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Abstract In “Properties and the Interpretation of Second-Order Logic” (Hale, Philos
Math 21:133–156, 2013) Bob Hale develops and defends a deflationary conception
of properties where a property with particular satisfaction conditions actually (and in
fact necessarily) exists if and only if it is possible that a predicate with those same
satisfaction conditions exists. He argues further that, since our languages are finitary,
there are at most countably infinitely many properties and, as a result, the account
fails to underwrite the standard semantics for second-order logic. Here a more lenient
version of the view is explored, which allows for the possibility of countably infinite
predicates understood as the product of linguistic supertasks. This enriched deflationist
account of properties—the Infinitary Deflationary Conception of Existence—supports
the standard semantics for models with countable first-order domains, and allows one
to prove the categoricity of the second-order Peano axioms.

Keywords Second-order logic · Properties · Deflationism · Abundant conception of
properties · Comprehension · Logic

1 The deflationary account of properties

In “Properties and the Interpretation of Second-order Logic” (Hale 2013), Bob Hale
defends a ‘deflationary’ conception1 of properties that can be used to legitimate the

1 Hale equates his deflationary approach to properties with so-called abundant conceptions, but prefers the
former terminology since it emphasizes the existence conditions for properties rather than their profusion.
Further, as we shall see, Hale’s reading the deflationist conception (as well as the alternative development
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use of second-order logic in the face of traditional criticisms such as those of Quine
(1970) (as we shall see, whether, and to what extent, standard, or ‘full’ semantics for
second-order logic is legitimated by this move is another matter). The following sums
up Hale’s basic approach:

…it is sufficient for the actual existence of a property or relation that there could
be a predicate with appropriate satisfaction conditions. (Hale 2013, p. 133)

Hale briefly motivates the deflationary conception of properties along Fregean lines,
and in analogy with a similar Fregean approach to objects.2 The deflationary concep-
tion of objects has it that:

Roughly, objects are those things for which singular terms can stand, and a
sufficient (and in my view necessary) condition for there to exist objects of
a certain kind is that there could be true atomic statements featuring singular
terms which, if they refer at all, stand for objects of that kind. (Hale 2013,
p. 134, second emphasis added)3

Along similar lines, the deflationary conception of properties has it that:

Roughly, properties and relations are those things forwhich predicates can stand,
and a sufficient (and again, in my view necessary) condition for their existence
is that there could be predicates with appropriately determinate satisfaction con-
ditions. (Hale 2013, p. 134, final emphasis added.)

Before moving on to the positive project of the present essay, it is worth noting that
the deflationary account of properties involves an apparently philosophically loaded
theoretical term—“satisfaction conditions”. A full defense of the deflationary account
of properties would require a full explication of exactly what this notion amounts to.
Hale, in passing, equates satisfaction conditions with meanings:

Taking the meaning of a predicate to be its satisfaction-condition, two predicates
stand for the same property if and only if they have the same meaning. (Hale
2013, p. 144)

but since he does not provide a full account of meaning, this is at best a partial
characterization.

The following characterization of satisfaction conditions is sufficient for our pur-
poses here: A satisfaction condition (for a predicate, property, or both) is whatever it
is that makes it the case (or explains, etc.) that the predicate ‘stands for’ that property

Footnote 1 continued
of these ideas explored here) is less than fully ‘abundant’, since it does not imply the existence of a
property for each arbitrary collection of objects. Hale’s deflationism should be carefully distinguished from
minimalist views such as Thomas Hofweber’s internalism (Hofweber 2006). Although both views closely
link existence claims regarding properties to the possible or actual existence of a corresponding predicate,
internalism rejects the thought that such existence claims actually commit us to the existence of properties.
2 Hale refers to his earlier (Hale 2010) for a full defense of the deflationary approach to ontology.
3 It is important to note that on the deflationary conception object existence, like property existence, is a
matter of what expressions might exist, not a matter of what expressions (contingently) do exist!
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(and hence holds of the same objects as does the property). At a minimum, a satisfac-
tion condition is (or is associated with) a total function that maps each possible world
to a subcollection of the domain of that world—that is, it is (or is associated with) a
function that assigns a (possibly empty) extension to the corresponding property or
predicate at each world. Hale’s suggestion that satisfaction conditions are meanings is
compatible with, but is not entailed by, this more superficial explication of the notion.

Given this intuitive (but ultimately primitive, and unanalyzed) notion of satisfaction
condition, we can sum up the deflationary account of properties as follows:

Given a satisfaction condition �, the following are necessarily equivalent:

• There is a property with satisfaction condition �.
• Possibly, there is a predicate with satisfaction condition �.

Of course, the deflationary account of properties is meant to complement the defla-
tionary account of objects that motivated it. Since the deflationary account of objects
will play a central role in the investigation of the deflationary conception of proper-
ties undertaken here, we require a similar formulation of how deflationism applies to
objects and the terms that denote them. An initial (but ultimately unsatisfactory) stab
in the direction of such an account is to simply state that an object exists if and only if
it is possible that there is a singular term that denotes that object, but such an account
ignores the fact that complex singular terms might denote different objects at different
worlds, and it also ignores the fact that some singular terms fail to denote any object
at some worlds.

Thus, just as we introduced satisfaction conditions to connect properties to pred-
icates, we introduce a similar notion—denotation conditions—to connect singular
terms with the objects they denote at different worlds. Roughly speaking, and along
the lines of our treatment of satisfaction conditions above, a denotation condition is
whatever it is that makes it the case (or explains, etc.) that the singular term ‘picks out’
a particular object at a particular world (if it picks out anything at all). At a minimum,
a denotation condition is (or is associated with) a partial4 function that maps each
possible world on which it is defined to an object in the first-order domain of that
world—that is, it is (or is associated with) a function that assigns a denotation to the
corresponding singular term at each world in which it is defined (i.e. at each world
at which the term in question has a denotation). Unsurprisingly, the claim that the
denotation condition associated with a particular singular term is the meaning of that
term is compatible with, but not entailed by, the explication of the notion just given.
We can now flesh out the deflationary account of objects as follows:

Given a denotation condition �, the following are necessarily equivalent:

• The object picked out by � (if any) exists.

4 The astute reader will note that there is an asymmetry to our formulation of the deflationary account
of properties and the deflationary account of objects—the former involves (or is associated with) a total
function, while the latter involves a partial function. This is as it should be, however. If a predicate possibly
exists, then the corresponding property exists at every possible world (although the extension of the property
might vary from world to world, and be empty at some worlds). The possible existence of a singular term
does not guarantee the existence of a corresponding object at every world, however.
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• Possibly, there is a singular term with denotation condition �.5

The deflationary account of properties is meant to play a central role in Hale’s defense
of neo-logicism (a take on the foundations of mathematics to which I also ascribe):
Neo-logicism requires a sufficiently robust version of second-order logic if it is to pro-
vide a reconstruction of arithmetic (and, in fact, all or most of mathematics) based on
Fregean abstraction principles.6 Interestingly, however, Hale denies that the deflation-
ary approach delivers the standard semantics for second-order logic (i.e. the seman-
tics, and resulting logic, obtained via the assumption that the domain of properties
is, or is isomorphic to, the full powerset of the domain of objects). Instead, Hale
argues that the deflationary conception provides a more limited domain of proper-
ties (corresponding to Henkin models of second-order logic, where the domain of
properties is a possibly proper subset of the powerset of the domain of objects). His
argument for this limitation on the deflationary conception can be summarized as
follows:

Premise 1: Given a countably infinite domain of objects, standard semantics for
second-order logic requires the existence of continuum-many non-coextensive
properties.7

Premise 2: Given the deflationary account of properties, the existence of contin-
uummany non-coextensive properties requires the existence of continuum-many
distinct predicates.8

Premise 3: Our languages are finite—that is, they contain at most finitely many
primitive bits of vocabulary and at most a recursively specifiable countable infin-
ity of finitely long formulas, and hence at most a recursively specificable count-
able infinity of distinct predicates, built from this vocabulary.
Conclusion: Given a countably infinite domain of objects, the deflationary
account of properties does not provide standard semantics for second-order logic.

In other words, if our languages only contain (and in principle can only contain) at best
a countably infinite stock of predicates, then there exists at most a countable infinity
of properties (see Hale 2013, pp. 145–146 for Hale’s version of this argument).

5 The additional condition that the possible singular term, had it existed, would figure in true atomic
statements has disappeared from this way of formulating the idea. Since in what follows we shall only
be concerned with the inference from the first bullet-point to the second—i.e., that necessarily, for any
object that exists, there is a possible singular term that would denote that object had it (the singular term)
existed—this simplification is harmless.
6 For details on neo-logicism and the role that second- and higher-order logic play in this project, see Hale
and Wright (2001) and the essays collected in Cook (2007b).
7 Hale actually argues for an intensional account of property individuation, where two distinct properties
might hold of the same objects, and might even necessarily hold of the same objects (see Hale 2013,
pp. 139–144). Since the present concern is determiningwhether, and under what conditions, the deflationary
account might provide ‘enough’ properties to validate the second-order comprehension schema, or support
the standard semantics for second-order logic (or both), however, I ignore this complication.
8 Of course, two distinct predicates might stand for the same property, and, given the intentional indi-
viduation of properties outlined in Hale (2013), more than one property might be co-extensive with the
same predicate (and perhaps even necessarily so). The point is that a single predicate cannot stand for two
non-coextensive properties.
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This argument consists, in essence, of two applications of modus tollens, and
as a result is surely valid (even in many of the most non-classical of non-classical
logics). In addition, the first premise is little more than an application of Can-
tor’s theorem (plus the definition of ‘standard semantics’), and the second premise
is a straightforward consequence of the deflationary account of properties. Thus,
whether the argument is sound (from the perspective of a defender of the defla-
tionary account, at least), and thus whether its conclusion is true, hinges solely
on the status of the third premise—that our languages, both possible and actual,
are in principle limited to a countable infinity of finite expressions. After some
further elucidation (and mild criticism) of Hale’s account, and some technical
preliminaries, the remainder of this essay will be devoted to exploring the con-
sequences that rejection of this premise has for the deflationary conception of
properties.

Hale’s deflationism about properties provides an attractive account of the nature
of properties, one that defuses Quinean objections to the use of properties as the
range of second-order variables as ‘set theory in sheep’s clothing’ (see Quine 1970)
by providing an independent (and intensional) account of the existence and nature
of properties. But the advantages of second-order logic—that is, categoricity (and
quasi-categoricity) theorems, the logical definability of Dedekind infinity and Frege’s
ancestral, the derivability of second-order Peano Arithmetic from Hume’s Principle
(i.e., Frege’s Theorem), etc.—do not stem merely from quantification over properties.
In addition, many of these results depend on either the fact that the logic in question
validates the full second-order comprehension schema, or stems from features of the
standard semantics, or both (see Shapiro 1991 and the essays in Cook 2007b for
details on the relevant results for pure second-order logic and the mathematics of
logicism respectively). Thus, a semantics that countenances genuine quantification
over properties but which allows for the existence of very few properties, relatively
speaking, threatens to be useless for many of the purposes to which second-order
systems were originally applied.

Hale is aware of this point, and in fact argues that the second-order logic that results
fromaccepting only countablymany properties, provided by a stock of countablymany
(possible and actual) predicates, is compact, complete, and satisfies both the upwards
and downwards Löwenheim–Skolem theorem (see Hale 2013, pp. 144–151). Hale’s
arguments for these metatheorems are flawed, however.9 For example, let our theory
T consist of the following principle:

(∀x)(∃Y )(∀z)[(Y (z) ↔ x = z]

This theory clearly has a countable model on Hale’s account: given a countable first-
order domain, its sole axiom requires only countably many singleton properties (plus
closure under those operations required by Hale’s logic, which will introduce at most

9 Since the point of the present essay is to (correctly) extend Hale’s philosophical ideas, rather than criticize
those points where he gets the mathematics wrong, I leave it to the interested reader to identify the exact
point at which Hale’s reasoning goes awry. See below, however, for some additional observations.
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countablymany additional properties10). But if Hale is right and there can exist at most
countably many properties, then the upward Löwenheim–Skolem theorem fails, since
our theory T requires that there be at least as many properties as there are objects, and
thus can have no uncountable models. Similar problems plague the completeness and
compactness results.11

There is a philosophical confusion that seems to accompany Hale’s technical mis-
takes: Hale’s (incorrect) negative results regarding the expressive and representational
strength of the second-order logic based on the deflationary account of properties
depend on two explicit assumptions: first, as already noted, Hale assumes that our
languages (both actual and possible) are finite in the relevant sense, and thus contain
at most a countable infinity of predicates. Second, Hale notes that if we are to prove
any theorems whatsoever regarding the logical power and limitations of second-order
logic based on the deflationary approach, we need a more precise account of what
properties are possible relative to a particular formal language. He suggests that one
promisingway to precisify this informal notion of possibility is in terms of definability,
and that the relevant notion of definability is given via consideration of the resources
of the (not necessarily formal) metalanguage for the particular formal language under
consideration:

If one is to base a model-theoretic semantics on this conception, it is clearly
necessary to be more precise about what is to be understood by ‘definable’—
else it will not be determinate what the higher-order variables may take as values
[…] To that end we may take the definable subsets of the individual domain—in
the context of providing a semantics for a given second-order language—to be
the subsets definable in our meta-language (Hale 2013, pp. 147–148.)

In short, given a particular formal language, the predicates that are possible relative
to that language are exactly the predicates that are actually contained in the meta-
language for that formal language (or the properties definable in the metalanguage
restricted to the domain of the object language, in those cases where the domain of
the metalanguage is wider than that of the object language). Setting aside the under-
specifity of this understanding of “definable”,12 the problem is this: it is not clear that
this understanding of definability (however one implements it precisely) is compati-
ble with the idea that the collection of properties must be countable: if the properties
in a model are exactly those definable in the metalanguage for that model, then pre-
sumably (in keeping with the idea that the deflationary account of properties is an
extension of the deflationary account of objects) the objects in a model ought to be
named in the metalanguage, or at least nameable in some possible extension of the
metalanguage (for example, the one obtained by adding all possible names). If this is
right, however, then, if the idea that there might be uncountable models is to even be
coherent—that is, if the statement of the Löwenheim–Skolem theorems are to even

10 For example, a model containing countably many objects, and whose properties correspond to the finite
and co-finite subsets of those objects, would suffice.
11 This paragraph owes much to helpful comments from Stewart Shapiro and an anonymous referee.
12 After all, a single object language can be studied from the perspective of many different metalanguages,
with vastly different expressive resources.
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make sense—then there must be possible metalanguages that contain uncountably
many names. But (assuming standard logical resources) if we have uncountably many
names, then we have uncountably many predicates, and hence we have uncountably
many properties in (at least some) models after all. Thus, the following claims are
incompatible:

• A modelM can contain an object if and only if that object is named or nameable
(by a singular term) in the metatheory in which the model is constructed (or a
metatheory in which the model could be constructed).

• A modelM can contain a property if and only if that property is named or name-
able (by a predicate) in the metatheory in which the model is constructed (or a
metatheory in which the model could be constructed).

• There are models with uncountable domains of objects.
• There are no models with uncountable domains of properties.

Of course, the deflationary conception of properties proper—that is, the simple idea
that actual property existence covaries with possible predicate existence—is indepen-
dent of both the assumption that the collection of properties must be countable and the
assumption that the possible predicates are exactly those definable in the metatheory
(or, more generally, that theremust be some single language—metatheory or not—that
contains all possible predicates in the first place). In addition, the deflationary con-
ception is an extremely powerful idea, and most of Hale’s philosophical discussion
and defense of the view is untouched by the mistaken metatheorems. As a result, it
is worth investigating what happens when we abandon one or both of these problem-
atic assumptions while retaining the more general ideas underlying the deflationary
conception of properties.

In Sect. 2 I shall provide a more careful formulation of the idea that the exis-
tence of properties is tied to the possible existence of appropriate predicates, and
(given two additional, and very weak, modal assumptions) I shall prove that even
though this version of the deflationary view does not entail the existence of more
than countably many properties (given a countably infinite first-order domain), it
(plus the aforementioned modest modal assumptions) does entail the full comprehen-
sion schema for second-order logic. This result (which Hale 2013 does not address)
is important, since it shows that, although the deflationary account might allow
for (or even require) Henkin models, not any Henkin model will do—instead, the
second-order domains of the Henkin models at issue must be, roughly put, closed
under (finitary) Boolean operations and first- and second-order projections. Thus,
this portion of the present essay is compatible with, and complementary to, the
general perspective of Hale (2013): loosely put, that work focuses on those arbi-
trary collections of the first-order domain that might fail to correspond to a prop-
erty, and the limitations that result, while Sect. 2 below focuses on the very rich
structure of properties whose existence is nevertheless guaranteed by the deflationary
account.

In Sect. 3, however, I shall depart significantly from the approach of Hale (2013),
and consider infinitary languages. In particular, we shall look at languages that con-
tain ‘expressions’ whose actual expression would seem to require the completion of a
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supertask13—that is, languages that contain countably infinite conjunctions, disjunc-
tions, and the like. Interestingly, given this more lenient vantage point, we can prove
(again, with two additional, and not quite so weak, modal assumptions) that the mod-
els appropriate to the deflationary conception of properties are standard models when
the domain is countably infinite (which immediately entails the categoricity theorem
for arithmetic and other theories with countably infinite intended interpretations), and
I shall also sketch an argument that this semantics, although not equivalent to the
standard semantics on uncountably infinite first-order domains, nevertheless provides
a ‘weak’ type of categoricity result for second-order real analysis.

Of course, the interest of the material in Sect. 3 depends on whether these linguistic
supertasks are genuinely possible in the relevant sense (we are doing metaphysics
here, not merely mathematics!) Thus, in the final section I shall provide some reasons
for thinking that the supertasks required for such infinitary languages are logically
possible (even if not physically possible relative to our own modal location)—and
surely logical possibility is the relevant notion of possibility in the present context.
In doing so, I shall also address the reasons underlying Hale’s own rejection of this
extension of the deflationary account.14

Before moving on, a methodological observation is in order: The remainder of this
paper is filled with ‘definitions’, ‘theorems’, ‘lemmas’, etc. The reader with adaman-
tine mathematical scruples, however, might object to the use of such honorifics when
describing the informal arguments given below—in particular, she might object to
the fact that no rigorous syntax has been provided for the languages for which these
results are being proved. Of course, in a perfect world (where this essay would be
written by a perfect mathematician), such a rigorous presentation would be prefer-
able, but there are practical difficulties with such an approach: the results to follow
involve proving theorems about a space of possibleworldswhere different languages—
including languages with different logical resources—are used in (and hence different
predicates—and types of predicates—exist in) different possible worlds (e.g., pos-
sible worlds where infinitary conjunctions, disjunctions, etc. are actually expressed,
presumably in contrast to the actual world where our natural languages are finitary).
Setting this up in a formally precise manner (for example, with some worlds whose
language is standard first-order, while others involve Lω,ω, etc.) would significantly
complicate the presentation of the arguments of this paper, to (as far as I can ascer-
tain) no philosophical benefit.15 Thus, the ‘proofs’ given below, whose conclusions
are identified with the terms ‘theorem’, ‘lemma’, etc., should be taken to be philo-
sophically informal, yet rigorous proofs (in the sense of ‘informal rigor’ developed in
Kreisel 1972) regarding informal philosophical notions. I see no reason, however, to

13 A supertask is a task that requires performing a countable infinity of distinct sub-tasks within a finite
period of time. A hypertask is a task that requires performing an uncountable infinity of tasks within a finite
period of time.
14 Hale generously credits the present author with bringing the issue of infinitary expression and supertasks
to his attention in the same footnote that contains his objections to such an extension of the view. He notes
that “the whole issue deserves much fuller investigation and discussion” (Hale 2013, p. 146, footnote 29).
The present essay is, needless to say, an attempt to provide some initial investigation, and to prompt fuller
discussion, in the manner called for.
15 Of course, such a more rigorous approach might have mathematical benefits, but that is another matter!
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doubt that precisified versions of these arguments will apply to any precisely specified
version of the space of possible worlds, and the languages of those worlds, informally
discussed in the sections to follow.16

2 Deflationism and comprehension

In this section I shall prove that the deflationary conception of properties supports a
semantics that validates the full second-order comprehension schema for second-order
logic. Before doing so, however, some technical preliminaries need to be dealt with.

First, we need a somewhat more perspicuous notation for representing predicates,
properties, singular terms, satisfaction conditions, denotation conditions, and the rela-
tion between them. Thus, the following definitions:

Definition 2.1 “SCpred(· · · , · · · )” holds between a predicate ��(x)� and a satisfac-
tion condition � if and only if ��(x)� has satisfaction condition �

“SCprop(· · · , · · · )” holds between a property � and a satisfaction condition � if
and only if � has satisfaction condition �.

“DCterm(· · · , · · · )” holds between a singular term �τ� and a denotation condition
� if and only if �τ� has denotation condition �.

“DCobj (· · · , · · · )” holds between an object x and a denotation condition � if and
only if � is defined (at the current world) and ‘picks out’ x .

As suggested in these definitions, I shall use�when quantifying over properties,�
and � when quantifying over satisfaction conditions, � when quantifying over deno-
tation conditions, �τ� and �σ� when quantifying over singular terms, and ��(x)�
and �
(x)� when quantifying over predicates (with subscripts when more than one
occurrence is needed). In the latter instances, the corner quotes merely serve to empha-
size that it is predicates and singular terms (i.e. expressions of some formal or natural
language) that we are quantifying over—no particular naming or coding device is
required or implied.17

16 Thanks are due to an anonymous referee for emphasizing the importance of this clarification, and
apologies are due to the same referee for failing to address this concern in exactly the manner he or she
would have preferred.
17 Care needs to be taken here: If we expand the language by adding a function F(x) that takes the Gödel
code of a predicate as argument, and outputs the satisfaction condition for that predicate (and there seems
to be no good reason to object to such a function), then we can diagonalize on:

(∃X)(SCprop(X,F(y)) ∧ ¬X (x))

to obtain a predicate �(y) such that:

(∀z)[�(z) ↔ (∃X)(SCprop(X,F(��(y)�)) ∧ ¬X (z))

In short, we can construct a Russell/Liar-like predicate �(y) such that, for any object a, �(y) holds of a
if and only if there is a property with the same satisfaction conditions as �(y) yet which fails to hold of a.
But by definition, any two things with the same satisfaction conditions hold of the same things (in every
possible world!). So, in particular, we have

(∀X)(SCprop(X,F(��(y)�)) → (∀z)(X (z) ↔ �(x)))

Contradiction.
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Given this notation, we can now provide a snappy, precise formulation of the defla-
tionary conception of properties—one that is more amenable to formal manipulation
and rigorous (albeit informal) proof than the rather loose explication provided in the
previous section. First, we note explicitly an assumption that has been underlying the
discussion so far—the Coextensionality Principle18:

CP : �(∀�)(∀X)(∀��(y)�)((SCprop(X, �) ∧ SCpred(��(y)�, �))

→ �(∀z)(X (z) ↔ �(x)))

In other words, any property and predicate that have the same satisfaction condition
necessarily hold of exactly the same objects. In addition, we need to guarantee that
every property, and every predicate, has a satisfaction condition—hence the Satisfac-

Footnote 17 continued
Of course, this is not all that surprising: satisfaction conditions (and our SC(... ) predicates holding
of them) are semantic notions, and it is well-known that naïve formulation of the principles govern-
ing semantic notions can lead to paradox. Thus, a more careful and precise formulation of the prin-
ciples governing satisfaction conditions would involve applying whatever prophylactic one prefers in
the more well-known instances of this sort of phenomenon (i.e., plug in one’s favored solution to the
Liar paradox here: my own preference can be found in Cook 2007a, 2009). Given the straightfor-
ward nature of the arguments given below, however (and, in particular, the fact that they involve no
diagonalization or other paradox-prone constructions), we can safely ignore this problem for the time
being. Thanks go to an anonymous referee for pointing out this contradiction, and the need to address
it.
18 We also assume the n-ary analogues of CP for all n ∈ N. For example, the binary version can be written
as:

CP2 : �(∀�2)(∀X2)(∀��(y1, y2)�)((SCprop(X
2, �) ∧ SCpred (��(y1, y2)�, �2))

→ �(∀z1)(∀z2)(X (z1, z2) ↔ �(x1, x2)))

with superscripts indicating the arity of properties and satisfaction conditions (a notational detail we shall
suppress when arity is clear from context).
Additionally, it is worth noting that CP is ‘ungrammatical’ as written, since it includes both ‘mention’ of

the predicate in question (i.e. ��(x)�) and its ‘use’ in the final biconditional clause. This could be rectified
by introducing a satisfaction predicate Sat (x, y) such that:

For any predicate ��(y)�:
(∀x)(Sat (��(y)�, x) ↔ �(x))

and then formulating the Coextensionality Principle as:

CP : �(∀�)(∀X)(∀��(y)�)((SCprop(X, �) ∧ SCpred (��(y)�, �))

→ �(∀z)(X (z) ↔ Sat (��(y)�, x)))

The simplification introduced in the ‘incorrect’ formulation is harmless in the present (somewhat informal)
context, however, and avoids the introduction of paradox-prone notions such as Sat (x, y). See footnote 17
above for more discussion of paradoxes, and how to deal with them, within the present approach.
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tion Condition Existence Principles19:

SCEPprop : �(∀�)(∃�)(SCprop(�,�)

SCEPpred : �(∀��(y)�)(∃�)(SCprop(��(y)�, �)

So far, the listed principles are uncontroversial (at least, they are given the coherence
of the conception of satisfaction conditions outlined above). Formulating the more
controversial portions of the deflationary concept is straightforward as well. The idea
that a property exists if and only if there is a possible predicate with the appropriate
satisfaction condition—a thesiswe shall callHale’s Property Principle—is formulated
as:

HPP : �(∀�)[(∃�)(SCprop(�,�)) ↔ ♦(∃��(x)�)(SCpred(��(x)�, �))]

Along similar lines, we will also have need for the followingWeak Object Principle20,
which codifies part of the deflationary conception of objects (and is all that is needed
in the results that follow)21:

WOP : �(∀x)(∃�)[DCobj (x,�) ∧ ♦(∃�τ�)(DCterm(�τ�,�))]

The Weak Object Principle captures the idea that the existence of any object requires
that it is at least possible that there is a singular term that would refer to that
object (note that the Weak Object Principle does not entail that the possible sin-
gular term actually refers to the object in question in the possible world(s) at which it
exists).

Hale’s Property Principle (or its conjunction with the Weak Object Principle) does
not, on its own, entail much about the existence of properties (for example, it entails
very little in very weak modal logics such as K or T). Thus, we need to say a bit more
about how we are understanding the relevant notion of possibility, and what modal
logic governs this notion. A first stab at the relevant notion of possibility is to just
lay down the obvious principle: A predicate is possible in the relevant sense just in

19 Note that we do not assume that, for every satisfaction condition, there is a predicate or property that
has that satisfaction condition—that is, we do not assume (and do not need):

�(∀�)(∃�)(SCprop(X, �)

�(∀�)(∃��(y)�)(SCprop(��(y)�, �)

20 The adoption of the Weak Object Principle, rather than some stronger principle that arguably captures
the entirety of the deflationary conception of objects in the same sense as Hale’s Property Principle captures
the entirety of the deflationary conception of properties, allows us to sidestep, in a technical sense, the need
to deal with cases where terms fail to refer.
21 Note that we do not need separate existence principles analogous to SCEPprop and SCEPpred for
denotation conditions, since WOP entails that, for any object, there exists a denotation condition ‘picking
out’ that object.
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case there is a possible world22 where a concrete (i.e. spoken, written, thought, etc.)
instance of that predicate exists. It might well be the case that this understanding of
which predicates are possible is sufficient for our purposes. Whether or not this is
indeed the case is an open question, but one we need not answer here, since there
is a more inclusive notion that subsumes this initial thought and better serves our
purposes. On this understanding, a predicate is possible if and only if there is a possible
world where the predicate is in the closure of the formation rules of some language
where are least some expressions of that language exist as concrete instances in that
world. In short, an expression is possible on this reading if it would be counted as
grammatical within some language used within some possible world. Note that this
understanding of possible predicate has it that all predicates of English (or Chinese,
or whatever), regardless of whether an inscription of that predicate will fit within the
physical universe, are possible because they are actual! This is as it should be, however,
since we are concerned with determining which predicates are logically possible, and
physical limitations such as the possible boundedness of physically possible worlds
(like the actual world), the logically contingent fact that c is finite, etc. seem irrelevant
to determining that.

With at least a rough understanding of the relevant notion of possibility now on
the table, the next task is to determine which modal logic governs this notion. Here
I will just defer to authority, and reproduce Hale’s succinct but compelling argument
for S5:

I think we can show that the logic of absolute necessity is S5. The easiest way to
see this is to consider the usual model-theoretic treatment of modality in terms
of worlds. If the accessibility relation on worlds were less than universal, the
notion of necessity captured in terms of truth at all worlds accessible from the
given world would fairly obviously be a form of restricted or relative necessity.
But if it is universal, we have S5. (Hale 2013, p. 135)23

With issues regarding the underlying logical framework out of the way, we are now
ready to show that the deflationary conception of properties supports the second-
order comprehension schema. First, however, it is worth noting one of Hale’s central

22 Hale prefers talk of possibilities rather than worlds, where the former (unlike traditional treatments of
the latter) need not be assumed to be fully determinate or maximal. But he notes (and I agree) that this point
is orthogonal to the concerns of both his and the current essay—see (Hale, 2013, p. 135, footnote 5).
23 Hale talks here of absolute necessity, rather than logical necessity, and defines absolute necessity in
terms of the counterfactual conditional as follows:

�� =d f (∀
)(
�→�)

where the universal quantifier ranges over all propositions unrestrictedly. Thus, Hale’s absolute necessity
is not necessarily the same as the notion of logical necessity being mobilized here. But, although absolute
necessity and logical necessity might not be everywhere equivalent, I see no reason to think that they will
fail to agree when the case at issue is the possible existence of linguistic items, and every reason to think
they will be ‘locally’ equivalent in this case. Also, the reader unconvinved by Hale’s brief argument can
find longer, more technically complex arguments that S5 is the logic of logical necessity in Burgess (1999)
and Halldén (1963).
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results—I include a proof that is roughly equivalent to his, but that is somewhat more
formal and which includes explicit mention of satisfaction conditions24:

Theorem 2.2 (Hale 2013) Hale’s Property Principle entails that possible properties
exist necessarily.

Proof (Satisfaction condition � arbitrary, fixed.)

1 �[(∃�)(SCprop(�,�)) ↔ ♦(∃��(x)�)(SCpred (��(x)�, �))] HPP.

2 ♦(∃�)(SCprop(�, �)) ↔ ♦♦(∃��(x)�)(SCpred (��(x)�, �)) 1, S5.

3 ♦♦(∃��(x)�)(SCpred (��(x)�, �)) ↔ �♦(∃��(x)�)(SCpred (��(x)�, �)) S5.

4 ♦(∃�)(SCprop(�, �)) ↔ �♦(∃��(x)�)(SCpred (��(x)�, �)) 2, 3, S5.

5 �(∃�)(SCprop(�, �)) ↔ �♦(∃��(x)�)(SCpred (��(x)�, �)) 1, S5.

6 ♦(∃�)(SCprop(�, �)) ↔ �(∃�)(SCprop(�, �)) 4, 5, S5.

�	
Before giving our proof of the full second-order comprehension schema, it is worth

noting that the following special case—the simple comprehension schema:

Simple Comprehension: For any unary predicate ��(x)� with only x free:

(∃�)(∀x)(�(x) ↔ �(x))

has a nearly trivial proof on the deflationary conception of properties:

Theorem 2.3 Hale’s Property Principle entails simple comprehension.

Proof Let �
(y)� be any predicate. Then:

1 (∃�)(SCpred(�
(y)�, �)) SCEPpred .

2 SCpred(�
(y)�, �) Assumption.

3 (∃��(y)�)SCpred(��(y)�, �) 2.

4 ♦((∃��(y)�)SCpred(��(y)�, �)) 3, S5.

5 (∃�)(SCprop(�,�)) 4, HPP.

6 (∃�)�(∀x)(�(x) ↔ 
(x)) 2, 5, CP.

7 (∃�)(∀x)(�(x) ↔ 
(x)) 6, S5.

8 (∃�)(∀x)(�(x) ↔ 
(x)) 2–7, ∃E

�	
The following corollary is worth noting:

24 See (Hale, 2013, pp. 135–136) for the original argument.
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Corollary 2.4 For any predicate �
(y)�, Hale’s Property Principle entails:

(∃�)�(∀x)(�(x) ↔ 
(x))

Proof Delete line 7 in the proof of Theorem 2.3 and replace line 8 (now 7) with the
desired conclusion. �	

What we are interested in, however, is the full version of the second-order compre-
hension schema, which allows free first- and second-order variables in the predicate
on the right-hand side in addition to the ‘comprehension’ variable, where these addi-
tional variables are (either implicitly or, as is the case here, explicitly) bound by initial
universal quantifiers:

Full Comprehension: For any predicate ��(· · · )� with:

x,Y1,Y2, . . . Yn, z1, z2, . . . zm

free and containing no occurrences of the second-order variable �:
(∀Y1)(∀Y2) · · · (∀Yn)(∀z1)(∀z2) · · · (∀zm)(∃�)(∀x)(�(x)

↔ �(x,Y1,Y2, . . . Yn, z1, z2, . . . zm))

Now, as was already hinted at in Sect. 1 above, we cannot in fact prove the full second-
order comprehension schema from Hale’s Property Principle alone. In addition, we
need two additional modal principles governing the logical ‘behavior’ of expressions
from world to world. The first we shall call the Finite Compossibility of Expressions
Principle:

FCEP : �(∀�1)(∀�2) · · · (∀�n)(∀�1)(∀�2) · · · (∀�m)

[(♦(∃��1(x)�)(SCpred(��1(x)�, �1))∧
♦(∃��2(x)�)(SCpred(��2(x)�, �2)) ∧ · · · ∧
♦(∃��n(x)�)(SCpred(��n(x)�, �n))∧
♦(∃�τ1�)(DCterm(�τ1�,�1))∧
♦(∃�τ2�)(DCterm(�τ2�,�2)) ∧ · · · ∧
♦(∃�τm�)(DCterm(�τm�,�m))) →
♦((∃�
1(x)�)(SCpred(�
1(x)�, �1))∧
(∃�
2(x)�)(SCpred(�
2(x)�, �2)) ∧ · · · ∧
(∃�
n(x)�)(SCpred(�
n(x)�, �n))∧
(∃�σ1�)(DCterm(�σ1�,�1))∧
(∃�σ2�)(DCterm(�σ2�,�2)) ∧ · · · ∧
(∃�σm�)(DCterm(�σm�,�m)))]

Although typographically complex, the intuitive import of this principle (which is
really a schema, with distinct instances for each pair of finite cardinals n and m) is
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as follows: given a finite list of satisfaction conditions �1, �2, . . . �n and denotation
conditions �1,�2 . . . �m , if there are possible worlds ω1, ω2, . . . ωn+m , predicates
��1(x)�, ��2(x)� . . . ��n(x)�, and singular terms �τ1�, �τ2� . . . �τm� such that, for
each k where 1 ≤ k ≤ n, (i) ��k(x)� exists in ωk and (ii) ��k(x)� has satisfaction
conditions �k , and, for each k where 1 ≤ k ≤ m (i) �τk� exists in ωn+k and (ii)
�τk� has denotation conditions �k , then there is a single possible world ω, predicates
�
1(x)�, �
2(x)� . . . �
n(x)�, and and singular terms �σ1�, �σ2� . . . �σm� such that,
for each k where 1 ≤ k ≤ n, (i) �
k(x)� exists in ω and (ii) �
k(x)� has satisfaction
conditions �k , and, for each k where 1 ≤ k ≤ m, (i) �σk� exists in ω and (ii) �σk�
has denotations conditions �k . In short, if each expression in some finite sequence
of expressions is individually possible (i.e. each exists at some possible world) then
those expressions (or analogues of those expressions with the same satisfaction or
denotation conditions) are compossible (i.e. there is a single world at which they, or
their analogues, all exist25).

Of course, it is at least conceivable26 that a collection of expressons could exist at
a possible world while logical combinations of those expressions fail to exist in that
world, even on the very lenient understanding of possible existence adopted earlier—
say, if those predicates come from languages so different as to be completely incom-
mensurable. We rule out this possibility with a second modal principle—the Finitary
Predicate Construction Principle—which states that the possible simultaneous exis-
tence of the parts of a complex predicate is sufficient for the possible existence of that
predicate itself. First, however, one last piece of terminology:

Definition 2.5 “Logic(F)” holds of a functionF if and only ifF is a logical operation
mapping n-tuples of satisfaction and denotation conditions to satisfaction conditions.

I will not attempt to provide a necessary and sufficient specification of what, exactly,
counts as a logical operation on satisfaction and denotation conditions,27 but the fol-
lowing should make the rough idea clearer: a logical operation on satisfaction and
denotation conditions is a function that maps each n-tuple of satisfaction and denota-
tion conditions of the appropriate sort to a single satisfaction condition, and which is
specifiable in terms of purely logical notions. For example, the logical operation on
satisfaction conditions corresponding to conjunction is a binary function F∧ where,
for any predicates ��1(x)� and ��2(x)� and satisfaction conditions �1 and �2 such
that �1 is the satisfaction condition for ��1(x)� and �2 is the satisfaction condition
for ��2(x)�, F∧(,�1, �2) = �3 where �3 is the satisfaction condition for the predi-
cate ��1(x)∧�2(x)�. We can now formulate the the Finitary Predicate Construction

25 The parenthetical qualification is important: the Finite Compossibility of Expressions Principle does not
require that it is the same predicates or singular terms that exist at a single possible world, but merely a
sequence of predicates and terms with pairwise the same satisfaction or denotation conditions.
26 Of course, I make no assumption that conceivability its a reliable—or even useful—guide to possibility.
In fact, conceivable or not, I believe that the ‘situation’ ruled out by the Finitary Predicate Construction
Principle is, in fact, logically impossible. Thus, the point of the Finitary Predicate Construction Principle
is not to restrict attention to only a certain kind of possible world (i.e those that satisfy the principle), but
rather to highlight a particularly important observation regarding all possible worlds.
27 Providing such necessary and sufficient conditions would require, amongst other things, that we deter-
mine the exact location of the boundary that separates logical from non-logical vocabulary, which is both
an extremely difficult task, and one that seems somewhat outside the remit of the present essay.
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Principle:

FPCP : �(∀F)(∀�1)(∀�2) · · · (∀�n)(∀�1)(∀�2) · · · (∀�m)[Logic(F) →
♦((∃��1(x)�)(SCpred(��1(x)�, �1))

∧ (∃��2(x)�)(SCpred(��2(x)�, �2)) ∧ · · · ∧
(∃��n(x)�)(SCpred(��n(x)�, �n))∧
(∃�τ1�)(DCterm(�τ1�,�1))∧
(∃�τ2�)(DCterm(�τ2�,�2))

∧ · · · ∧ (∃�τm�)(DCterm(�τm�,�m))) →
♦(∃�
(x)�)(SCpred(�
(x)�,F(�1, �2, . . . �n,�1,�2 · · · �m)))]

Informally, this principle states that if all of the subcomponent predicates and terms
required for the construction of a complex predicate exist in a particular possibleworld,
then there is a possible world where that complex predicate (or an analogue of it with
the same satisfaction conditions) exists.

Let us call this formalization of the deflationary conception of objects and
properties—that is:

CP + SCEPprop + SCEPpred + HPP + WOP + FCEP + FPCP

the Deflationary Conception of Existence (or DCE). We can now show that the Defla-
tionary Conception of Existence entails entails the full comprehension schema:

Theorem 2.6 The Deflationary Conception of Existence entails full comprehension.

Proof Consider:
�(x,Y1,Y2, . . . Zn, z1, z2, . . . zm)

where �� is the (n+m+1-ary) satisfaction condition for�(· · · ) (whose existence is
entailed by SCEPpred ). Let �1,�2, . . . �n be any arbitrary properties, with satisfac-
tion conditions ��1, ��2 , . . . ��n respectively (existence of these is guaranteed by
SCEPprop), and a1, a2, . . . am be any arbitrary objects. Then, by S5 we obtain:

♦(∃��(· · · )�)(SCpred(��(· · · )�, ��))

and, by HPP, we obtain:

♦(∃��1(x)�)(SCpred(�1(x),��1))

♦(∃��2(x)�)(SCpred(�2(x),��2))

...
...

...
...

♦(∃��n(x)�)(SCpred(�n(x),��n ))
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By WOP, there exist denotation conditions �1,�2, . . . �n such that:

DCobj (a1,�1) ∧ ♦(∃�τ1�)(DCterm(�τ1�,�1))

DCobj (a2,�2) ∧ ♦(∃�τ2�)(DCterm(�τ2�,�2))

...
...

...
...

...
...

DCobj (am,�m) ∧ ♦(∃�τm�)(DCterm(�τn�,�m))

By the FCEP, we then have:

♦[(∃�
(x)�)(SCpred(�
(x)�, ��))∧
(∃�
1(x)�)(SCpred(
1(x),��1))∧
(∃�
2(x)�)(SCpred(
2(x),��2))∧

...
...

...
...

(∃�
n(x)�)(SCpred(
n(x),��n ))∧
(∃�σ1�)(DCterm(�σ1�,�1))∧
(∃�σ2�)(DCterm(�σ2�,�2))∧

...
...

...
...

(∃�σm�)(DCterm(�σm�,�m))]

Let F be the logical operation (determined by the logical form of �(· · · ))that takes:

��,��1 , ��2 , . . . ��m ,�1,�2, . . . �n

as argument, and outputs the satisfaction condition corresponding to:

�(x, σ1, σ2, . . . σm, 
1(x),
2(x), . . . 
m(x))

Then, by FPCP, we obtain:

♦(∃�
(x)�)(SCpred(�
(x)�,F(�1, �2, . . . �n,�1,�2 . . . �m)))]

Thus, there is a possible predicate with the relevant satisfaction condition, so by HPP
the property in question actually (and hence, by Theorem 2.2, necessarily28) exists.
Since �1,�2, . . . �n and a1, a2, . . . am were arbitrary, this completes the proof. �	

Before moving on to the infinitary case, it is worth noting that Theorem 2.6
supplies both good new and bad news. The good news is that this result shows

28 Note that this we could modify this step of the proof to prove a stronger, modal formulation of the full
comprehension schema, along the lines of Corollary 2.4 above. Details are left to the interested reader.
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that the Deflationary Conception of Existence not only provides us with a sub-
stantial and philosophically respectable account of the nature of properties, but it
provides a conception that is able to underwrite a robust deductive theory. All of
the deductions that are typically carried out within systems based on the standard
semantics can also be carried out in the system based on the deflationary approach,
since the deflationary approach supports the standard axioms and rules as laid out
in, for example, Shapiro (1991). Simply put: although the Deflationary Conception
of Existence may not support full semantics for second-order logic, it does imply
the existence of enough properties to guarantee the validity of all of the standard
axioms and rules that are typically used in deductive systems based on the standard
semantics.

The bad news, however, is already implicit in our description of the good news:
the Deflationary Conception of Existence seems compatible with (and, if only finitary
predicates can exist, perhaps even requires) a domain of properties no more abundant
than what is minimally required by nonstandard Henkin models that satify the full
comprehension schema. Thus, given a countably infinite domain of objects, the col-
lection of properties might (and, perhaps must) contain only a countable infinity of
properties. Thus, it is worth seeing if, and how, we can do better, and in particular,
it is worth determining whether there is a version of the deflationary conception of
properties that will provide categority results for central mathematical theories such
as second-order arithmetic and real analysis—a task to which I now turn.

3 Deflationism and linguistic super-tasks

The basic thought behind this section is that we can enrich the deflationary account of
properties by allowing for the possibility (even if not the actuality) of expressions that
consist of countably infinite strings of primitive voabulary, and hence the possibility
(even if, again, not the actuality) of countably infinite predicates, by understanding
such expressions as involving possible (if not actual) agents carrying out the supertasks
required to write, utter, or think about such expressions.

Before moving on to the formal results, it is worth noting that Hale explicitly rejects
this extension of the view for two reasons. The first involves familiar worries about
whether or not supertasks are possible. The second reason is that Hale is concerned
that what is required is not the possibility of carrying out various supertasks, but is
instead the posisbility of carrying out non-countable hypertasks. As we shall see, the
setup and results below defuse this hypertask worry. I shall return to briefly discuss
and defend the logical possibility of supertasks in the concluding section.

The infinitary approach to deflationism regarding existence begins the same way
as did the finitary approach, with Hale’s Property Principle and the Weak Object Prin-
ciple as explicated in the previous sections (our background principles CP, SCEPprop

and SCEPpred remain unchanged as well). We need not modify these principles, since
they merely connect the actual existence of properties and objects with the possible
existence of predicates and singular terms with the same satisfaction and denotation
conditions respectively. The issue at issue is determining the conditions under which
we may assume that various predicates at least possibly exist—Hale’s property prin-
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ciple, as originally formulated, will then apppriately connect these possible predicates
to the corresponding properties.

Where modifications of the original finitary Deflationary Conception of Existence
do come into play is in formulating infinitary analogues of our two modal principles
governing the compossibility, and recombinability, of linguistic expressions. The first
of these, which is an infinitary analogue of the Finite Compossibility of Expressions
Principle, we shall call the Infinite Compossibility of Expressions Principle:

∞CEP : �(∀�1)(∀�2) · · · (∀�n)(∀�n+1) · · ·
(∀�1)(∀�2) · · · (∀�m))(∀�m+1) · · ·
[(♦(∃��1(x)�)(SCpred(��1(x)�, �1))∧
♦(∃��2(x)�)(SCpred(��2(x)�, �2)) ∧ · · · ∧
♦(∃��n(x)�)(SCpred(��n(x)�, �n))∧
♦(∃��n+1(x)�)(SCpred(��n+1(x)�, �n+1)) ∧ · · ·
♦(∃�τ1�)(DCterm(�τ1�,�1))∧
♦(∃�τ2�)(DCterm(�τ2�,�2)) ∧ · · · ∧
♦(∃�τm�)(DCterm(�τm�,�m))) →
♦(∃�τm+1�)(DCterm(�τm+1�,�m+1))) · · · →
♦((∃�
1(x)�)(SCpred(�
1(x)�, �1))∧
(∃�
2(x)�)(SCpred(�
2(x)�, �2)) ∧ · · · ∧
(∃�
n(x)�)(SCpred(�
n(x)�, �n))∧
(∃�
n+1(x)�)(SCpred(�
n+1(x)�, �n+1)) ∧ · · ·
(∃�σ1�)(DCterm(�σ1�,�1))∧
(∃�σ2�)(DCterm(�σ2�,�2)) ∧ · · · ∧
(∃�σm�)(DCterm(�σm�,�m))∧
(∃�σm+1�)(DCterm(�σm+1�,�m+1 · · · )))]

The Infinite Compossibility of Expressions Principle is typographically similar to the
Finite Compossibility of Expressions Principle—the main difference is the inclusion
of ellipsis indicating that we are now considering (countably) infinite sequences of sat-
isfaction conditions and denotation conditions, and corresponding infinite sequences
of predicates and terms.29 In short, the Infinite Compossibility of Expressions Princi-
ple states that, if each expression in some countably infinite sequence of expressions is
individually possible (i.e. each exists at some possible world) then those expressions
(or analogues of those expressions with the same satisfaction or denotation conditions)
are compossible (i.e. there is a single world at which they, or their analogues, all exist).

Note that Infinitary Compossibility of Expressions Principle does not require the
possibility of hypertasks—even if each individual expression requires completion of

29 As noted at the end of the introductory section, I shall use infinitary expressions of this sort in an
intuitive manner, although the arguments here and below can be straightforwardly adapted in standard
infinitary logics such as those studied in Keisler (1971).
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a supertask for its existence, the simultaneous completion of all of these tasks in a
single possible world requires merely the completion of a countably infinite sequence
of countably infinite sequences of tasks, and hence is itselfmerely a supertask. Not also
that the Infinite Compossibility of Expressions Principle does not, on its own, entail
the existence of any infinitely long expressions. Instead, if all possible expressions are
finite, then this principle merely entails that any countably infinite collection of such
expressions co-exist in some possible world.

It is our second alternative principle that entails the existence of infinitely complex
predicates. In order to formulate the principle we first need to generalize our notion of
logical operations (i.e. “Logic(F)”) on satisfaction and denotation conditions so that
the operations in question can operate on countably infinite sequences of satisfaction
and denotation conditions (but still deliver in every case a single satisfaction condition
as output). We still require that such an operation be specifiable in purely logical
terms (although we now allow the logical resources in question to include infinitary
conjunctions, infinitary strings of quantifiers, infinitely long predicates, etc.)30 Given
this, the Infinite Predicate Construction Principle is as follows:

∞PCP : �(∀F)(∀�1)(∀�2) · · · (∀�n)(∀�n+1) · · ·
(∀�1)(∀�2) · · · (∀�m)(∀�m+1) · · · [Logic(F) →
♦((∃��1(x)�)(SCpred(��1(x)�, �1))∧
(∃��2(x)�)(SCpred(��2(x)�, �2)) ∧ · · · ∧
(∃��n(x)�)(SCpred(��n(x)�, �n))∧
(∃��n+1(x)�)(SCpred(��n+1(x)�, �n)) ∧ · · ·
(∃�τ1�)(DCterm(�τ1�,�1))∧
(∃�τ2�)(DCterm(�τ2�,�2)) ∧ · · · ∧
(∃�τm�)(DCterm(�τm�,�m))∧
(∃�τm+1�)(DCterm(�τm+1�,�m+1)) ∧ · · · ) →
♦(∃�
(x)�)(SCpred(�
(x)�,F(�1, �2, . . . �n, �n+1 · · ·
�1,�2 · · · �m,�m+1 · · · )))]

Again, we seen little typographical difference between this principle and its finitary
predecessor (FPCP) other than the inclusion of ellipsis indicating that we are now
concerned with countably infinite sequences of satisfaction conditions, denotation
conditions, predicates, and singular terms. Informally, this principle states that if all
of the subcomponent predicates and terms required for the construction of a possibly
(countably) infinitely complex predicate exist in a particular possible world, then there
is a possible world where that complex predicate (or an analogue of it with the same
satisfaction conditions) exists.

30 Although I have left the specification of Logic(F) rather informal in order to maximize the general
applicability of the results below, one can easily precisify this notion by identifying the infinitary logical
operations with those logical operations definable in some preferred infinitary language (e.g, Lω,ω).
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Let us call this stronger formalization of the deflationary conception of objects and
properties—that is:

CP + SCEPprop + SCEPpred + HPP + WOP + ∞CEP + ∞PCP

the Infinitary Deflationary Conception of Existence (or ∞DCE).
Our first result is suprisingly powerful given that it does not require anything like the

full power of the Infinitary Deflationary Conception of Existence, but instead requires
only Hale’s Property Principle, the Weak Object Principle, and the special case of the
Infinitary Compossibility of Expressions Principle and the Infinitary Expression Con-
struction Principle where the initial quantifiers are restricted to denotation conditions:

Theorem 3.1 The Infinitary Deflationary Conception of Existence entails that, for
any countably infinite sequence of objects a1, a2, . . . an, an+1 . . ., there is a property
holding of exactly a1, a2, . . . an, an+1, . . ..

Proof Let
a1, a2, . . . an, an+1 . . .

be an arbitrary countably infinite sequence of possible objects. By the weak object
principle, there is a sequence of denotation conditions�1,�1, . . . �n,�n+1 such that:

DCobj (a1,�1) ∧ ♦(∃�τ1�)(DCterm(�τ1�,�1))

DCobj (a2,�2) ∧ ♦(∃�τ2�)(DCterm(�τ2�,�2))

...
...

...
...

...
...

DCobj (an,�n) ∧ ♦(∃�τn�)(DCterm(�τn�,�n))

DCobj (an+1,�n+1) ∧ ♦(∃�τn+1�)(DCterm(�τn+1�,�n+1))

...
...

...
...

...
...

Thus, by the ∞CEP we obtain:

♦[(∃�σ1�)(DCterm(�σ1�,�1))∧
(∃�σ2�)(DCterm(�σ2�,�2)) ∧ · · ·

...
...

...
...

(∃�σn�)(DCterm(�σn�,�n))∧
(∃�σn+1�)(DCterm(�σn+1�,�n+1)) ∧ · · ·

...
...

...
...

Let F be the logical operation that takes:

�1,�2, . . . �n,�n+1 . . .
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as argument, and outputs the satisfaction condition corresponding to:

x = σ1 ∨ x = σ2 ∨ · · · ∨ x = σn ∨ x = σn+1 · · ·

Then, by ∞PCP, we obtain:

♦(∃�
(x)�)(SCpred(�
(x)�,F(�1,�2 · · ·�n,�n+1 · · · )))]

Thus, there is a possible predicate with the relevant satisfaction condition, so by HPP
the property in question actually (and hence, by Theorem 2.2, necessarily31) exists.
Since a1, a2, . . . an, an+1 . . . were arbitrary, this completes the proof. �	

Theorem 3.1 thus guarantees the existence of a property corresponding to any
arbitrary countably infinite collection of objects. This is a vast improvement over
the situation in the previous section, since this entails that any model whose first-
order domain is finite or countably infinite will contain a property corresponding
to each finite or countably infinite subcollection of the domain, hence a property
corresponding to any subcollection of the domain. In short, if we allow for at least
the logical possibility of supertasks (equivalently: formulas with countably infinitely
many occurrences of primitive vocabulary), then we retain the standard semantics for
the special (but important) case where the first-order domain is finite or countably
infinite.

Presumably, it is this powerful result that underlies the worry that we have somehow
smuggled hypertasks into the account. After all, if our account entails the existence
of continuum many properties, and each property requires the possible existence of a
corresponding predicate, then this entails the possible existence of continuum-many
distinct predicates. First, it should be noted that, even if this worry were well-founded,
it might not be the problem that it superficially appears to be, since we have defined
possible predicate existence in terms of being in the extension of the formation rules for
a language that is usedwithin a possibleworld—hence, not every expression that exists
in aworld need actually bewritten or spokenwithin thatworld. This response, however,
is somewhat unsatisfying, since it relies heavily on the particular—and particularly
‘thin’—analysis of possible existence adopted here. But it turns out that we need not
worry, since there is no sense in which the principles adopted above entail that any
possible world contains more than countably many predicates.

The confusion hinges on an ambiguity in the phrase “this entails the possible exis-
tence of continuum-many predicates” used in the previous paragraph. According to
the Infinitary Deflationary Conception of Existence, if the actual world (or any world)
contains a countably infinite collection of objects, then that world will also contain
an uncountable (continuum-sized, at the least) collection of properties. Now, for each
of these properties, there must be a possible predicate with the same satisfaction con-
ditions. And Theorem 3.1 provides a recipe for finding each of these predicates (and
the possible worlds that contain them). But there is no reason to conclude that all

31 As usual, this proof can be modified to provide a stronger, modal formulation of the theorem. Details
are left to the interested reader.
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continuum-many of these predicates can be found together in a single possible world.
Hence, if there need be no world that contains uncountably many distinct predicates
(regardless of howwe ultimately understand ‘exists’ when applied to predicates), there
is no risk of the view requiring that actual or even merely possible agents perform lin-
guistic hypertasks.

Of course, given any countably infinite collection of such predicates, there will,
by ∞PCP, be a possible world containing all the predicates (or analogues of them
with the same satisfaction conditions) in the collection. But again, constructing all the
predicates in a countably infinite collection of predicates (even if each of the predicates
is itself of countably infinite length or complexity) is merely a supertask.32

The following two corollaries are important, since they show that the Infinitary
Deflationary Conception of Existence allows us to precisely capture at least some
mathematical structures of central interest (and they also show that the semantics
provided by the Infinitary Deflationary Conception of Existence supports a second-
order logic sufficient to carry out neo-logicist reconstructions of arithmetic and real
analysis):

Corollary 3.2 On finite or countably infinite first-order domains, the semantics pro-
vided by the Infinitary Deflationary Conception of Existence is equivalent to standard
semantics.

Proof Straightforward consequence of Theorem 3.1. �	
Corollary 3.3 Second-order Peano arithmetic is categorical in the semantics pro-
vided by the Infinitary Deflationary Conception of Existence.

Proof The property holding of exactly the standard natural numbers exists, by
Theorem 3.1. Induction then implies that the standard natural numbers are the only
objects in the domain. Hence the only model is the standard, countable model. �	
In addition, Theorem 3.1 provides us with the promised ‘near-categority’ result for
real analysis:

Theorem 3.4 In the semantics provided by the Infinitary Deflationary Conception of
Existence, any twomodels of second-order real analysis are order-isomorphic on their
standard orderings.

Proof (proof sketch): By Theorem 3.1, any such model of real analysis contains a
property corresponding to each countably infinite set of reals, and hence contains a

32 Of course, the Infinitary Deflationary Conception of Existence does seem to require an uncountably
infinite class of possible worlds if hypertasks are disallowed, since we need enough worlds to ‘spread out’
the various supertasks required for the vast number of distinct predicates whose possibility is entailed by
the view. I see no reason to think that this sort of proliferation is at all problematic, however. At any rate, the
defender of the deflationary account of objects who also believes that the (standard, classical) real numbers
exist—and Hale is such a defender, see Hale (2000)—is already in a similar position: if continuum-many
reals exist, then by the deflationary conception of objects continuum-many distinct singular terms must be
possible. Either they are jointly possible, and there is a single world where a linguistic hypertask has been
completed, or they are not jointly possible, and are spread out amongst continuum-many distinct possible
worlds.
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property corresponding to any Cauchy sequence. Thus, the second-order axiom:

(∀�)((∃x)(∀y)(�(y) → y ≤ x)

→ (∃x)((∀y)(�(y) → y ≤ x) ∧ (∀z)((∀y)(�(y) → y ≤ z) → x ≤ z)))

entails that any countably infinite, bounded subset of the reals has a least upper bound as
intended (since each such subset can bemimickedby an appropriateCauchy sequence).
This (plus the first-order axioms) suffices for order-isomorphism. �	

There is, of course, an obvious further question to ask: how do standard set theories
such as (second-order) ZFC fare in the semantics provided by the Infinitary Defla-
tionary Conception of Existence? This is an important question but a difficult one, so
I will remain content, for the purposes of this essay, with labelling this issue ‘open’,
and promising to return to it in later work.

There is one final issue that we can straightforwardly and definitely deal with,
however: the status of the second-order comprehension schema within the semantics
provided by the Infinitary Deflationary Conception of Existence. There are two main
complications that we need to deal with.

First, we should note that the proof of Theorem 2.6 is not on its own sufficient to
show that full comprehension holds in the present context. The reason for this is that our
stronger infinitary principles entail the existence of more properties and corresponding
predicates than were present in the finitary context within which we proved Theorem
2.6, and hence the initial universal quantifiers in the comprehension schema now have
wider scope than they did in the finitary case. Nevertheless, even if that proof does not
suffice in the present context, a straightforward typographical modification of it can
be carried out for the Infinitary Deflationary Conception of Existence:

Theorem 3.5 The Infinitary Deflationary Conception of Existence entails the full
comprehension schema.

Proof Mimic the proof of Theorem 2.6, replacing FCEP and FPCP with ∞CEP and
∞PCP respectively. �	

It turns out, however, that in the present context we can do even better. Given that
we are countenancing at least the possibility of infinitary predicates, it seems natural
to explore whether the Infinitary Deflationary Conception of Existence supports the
following countably infinitary generalization of the full comprehension schema:

Infinitary Comprehension: For any (possibly countably infinite) predicate
��(· · · )� with:

x,Y1,Y2, . . . Yn,Yn+1 . . .

z1, z2, . . . zm, zm+1 . . .

free:

(∀Y1)(∀Y2) · · · (∀Yn)(∀Yn+1) · · · (∀z1)(∀z2) · · · (∀zm)(∀zm+1) . . .

(∃�)(∀x)(�(x) ↔ �(x,Y1,Y2, · · · Yn,Yn+1, · · · z1, z2, . . . zm, zm+1, . . .))
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Perhaps surprisingly, themodifications required to transform the proof of Theorem 2.6
into a proof of the infinitary comprehension schema are only slightlymore complicated
than those required for Theorem 3.5 above:

Theorem 3.6 The Infinitary Deflationary Conception of Existence entails the infini-
tary comprehension schema.

Proof Mimic the proof of Theorem 2.6, replacing FCEP and FPCP with ∞CEP and
∞PCP respectively, and inserting ellipsis when necessary. �	

Thus, even if we are not able to construct infinitary predicates in our own actual
world, the Infinitary Deflationary Conception of Existence guarantees that properties
corresponding to any such predicate exist (and exist necessarily), and further that the
domain of properties is closed under finite and infinitary Boolean operations and first-
and second-order projections. While this still falls short of providing standard seman-
tics when the first-order domain is uncountable, it does guarantee that the second-order
domain provides a powerful and abundant stock of properties over which we can quan-
tify.33

4 Logical possibility and supertasks

Thus, the Infinitary Deflationary Conception of Existence, although failing to pro-
vide the full, standard semantics for models with uncountable first-order domains,
nevertheless:

1. Provides a property corresponding to every finite or countably infinite collection
from the first-order domain.

2. Satisfies the full comprehension schema for properties, as well as the infinitary
variant of comprehension.

3. Provides categority results for theories with countably infinite intended interpre-
tations.

4. Provides ‘near’-categority results for real analysis.

The final task is to say a few things in favor of the Infinitary Deflationary Conception
of Existence, and in particular, to provide some evidence that the sorts of supertasks
whose possibility is required by the view (in particular, those required by the Infinitary
Predicate Construction Principle) are in fact possible.

For the sake of argument, let us grant that we cannot actually speak, write, or think
in languages that contain the sort of countably infinite expressions whose possible
existence is entailed by the Infinitary Deflationary Conception of Existence (or, more

33 Note that the observation that the second-order semantics supported by the Infinitary Deflationary Con-
ception of Existence satisfies the infinitary comprehension schema does not require that the language we use
when quantifying over the first- or second-order domains of models in that semantics include the infinitary
resources required to formulate this infinitary form of comprehension. On the contrary, this is the surprising
power of Theorem 3.6—that it shows that the mere possibility of infinitary logical constructions entails
that our own world contains an abundance of properties that cannot be defined merely in terms of the fini-
tary resources available locally (assuming, of course, that we are in fact contingently restricted to finitary
expressions in the actual world).
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carefully, we cannot speak, write, or think those expressions that are, in fact, countably
infinitely long). The question, then, is whether this constraint is a contingent fact
regarding our biology and psychology and the sort of world that we find ourselves in,
or whether this reflects a more general, logical constraint on reasoning and language.
In other words, does our local inability to entertain and reason with such expressions
stem from the fact that such expressions are logically impossible, or merely from the
fact that they are physically impossible (for us)?

The first thing to notice in answering this question is that there do exist actual
languages (not merely possible ones) that include infinitary expressions of just the
sort we are concerned with: logicians formulate, study, and prove theorems about
infinitary languages, their semantics, and their logics all the time. Formal languages
(including infinitary languages and their logics) are (or can be though of as) a certain
type of set theoretic construction. Thus, it is a theorem of set theory that such languages
exist. Existence theorems of this sort, however, clearly are not the appropriate way
to settle the relevant possibility claims.34 But they do suggest a strategy: We can
determine what sorts of languages are possible in the relevant sense by determining
which formal languages model linguistic constructions and behaviors that are, or seem
to be, logically possible.

First, the easy cases. Languages with expressions of finite length only are in, since
they closely model the languages that we actually do use to speak, write, and think.
For the sake of argument let us assume that languages with expressions of uncountably
infinite length are out (perhaps because we believe that the sort of possible world that
could contain speakers, writers, and thinkers must have a temporal structure enough
like our own—that is, its temporal order of instants must have a structure sufficiently
similar to the real numbers—so as to rule out embedding uncountably infinite hyper-
tasks into a finite duration35). So the question is whether reasoners in some possible
world could speak, write, and think in languages that contain countably infinitely
long expressions (and, more specifically, whether they can speak, write, or think these
infinite expressions).

There seems to me to be no reason to think that we should answer this ques-
tion negatively. In fact, we can easily formulate instructions36 for writing the sort
of countably infinite formulas at issue: Write the first symbol in half a minute, in
a region no more than half an inch square; the second symbol in a quarter of a
minute, in a region no more than a quarter inch square; the third symbol in an
eighth of a minute, in a region no more than an eighth inch square; the fourth
symbol. . .. Of course, thanks to the quantum structure of our universe, the finite
upper bound on achievable speeds, etc., we are unable to carry out these instruc-

34 Further, if all that mattered were the possible or actual existence of formal languages with appropriate
predicates, then we could easily retain full semantics tout court merely by pointing out that nothing prevents
infinitary formal languages with formulas of arbitrary infinite length.
35 Note that this point, if correct (and I am not actually completely convinced that it is) does not rule out
the logical possibility of hypertasks in general, but only rules out the possibility of linguistic hypertasks!
36 Of course, this particular sort of instruction schema will only work for formulas where the symbols are
ordered in a simple ω-sequence. But any countably infinite sequence can be embedded in a finite interval
of the reals, and hence can be given a similar, although in some cases more complicated, set of instructions.
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tions ourselves (in fact, we are unable to complete the supertask involved in writ-
ing them down, although we can provide a definite description precisely describing
them). But, as noted above, this is not the issue. The issue is whether it is logi-
cally possible to carry out these instructions. And the answer to this question, I
think, must be “yes”. There is no reason to think that there is anything logically
absurd or impossible about these instructions, and no reason (other than a sort of
provincial presupposition that possible reasoners ought be no more able than our-
selves, and live in worlds no more congenial than our own) to think that there
is anything logically absurd about either the sort of infinitary reasoner who could
carry out such a set of instructions, or the sort of possible world in which such
a reasoner would have to live in order to do so. To paraphrase Bertrand Russell,
our inability to carry out supertasks amounts to nothing more than a mere medical
impossibility.

If this is right, then the best formulation of the deflationary conception of proper-
ties and objects is one that takes the logical possibility of linguistic supertasks into
account—that is, the best version of such a deflationism is something like the Infini-
tary Deflationary Conception of Existence. As we have seen, such a view does not
get us quite everything that we might want, such as standard semantics for models
with uncountably infinite first-order domains. But the Infinitary Deflationary Concep-
tion of Existence does provide substantially more representational and logical power
than is provided by either first-order formalisms or the finitary version of the Defla-
tionary Conception of Existence. In particular, the view seems to provide a robust
enough domain of properties to support the sort of second-order reasoning required
by neo-logicism—which is one of the motivations for Hale’s deflationary conception
of properties in the first place.
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