-
portionally killed brown mice or white and brown mice in equal proportions. Since
lightning strikes are rare and indiscriminate with respect to coat color, the expected
trait frequency at time k+1 is identical to the trait frequency at k.

The probability that frequencies will deviate significantly from the expected
value depends on the size of the population undergoing drift. To see this, con-
sider a much larger population containing 60 brown-coated and 40 white-coated
mice. If a lightning strike had the same effect on this population, killing one white
mouse, there would be 60 brown and 39 white mice, so the resulting trait frequency
would be 0.61/0.39, a much smaller deviation from expectation than in the first
population.

These two informal features of drift—that it is random and more pronounced in
small populations—have been formalized in population geneticsmodels of drift. These
are time-discrete or continuous Markov models constituted by a transition matrix
which describes the probability that a population in allelic state i in generation k will
transition to state j in the k+1 generation; Pi j (k+1 = j | k = i). When these prob-
abilities are calculated for all possible jstates, the result is a probability distribution
over the possible allelic states of the population in the next generation.2 In the models
standardly used by population geneticists, the distributions have the following formal
characteristics (Der et al. 2011, p. 82):

(Mean) The mean of the probability distribution does not change from k to
k+13;

E (Xk+1|Xk) = Xk

1 This example is an instance of a standard Wright–Fisher model interpretation of drift. I do not mean to
imply that this is the only possible type of drift process, and I will consider others in Sect. 4.
2 In a pure drift model, each individual in the population has an identical expected offspring distribution.
In mixed models, drift can be combined with selection, mutation, and other factors.
3 X denotes the number of individuals of the X trait. X/N gives the frequency of the trait.
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(Variance) The variance of the distribution in k+1 is a function of trait frequencies
in k and the population size, N4;

Var (Xk+1|Xk) = Xk

(
1 − Xk

N

)(
Nσ 2

N

N − 1

)

Though the informal and formal properties of drift characterize the dynamics of a
population undergoing drift, they do not tell us much about ontological status of drift.
How we ought to interpret these models is the topic of the next section.

3 Two competing ontological theories of drift

The distribution of trait frequencies in the population of mice changed from one gen-
eration to the next, and the resultant distribution deviated from the expected value.
Should we say that drift caused the resulting trait frequencies to deviate from expec-
tation? That drift is the deviation from expectation? Or that drift is the sampling error
inherent in the stochastic process of selection by lightning strike?

What may seem like a small quibble in the case of our field mice has wider ramifi-
cations. Over the last few decades, a debate has emerged concerning the ontological
status of the putative causes of evolution, particularly drift and natural selection. At
stake is whether the theory of evolution is a theory of causes. If it turned out that one of
our best scientific theories was not a theory of causes at all, this would be an important
and surprising result.

On one side of the debate are the causal theorists, defenders of the traditional view
that drift and natural selection (alongwithmutation,migration, etc.) are genuine causes
of changes in trait frequencies in real populations. According to the causal theory, drift
corresponds to some causal feature (or supervenes on some set of causal features) in the
underlying causal network governing the dynamics of an evolving population (Filler
2009), though there is disagreement about what these features are 5 andwhether drift is
a separate causal process from selection, mutation, and so on.6 On this view, the causal
features of evolving populations bear a strictly horse-cart relationship to population
genetics models; the formal properties of models are grounded in the causal properties
of populations and are appropriate insofar as they describe how the causes of evolution
interact to determine the dynamics of traits in a population.

4 The terms in the right-hand side of the equation below denote, from left to right, the number of individuals
with trait X, the number of individuals of the alternative trait, and a term accounting for variance in the
offspring distribution of an individual with the X trait. The right-most term is used to calculate the variance
expected population size, which I will discuss in more detail Section 4. See Der et al. (2011) for a more
thorough explanation.
5 For example, Millstein (2002) and Hodge (1987) argue that drift is indiscriminate sampling (that is,
sampling without respect to intrinsic physical differences among individuals). According to Gildenhuys
(2009), drift refers to “causal influences over a population” that are “non-interactive, non-pervasive, and
indiscriminate causes” (p. 522). Other prominent defenses of the causal theory, such as Shapiro and Sober
(2007), Stephens (2004), and Reisman and Forber (2005) do not take an explicit stand on this issue.
6 Okasha (2006), Abrams (2007), and Clatterbuck et al. (2013) are representative of the single-process
view, while Millstein (2002) and Hodge (1987) are representative of the separate-process view.
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This view has been challenged by statistical theorists who argue that we ought to
look at the role that drift and selection play in the mathematical models of population
genetics to determine their ontological status, and that doing so reveals that they are
not genuine causes but rather statistical summations over the genuine causes—the
births and deaths of individual organisms—of evolution (Matthen and Ariew 2002,
2009; Walsh 2000; Walsh et al. 2002). On the statistical view, the theory of evolution
is analogous to statistical mechanics, which describes the probability of different
molecular concentrations without tracking the motions of individual molecules.

Causal theorists have criticized both of the statistical theorists’ primary commit-
ments, arguing that we can not read ontology off of mathematical models (Millstein et
al. 2009), and that even if we could, it wouldn’t follow that drift and selection are not
causes. An influential argument in support of this latter claim relies on the connection
between drift and population size. If we intervene to reduce the size of a population,
we increase the probability that outcomes other than that predicted by selection, muta-
tion, migration, etc. will occur; therefore, drift is a cause of those outcomes (Shapiro
and Sober 2007; Stephens 2004). This argument is explicitly given within (Woodward
2003) causal interventionist framework by Reisman and Forber (2005):

(1) If an appropriately controlled manipulation of variable A results in a systematic
change in variable B, then A is a cause of B.

(2) An appropriately controlled manipulation of drift (i.e. manipulating N) results in
systematic changes in population-level dynamics (i.e. the probability distribution
of trait frequency outcomes).

C: Therefore, drift is a cause of population-level dynamics.

In support of this argument, Reisman and Forber offer evidence that interventions
that reduce population size lead to increased variance in population outcomes, both in
natural “experiments” and in controlled laboratory experiments. When natural pop-
ulations undergo bottlenecks, neutral traits at intermediate frequencies often go to
fixation. In a controlled experiment of this phenomenon, Dobzhansky and Pavlovsky
allowed replicate populations of fruit flies, consisting of two types in equal propor-
tions, to evolve under stabilizing selection. Holding selection constant across trials,
the experimenters manipulated the size of the populations by culling some populations
to N ≈ 4,000 and others to N = 10. The large populations reached roughly similar
equilibrium frequencies while the small populations showed greater heterogeneity in
equilibrium frequencies. Reisman and Forber argue that this manipulation ofN consti-
tuted an appropriate intervention; because the strength of drift is inversely proportional
to population size, N determines the magnitude of drift (Reisman and Forber 2005,
p. 1115).

Statistical theorists have leveled several arguments against the second premise of the
above argument. First, they have argued that it is impossible to perform an appropriate
manipulation of drift since doing so would require a manipulation of individual-level
causes, i.e. the lives, deaths, and reproduction of individual organisms (Walsh 2000;
Walsh et al. 2002). In response, some causal theorists have argued that population-level
causes, such as selection or drift, are not causal competitors with those individual level
causes, since population-level causes supervene on individual level causes (Shapiro
and Sober 2007). This objection raised by the statisticalists is not a problem for evo-

123



3492 Synthese (2015) 192:3487–3507

lutionary causes in particular but higher-level supervening causes more generally;
insofar as one accepts higher-order causes, this objection should not be troubling.

However, according to a second argument from statistical theorists, even if we adopt
the view that drift supervenes on features in the underlying network of a population, this
does not yet show that drift is a cause. There is a natural response to the Dobzansky
and Pavlovsky experiment which motivates this statisticalist response. Why was it
necessary to actually perform this experiment? The experiment merely revealed a
statistical truism; the results of any stochastic process will show more variance as the
number of trials decreases. When you flip a fair coin 10 times, you are more likely to
observe results other than 0.5 heads/0.5 tails than if you flipped it 4,000 times.

The objection, voiced by Matthen and Ariew (2009) is that manipulations of N
reveal a purely mathematical relationship between N and population outcomes, not a
genuinely causal one:

What [causal theorists] miss is that the connection between population size/
variation-in-advantageous traits and drift/ selection is purely mathematical. This
connection is the same as that which holds between sampling size and propor-
tional variance from the mean in random sampling… Sample size and variance
under random sampling are connected by mathematical law, and thus are not
sufficiently distinct from one another to account as terms in a cause-effect rela-
tionship (p. 212).

This objection consists of the two related claims that (a) drift does not supervene
on any causal features of an evolving population but instead (b) supervenes on a
mathematical feature. In support of the first claim, statistical theorists point out that
fitness, mutation, migration, and the other putative causes of evolution are inherently
stochastic. For illustration, in our population of field mice, each mouse is physically
identical (except for coat color) and therefore has equal fitness, but this does not mean
that eachmousewill actually have the same number of offspring. An organism’s fitness
is a probabilistic expectation, derived by calculating of the number of offspring it will
have if various conditions—including lightning strikes—obtain, weighted against the
probability of those conditions obtaining (Mills and Beatty 1979).

If fitness encompasses all of the causes thatmay influence survival and reproduction
and if the causes that influence fitness are the subvenience base of selection (and so on
for the causes that influence mutation, migration, and so on), then it looks like there
are no causes left in the underlying causal network of an evolving population for drift
to pick out. Matthen and Ariew conclude that drift is non-causal, for “once a reference
class has been partitioned in terms of all the factors that make a difference, the residual
variation within the cells of the partition—the unassigned variation—is uncaused. It
is due to chance if you like” (Matthen and Ariew 2002, p. 64).

What then does “drift” refer to? For any stochastic process with a limited number
of “trials” (here, organisms in the population), there will be statistical error. For sta-
tistical theorists, drift just is this statistical error (Walsh et al. 2002). While sometimes
“statistical error” refers to causes that have not been accounted for, by hypothesis, all
of the causes impinging on the mouse population have been accounted for in the deter-
mination of individual and trait fitnesses. This motivates the objection’s second claim.
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Drift supervenes on a mathematical feature of an evolving population. The number of
trials of stochastic evolutionary processes uniquely determines the magnitude of drift,
so drift denotes a mathematical relationship between population size and variance in
evolutionary outcomes.

Motivated by similar considerations, Lange (2013a, b), argues that to explain some
evolutionary outcome in terms of drift is to give a “distinctively mathematical” or
“really statistical”, rather than primarily causal, explanation. The explanans of a drift
explanation will cite mathematical features of the individual-level subvenience base
and thus showwhy the explanandum follows bymathematical necessity.7 For example,
the explanation for why the small populations of flies had a larger variance in outcomes
than the large populations need only cite the fact that the small populations experienced
fewer trials of a stochastic process and the statistical fact that the variance in outcomes
of a stochastic process is inversely proportional to the number of trials.

Similarly toMatthen andAriew’s argument that drift doesn’t correspond to anything
causal, Lange argues that while a causal explanation “derives its explanatory power
from describing relevant features of the result’s causal history, or more broadly, of the
world’s network of causal relationships”, drift explanations do not bear this hallmark
(Lange 2013a, p. 183). To explain why the small populations of flies deviated from
expectation, it is not necessary—and arguably, it does not “deepen” the explanation
at all—to provide details of the survival and reproduction of fruit flies, their offspring
distributions, or the structure of their populations. Another way of getting at the same
point is to say thatmathematical explanations are substrate neutral. The explanationwe
gave for why the small populations of flies had greater variance in outcomes would
work equally well at explaining the outcomes of coin-flips or any other stochastic
process. It is no coincidence that almost all philosophical discussions of drift are done
in terms of coin-flipping or drawing balls from an urn, Lange or the statistical theorist
might argue, since there is nothing distinctively biological about drift explanations.
The mathematical properties of stochastic processes are all that are needed.

While some causal theorists are not troubled by the fact that population size and
evolutionary outcomes bear this strong mathematical relationship8, I think that it does
raise a strong prima facie challenge to what I take to be the strongest argument in the
causal theory’s arsenal. In order to combat this objection, causal theorists somewhat
paradoxically must weaken the connection between population size, N , and popula-
tion outcomes in order to redeem it as genuinely causal. They must show that this
mathematical feature of populations does not uniquely determine the magnitude of
drift, and further, that drift does supervene on causal features in the subvenience base
of an evolving population. Fortunately for the causal theory, new theoretical work has
shown that the relationship between N and drift is not as tight as once assumed.

Both sides of the debate havemade a few (usually implicit) assumptions. The first is
that the magnitude of drift is to be measured by the deviation of trait frequencies from

7 This is stronger than the nomological necessity constitutive of causal explanations.
8 For example, Sober (1984, p. 117) argues that the sampling size of a stochastic process is a cause of that
process’s outcomes. The probability distribution over outcomes of a series of coin-flips is affected by both
the bias of the coin and the number of times you flipped it. See also Sober (2011) for a defense of the claim
that there are a priori causal claims in evolutionary biology.
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the frequencies predicted by selection (and mutation, migration, etc.).9 The second is
that there is a unitary function relating the population size, N , and said magnitude.
To wit, consider these representative characterizations of drift, from defenders of the
causal and statistical view, respectively:

In a population of a given size, drift as a process of indiscriminate sampling
always has the same force. It is part of the definition of drift that it is stronger
when the population is smaller (Stephens 2004, p. 557), italics in original).
Drift is manifested as a difference from the outcome predicted by the fitnesses
in the population. The law of large numbers tells us that the likelihood of signif-
icant divergence from these predictions is an inverse function of the size of the
population (Walsh et al. 2002, p. 459).

If these assumptions hold, then the onlyway tomanipulate drift is tomanipulate N , a
mathematical feature, and the only effect ofmanipulating N is a change the probability
of deviations from expected trait frequencies. Participants on both sides have restricted
their focus to a particularmodel of genetic drift, theWright–Fishermodel, underwhich
both of these assumptions hold.10 However, Iwill argue that broadening our conception
of drift to include alternative models unveils novel ways of intervening on drift that
will strengthen the causal argument against its statisticalist detractors.

4 Alternative models of drift

The model of drift that has been assumed to be themodel of drift (or one of a number
of predictively equivalent models of drift) is the Wright–Fisher model, which was
first articulated by Wright (1931) and given in its diffusion limit by Kimura (1962).
Philosophers of biology perhaps cannot be blamed for this single-minded focus. The
Wright–Fisher model was the first prominent account of drift within population genet-
ics, and due to its simplicity, it continues to be a useful tool for predicting frequency
changes due to drift. Indeed, the model is still the most influential account of drift
amongworking biologists. According to Der et al. (2011), “Population geneticists typ-
ically characterize genetic drift by a single number—the variance effective population
size—which simply scales all genetic quantities. As a result, there is widespread belief
among many biologists that there is only a single reasonable model of drift” (p. 81).

The Wright–Fisher model describes drift processes in natural populations as bino-
mial sampling with replacement and a constant population size N . InWright’s original
formulation, drift is conceived of as a process in which each individual in the k gen-
eration produces a very large number of gametes which are true to type, and then a
new population at the k+1 generation is created through N statistically independent
sampling events from that nearly infinite pool of gametes. The likelihood of an X-type
allele being drawn from this gamete pool is equal to the frequency of the X-type in
the parent population. The transition matrix of this process is given by:

9 According to some views, drift just is the actual deviation of trait frequencies from expectation (Brandon
2005). On most causal views, N is an indication of drift’s power to cause such deviations.
10 Notable exceptions are Gildenhuys (2009), Millstein et al. (2009), and Plutynski (2007).
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Pri j = Pr
(
Xk+1 = j |Xk = i
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N

j
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1 − i

N
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This ontological picture lends itself to the traditional depiction of drift as akin to
sampling balls from an urn. Consider an urn at the k generation containing 6 green
and 4 red balls (N = 10). A new urn is populated at the k+1 generation by randomly
drawing a ball, making a copy to place in the new urn, and then replacing the drawn
ball. This process is repeated 10 times to create a new population of N = 10. The
Wright–Fisher equation gives the probabilities that the new urn will contain particular
numbers of green and red balls.

The most likely outcome is that the frequency of green balls in the k+1 urn will
be 0.6, the same as in the k urn, but other frequencies are possible. For example, the
probability that the new urn will contain at least 7 green balls is quite large (=0.382).
Now consider an urn at the k generation containing 60 green and 40 red balls (N =
100), from which a new urn is created at the k+1 generation by the same process of
binomial sampling with replacement. The probability that the new urn will contain 70
or more green balls is much smaller (=0.023).

This analogy illustrates a few key features of the Wright–Fisher model. First, ini-
tial trait frequencies and the population size entirely determine the transition matrix.
Deviations from expectation are more likely as the two types approach equal frequen-
cies in the k generation and as the number of trials, N , decreases. The probability that
the urn containing 10 balls would “jump” from 0.6 green to at least 0.7 green was
much larger than the probability that the urn containing 100 balls would. Second, in
general, big jumps in trait frequencies are highly improbable for sizeable populations.
The probability that the small urn will jump from 0.6 green in the k generation to all
green in the k+1 generation is 0.006. For the large urn, the probability is even more
miniscule (=0.6100).

A third feature is not illustrated in the above example but can easily be seen. The
Wright–Fisher model predicts that a novel mutant in the k generation is very likely
to be lost, even when it is selectively advantageous. To model selection in our urn
cases, suppose that some balls are more likely to be drawn than others by a factor
determined by the selection co-efficient, s. Now imagine an urn of 99 green balls and
a single new yellow mutant (N = 100). Even the yellow type is twice as fit as the
green type (s = 1/2 , a very large value of s for natural populations)11, the probability
of losing the yellow type in the k+1 generation is 0.13. In general, when s is small
and Ns is greater than 1 (which is the case in most populations), the probability that a
newly introduced favorable allele will go to fixation is approximately 2s (Wright 1931,
p. 133).12

11 Here, we can model this by supposing that the ball drawing is no longer indiscriminate, and a token
yellow ball is twice as likely to be drawn than a token green ball. See Brandon (2005, pp. 157–158) for a
similar example.
12 From Wright, the probability of fixation (π) of a beneficial allele introduced at frequency 1/2N =
2s/(1−e−4Ns ). Notice that as Ns increases, the value of the denominator goes to 1, so 2s will be a good
approximation of the probability of fixation for most values of s. For a more detailed derivation and
discussion, see Kimura (1962, pp. 715–716). I am grateful to a reviewer for helpful comments on this issue.
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Before we compare the Wright–Fisher model to others, a quick aside will be help-
ful. As we have seen, philosophers of biology often associate the strength of drift
with population size, N , which is a simple count of the organisms in a population.13

However, biologists more typically measure the strength of drift with the effective
population size, Ne (see Charlesworth 2009 for a thorough explanation of the con-
cept). The Wright–Fisher model contains various assumptions that are not true of
most actual populations; for instance, it assumes that each individual in the population
contributes to the gamete pool, that there is no associative mating within types, and
so on. The effective population size Ne of a real population P describes the size N
of a theoretical population which obeys the assumptions of the Wright–Fisher model
whose dynamics accurately model those of P. For example, a population that contains
10,000 individuals, in which only some of which reproduce at a given time and in
which organisms preferentially mate with their own type, might behave as if it was a
population of 2,000 individuals under the Wright–Fisher model.

While the causal theory benefits from an appreciation of the theoretical nature
of the effective population size, I will not spend much time arguing the point here
since it is illustrated much more dramatically by the alternative models I will consider
next. However, two points here will foreshadow my argument in the next section.
First, the effective population size for a population P is determined by facts about the
underlying network of biological causes of P, in particular, facts about the mating and
reproductive tendencies of organisms in P. Second, the effective population size is the
true measure of the strength of Wright–Fisherian drift; it predicts greater deviation
of trait frequencies from expectation when the actual population is smaller but also
when factors like assortative mating make the effective population size smaller. These
facts show that the magnitude of Wright–Fisherian drift supervenes on causal features
of an evolving population, not merely the mathematical feature N , and that these are
features that are not subsumed in selection, mutation, or the other higher-level causes
of evolution. Lastly, they suggest that the mathematical relationship which figures in
the Wright–Fisher model is often not a literally true (or even nearly true) description
of real populations it describes, so it is an error to draw ontological judgments about
the population directly off of the model.

As I noted in Sect. 2, there are two informal features that are taken to be constitutive
of drift—that it is random and more pronounced in small populations—and the bino-
mial sampling process described by the Wright–Fisher model obeys these features.14

However, since Wright, more general drift models have been constructed that aban-
don some of the restrictive assumptions of the Wright–Fisher model. Consider the

13 I am not claiming that philosophers have wholly ignored the distinction between population size and
effective population size; for instance, Stephens (2004) uses the effective population size as an indicator of
the strength of drift. However, few in this debate have paid close attention to the significant causal factors
which determine effective population size. Gildenhuys (2009) is a welcome exception.
14 As Der et al. (2011) show, the Wright–Fisher model, as well as the other models I consider, also obey
the formal characterizations of drift described by (Mean) and (Variance). The question of whether there
are drift models that exhibit the informal properties of drift while not obeying these formal properties is
interesting but beyond the scope of this paper. For my purposes, it suffices to show that there are models
which meet the formal requirements which population geneticists use to define drift processes but differ
interestingly in their resulting population dynamics.
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Cannings model which specifies a transition matrix via θ , an independent identically
distributed random variable specifying the offspring probability distribution of types
(which are equal under a pure drift model):

Prij = Pr
(
Xk+1 = j |Xk = i

) = Pr

(
i∑

i=1

θi = j

)

The binomial variable is one candidate for θ , but there are others (Cannings 1974).
Recent theoretical work by Der et al. has shown that there are versions of these

alternative models that obey the two characteristic features of drift (they call these
“generalized Wright–Fisher models” or GWFs) yet differ dramatically in the out-
comes that they predict. The reason for this is that (Mean) and (Variance) describe
the first two statistical moments of a GWF process, but processes satisfying these
are free to differ in their higher moments. The variance effective population size that
is usually discussed in applications of the standard Wright–Fisher model is deter-
mined by the variance in offspring distributions of types in a population. However,
offspring distributions with the same variance can differ in skew, heavy-tailedness, and
so on.

For illustration, I will focus on the Eldon–Wakeleymodel, which has been proposed
as a model of drift in populations of Pacific oysters (Eldon and Wakeley 2006, Der et
al. 2011, 2012). In this model, “individuals produce one offspring each generation,
until a random time at which a single individual replaces a fraction λ of randomly
chosen individuals from the entire population” (Der et al. 2011, p. 83). This counts as
a pure drift process, satisfying (Mean) and (Variance). Each individual (and therefore
each type) has equal fitness, an identical, but highly skewed, offspring distribution
(each individual has a high probability of leaving one offspring, a small chance of
being randomly chosen to leave many offspring, and a small chance of being replaced
if another individual is chosen to replace its offspring in the next generation), and
therefore, the expected distribution in a given generational transition is identical to
that in the parent generation. The variance will depend on the value of λ (which in
turn is determined by N ).

Now, consider an extreme version of this process inwhich an individual is randomly
chosen at k to replace the entire population with its offspring at k+1 (so λ = 1), where
the average time until this random bottleneck effect is N . In the ball-drawing analogy,
this would be like having an urn filled with 100 balls, 60 green and 40 red, from which
each ball typically contributes exactly one representative to a new urn, containing
60 green and 40 red balls. However, once every 100 generations or so, you take the
first ball you draw, copy it 100 times, and use those copies to fill the new urn. This
new urn has a 0.6 chance of having all green balls and a 0.4 chance of having all red
balls.

This type of drift process will behave much differently than the binomial sampling
process that we considered above. First, it will permit much bigger jumps. For N =
100, the probability of going from 60 green and 40 red balls to 100 green balls in
one generation is virtually 0 (0.6100) on the Wright–Fisher model, but it is 0.006 on
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the extreme Eldon–Wakeley model.15 For N = 10, the probability of such a jump is
0.006 on Wright–Fisher but is ten times more probable (0.06) on the Eldon–Wakeley
model.

Second, long periods of stasis between bottleneck events allow new mutants to
persist and therefore for selectively favored mutants to increase in frequency between
drift events. Since the drift event randomly selects an individual to populate the next
generation, the probability of a type being chosen is equal to its frequency at the time
of the drift event. Therefore, long periods of stasis increase the probability that a fitter
allele will eventually go to fixation. The probability of fixation of a newly introduced
favored allele will depend on the relative values of s and the expected time until
bottleneck, N , and will go to 1 in the limit of very rare bottlenecks (N → ∞). This is
radically different than theWright–Fishermodel, which predicts that the probability of
fixation of a new favored mutant is 2s, no matter how large N gets. (Der et al. 2012, p.
1332) conclude that “selection operates very differently in the Eldon–Wakeley model
than it does in the standardWright–Fisher [model]… in particular, the form of genetic
drift that arises in populations with reproductive skew tends to amplify the effects of
selection, relative to the standard form of Wright–Fisherian drift—even when both
models are normalized to have the same variance-effective population size”.

The standardWright–Fisher and Eldon–Wakeleymodels represent two extremes on
a continuum of GWF models which predict strikingly different population dynamics
and outcomes. Consideration of thesemodels shows that the assumptions onwhich the
debate between the causal and statistical theories have often been predicated—that the
only relevant outcomes of drift are deviations of trait frequencies from expectation16

and that population size is the unitary measure of the probability with which drift will
produce those outcomes—are false. To see this, compare Stephen’s statement (quoted
above) that drift “always has the same force” with a characterization of drift from Der
et al.:

TheWright–Fisher model acts as a vigorous suppressor of selection. Once again,
this supports the idea that the form of genetic drift encoded by theWright–Fisher
model (and those models with the same diffusion limit) is extremely strong. In
the Wright–Fisher model, drift counteracts the deterministic force of selection
more powerfully than in any other generalized populationmodel (Der et al. 2011,
p. 87).

The strength of drift can be measured with respect to various outcomes, including
suppression of selection, time to fixation, and the probability of fixation of an advan-
tageous mutant. Further, the size of a population does not determine the value of these
outcomes; as we have seen, a population of N = 1, 000 behaves differently if it is
undergoing an extreme Eldon–Wakeley process than if it is undergoingWright–Fisher
binomial drift. In the next section, I will argue that these differences in the magnitude

15 The probability that greenwill go to fixation is the probability the populationwill go through a bottleneck
event in that generation (1/N= 0.01) times the probability that it will be a green ball that is chosen to populate
the next generation (its starting frequency, 0.6).
16 This is not a universal assumption of causal theorists. For instance, see Stephens (2004) and Filler
(2009) for discussions of drift and changes in heterozygosity.

123



Synthese (2015) 192:3487–3507 3499

of drift in differently constituted populations suggest new ways of manipulating drift,
ways that buttress the causal theory against its statisticalist detractors.

5 Redeeming the causal theory

The contrast between the Eldon–Wakeley and Wright–Fisher models sketched above
highlights the fact that different drift models contain different ontological assumptions
about the drift process at work in a population, and whether these assumptions cor-
respond to the actual drift process that a population is undergoing determines which
model will deliver accurate predictions about population outcomes. Here, I agree with
the criticism of statistical theorists from Millstein et al. (2009). They argue:

[Models] are always ideal structures. Interpreting amodel, then, involves propos-
ing that certain features of the model, some or all of variables and functions,
correspond to certain features of the world…The justification of a model’s inter-
pretation depends crucially, we claim, on claims about the physical processes
that affect the allele frequencies and their dynamics (Millstein et al. 2009, p. 5).

On this semantic interpretation of theories, it is not possible to read the ontology
of an evolutionary process directly off of a mathematical model.

In support of the semantic view, Millstein et al. point out that there are different
drift models (they mention the Cannings and Moran models17 that carry different
assumptions about the causal network of a population undergoing drift.18 They state,
“It is not clear whether there is any particular reason to choose one drift model over
another in trying to understand the concept of drift, though there may be other reasons
to choose a particular model (e.g. tractability)” (Millstein et al., p. 6). Though the
presence of alternative models of drift is an important point in favor of their semantic
view, which I share, their argument is strengthened considerably by emphasizing the
predictive inequivalence of those models in addition to differences in tractability or
other virtues.

If various models were predictively equivalent, then it would lend support to the
statisticalist argument that the underlying biological details do not make a difference
for evolutionary outcomes that are attributable to drift. If drift was invariant across
changes in the underlying causal network—inotherwords, if itwas substrate-neutral—
then this would be evidence that what drift models are latching onto is a merely
mathematical regularity, and that to explain an outcome in terms of drift is to give a
really statistical explanation.

17 The Eldon–Wakeley model is an extension of the Moran framework. For a more detailed discussion,
see Der et al. (2012, p. 1332).
18 One of their primary arguments is that the statisticalist view cannot adequately capture actual scientific
practice since the development of alternativemodels of driftwasmotivated by the desire formodels thatmade
more realistic biological assumptions than theWright–Fisher model, whichMillstein et al. claim “makes no
sense if drift were only a statistical outcome” (p. 6). I agree with their contention that biologists have often
conceived of drift as a causal process, yet I do not think this argument is a particularly compelling refutation
for statistical theorists who want to substantially revise the way that biologists (as well as philosophers)
think about drift.
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Millstein et al. are correct that the fact that a relationship is represented mathemat-
ically in a model does not entail that the relationship being modeled is itself merely
mathematical.19 However, this lack of an entailment does not show that the statistical-
ist theory is false; we need some reason to think that the relationship being modeled
is genuinely causal. The predictive inequivalency of different drift models, such as
the Wright–Fisher and Eldon–Wakeley models, plays this very role by showing that,
contrary to the statisticalists’ assumptions, details of the causal network underlying a
population do change the outcomes of drift. Drift does supervene on causal properties
of an evolving population, and bymanipulating these properties (therebymanipulating
drift), we can cause changes in evolutionary outcomes.

The different ontological assumptions of alternative drift models suggest ways that
we canmanipulate drift in real populations. For instance, we can alter a population that
is undergoing aWright–Fisher type of drift process so that it switches to a drift process
more like that described in other models, such as the Eldon–Wakeley model; in effect,
we can randomly sample the population differently. What then are the different onto-
logical commitments of the standard Wright–Fisher and alternative models that gen-
erate such predictive differences and possible manipulations? A full treatment of the
issue is beyond the scope of this paper, but a few exampleswill suffice formy ends here.

The Wright–Fisher is a particularly good model of some paradigm cases of drift,
including gametic sampling. Suppose an individual is a heterozygote, Aa, with respect
to some trait and reproduces 10 times. Each reproductive event can be seen as sampling
a single gamete from this pool to contribute a single offspring to the next generation.
The probability of sampling an A gamete from our organism is equal to the starting
frequency of A’s in the gamete pool, which is 0.5 (and so on for a gametes).20 The
expectation is that 5 of the organism’s offspring will receive an A gamete and 5 will
receive an a gamete, but given a limited number of trials, the actual outcomes may
deviate from expectation.21

We can expand this analysis to consider how a population of diploid organisms
will evolve, where N = 10 (so the total number of alleles is 20) and the initial allele
frequencies are 0.5 A and 0.5 a. According to the Wright–Fisher model, on which:

(a) each gamete has an equal chance of contributing to the next generation (there is
no selection),

(b) gametic sampling events are independent and identically distributed, and
(c) in an individual sampling event, each gamete gives rise to a single offspring22,

the probability that one or the other allele will increase in frequency from 0.5 to at
least 0.8 is

19 I will return to this point in Sect. 6.
20 I will ignore meiotic drive or other segregation distorters.
21 Filler (2009) argues that drift’s tendency to reduce heterozygosity shows that drift is an evolutionary
force.
22 This does not mean that every gamete will contribute a single descendent to the daughter population.
Sampling with replacement allows for the possibility that a gamete could be sampled more than once.
However, this condition does ensure that the expected offspring distribution of a gamete is binomial.
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However, there are possible manipulations to this population that will yield changes
in its evolutionary dynamics, even while holding the population size (N = 10, number
of alleles = 20) constant and maintaining neutrality of the A and a alleles. Suppose
we keep assumptions (a) and (b) but change (c), so that now, in each generation, there
is a 1/2N chance that a randomly selected allele will populate the entirety of the next
generation (similar to a replacement event in an extreme Eldon–Wakeley process).

Using this example,we can formulate a newversion of themanipulationist argument
for the causal theory. The Wright–Fisher and Eldon–Wakeley models each contain a
variable denoting a probability distribution over the number of offspring that may be
produced by each individual in a generation. As assumption (c) shows, the Wright–
Fisher model sets constraints on this variable. However, in some real populations,
organisms may produce offspring numbers that fall outside of the range specified by
the Wright–Fisher model. According to Der et al. (2012, pp. 1331–1332):

The Wright–Fisher model assumes that individuals each produce a Poisson-
distributed number of offspring each generation, subject to the constraint of a
constant population size (Karlin andMcGregor 1964). This formulation excludes
the possibility of a highly skewed distribution of offspring numbers, which has
been observed empirically in some species. Marine species in particular, as well
as some plants and fungi, sometimes produce a very large number of offspring
when faced with high mortality early in life (Hedgecock 1994).

Suppose that we have a population of N = 10 diploid Pacific oysters that initially
have offspring distributions that fall within the specified range of the Wright–Fisher
model. Then,we intervene on the population in such away as to increase the probability
that individuals have a far greater number of offspring (relative to the population size)
than allowed by the Wright–Fisher model23, while keeping sconstant and offspring
distributions equal for every individual. Sampling from this offspring distribution
increases the probability that a single individual’s offspring will constitute a large
fraction of the population in the next generation. If we increase the skew as described,
the probability of a neutral allele increasing in frequency from 0.5 to at least 0.8
will be greater than 0.006 (the probability of that outcome obtaining under binomial
sampling).24

23 The quote from Der et al. (2012) suggests ways of manipulating the probability distribution over
offspring number so as to increase skew; whenmortality rates are high, individuals may increase the number
of gametes they produce in a given breeding episode, so we could intervene on offspring distributions by
changing the environment in a way that increases mortality rates.
24 The proof of this is simple. In (1− 1/2N ) of the generations, the probability of a jump from 0.5 A to >

0.8 A or 0.5 a to>0.8 a is given by the binomial equation, but in 1/2N of the generations, the probability of
such a jump is 1, which by necessity makes the probability of a jump greater than it would be in a binomial
process. The exact probability of such a jump will depend on the value of λ, N , and the frequency of Aand
a when a replacement event occurs. The probability of fixation of a selectively favored allele will also
increase.
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In summary, theWright–Fisher model states that the offspring distribution variable
can only take on certain states specified by the binomial distribution. We can shift
the population from a Wright–Fisher process to an Eldon–Wakeley drift process by
manipulating the population such that the offspring distribution variable takes states
that are incompatible with the Wright–Fisher model. Manipulations of this variable
change the probability distribution over allele frequencies in the next generation. Since
each individual still has an identical offspring distribution, this is a pure drift process.
Following Reisman and Forber (2005), we can construct the followingmanipulationist
argument:

(1) If an appropriately controlled manipulation of variable A results in a systematic
change in variable B, then A is a cause of B.

(2) An appropriately controlled manipulation of drift (i.e. a manipulation of the num-
ber of offspring produced by individuals undergoing sampling) results in system-
atic changes in population-level dynamics (i.e. the probability of transitioning from
0.5 frequency of the A allele to a >0.8 frequency of the A allele).

C Therefore, drift is a cause of population-level dynamics.

The examples I have already discussed suggest additional manipulations of drift
that will yield changes in evolutionary outcomes. If we intervene on our population
of field mice by physically clustering individuals of a type together, thereby imposing
correlations among individuals of a type, we can increase the probability that the
population will exhibit large jumps in trait frequency. For example, suppose that we
intervene to make brown mice cluster closely with other brown mice and white mice
cluster with white mice, and that so clustered, a lightning strike will kill multiple mice
at once. Even if a lightning strike is equally likely to strike a mouse of either coat
color, this manipulation will change the probability that the population frequencies
will change dramatically in the event of a lightning strike.

Lastly, recall that the probability of fixation of a newly introduced advantageous
allele is≈2s for nearly all populations on theWright–Fishermodelwhile on theEldon–
Wakeley model, it approaches 1 as the time period between drift events increases. We
can weaken the power that drift has to suppress selectively-favored mutations in a
population by increasing the time between population bottlenecks and/or changing
the offspring distributions of individuals in the population to resemble those described
by the Eldon–Wakeley model.

In each of the three examples given above, manipulations to causal properties
of evolving populations—properties such as the frequency of lightning strikes and
bottlenecks, the probability that individuals will produce large numbers of offspring,
and demographic properties like population density—yield changes in evolutionary
outcomes. This shows that drift does notmerely supervene onmathematical properties.
Further, some of these causal properties are not in the subvenience base of any of the
other canonical evolutionary causes.

I expect that a statistical theorist would level the same objection against these more
nuanced manipulationist arguments that she did against the argument from manipula-
tions of population size. She may argue that alternative models of drift merely show
that the mathematical relationship between drift and evolutionary outcomes is more
complicated than once thought, but it does not show that the relationship is genuinely
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causal. After all, she might argue, the outcomes predicted by the Eldon–Wakeley
model follow by mathematical necessity from facts about the offspring distributions
of individuals in the population (which are determined partially by λ) and the expected
time until bottleneck (N ). Perhaps I am correct that philosophers of biology have erred
in focusing exclusively on population size, but once we have acknowledge that error,
nothing else follows.

I think that this response is mistaken. It is trivially true that once a mathematical
model has been constructed to describe and predict population dynamics, the rela-
tionships between variables in that model will be mathematically related. However,
causal information is crucial in determining which mathematical model will be a true
or accurate model of a population, and its variables will represent causal features of
the population.

Alternative models of drift also show why Lange is mistaken in calling drift expla-
nations “really statistical explanations”. Statistical explanations, he argues, are not
“deepened” by being supplemented with facts about the causal features underlying
a chance process, and “these facts have no place in the explanation since the expla-
nation does not derive its power to explain from its describing relevant features of
the result’s causal history” (Lange 2013a, pp. 172–173). On the contrary, the causal
features of a population evolving under drift, beyond just the number of trials of the
stochastic process, are crucial in determining the outcomes we should expect and also
for explaining outcomes that do occur.

For example, suppose you want to explain why an allele starting at an intermediate
frequency in a small population went to fixation in the next generation, and that the
correct explanation is that it was due to drift. Lange argues that this explanation is
statistical, for we need only cite the fact that the population was small—in other words,
that there were a small number of trials of a stochastic process—to explain why the
allele had a high probability of going to fixation. However, since some drift processes
will make this outcome more likely than others, even when we hold population size
constant, we can deepen the explanation by adverting to causal features of the popu-
lation, i.e. “The individual offspring distributions in the population of Pacific oysters
were highly skewed because individuals were producing large numbers of gametes in
response to environmental stresses that made earlymortality likely, so allele fixation in
that time period in a population of that size undergoing drift was more probable than it
would have been if the individuals had binomial offspring distributions”. The number
of trials still matters in drift explanations, but so does the type of drift process at work.

While I do not intend to elaborate and defend a particular causal theory of drift
here, I will briefly state how such a theory might work in light of the alternative mod-
els of drift I have considered. On the causal theory, there are various causes acting on
individuals within a population that lead to different rates of survival, death, and repro-
duction. When traits are regularly and projectibly correlated with differential survival
and reproduction, “selection” denotes this correlation and measures its strength and
direction. “Drift” ranges over those causal factors that are not regularly and projectibly
correlated with differential survival and reproduction among types.25

25 This is another way of saying that drift is “indiscriminate”. See Millstein (2002) for a more thorough
explication of the concept.
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As alternative models of drift demonstrate, these latter causal factors may vary
in differently constituted populations and interact differently with selection and the
other causes of evolution. Recall that according to the statistical theorists, drift is what
remains once we have taken account of all of the “factors that make a difference”
to evolution (Matthen and Ariew 2002, p. 64). On the contrary, drift corresponds to
factors that do make a significant difference in the evolution of actual populations,
and therefore, it would be an error to consign drift to the dustbin of non-causal “mere
chance”.

6 Implications

I have been concerned with a special ontological question within the domain of evo-
lutionary biology, but that dialectic holds lessons for ontological investigations in
science more generally. In particular, I want to call attention to two errors that have
led to confusion in the debate over the causal nature of drift. The first error is confusing
a mathematical description of a causal process for a true description of a mathematical
process. The second error is in focusing too narrowly on one methodologically useful
model at the expense of others and therefore mistaking the particular idealizations and
assumptions of that model for true features of the causal process that it describes.

The first error has received more attention in philosophical discussions of scientific
models. Natural phenomena often exhibit regularities that yield themselves to math-
ematical descriptions, and science has increasingly relied on mathematical models to
describe and predict them. According to causal realists, there are strong reasons to be
leery about reading ontology directly off of mathematical models.26 The most general
reason is that it seems to put the descriptive cart before the ontological horse. It is the
nature of the phenomena of interest (along with our epistemic and perhaps aesthetic
interests) that determines whether a model is appropriate or accurate and not vice
versa. Further, because models contain idealizations and abstractions, information is
lost in the process of modeling; a methodologically useful model may leave out details
that would be important for ontological judgments.

A related problem, raised by Millstein et al. (2009) is that mathematical descrip-
tions underdetermine ontology. They argue that “it is a mistake to derive definitions
from mathematics alone… since many, very different definitions can be derived from
the same equation”, and these include both physical and purely mathematical inter-
pretations (p. 4). Two illustrations of this underdetermination will be helpful.

Millstein et al. offer the example of the Hardy-Weinberg law which states that an
infinite, randomly mating, diploid population containing alternative alleles A and a at
frequencies p and q, will maintain equilibrium genomic frequencies p2+ 2pq +q2 =
1 (where p2 denotes theAA genotype, 2pq theAa genotype, and q2 the aa genotype). In

26 The question of whether we should be realists or instrumentalists about models is somewhat orthogonal
to this debate. Antirealists will argue that it is a mistake to go beyond the models to make any judgments
whatsoever about ontology. I will not respond to this argument since none of the parties to the debate in
question are antirealists. Instead, here I defend the more modest claim that if we are engaged in the practice
of making ontological judgments in science, then we should not read them directly off of mathematical
models.
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its biological interpretation, this equation represents the outcome of causal features in
the population, namely random mating in the absence of selection or drift. However,
there are other phenomena that this equation can be used to describe, such as the
area of a square with sides of length p + q. This example shows that the mere fact
that a process can be represented mathematically does not entail that it is a purely
mathematical (non-causal) relationship (Millstein et al. 2009, p. 4).

Another example comes from vector addition in Newtonian physics. Suppose that
Jack and Jim are engaged in a test of strength. Jack attempts to push an object north (on
a frictionless plane, of course), and Jim tries to push it south. Jack, being the stronger
of the two, exerts 1,000 Newtons (N) on the object while Jim can only manage to push
with 800 N of force. We can model this situation using a free-body diagram:

FJack = 1000 N

FJim = 800 N

It follows from standard vector addition (1,000 N+−800 N) that the resultant force
on the object will be 200 N north. This model can be interpreted as representing Jack
and Jim’s test of strength, implying that there is a cause of 200 N north acting on the
object, and predicting that the object will move north. However, there are plenty of
other causal and mathematical relationships that could be represented equally well by
the model alone (for example, the simple mathematical fact that 1000+−800= 200).
Should we infer that the relationship between Jack’s and Jim’s pushes was purely
mathematical or that to explain the resulting motion of the object with the above free-
body diagram is to give a purely mathematical explanation? Neither of these claims
seems plausible.27

Of course, this is not to deny the importance of mathematical models in ontological
investigations. Models, and empirical generalizations more broadly, provide theorists
with information about the structural features of a causal process under investigation
which in turn offers useful restrictions on the causes that are suitable candidates for
explanations of those empirical generalizations.

However, this role of mathematical models suggests the second error in reading
ontology directly off of mathematical models. If one starts with an appropriate and
accurate model of a phenomenon, one can proceed in looking for causes that manifest
the formal structural properties of that model. However, if one starts with an inap-
propriate, incomplete, or inaccurate model, then this process will often lead to errors
in ontological investigations. This is the problem raised by alternative models in the
debate over the causal status of drift.28

27 Though see Lange and Rosenberg (2011) for a defense of the latter claim’s plausibility.
28 Another case of a methodological device in population genetics being given an erroneous ontological
interpretation is discussed in Clatterbuck et al. (2013).
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The Wright–Fisher model is an appropriate and accurate model of some kinds
of drift. It also has considerable methodological virtues; it is mathematically and
intuitively tractable, and since it was the first major model of drift, it has been widely
used and developed. However, some of these methodological advantages come at the
cost of simplifying assumptions and idealizations that are inappropriate formanyactual
populations. As the work of Der et al. shows, these assumptions are not harmless. Not
only will the Wright–Fisher model deliver inaccurate empirical predictions in some
cases29, it has also led some to erroneous beliefs about what drift is.

One remedy is for theorists to consider alternative models of the same phenomena
and carefully elucidate the ontological assumptions made by each. It might not always
be feasible to determinewhether these ontological assumptions are true in all instances.
However, an easier task is to determine whether those assumptions are invariant across
models of the same phenomenon. If they are not, then we ought to tread carefully in
making ontological pronouncements on the basis of just one of the many models that
are available.
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