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Abstract Is the quantum state part of the furniture of the world? Einstein found such a
position indigestible, but here I present a different understanding of the wavefunction
that is easy to stomach. First, I develop the idea that thewavefunction is nomological in
nature, showing how the quantum It or Bit debate gets subsumed by the corresponding
It or Bit debate about laws of nature. Second, I motivate the nomological view by
casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) and
classical mechanics in a “quantum” formalism (Koopman–von Neumann theory) and
then comparing and contrasting classical and quantum wave functions. I argue that
Humeans about laws can treat classical and quantum wave functions on a par and that
doing so yields many benefits.

Keywords Quantum mechanics · Hamilton–Jacobi · Koopman · Humean ·
Nomological · Law of nature · Classical wavefunction

1 Introduction

Is the quantum state part of the furniture of the world? This question has hung over
quantum theory since its inception. Much is made of the infamous wave-particle
duality of quantum theory. What is potentially more disturbing is learning that there
is a corresponding duality in where these aspects live: the “waves” seem to exist in an
“abstract” high-dimensional configuration space, whereas the particles seem to exist
in a “physical” low-dimensional space. Expressed as a Schrödinger wavefunction, the
quantum state “lives” in 3N -dimensional configuration space, where N is the number
of particles, and not in familiar 3-dimensional space. This puzzling feature of the
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quantum state leads many to doubt its physical reality. In a letter to Ehrenfest in 1926,
Einstein writes

Schrödinger’s works are wonderful—but even so one nevertheless hardly comes
closer to a real understanding. The field in a many-dimensional coordinate space
does not smell like something real. (Howard 1990, p. 83)

A few months later the high-dimensional waves pass neither the nose nor the stomach
test:

the waves in n-dimensional coordinate space are indigestible…” (Howard 1990,
p. 83)

Others find the wavefunction similarly disagreeable. Some react by insisting that the
quantum state is—in Wheeler’s memorable terminology—Bit and not It. That is, they
regard the quantum state not as an It such as a table or chair, but as a Bit, an aspect of
our knowledge. Others regard the waves as Its and make moves that suggest a more
palatable ontology.

Whether the high-dimensionality of the quantum state is a problem is debatable,
but I feel that Einstein’s digestibility problem arises most sharply in the context where
one holds that there is more than just wavefunction at bottom. If one subscribes to an
Everettian picture, wherein there is only quantum state, then it is fairly clear that one
must regard the quantum state realistically, no matter the state of one’s stomach, for
there is simply nothing else. If by contrast one subscribes to instrumentalism and holds
that science doesn’t demand ontic states, then their smell is irrelevant. But if one also
posits what Einstein calls “peas”—“hidden variables” or non-wavefunction “beables”
(in Bell 2004’s memorable terminology) or primitive ontology—in addition to the
wavefunction, then awkward questions arise about how the low-dimensional peas
and high-dimensional wavefunctions interact. Examples of peas include the modal
interpretation’s value states, Bohmian mechanics’ particles or fields, and GRW’s mass
fluid or flashes.

Here I will advocate a picture that might pass muster with Einstein, one in
which there are peas but not wavefunctions in the basic ontology. Unlike recent
attempts to make the wavefunction epistemic, the current view takes the wavefunc-
tion seriously. It holds that the wavefunction has a “nomological” status (Gold-
stein and Zanghì 2013). After developing this view, I’ll show how the It or Bit
debate gets absorbed by a corresponding It or Bit debate about laws of nature.
Then I’ll motivate the nomological picture in a new way by comparing quantum
mechanics with classical mechanics when both are expressed in essentially the same
formalism. Classically we don’t confuse the peas with the laws. So what differ-
ences, if any, demand interpreting the classical and quantum wavefunctions differ-
ently? I’ll zoom in on a particular worry and then show how a Humean under-
standing of laws potentially eliminates it, thus enabling the Humean to regard
classical and quantum wavefunctions on a kind of par. The resulting view is meta-
physically parsimonious and comes with several benefits: (e.g.) it obviates two com-
mon criticisms of beable type interpretations, illuminates the PBR theorem, and
helps explain why the It versus Bit debate is so difficult and long-lasting. Whether
this metaphysical picture is ultimately desirable depends on one’s philosophical
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predilections. To me, it provides an interpretation of the quantum state that I find
digestible.

2 Lost in space

Descartes held that the mind and the body inhabit different “spaces.” The mind lives
in an extensionless mental realm whereas the body lives in the extended realm of
objects. His contemporaries, Pierre Gassendi and Princess Elizabeth of Bohemia,
famously asked how these two objects communicated, that is, how causal influences
surmounted the lack of a common space. Wouldn’t ripples triggered by an event
in one realm fail to reach the shore of the other? How does a thought in the men-
tal realm trigger changes in the pineal gland (Descartes’ preferred location for the
mind–body nexus)? Philosophers know this problem as the “interaction problem” for
Cartesian dualism. While it is one of the more famous problems in the philosophical
canon, it is far from decisive against Cartesianism. Better objections are probably
methodological in nature, arising from the lack of the mental realm’s predictive power
and its assault on parsimony. Still, different spaces bring awkward questions. How
does the interaction work? Where are we? Is motion conserved in each space? And
more.

A similar set of problems afflict a naive reading of “pea” theories. Because it is the
most developed “pea” theory, we’ll focus on the deBroglie–Bohm interpretation of
quantum mechanics; however, I expect that most of what I say will be true of others,
too. deBroglie–Bohm (Bohm 1952) is an attempt to solve the notorious measurement
problem. According to this class of theories, the quantum wavefunction evolves uni-
tarily according to a linear wave equation which guides the motion of Einstein’s peas
(e.g., particles, classical fields, fermionnumber density). In the familiar non-relativistic
case, the ontology appears to be awave evolving according to the Schrödinger equation
and a particle configuration evolving with a velocity given by the conserved current
divided by the probability density. No less an authority than J.S. Bell tells us that “
…no one can understand this [Bohm] theory until he is willing to think of ψ as a real
objective field rather than just a “ probability amplitude” (2004, p. 128). Hence the
apparent ontological dualism: existence of both ψ and particles.

The quantum state is a ray in a high-dimensional Hilbert space, H = L2

(R3N ,d3Nq), where N is the number of particles in the universe. Since the Bohmian
privileges position, it is more natural to work with the field the wavefunction defines
(see below) on a configuration space R

3N than Hilbert space. The peas, by contrast,
live in a low 3-dimensional space, R3. Unless N = 1, the field on configuration space
and the primitive ontology then live in different spaces, e.g., R

3N �= R
3 (Fig. 1).

Different spaces again invite awkward questions. The field in R
3N “guides” an

N -particle system in R
3. How does this puppet-master operate the puppet with-

out any strings? 1 And where do we live, in R
3 or R

3N ? Is motion conserved in

1 Strictly speaking, because the particle configuration doesn’t affect the wavefunction, we have only one
half of Descartes’ problem. The question here is more like the “causation” problem afflicting themind–body
epiphenomenalist.
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Fig. 1 High- vs low-dimensional space

Fig. 2 Albert vs Norsen

the two spaces? These problems are not threats to the logical coherence or empir-
ical adequacy of the theory, and some may even be said to be badly motivated
(Callender and Weingard 1997); still, if not blemishes on the theory they raise the
hope that something better might be possible. Call this the problem of being lost in
space.

The philosophical literature has directed attention to the “two-space” problem (see
Ney and Albert 2013). Some respond by trying to stuff the waves and particles into the
same space. Two directions are possible (Fig. 2). Albert (1996) champions boosting
the particle configuration upstairs intoR

3N . Here the beable must be a single Bohmian
“world” particle. People, planets, particles and all the rest somehow emerge from this
world particle. Alternatively, one can kick the field on configuration space downstairs
into R

3, providing each particle with its own wave to surf. Doing so is highly non-
trivial, yet recently Norsen (2010) has gone some distance toward showing how this
might be accomplished. Each view has its merits and demerits. However these stack
up, it’s fair to say that either is sufficiently radical that having a third option seems
worthwhile.

Here we can be guided by the mind–body debate. There one eliminates the inter-
action problem not by retaining dualism and putting the different kinds of entity in
the same space, as Albert and Norsen do, but by eliminating one half of the ontology.
Berkeley famously eliminates the corporeal and retains only the mental entities in
the mental realm. Materialists and physicalists instead eliminate the mental entities
and keep only the material. Here we have two options as well. One is to retain only
the wavefunction. Doing so commits one to an Everettian interpretation and all of
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its attendant challenges. The other is to simply posit the non-wavefunction beables,
Einstein’s peas, and nothing else.2 Can this second path be motivated?

3 The nomological view

The best response to the above set of concerns is to eliminate them altogether by
denying that the quantum state’s status is ontological and asserting that it is instead
nomological (Dürr et al. 1997; Goldstein and Zanghì 2013). The idea is that the quan-
tum state does not represent an entity in the world, a piece of ontology, but rather is part
of the representational structure of the laws of physics. The quantum state is therefore
akin to the Hamiltonian function. Like the quantum state, the classical Hamiltonian
generates the motion of the beables and also their statistics. It doesn’t “live” in ordi-
nary three-dimensional space, for it is defined on an even higher dimensional space
than our field on configuration space, namely, phase space, R

3NxR3N . Yet no one
worries about where the Hamiltonian lives because it is viewed as part of the laws, not
the physical world itself. There is simply no expectation that laws be functions over
three-space, nor that they be decomposable into functions on three-space.

This conceptual reorientation results in a very satisfying picture. In non-relativistic
theory, the world consists simply of a bunch of Bohmian particles or GRW flashes or
other forms of Einstein’s peas—and that’s it. In the Bohmian case, the Schrödinger
and guidance equations are then the laws, existing wherever laws exist. We have
two spaces, unlike in Albert and Norsen, but no dualistic ontology and therefore
no interaction problem. This resolution eliminates various complaints against beable
theories, as we’ll see below, and it has a number of other attractive features, parsimony
high among them.

The biggest intuitive obstacle to the nomological perspective is that the quantum
state doesn’t seem like the Hamiltonian in certain crucial respects. Indeed, the analogy
is hardly perfect. Brown and Wallace (2005) and Belot (2012) give voice to various
problems. The most important is probably the fact that the wavefunction seems con-
tingent (and hence non-lawlike) because it is variable. It varies by system and with
time.

There are reasons to think that such disanalogies can’t be decisive. Neither the
notion of a law of nature nor our understanding of the quantum state are solid enough
to ground objections based on analogies and disanalogies. On the law of nature side,
note that some philosophers and physicists believe that “evolving” laws of nature
make sense (e.g., Smolin 2013). For them an inference from a quantum state’s time-
dependence to its not being a law is not sound. Stepping back, one may also point out
that our intuitions about what is nomological are presumably formed by comparison
with classical physics. Yet one can reasonably ask why we should take lessons about

2 Another much more radical notion is doing without the wavefunction at all; that is, writing the theory
directly in terms of an equation for the beables and nothing more. Suggestive models exist that suggest this
path both for GRW-type theories (e.g., Dowker and Henson 2004) and for Bohm-like theories (e.g., Poirier
2010); however, since the latter model is committed to an actual infinite ensemble of “world” trajectories,
it seems more like an Everettian theory.
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ontology from a theory that we know is wrong. Perhaps quantum theory is telling us
about the nature of the nomological.

However the burden falls, note that for beable theories, one needs to approach
these disanalogies by first distinguishing universal and effective wavefunctions. The
universal wavefunction is the wavefunction of the entire universe. The wavefunctions
associated with systems in laboratories, people, planets and other subsystems, by con-
trast, are effective wavefunctions. Let Qt be the actual configuration of particles in
the universe at a time. In a composite system Qt = (Xt ,Yt ), where X is the actual
subsystem of interest and Y is the actual environment. Then a natural definition for a
subsystem’s wavefunction is the conditional wavefunction ψt (x) = �t (x,Yt ), where
we calculate the universal wavefunction � in the actual configuration of the envi-
ronment (Dürr et al. 1992). The conditional wavefunction will not in general evolve
according to the Schrödinger equation, but when it does—which it will if the univer-
sal wavefunction evolves into a wide separation of components in the configuration
space of the entire system—then we call the conditional wavefunction an effective
wavefunction. Effective wavefunctions correspond to the wavefunctions discussed in
quantum textbooks, labs, and so on.3

When this distinction is appreciated, we see that the above disanalogies must be
approached with caution. Just as offspring can differ from their parents, so too can
effective wavefunctions differ from the universal wavefunction. You may be tall and
your parents short. Similarly, the universal wavefunction may be simple and the effec-
tive one for some subsystem complicated. Onemay be real and the other complex. One
may not vary by system (universal) whereas the other (effective)may varywith system.
And perhaps most surprisingly, the universal wavefunction may be time independent
and an effective one time-dependent. Many Bohmians have explicitly shown how this
might arise in quantum gravity (e.g., Callender and Weingard 1994; Goldstein and
Teufel 2001), but the possibility exists even in ordinary non-relativistic theory (Esfeld
et al. 2013). Given this distinction, it’s not clear that we should infer from the effec-
tive wavefunction’s variability that the universal wavefunction is variable in any way.
The universal wavefunction is clearly not variable by subsystem, since it applies to
everything, and it’s an open question whether the universe as a whole could have dif-
ferent universal wavefunctions. Moreover, the universal wavefunction might not even
be time-dependent. The true form of the universal wavefunction is simply a matter of
speculation, and therefore, so are the claimed analogies and disanalogies.

4 Are laws Its or Bits?

Suppose we accept the view that the quantum state is an aspect of the laws of nature.
By itself that perspective doesn’t tell us whether the quantum state is It or Bit. Instead
it shifts the question from a (roughly) one-hundred-year-old problem to a (roughly)
two-hundred-fifty-year-old problem. Since the time of David Hume philosophers and
scientists have wondered whether the laws of nature are It or Bit. The nomological

3 As Goldstein and Zanghì (2013) point out, effective wavefunctions therefore have quasi-nomological
status. They are a function over what is nomological, �t , and the contingent environment, Yt .
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view relocates the question of the metaphysics of the quantum state to the metaphysics
of laws of nature.

Although there are scores of theories of laws, a chief division among them iswhether
laws govern reality or are merely particularly useful summaries of reality. Governing
views understand laws as invisible straightjackets on the world. These straightjackets
are part of basic ontology and hence best classified as Its. Humean views, by contrast,
understand laws as a particularly powerful summaries of the Its, but not themselves Its.
Hence for the Humean they are a special kind of Bit. The It or Bit debate in quantum
theory therefore gets subsumed under the It or Bit debate about laws of nature.

Understanding the It or Bit question in this manner helps explain why the debate is
so hard. In answering it, we are effectively trying to solve one of the deepest problems
in the metaphysics of science. We won’t solve it here. Nonetheless, knowing that the
problem is deeper than we previously thought is progress, and even better, the views
may suggest insights when we compare classical and quantum mechanics later.

4.1 Non-Humean quantum states

The governing conception of laws comes in many forms. According to Armstrong–
Dretske–Tooley theory, the laws are necessitation relations amongst universals. These
necessitation relations are additions to theworld of particles, fields, andwhatnot. Same
goes for theories that understand the laws as a kind of primitive basic entity. These
entities are Its (see Carroll 2012 and references therein).

Notice that on the governing view, the ’lost in space’ questions reappear. Where do
laws live? How do they affect the ontology in spacetime? If real, why no backreaction
of the beables on the laws? The puppet-master’s ability to move the puppet still seems
mysterious. Thatmight prompt the suspicious among us to accusemaking the quantum
state nomological as simply renaming the problem, not solving it. The original worry
was about how the puppet-mastermoves the puppet, given that the two inhabit different
spaces. All that has been accomplished here is that we now call the puppetmaster a
law. Big deal.

Although in other contexts I might sympathize with this worry, here I do not. Philo-
sophically, the assimilation is a big deal. Suppose governing is the right way to regard
laws. Then the puppet-master question always arises. One accepts these awkward
questions as the price of providing what is thought to be the best metaphysical theory
of laws. The problem, if it is one, arises in classical laws, biological laws, economic
laws…everywhere. So from this perspective, a lot is achieved by understanding quan-
tum states as nomological. One realizes that what seemed to be specific problems with
interpreting the quantum state emerge as simply the manifestation of these philosoph-
ical debates. Two problems become one. Better yet, the one remaining problem is
precisely what you were committed to anyway, well before thinking about the reality
of the quantum state.

Hence, going nomological is an advance even if one is committed to a govern-
ing interpretation of laws. Moreover, since advocates of this view can “place” their
governorswherever they like, theymay buy some immunity from the awkward puppet-
master questions too. That is, there is no reason to think that the primitive governors or
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necessitation relations “live” in a different space than the beables. To think otherwise
is to mistake the mathematical representation of these governors with their physical
reality.

4.2 Humean quantum states

Hume’s famous skepticism about necessity motivates a quite different picture.
Although Hume spoke of causation and not laws, many theories of laws are Humean
in spirit. According to these theories, the laws might be elaborate projections of the
humanmindupon theworld, elegant summaries ofwhat happens that are useful for pre-
diction, or other thoughts along these lines. In such theories theremay be real observer-
independent facts about what the laws are. Just as it’s an observer-independent fact
whether a given strike in soccer is a goal—even though the category goal is anthro-
pocentric in origin—so too it might be an observer-independent fact whether a given
generalization is part of the most elegant summary of what happens. Yet there is no
physical entity that corresponds to these facts. Two worlds containing the same events
necessarily have the same laws in them, contrary to what governers believe.

Many theories of laws are Humean in spirit, but probably the most popular one in
recent decades is the so-called Mill–Ramsey–Lewis “ Best System” theory (Loewer
1996). This theory says that a true generalization is a law iff it is an axiom of all the
best systems, i.e., those axiomatic systematizations that best balance simplicity and
comprehensiveness (informative power). Hall (ms) recently formulates the core idea
in a way I prefer: (roughly) a proposition is a law iff an ideal observer, someone who
is rational and has full information about what is being systematized and embraces
our sciences’ standards (which include simplicity and comprehensiveness), declares
the proposition a law. Obviously many subtleties arise (see, e.g., Cohen and Callender
2009, and Hall, ms). The details won’t matter here. In the present context the idea is
simply that what we’re systematizing are the the beables—Einstein’s peas—in a low-
dimensional space. The Schrödinger equation with its wave functions (or equivalently,
Heisenberg’s matrices, or Feynmann’s path integrals) then emerge as part of the most
elegant summary of how these beables move. The claim is that if an ideal observer
could survey all the Bohm particles scattered across spacetime and she cared about
our scientists’ standards for evaluating theories, then she would devise the laws of
Bohmian mechanics. Or if she systematizes GRW flashes, she would recommend the
GRW dynamics. And so on for other primitive ontologies.

This package of beables plus Hume nicely dissolves our “lost in space” problem.
Absolutely nowhere in the Humean account of laws is there any hint that the laws
devised by the ideal observer must constitute a function (or functional) that is itself
decomposable into functions (or functionals) on low dimensional spaces. The laws
should be useful, powerful, and true. The inability to express non-trivial wavefunctions
on three-space is therefore not a problem, nor even surprising. Furthermore, as part of
the laws, thewavefunction is not a beable in theworld. It is the result of systematization,
not what is systematized. Finally, since “winning” the best system competition is what
makes a proposition lawlike, the liberal-minded Humean might be willing to extend
the notion of law to novel types of proposition, e.g., initial conditions, time-varying
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generalizations. If such propositions earn their way into an elegant summary, only an
old-fashioned hankering for laws of a classical stripe prevents us from dubbing these
propositions laws too.

Whether Einstein would have found such a position attractive is anyone’s guess.
One can speculate, based on his known appreciation of Hume and fondness for “peas,”
that he might well have found a position like this digestible.

4.3 A Humean trick

An objection to this Humean view immediately suggests itself: the wavefunction
doesn’t appear to supervene upon the Bohm particle positions. Above I said that two
Hume worlds containing the same stuff necessarily have the same laws. Yet we can
easily imagine two worlds with the same stuff—the same configuration of Bohm
particles—yet described by different wavefunctions. Since wavefunctions are aspects
of laws on this position, we seem to have trouble.

Consider a subsystem of the universe consisting of a single particle sitting at a par-
ticular location. This situation is compatiblewith an infinity of possiblewavefunctions.
Since two are enough to cause trouble, let’s concentrate on two subsystem wavefunc-
tions that differ only in their relative phase, ψ = 1/

√
2|here > +1/

√
2|there >

and ψ ′ = 1/
√
2|here > −1/

√
2|there >, where the actual beable configuration cor-

responds to here. Supervenience states that there is no difference in the supervening
properties without a difference in the subvenient properties. Here we have a difference
in wavefunctions without a corresponding difference in beables.

The key to answering this problem—and the key to avoiding trouble later too- –is
to see the world through the eyes of a Humean. To the Humean, the name of the
game is devising simple, usable generalizations that will help human agents navigate
through the world. Anything that aids this goal is permissible. In particular, one may
wish to “add” a magnitude to the system if it will better optimize its virtues. Hall
(ms) recently provides a nice example with mass in classical physics. Suppose the
fundamental intrinsic property of objects is simply position. Then given the same ini-
tial positions, one may not be able to predict—even if one knew everything—what
happens next. The physics might be indeterministic. But suppose one “painted” mass
onto the objects with position. Perhaps masses are introduced in such a way that they
covary with positions in certain systematic ways. Then one can imagine introducing
these magnitudes to obtain a greater balance of simplicity and strength. Once mass
is introduced, then we have momenta because the position developments will yield a
velocity (in a Newtonian formulation). This addition might even allow for a determin-
istic theory. In this toy example we recover much more strength (e.g., determinism)
at the expense of complicating the system by adding mass (Fig. 3). One would be
“realist” about the masses, but what makes it true that there are masses is that the best
systematization of the distribution of positions in theworld that usesmasses is optimal.
This general strategy is common to Humeans, as they have employed it to understand
chance (Lewis 1994), rotation (Callender 2001) and acceleration (Huggett 2006).

Return to our worry about supervenience. Miller (2013) uses the above insight
here too. You’re an ideal observer looking over the full mosaic of Bohmian particle
locations at all times and wondering what wavefunction to use. Is there reason to
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Fig. 3 Humean “trick”: add mass, get uniqueness

posit ψ rather than ψ ′? Differences in relative phase, of course, are measurable. For
example, consider the property measured by the operation associated with operator
Â, who yields outcome +1 if the state is ψ and −1 if the state is ψ ′. Then it should be
clear, based on the above reasoning, that if the particle is later measured by Â and the
outcome is +1, then that is reason to assign ψ to the system now, all else being equal.
Obviously this reasoning can be extended widely—to anywhere where the relative
phase “matters” on the whole mosaic. The supervenience, in other words, is global
and not local; the wavefunction depends on the full four-dimensional picture, i.e., the
particles’ full trajectories, not their partial ones.

This is precisely the same as in the case of rotating homogeneous disks (Callender
2001). Non-Humeans have claimed that rotating homogeneous discs are a counter-
example to Humeanism. Consider two worlds otherwise empty apart from a single
such disc in each. One might be rotating, the other not. Being homogeneous, the
Humean cannot appeal to the usual features to tell the difference. Critics ofHumeanism
consequently say that Humean superveience fails, for the difference between rotating
and non-rotating discs doesn’t supervene upon theHumeanmosaic of basic properties.
The right response, I think, is to insist that there is no difference between the two
imagined worlds and hence no failure of supervenience. There is only reason to posit
a difference when the best system for that world sees a difference. If a speck of dust
pops up on one disc one day and rotates, that may be reason to say the disc was rotating
all along. The speck doesn’t cause the rotation; instead it provides a reason to count the
disc as rotating. Similarly, in the quantum case, later experiments help us determine
what counts as having a particular effective wavefunction. One can’t look only at the
particle subsystem to justify what wavefunction is used. There is nothing mysterious
here: these are the very same kinds of reasons quantum physicists use when assigning
wavefunctions in the lab, only writ large.

The reader may worry: suppose that the whole world is simply a single Bohm
particle. That is an allowed solution of Bohmian mechanics. Now we are dealing with
a universal wavefunction instead. And there won’t be any measurements elsewhere to
fix the relative phase because there is nothing else in theworld.Hence there is no reason
to pick � or �’. The Humean must bite the bullet on this kind of underdetermination
of the universal wavefunction. Arguably, this isn’t too great a burden to bear. After all,
why in theworldwould an ideal observer surveying such aworld even propose� or� ′
in the first place?With no Â-outcomes (etc.) to cover, amuch simpler alternative exists,
namely � ′′ = |here >. Perhaps this underdetermination is slightly counterintuitive,
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but I don’t see it as problematic. When there is no reason in the mosaic to pick one
wavefunction over another, theoretical virtues will do the rest.

In sum, the core idea in all of these cases is that what makes it true that there is
some X in the world (e.g., mass, ψ , rotation, acceleration) is the fact that including
X in one’s summary of the fundamental makes it the best such summary.

5 Classical wavefunctions

My discussion so far has been entirely philosophical. One may rest content with it
as it stands, safe in the knowledge that one can dissolve the “lost in space” problem
by adopting the nomological interpretation of the wavefunction, and furthermore, that
one gets agreeable extra consequences if one adopts a Humean perspective on laws
(see below). Yet I believe that insight into the nature of the quantum state is gained by
a comparison with the “classical state” in classical physics. There—we presume—we
know what is going on, what is beable and what is not. The particles or classical fields
are beables, the rest the representational structure of the laws of nature. We don’t
confuse the two.

The quantum realm looks very different. Here we have a wavefunction evolving
in a high-dimensional Hilbert space, inducing a field on a high-dimensional config-
uration space. These high-dimensional objects “look like” real physical entities, and
this raises the “lost in space” question. It may therefore come as a surprise to many
philosophers to point out that at this level the situation is not special to quantum
mechanics—not in the least. We can easily describe quantum and classical mechan-
ics in the same types of abstract spaces. Quantum mechanics can be described in
a Hamilton–Jacobi framework in configuration space, just like classical mechanics;
and going the other way, classical mechanics can be formulated in a Hilbert space.
In both cases we have classical wavefunctions evolving according to a “Schrödinger
equation” in high-dimensional spaces, classical Born’s rules, and generally, classical
counterparts of most—but of course not all—ofwhat one regards as quantum.We have
all the ingredients for a “lost in space” problem. Yet since matters are comparatively
clear in classical physics, the problem never arises.

Formulating quantum and classical mechanics in the same abstract frameworks
presents us with a wonderful opportunity, the perfect laboratory to investigate the
status of the quantum state. In different spaces the comparison is difficult. But in
the same formalisms we can look squarely at the differences and see if any mandate
a corresponding change in how we treat the wavefunction. Does the step from the
classical to the quantum demand a corresponding change in the wavefunction’s status,
i.e., from nomological to ontological? If so, preciselywhat features ask for this switch?
The best way to investigate this question is to put classical mechanics and quantum
mechanics in the same formalism and then probe the differences.4

4 Both theories can be “squashed” together into many abstract formulations, so one has many choices. I’ll
choose two that I find enlightening, but of course there are many others, e.g., phase space formulations
of both theories. I’ll count classical statistical mechanics as classical physics. This move is justified in
the present context, I believe, by the fact that “beable” interpretations of quantum mechanics often regard
quantum mechanics as a kind of statistical mechanics of beables (Dürr et al. 1992).
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Fig. 4 Hamilton–Jacobi theory

5.1 Hamilton–Jacobi

Hamilton–Jacobi theory is taught in texts of classical analyticmechanics. It is a difficult
and philosophically rich version of classical mechanics, one that survives in large part
due to the insight it provides into the quantum. The theory is centered on Hamilton’s
principle function, the action S(q, t). The action defines wave fronts that evolve with
time in the extended configuration spaceR

3NxR. The evolution for a classical particle
moving in a potential V (q, t) is given by a first order partial differential equation

∂S(q, t)

∂t
+ 1

2

∑ (
∂S(q, t)

∂qi

)2

+ V (q, t) = 0 (5.1)

known as the Hamilton–Jacobi equation. The connection to trajectories is via the
vector field on R

3N that S(q, t) induces:

v(q, t) = m−1∇S(q, t).

The integral curves Q(t) along v(q, t) are the possible trajectories of the N-particle
system, i.e., they solve

dQ
dt

= v(Q(t), t).

In essence what we have is a “wave” in the extended high-dimensional configuration
space generating the possible trajectories Q(t) (Fig. 4). Initial conditions single out
one of them, and we have no problem going from this description to x(t) = x0 + vt
in ordinary space.

Introduce the probability density ρ(ϕ) of finding a particle atϕ = (q, p) in classical
phase space �. Because we assume that the particles are conserved, we can derive
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∂ρ

∂t
+ ∇ ·

(
ρ

∇S

m

)
= 0 (5.2)

which is the well-known continuity equation.
That S defines a wave front suggests consideration of a wave defined as

ψ(c) = Rei/�S, (5.3)

where R = ρ1/2 and � is a constant with units of action. This wave ansatz is our
classical wavefunction.

Now, using this wavefunction, we can treat ψ(c) and ψ(c)∗ as new canonical vari-
ables such that (S,−ρ) → (

ψ(c), ψ(c)∗)
. Writing the Lagrangian density in terms

of these new variables, we can express Eqs. 5.1 and 5.2 together as the “classical
Schrödinger equation” derived by Schiller (1962) and Rosen (1964):

i h̄
∂ψ(c)

∂t
= − h̄

2m
∇2ψ(c) + Vψ(c) + h̄2

2m

∇2|ψ(c)|
|ψ(c)| ψ(c). (5.4)

Hereψ(c) is a field, the phase is a solution to the classicalHamilton–Jacobi equation,
the normals to S are the classical paths, and R2(x, t) is the probability density. Note
additionally that 5.4 is complex. The “i” arises not for any deep reason, but merely as
a result of trying to express two equations, 5.1 and 5.2, as one (Schleich et al. 2013).
From5.1 and5.2wederive 5.4, andnaturally, the reverse is possible too: by substituting
ReiS/h̄ into 5.4, separating into real and imaginary parts, one arrives at 5.1 and 5.2.
The classical Schrödinger equation is a kind of compactification of information about
an ensemble of conserved classical particles obeying the Hamilton–Jacobi equation.
It looks like the ordinary quantum Schrödinger equation except for the odd potential
multiplied in the final component of the rhs of 5.4.

Turn to Bohmian mechanics. Although there is a literature surrounding the so-
called “quantum Hamilton–Jacobi equation,” what I’m about to present is the version
appropriate to this paper, namely, a version of Bohmian mechanics via Hamilton–
Jacobi (see Holland 1993). As is well-known, Bohm (1952) inserted ψ = ReiS/h̄ into
the Schrödinger equation

i h̄
∂ψ

∂t
= − h̄

2m
∇2ψ + Vψ, (5.5)

separated into real and imaginary parts, and derived a “quantum” Hamilton–Jacobi
equation and continuity equation, respectively:

∂S(q, t)

∂t
+ 1

2

∑ (
∂S(q, t)

∂qi

)2

+ V (q) + Q = 0, (5.6)

∂ρ

∂t
+ ∇ ×

(
ρ

∇S

m

)
= 0, (5.7)

where Q is the “quantum potential”

123



3166 Synthese (2015) 192:3153–3177

Q = h̄2

2m

∇2|ψ |
|ψ |

Q is an odd potential, encoding all the peculiarly quantum effects. Otherwise, the
physical interpretation is the same as in the classical case: S is a solution of the
“Hamilton–Jacobi” equation, 5.7, the solution generates a vector field on configura-
tion space, and the integral curves along this field give the possible trajectories of
the N -particle system. And just as in the classical case, we can derive a Hamilton–
Jacobi equation (5.6) and a continuity equation (5.7) from a Schrödinger equation,
(5.5).5 Although there are plenty of differences (see below), at this coarse level the
main one between the classical and the quantum representations is essentially that Q
changes sign and equations! Classically it resides in the classical Schrödinger equa-
tion (and is multiplied byψc) and vanishes in the Hamilton–Jacobi equation; quantum
mechanically, it appears in the quantum Hamilton–Jacobi equation and vanishes in
the Schrödinger equation. That movement of Q has monumental consequences for
the trajectories of beables. Does it also demand that we reify the quantum but not
classical wavefunction? Hold this question for a moment.

5.2 Koopman–von Neumann waves

One way of stating the “lost in space” problem is by pointing out that the quantum
state lives in Hilbert space whereas the beables presumably live in three-dimensional
space. Yet classical physics, when framed in Hilbert space, faces precisely the same
problem. There is no intrinsic tie between Hilbert space and the quantum. Since work
by Koopman and von Neumann in the 1930’s (Koopman 1931; Neumann 1932) it’s
been known that classical physics can be formulated in Hilbert space. In what is known
as Koopman’s Lemma, Koopman proved that if a dynamical system has a measure μ

on a constant energy surface � of phase space � and the Hamiltonian flow preserves
this measure, then that flow generates a one parameter family of unitary operators
Ut on the Hilbert space L2(�,μ). More details are necessary; but the upshot is that
since classical mechanics does indeed have such a measure and flow, it can be given
a Hilbert space treatment. From there one can develop this Koopmanian approach to
mimic quantum mechanics to an astonishing degree.

The goal is to introduce a Hilbert space of complex square integrable functions
ψ(ϕ) such that

ρ(ϕ) = |ψ(ϕ)|2 (5.8)

can be interpreted as a probability density of finding a particle at the point ϕ = (q, p)
of �. We move toward this goal by recalling that in classical statistical mechanics the
probability density of particles ρ(ϕ) evolves via the Liouville equation

5 Note that matters don’t work out as simply when we add spin and move away from the Schrödinger
equation; see Holland (1993).
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i
∂ρ(ϕ)

∂t
= L̂ρ,

where

L̂ =
(

∂H(ϕ)

∂y

) (
−i

∂

∂x

)
−

(
∂H(ϕ)

∂x

) (
−i

∂

∂y

)
.

Here H(ϕ) is the Hamiltonian of the system andwe assume a single degree of freedom
with canonical variables x, y. The Liouvillian operators do not constitute a Hilbert
space, so Koopman and von Neumann postulate that complex distributions, ψ(ϕ),
which do make up an L2 Hilbert space, obey the same equation, i.e.

i
∂ψ(ϕ)

∂t
= L̂ψ(ϕ). (5.9)

Comparing (5.9) with (5.5), one might regard (5.9) as a second classical
“Schrödinger equation.” Because L̂ contains only first order derivatives, the prob-
ability density ρ will evolve with the same equation as ψ if 5.8 holds. Making this
assumption, Eq. 5.9 implies the classical Liouville equation and shares its empirical
content, yet it allows a Hilbert space formulation.

With these ingredients, one can then build an operator formalism for classical
mechanics. Koopman and von Neumann define an inner product

〈ψ |φ〉 =
∫

dϕψ∗(ϕ)φ(ϕ).

With this they are able to show that L̂ is Hermitian

〈ψ |L̂φ〉 = 〈 ˆLψ |φ〉

and generates unitary evolution

ψ(t) = U (t)ψ(0),

where U (t) = ei L̂t if the Hamiltonian H is time-independent. That the norm of the
state is conserved through time then justifies interpreting 5.9 as the probability density
of finding a particle at point ϕ = (q, p) of �. Due to the construction, we know
that this will give the same results as the Liouvillian approach to classical statistical
physics.

The approach has been developed in many ways. The formalism can be set in either
a complex or real Hilbert space (Groenewold 1946; Bracken 2003). The Born’s rule
analogy can be strengthened (Brumer and Gong 2006). One can rotate to different
bases if one likes and find solutions there. We can even describe a “Heisenberg”
instead of “Schrödinger” Koopmanian formulation (Jauslin and Sugny 2009).

Perhaps most importantly for us, like the Hamilton–Jacobi framework, this one
also can be understood as a “transcendent” formulation over quantum and classical
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Fig. 5 Koopman–von Neumann classical physics

mechanics (Bondar et al. 2012). Assume the usual axioms of quantum mechanics but
drop the word “quantum”: that the states of a system are represented by normalized
vectors of a complex Hilbert space and observables by self-adjoint operators on this
space, that expectation values 〈 Â(t)〉 are given by 〈ψ(t)| Â(t)|ψ(t)〉, that Born’s rule
holds, and that the state space of a composite system is given by the tensor product of
the system’s state spaces. Using these axioms, Bondar et al show that if we assume
the position and momentum observables commute, classical physics can be derived,
and that if we assume that these observables don’t commute, quantum dynamics are
derived.

So we find ourselves with a classical formalism in which the states of systems can
be represented by the normalized vectors of a complex Hilbert space, where these
vectors rotate in Hilbert space, collapsing on states, giving us their probabilities via a
classical version of Born’s rule. As far as the abstract spaces go, the main difference is
simply that the classical Hilbert space is defined via the energy surface in phase space
and not configuration space (Fig. 5).

Is the ontology of this theory mysterious? Not at all. We’re in friendly territory.
Maudlin (2013) asks us to inquire why we posit quantum wavefunctions in the first
place. Classically, we know the answer, and the beables are crucial. We arrive at the
Liouville equation based on the assumption that the beables—the classical particles—
are governed by a set of “guidance” equations, namely, Hamilton’s equations. From
Hamilton’s equations we have a direct route to classical statistical mechanics and then
to an operator formalism and classical wavefunctions. The foundation is clear: beables
traversing well defined trajectories. There is no temptation to confuse the nomological
and the beable. The answer to the counterpart of Maudlin’s question here is that the
classical wavefunction and counterpart of the Schrödinger equation arise as part of
an elegant and condensed representation of the laws governing ensembles of classical
beables.

We can imagine being confused classically. Consider a fictional world wherein
mathematics developed hundreds of years ahead of physics. Then it would have been
in principle possible for a character to exist—call him “von Newton”—that invented
an axiomatized operator-based Koopmanian classical physics before Newton came
on the scene. The theory would have been empirically adequate. Yet restricted to
the classical wavefunction and operator formalism, contemporaries might reasonably
have wondered whether the classical wavefunction was It or Bit. Only when Newton
introduced his beables—corpuscles with position—and a dynamics for these beables
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would it have become clear that the wavefunction was only nomological and not itself
a beable.

6 Difference: ψ as a causal agent

The above discussion shows that where the quantum state lives can’t be the problem.
Thequantumand classicalwavefunctions live in essentially the samehigh-dimensional
spaces and the beables live in essentially the same low-dimensional spaces. This
observation makes pressing the investigation of differences between the two cases.
Do any of these differences demand reification of the quantum state?

In either framework, one can discovermany differences. Focusing on theHamilton–
Jacobi framework, the differences include:

• Q attaches to the “quantum” Hamilton–Jacobi equation in the quantum case, but
to the “classical” Schrödinger equation in the classical case.

• The dynamical equations are linear in quantum mechanics, nonlinear in classical
physics.

• ψ is single-valued in quantum mechanics and not single valued in classical
mechanics.

Although these differences are of tremendous importance physically, it’s hard to imag-
ine promoting any of them into a reason for interpreting the quantum state differently
than the classical state. For instance, the dynamics obviously differs over linearity: 5.5
is linear, 5.4 is nonlinear. No doubt, this is a huge difference, as every reader knows
well. But why should that difference matter to our interpretation of the wavefunc-
tion? Physics is filled with linear and nonlinear dynamical equations. We never use
that alone as a test for whether a function should be interpreted as representing basic
ontology or not.6 Obviously I simplify. The interpretation of the wavefunction should
arise from a holistic judgement, one based on all the features of the theory. And we
lack an uncontroversial inference of the form: if term X in your theory has feature P,
then youmust reify X. Still, it’s difficult to see why any of the above differences should
singly or collectively matter to whether we regard the quantum state as ontological or
nomological.

Here is a difference that might matter, however. There is a precise sense in which
the wavefunction is forced upon us in the quantum case but not classical case. Hol-
land (1993) glosses this by saying that the wavefunction is not a “causal agent”
(Holland 1993) in classical mechanics. By “causal agent” he doesn’t mean any-
thing philosophically subtle, but rather merely that something is a causal agent if it’s
needed to generate the motion of the beables. In classical Hamilton–Jacobi theory, the
S-function generates a global ensemble. The exact trajectory is therefore independent

6 Here I stress ’alone’ because of course linearity is related to entanglementwhich is related to the difference
I’ll mention momentarily. My point is not to de-emphasize the above differences but rather just to point
out that more premises are needed to get from these to the reification of the wavefunction. An argument
is needed, and one is supplied below. Others based on different formal differences may be possible, but I
suspect that they will only reproduce the essence of the ’causal agent’ argument below.
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Fig. 6 Ensemble generated by varying x0

Fig. 7 Ensemble generated by varying p0

of the wavefunction. Not so in Bohmian mechanics. Here the S-function is required
to determine the exact trajectory.

Holland provides a pretty example of how the S-function is causally inert classi-
cally (ibid, p. 37). Consider a free particle evolving according to 5.1 and described
with Cartesian coordinates. Solving for S, we find S1(x, y, z, p1, p2, p3, t) =
−(1/2m)(p21 + p22 + p23)t + p1x + p2y + p3z)., where p1, p2, p3 are the com-
ponents of a momentum vector. Generated by varying x0, S1 describes an ensemble
of parallel straight lines (Fig. 6).

where the actual trajectory is colored in black. Butwe can also construct the function
S2(x, t; x0, 0) = (m/2t)(x − x0)2. Generated by instead varying p0, S2 describes an
ensemble of parallel straight lines that emanate from x0 with a range of momentum p
(Fig. 7).

where again we color the actual trajectory in black. The trajectories generated by
S1 and S2 differ in general, but coincide when one picks the same initial location and
momentum (the black trajectory). As one sees, the S-function doesn’t uniquely deter-
mine the motion. This is a huge difference between classical and Bohmian mechanics.
Its importance cannot be underestimated when comparing the two theories physically.
Classically, in some circumstances, it may be convenient to specify a wavefunction,
but it is not needed. One can, for instance, obtain a well-posed initial value problem
without an S-function. In Bohmian mechanics it is needed. One can’t get a well-posed
initial value problem without it.

Essentially the same point can be made in the Koopman–von Neumann formalism
too. Substitute ψ = ReiS/h into the Koopmanian “Schrödinger equation” 5.9 and
separate real and imaginary parts. The result here, in contrast to the quantum case,
are two structurally identical equations, one for the modulus and one for the phase,
with no “mixed” terms, i.e., the phase and modulus don’t couple. The physicist Gozzi,

123



Synthese (2015) 192:3153–3177 3171

quoted by Mauro (2002), states that in this formalism, the “essence” of quantum
mechanics is that it is “the theory of the interaction of a phase with a modulus.” As
in the Hamilton–Jacobi case, this coupling makes the phase necessary in quantum
mechanics in a way it isn’t classically. The general lesson is that while in either
quantum or classical formalisms we can construct wavefunctions evolving according
to “Schrödinger” equations, only in quantum mechanics is something like this forced
upon us.

This observation seems relevant to the current investigation. The suggestion was
that the classical S-function is not part of the ontology but is instead part of the nomo-
logical structure. That inference seems fine, and even bolstered, bywhatwe’ve learned,
namely, that S doesn’t determine the beables’ motion. But the further suggestion that
the S-function in the quantum case should be treated like the S-function in the classi-
cal case now seems deeply problematic. One S-function is there for convenience, the
other by necessity. While admitting that there are no hard and fast philosophical rules
in play, that sounds like a relevant difference, one demanding different interpretations
of the classical and Bohmian S-functions.

6.1 Escape

The fact that the wavefunction is a causal agent in the above sense is the reason why
most Bohmians have agreed with Bell that it must be treated ontologically. Putting
classicalmechanics andBohmianmechanics in the same formalism allows us to appre-
ciate the stark differences between the two, differences that seem relevant to whether
ontology stands behind their respective wavefunctions or not. It is therefore perhaps
fair to conclude that the natural or even default interpretation of the wavefunction for
a Bohmian is that it is ontological.

If one is a Humean about laws, however, one may not “see” this difference. As
we have seen, Humeans routinely posit magnitudes if they are justified by optimizing
one’s summary of what one is systematizing. Suppose one is systematizing Bohmian
particles with position. Without an S-function, we lack a well-posed initial value
problem, and therefore potential strength and power.We can’t tell where such a particle
will go without this S-function. Does that mean the S-function is a beable? No, no
more so than requiring mass to get a well-posed value problem classically demands
that Humeans treat mass as part of the fundamental furniture of the world. Or perhaps
a better analogy in the present case, a Humean might justify the postulation of forces
as a way of getting the best systematization of the beables without treating forces
as themselves beables. Knowing this, the Humean may not be moved by the above
“causal agent” argument. He or she will recognize many cases where they would
disagree with someone running that form of argument: rotating discs (Callender),
mass (Hall), perhaps even accelerations (Huggett). Indeed, asmentioned,Miller (2013)
makes precisely this point about the wavefunction in an attempt to understand how it
supervenes upon Bohmian particle positions. So Humeans already have independently
motivated reasons for not following the “causal agent” argument to its conclusion.

The Bohmian is therefore free to regard the S-function or equivalent as he or she
would a Newtonian force: nomological, not beable. The same goes for non-Bohmians
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who posit beables (for whom I assume some version of the causal agent argument
exists too). The Humean convinced that she is systematizing Einstein’s peas in a low-
dimensional space doesn’t feel the force of the causal agent argument.With that, beable
theorists can enjoy all the attractions of the otherwise parsimonious nomological view
of the wavefunction.

To be clear, I have not argued that only Humeans can escape the causal agent
argument, nor have I argued that Humeans should escape it. On the first point, it
may be that advocates of a governing conception of laws can motivate ignoring the
lesson of the causal agent argument too. On the second point, how the Humean divines
the divide between what goes into systematization and what comes out is anyone’s
guess. I am simply pointing out that for those who wish to systematize Einstein’s peas,
there is a clear, consistent, well-motivated position that does not include reification of
high-dimensional entities such as the wavefunction field on configuration space.

7 Lessons

Before concluding, let me point out three implications of this sparse quantum meta-
physics.

The first lesson is that some objections to beable-type theories vanish if the wave-
function is understood nomologically. Call these objections the Redundancy Argu-
ment and theAction–ReactionArgument. Put forward by Everettians, the Redundancy
Argument originates in Everett’s doctoral thesis (Everett 1957) and has been repeated
ever since.7 Here is Everett:

Ourmain criticismof this view [Bohm’s theory] is on the grounds of simplicity—
if one desires to hold the view that ψ is a real field then the associated particle
is superfluous since, as we have endeavored to illustrate, the pure wave theory
is itself satisfactory. (1973, p. 112)

Consider the infamous case of Schrödinger’s cat. Put simply, the objection is that
Bohm’s theory solves the measurement problem by adding one too many cats. This
objection may seem a bit rich coming from the Everettian, who already posits a mul-
tiplicity of cats, yet there is a point here. Interpreted a la Everett, the final state of
Schrödinger’s cat is an uncollapsed wavefunction with a branch corresponding to a
dead cat plus another branch corresponding to a live cat. The Bohmian by contrast
insists that there is only one cat, a particle cat, either alive or dead. Suppose the par-
ticle cat is alive. Grant that Everett solves the measurement problem and adopt the
traditional Bohm picture wherein the wavefunction is part of basic ontology. Then the
Everettian can point out that we have one too many live cats: a “wavefunction” live cat
and a “particle” live cat. More generally, before adding the particles, the traditional
Bohmian posits just as much ontology as the Everettian. If Everett gets you an honest-
to-goodness cat, why do you need the particle cat? Bohmians, as Deutsch (1996) puts
it, are Everettians in “chronic denial.” The argument concludes with the suggestion to
take Occam’s razor to this bloated ontology and excise the superfluous particles. The

7 See Brown and Wallace (2005), Deutsch (1996), Wallace (2008) and Zeh (1999).
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Action–Reaction Argument, by contrast, doesn’t rely on Everett. Here the complaint
is that Bohmian mechanics—and theories like it—violate the “action–reaction” prin-
ciple. The field in configuration space acts on the particle configuration, but not vice
versa (Squires 1994; Anandan and Brown 1995). Although there have been attempts
to address this issue in Bohmian mechanics, in its standard form the charge is certainly
correct. The objection carries force in proportion to how much one believes a theory
ought to obey this principle.

Neither objection moves me. To Action–Reaction, I think that it’s fair to respond
that the evidence for this principle is classical and that quantum theories shouldn’t
be hostage to classical intuitions (Callender and Weingard 1997). To Redundancy,
it’s up for grabs whether Everett solves the measurement problem, and anyway, the
functional specification of a wavefunction cat is distinct from that of a particle cat
(see Lewis 2007a, b; Valentini 2012, Callender, ms). Here, however, I simply wish to
register that on the nomological understanding of the wavefunction neither objection
gets off the ground. Action–Reaction has no more merit than one objecting to classical
Hamiltonianmechanics because the particle positions don’t act back on the symplectic
structure. And Redundancy loses anything redundant: there is no wavefunction-cat.
Far from being an Everettian in self-denial, the Bohmian imagined here is instead a
full-throated anti-Everettian, for the two theories posit no shared basic ontology.

The second lesson is that it’s possible to regard classical mechanics and quantum
mechanics as positing the same exact ontology but differing only in the laws. Interpret
quantummechanics in a Bohmian fashion and choose position as the sole beable. One
can do exactly the same classically, adopting a “Bohmian” interpretation of Newtonian
mechanics and choosing position as the sole beable of Newtonian mechanics. Both
theories are then about a spare ontology of entities possessing only position intrinsi-
cally. Arguably this “Bohmian” understanding of Newtonian mechnaics is the most
natural one. After all, classical mass and charge are theoretical terms. It’s natural for a
Humean to treat these as features of the nomological too (Hall, ms). We tend to picture
Newtonian corpuscles with mass and charge stuck on them, like hats on a peg, but it’s
perfectly reasonable to understand them as features of the laws.

I stress that I say it’s possible, not necessary, to view the basic ontology as unchanged
in moving from the classical to the quantum (even understood a la Bohm). We can
easily generatemismatching ontologies allowing the Bohmian to pick fermion number
density, for instance, as her preferred observable, or the Newtonian to pick velocities.
One can also opt for a less minimalist interpretation of either theory, sticking spin or
other properties a laHolland onBohmian particles andmass, charge or other properties
upon Newtonian corpuscles. A referee points out an interesting possible asymmetry
here. While one can regard mass and charge are intrinsic properties “stuck” onto the
Newtonian corpuscles, such an interpretation of mass and charge may be unavailable
to the Bohmian (see Brown et al. 1995 and Brown et al. 1996 for some reasons why).

The third lesson is a small refinement of our understanding of what the recent the-
orem of Pusey et al. (2012) precludes. Let’s begin with some terminology. Suppose
one considers theories that describe reality with some variables, λ. Values of λ cor-
respond to particular states of reality, or ontic states. When we prepare a system in
quantum mechanics, that corresponds to a distribution over these ontic states. The
literature surrounding the PBR theorem is interested in the following question: can
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we prove that pure quantum states must correspond to non-overlapping distributions
over ontic states (Hardy 2012)? The reason for interest in this question is perhaps best
explained as follows. Consider the state of a system in classical statistical mechanics,
the state given by the probability density ρ. Clearly, many particular states in phase
space (infinitely many) are compatible with one and the same ρ. Given X ∈ �, we
cannot deduce a unique ρ (not even close!), so ρ is unlike, say, the energy, which can
be so deduced. This fact, the thinking goes, allows ρ to be interpreted epistemically,
unlike the energy. Now let λ be the quantum counterpart of X and ψ the counterpart
of ρ. Can one deduce from λ the pure quantum state? One can only do that if pure
quantum states correspond to non-overlapping distributions over ontic states. Hence
the interest of the question: the answer tells us whether the quantum state is like the
classical ρ, and hence epistemic, or like the classical energy, and hence ontological.
Using terminology fromHarrigan and Spekkens (2010), call a modelψ-epistemic just
in case there exist pairs of pure quantum states for which the distributions over ontic
states overlap and call a model ψ-onticmodels just in case the distributions over ontic
states are non-overlapping for any pair of pure quantum states. Then what the PBR
theorem shows is that if we assume a condition on separability, the wavefunction is
ψ-ontic. Being ψ-ontic is typically understood as implying that “the quantum state
would be written into the underlying reality of the world and we could assert that the
quantum state is real” (Hardy 2012).

An instrumentalist or anti-realist doesn’t commit to variablesλ. Since PBR requires
assumptions onλ, that brand of epistemicism about the wavefunction is not impugned.
Hence it’s commonly thought (Leifer 2011) that three positions remain:

1. Psi-epistemic (realist): Wavefunctions are epistemic, and there is some underlying
ontic state

2. Psi-epistemic (anti-realist): Wavefunctions are epistemic, but there is no deeper
underlying reality

3. Psi-ontologist (realist): Wavefunctions are ontic

and that PBR rules out interpretations in class 1.
Position 1 sounds a lot like the position defended here. Our Bohmian is committed

to beables, and hence λ, but has a Humean, and therefore Bit-like, interpretation of
the wavefunction. How is this possible?

There is no mystery here, only a looseness of semantics. As defined above, Bohm’s
theory is a ψ-ontic theory. The reason for this is related to our discussion in Sect. 6:
one needs the wavefunction to get the theory’s predictions. Hence the ontic states in
Bohm’s theory are given by λ = (ψ, Q), where Q is the point in configuration space
representing the particle configuration. The theory is trivially ψ-ontic, for sitting in λ

is none other than the quantum state itself.
The key point, however, is that not all ψ-ontologists believe that ψ is part of the

ontology. We can distinguish between the metaphysics of the two components of λ.
That ψ is part of the ontic state doesn’t mean that it needs to be interpreted like Q.
This point is even clear in classical mechanics. There we think of λ = (X (q, p)).
But in a Newtonian framework, momentum is defined via the forces. So the ontic
state really requires the forces too. The state of a system doesn’t supervene merely on
the positions (consider: a particle at an instant going to the right and a particle at an

123



Synthese (2015) 192:3153–3177 3175

instant going to the left looik the same positionally). The forces or their equivalents
are needed. Yet that doesn’t preclude a philosophical analysis wherein one adopts, say,
a Machian understanding of force and otherwise treats the positions as beables. Same
here. Hence there is at least a fourth position available:

4. Psi-ontologist: wavefunctions are ontic, and there is some underlying ontic state,
but the wavefunctions are not beables.

Position 2 is the “philosophical” variant of 1. It agrees with 1 that the wavefunction
is not part of the ontic state, but in disagrees with 1 in its “metaphysics,” i.e., it denies
that λ exist and thereby escapes the proof. In a roughly similar way, we might view 4
as the “philosophical” counterpart of 3. Position 4 agrees with 3 that the wavefunction
is part of the ontic state, but it disagrees with 3 in its “metaphysics,” i.e., it denies that
ψ exists ontologically. If we agree to tease out 4 from 3 as described, then we see that
Position 3 is what is appropriate when one’s beable is the wavefunction (Everett) and
Position 4 is what is appropriate when we choose a non-wavefunction beable.

8 Conclusion

Wehavemotivated the nomological understanding of thewavefunction.On this picture
the It-or-Bit debate, and even the wave-or-particle debate, are absorbed by a larger
more philosophical debate over the nature of laws. Although slightly disconcerting,
this realization represents progress.With this understanding in hand, I’ve shown how a
major obstacle to the nomological view potentially is removed by adopting a Humean
perspective on this larger dispute. According to this attractively parsimonious picture,
it turns out to be possible to think that the fundamental ontology of theworld posited by
non-relativistic quantum mechanics is precisely the same as that posited by classical
physics. The difference lies only in the dramatic alteration of the laws governing how
these beables move. Regardless of whether one explores this option, the main point is
that quantummechanics requires only one type of beable. Put in the form of a rhyming
slogan, the moral is “one stuff, that’s enough.”
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