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Abstract We demonstrate how to validly quantify into hyperintensional contexts
involving non-propositional attitudes like seeking, solving, calculating, worshipping,
and wanting to become. We describe and apply a typed extensional logic of hyper-
intensions that preserves compositionality of meaning, referential transparency and
substitutivity of identicals also in hyperintensional attitude contexts. We specify and
prove rules for quantifying into hyperintensional contexts. These rules presuppose
a rigorous method for substituting variables into hyperintensional contexts, and the
method will be described. We prove the following. First, it is always valid to quan-
tify into hyperintensional attitude contexts and over hyperintensional entities. Second,
factive empirical attitudes (e.g. finding the site of Troy) validate, furthermore, quanti-
fying over intensions and extensions, and so do non-factive attitudes, both empirical
and non-empirical (e.g. calculating the last decimal of the expansion of π ), provided
the entity to be quantified over exists. We focus mainly on mathematical attitudes,
because they are uncontroversially hyperintensional.
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1 Introduction

The topic of this paper is quantifying-in. Quantifying-in is existential quantification
into modal or attitudinal contexts, mixing quantification with modalities or attitudes.1

Technically, one ormore existential quantifiers need to bind one ormore occurrences of
one or more variables inside the scope of one or more modal or attitudinal operators.
The key problem which quantifying-in poses is whether, and if so just how, in full
technical detail, the existential quantifier succeeds in reaching across any such operator
in order to bind one or more variables occurring within the scope of the operator. The
standard way of phrasing the problem of quantifying-in is that the same variable
has occurrences in two different kinds of context. When bound by the quantifier, the
occurrence is extensional; when inside the scope of the operator, the occurrence is
non-extensional. So the worry is that the quantificational domain of the variable slides
from extensional to non-extensional entities, such that the quantifier cannot get a grip
on the non-extensional occurrence of the variable.2

A subsequent logical problem to the problem of variable-binding is to hone in on
just those inferential schemas that are valid. A subsequent philosophical problem is
to make good intuitive sense of those valid inferences.

Where Op is an arbitrary modal or attitudinal operator, ϕn an n-ary predicate, an n
number of constants, and αn n number of variables, the validity of quantifying-in (QI)
presupposes that the instances of this schema be valid:

. . .Op . . . (. . . ϕn . . . an . . .)

. . . ∃αn . . . Op . . . (. . . ϕn . . . αn . . .) . . .
QI

The schema displays the phenomenon of exportation: whereas in the premise the
reference to the semantic values of an occurs inside the scope ofOp, in the conclusion
the reference, αn , occurs outside the scope of Op, thanks to existential quantification
over αn .

Here are two examples, one modal, the other attitudinal, to make matters more
concrete, where a may be an entity of any sort (not just an individual):

(modality) contingently, a has property F ; therefore, there is an x such that, con-
tingently, x has property F
(attitude) agent b believes that a has property F ; therefore, there is an x such that
b believes that x has property F

We delimit our scope in this paper to attitudes, as opposed to modalities, that are
hyperintensional, as opposed to intensional, andobjectual, as opposed to propositional.

1 The first well-known modern example of quantifying into modal contexts may be the Barcan Formula:
♦∃xϕ → ∃x♦ϕ. Where ♦ represents logical possibility, BF states that if it is logically possible that
something be a ϕ then something has the logical potential to be a ϕ. The ∃-bound occurrence of x in the
consequent falls within the scope of♦ (hence exemplifying Quine-style ‘third-degree modal involvement’),
and the question arises how ∃ succeeds in binding this occurrence.
2 See Quine (1960, in particular pp. 147–148).
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A typical example of a hyperintensional objectual attitude would be:

a calculates the square root of 125

First, the complement of a’s computational attitude cannot be an intensional entity,
where an intensional entity is defined as per possible-world semantics, a mapping
defined on a logical space of possible worlds.3 Intensions fall notoriously short of
modelling mathematical attitudes; the lesson is that mathematical complements must
be hyperintensionally individuated.

Second, the complement cannot be propositional. If a calculates X , then X is not
the sort of entity that can be either true or false (the hallmark of the propositional).
a’s attitude does not consist in, e.g., calculating whether the square root of 125 is
an integer, which is a propositional attitude. When calculating the (principal) square
root of 125, a is involved in the appetitional, as opposed to contemplative, attitude of
attempting to arrive at the outcome of a computational procedure, with no guarantee
of obtaining it. The outcome is not a truth-value or a truth-condition, but an irrational
number, and a wishes to know which it is, with no guarantee that there even exists
a number that is the square root of 125. For instance, if a is calculating the square
root of 125 divided by 0, then there is no number that will roll out as the result of the
computational effort. Some may even consider the computation illegitimate, because
they consider dividing by 0 an illegitimate application of the division function. Still,
despite the possible illegitimacy of dividing by zero and despite the necessary absence
of a result, it remains an option for a to be engaged in the activity of calculating the
result of an arithmetic operation.

In this paper we are going to show how variable-binding is technically compatible
with quantifying-in; we are going to describe one particular semantic theory capable
of sustaining it; and we will provide suitable domains of quantification. The fact that
we are quantifying into hyperintensional contexts is importantly different from quan-
tifying into intensional contexts, because it is just much more technically challenging
to do so. Quantifying into the latter, as we show below, is straightforward. Quantify-
ing into the former is problematic because a hyperintensional context, hence any of
its constituents, is ‘sealed off’ from immediate logical manipulation. Therefore the
challenge becomes how to ‘open up’ a hyperintensional context so as to manipulate
one or more of its constituents. The so-called substitution method we describe below
is our tool to do just that.

More specifically, we prove the following. First, it is always valid to quantify into
hyperintensional attitude contexts and over hyperintensional entities. Any entity is
hyperintensional as soon as it obeys a principle of individuation finer than logical
equivalence. Any attitude context is hyperintensional as soon as the complement of
the attitude is a hyperintensional entity. Second, factive empirical attitudes (e.g. finding
the site of Troy) validate, furthermore, quantifying over intensions and extensions, and

3 Co-intensionality for possible-world intensions is necessary co-extensionality: where p, q are mappings,
if p(w) = q(w) for all worlds w then p = q, i.e. logical equivalence entails identity, which amounts
to an extensional principle of individuation for intensions. For a survey of the ascent from intensions to
hyperintensions as meanings and attitude complements, see Jespersen (2010, 2012).
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so do non-factive attitudes, both empirical and non-empirical (e.g. calculating the last
decimal of the expansion of π ), provided the entity to be quantified over exists. Thus,
if per impossibile the expansion of π would have a unique last decimal then there
is a number x such that x is the product of some computational procedure applied
to π. (Soundness, of course, is another matter.) Similarly for non-factive, empirical
attitudes, like worshipping a particular deity, who exists at at least all the world/time
couples at which someone worships the deity in question.4

The novelties this paper presents are the following. (1) We present an updated and
improved definition of hyperintensional individuation, which amounts to a modifi-
cation of Church’s Alternative (A1).5 (2) We present a detailed study of the math-
ematical attitude of calculating. (3) We present updated rules for quantifying into
hyperintensional contexts de dicto, which are an adjustment and generalization of the
rules presented in Duží et al. (2010). (4) We present an analysis of ostensibly logi-
cally impossible empirical attitudes like seeking a yeti without seeking an abominable
snowman, which revolve around two different hyperintensions presenting one and the
same intension. (5) We present, finally, rules for quantifying into hyperintensional
attitudes de re that correct the rules presented in Duží et al. (2010, § 5.3).

Arguably, valid rules for quantifying-in are indispensable also from a semi-practical
point of view, for instance, in order to design the behaviour of software agents in a
multi-agent system. Such a system is composed of autonomous and intelligent, but
also resource-bounded agents. The agents act in order to achieve their individual as
well as collective goals. There is no central dispatcher to control the behaviour of
the system. Instead, the agents’ behaviour and reasoning is governed by messaging
among the agents. The autonomous agents communicate with each other by exchang-
ingmessages formulated in a quasi-natural language. In order to behave in a reasonable
and intelligent way, the agents must be equipped with an ontology and a knowledge
base defined over that ontology. While the latter typically contains factual empirical
knowledge, the former is a stable part of the systemconsisting of conceptual knowledge
including inference rules. These rules enable the agents to derive or compute inferable
knowledge from the basic pool of explicit knowledge. Here is a simple example, to
make matters more concrete. Imagine agent a receives the message that agents b and
c are calculating the distance from their position to the gas station closest to a’s posi-
tion. In such a situation a cannot infer that there is a gas station close to his position.
Instead, a can only infer that b and c share a property, namely the property of being
related to the hyperintensional activity of calculating a particular distance. In case a
also needs to fill up his car, it is reasonable to send a message to b and c asking to tell
him whether they did succeed in calculating the distance. The situation is different if
a receives the message that, for instance, b has calculated the distance. For now a can
draw the conclusion that b has identified a particular number as the distance measured
in kilometres between two points; hence a can also draw the conclusion that there is
one gas station nearer to his position than any other gas station. a can go on to, for

4 We follow Tichý in holding that it is an analytic truth that deities, including the God of medieval scholas-
ticism, exist contingently. See his (1979) for the argument that necessary existence would detract from the
greatness of a deity.
5 See Church (1993).
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instance, request the exact location of the station. This paper, however, is devoted to
the theoretical aspects of quantifying-in.

The rest of this paper is organized as follows. Section 2 provides philosophical
background to the logical problem of quantifying-in and motivates our choice of
background theory. Section 3 sets out the philosophical foundations of our back-
ground theory. Section 4 sets out its logical foundations, leading up to the general
rules of quantification into hyperintensional objectual attitudes. Section 5 presents the
various rules of quantifying-in and proves their validity, exemplifying them by way
of philosophical applications.

2 Background and overview

Quantifying-in would, naïvely, seem to pose no problem at all. The rule of existential
generalization simply serves to make explicit an ontological commitment incurred in
the premise. Thus nobody will bat an eyelid if somebody draws this inference:

ϕ1a1
∃x1(ϕ1x1)

(EG)

For instance, if the individual Tilman lives in Tilburg then there is at least one element
x in the domain of individuals who lives in Tilburg. If the premise is true then the
conclusion is the truth that the quantity of objects with a particular quality (in casu
living in Tilburg) amounts to at least one.

However, things are not that simple once attitudes or modalities are thrown into the
mix, as was mentioned in the Introduction. The main formal problem quantifying-in
poses has a syntactic and a semantic, a logical and an ontological aspect. The syntactic
aspect is whether the formalism in which quantifying-in is to be carried out sustains
variable-binding across modal/attitudinal operators. The semantic aspect is what sort
of semantics is required to validate such variable-binding. The logical aspect is which
inferences bearing on quantifying-in are valid. The ontological or metaphysical aspect
is what sorts of entities one’s theory is geared to quantify over. This ontological issue
is, of course, well-known independently of quantifying-in. Where variable f ranges
over properties of individuals, this inference remains controversial:

ϕ1a1
∃ f 1

(
f 1a1

) (EG′)

That is, if Tilman lives in Tilburg then there is at least one property f that Tilman
has. Those who oppose this instance of EG will agree that Tilman lives in Tilburg,
but disagree that he has the property of living in Tilburg, or they will agree that he
does have this property, but shy away from quantifying over intensional entities such
as properties. We have no such ontological qualms, so we do not think twice about
validating this second inference as well.

We investigate quantifying-in by investigating the logic of instances of two infer-
ential schemas that share the same premise but have two different conclusions.
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The first schema is this one:

a has an objectual attitude Att whose complement is X

∃x (a has Att toward x)
(1)

Schema (1) exemplifies quantification over X, the conclusion making explicit an onto-
logical commitment implicit in the premise. If X belonging to domain Dom occurs as
the complement of a’s attitude then there is an element x in Dom that occurs as the
complement of a’s attitude.

But we need to be careful with Dom in order not to draw illicit inferences. For
instance, if the premise is that a is seeking an abominable snowman then the conclusion
ought not be that there is an individual (an extensional entity) x such that a is seeking
x . For if there are no abominable snowmen, the inference will have crossed the line
from logic into magic, conjuring up an individual out of thin air. For a non-empirical
example, if the premise is that a is calculating the sum of seven and five the conclusion
ought not to be that there is a number (an extensional entity) y such that a is calculating
y. For it is nonsense to calculate a number, numbers themselves being computationally
inert. To calculate is to apply an arithmetic operation to a suitable supply of numbers
as operands with the purpose of obtaining a number as output value. There may be no
output value, of course: five divided by zero has no quotient. Still a may be calculating
the quotient of five and zero; a’s computational effort is futile, for sure, but no less of
an effort for it. Again we do not want the conclusion to conjure up a number (of any
category) out of thin air by existential quantification over a domain of numbers (of
any category).

Examples such as these suggest to us that the respective quantificational ranges of
x, y cannot in all cases be those of extensional entities such as individuals or numbers.
But what would a suitable quantificational range be? The validity of (1) requires a
reasoned answer. This answer will also spell out what ontological category a given
instance of X belongs to. Hence (1) turns out to be instrumental in putting out in the
open the ontology underneath assorted objectual attitudes.

The second schema is this one:

a has an objectual attitude Att whose complement is X (b)

∃z (a has Att toward X (z/b))
(2)

Schema (2) exemplifies quantification into X. The conclusion extracts a component z
from X and quantifies over it. Again the inference appears straightforward. If we can
quantify over X then surely it must be equally possible to quantify into any position
within X . For instance, if a is seeking an abominable snowman then there is a z such
that z is abominable and a is seeking z (i.e. a is seeking something abominable). Or
if a is calculating the sum of seven and five then there is a z′ such that z′ is a number
and a is calculating the sum of z′ and five. However, the same caveats we issued with
respect to (1) apply to (2).

The framework within which we discuss and solve the problem of quantifying-in
is Transparent Intensional Logic. Formally, TIL is a partial, typed, hyperintensional
λ-calculus. Its λ-terms are interpreted by way of a procedural, as opposed to denota-
tional, semantics. A procedural semantics construes linguistic meaning as a procedure
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for converting input objects into output objects; a denotational semantics construes
meaning as an output object. For instance, the procedural meaning of ‘5!’ is the very
procedure of applying the factorial function to 5, whereas the denotational meaning
of ‘5!’ is the number 120. Furthermore, TIL is a partial logic in the specific sense
that TIL embraces partially defined functions. Partiality is important in the case of
such functors as ‘÷’ (division) and ‘the Archbishop of Rome’ when their respective
denotation is applied to an argument that fails to return a value. Finally, TIL comes
with a ramified type hierarchy, as known from Russell, encompassing a simple type
theory, as known from Montague and Church. Pulling off quantifying-in is taxing for
the expressive power of any semantic theory, and what recommends TIL for the task of
validating quantifying-in is not least TIL’s impressive expressive power. The ramified
types enable us to always go one up, as it were, as required by quantification that
exceeds the sphere of first-order objects.

Another feature that makes TIL suitable as a background theory for quantifying-in
is its top-down approach to logic and semantics. TIL is a context-invariant seman-
tics that is generated by generalizing from the hardest case. The hardest case is a
hyperintensional context, which is sensitive to hyperintensional distinctions that do
not register in an intensional, let alone extensional context. TIL starts out by devising
a semantic theory for hyperintensional contexts and goes on to generalize the same
semantics to intensional and extensional contexts. Whichever sort of context a term
or expression is embedded within, its meaning will remain the same across contextual
embedding. Moreover, its denotational relation will also remain fixed. This is because
the denotational relation is a function exclusively of the entity the procedural meaning
is typed to produce, and not also of the embedding context. The only class of excep-
tions are indexical terms such as pronouns, whose meaning remains context-invariant,
though. The overarching meta-semantic requirement TIL is designed to satisfy is that
a logically manageable semantic theory must respect the laws of extensional logic,
the compositionality of meaning, the substitutivity of identicals, and referential trans-
parency (which outlaws reference shift).

The sweet fruit we reap from our top-down approach is that TIL is an extensional
logic of hyperintensions and of intensions. Therefore, EG must apply also in hyperin-
tensional and intensional contexts. In fact, from an instrumental point of view, testing
whether EG comes out valid provides a clear method for testing various theories of
non-extensional contexts.6 Does the theory validate quantifying-in in a transparent and
principled manner; or does the theory validate quantifying-in by means of all sorts
of adhockery, obscure opacity and contextualist epicycles; or does the theory fail to
validate quantifying-in altogether? The second path is likely to be followed by those
theories of hyperintensionality that work bottom-up, from extensional through inten-
sional to hyperintensional contexts. Thismethodology is liable to treat non-extensional
contexts as semantic and logical anomalies, rather than as what they are, contexts
located smack in the heart of colloquial discourse. As language-users we routinely
and confidently speak about what might be true, what ought to be true, what some-
body hopes to be or become true, what they are searching for, are afraid of, etc. The

6 Kaplan (1990, p. 14) and Bealer (1982, p. 13) mention quantifying-in as a challenge and a ‘classical
puzzle’ (Bealer) which ‘pure semantics’ and (hyper-) intensional logic must address adequately.
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third path marks either the deplorable failure of a theory to accommodate what its
designers set out to accommodate, or it marks the intended failure to do so, on the
ground that quantifying-in is considered illogical. Its adherents are not prepared to
square off an extensional rule such as EGwith non-extensional contexts. As adherents
of the first path, we see no problem in principle with applying EG to non-extensional
contexts. We do see a string of logical and semantic challenges that call for formally
worked-out, principled solutions. This paper is devoted to providing the solutions
required.

As it happens, this paper can be seen as a substantiation of a remark made by
Montague (2007, p. 517, n. 32). She hints at the fact that TIL is able to develop a
theory of non-propositional attitudes:

An intensional logic based on objects called ‘constructions’ developed by
Pavel Tichý (1988) can capture entailments involving propositional and non-
propositional objects. If it can be shown that constructions are also involved in
intentional attitudes, the theory of constructions would satisfy important moti-
vations for propositionalism without committing to propositionalism.

Propositionalism is the thesis that, in the final analysis, all attitudes, without excep-
tion, take propositions as complements.7 The present paper is part three of a trilogy
devoted to quantifying into hyperintensional contexts. The first two parts address
hyperpropositional contexts de re and de dicto, respectively, presenting and proving
logical rules for quantifying-in. The present paper does the same for objectual atti-
tudes. Our trilogy on quantifying-in builds upon a handful of previous TIL studies on
quantifying-in, namely: Tichý (1986), which quantifies into intensional contexts and
over intensions; Materna (1997), which quantifies into hyperintensional contexts and
over hyperintensions; and Duží et al. (2010, § 5.3), which quantifies into intensional
and hyperintensional contexts and over hyperintensions, intensions and extensions.
Furthermore, Tichý (1988, § 43) studies briefly hyperintensional (or constructional)
attitudes; Duží et al. (2010, Chap. 5) explores them in great length; (ibid., § 5.2) is
devoted to objectual attitudes, and (ibid., § 5.3) is devoted in part to quantifying into
objectual attitudes. The rules for quantifying-in have been revised over the years; the
present trilogy contains their latest statement.

3 Philosophical foundations

3.1 Which attitudes, if any, are objectual?

The analysanda of this paper pose two problems their propositional brethren do not.
First, we simply lack a good name for the non-propositional of the attitudes. Calling
them ‘non-propositional’ offers only a negative description. Calling them ‘objectual’
seems also quite inclusive, for propositions are reasonably characterized as objects as

7 Crawford (2014) employs a different notion of propositionalism. Crawford’s notion of propositionalism
is the thesis that the complement of an attitude phrased as a ‘that’ clause is a proposition and not anything
else, like a sentence or, as Crawford would prefer, a plurality of entities like properties and individuals in
the vein of Russell’s multiple-relation theory of judgement.
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well, as is pretty much everything else in a typed universe such as that of TIL. Nor will
a linguistic-syntactic criterion do. It might be tempting to characterize, or even define,
the analysanda as those attitudes that are denoted by intensional transitive verbs, like
‘to seek’. But doing so will ultimately hold a logical category hostage to a linguistic
quirk that is not intrinsic to the analysanda.8 So what, if any, is the unifying feature
of non-propositional attitudes? We have not come across one. Therefore, we settle
for ‘objectual’ for the time being in keeping with the practice introduced by Forbes
(2000).9

Second, if propositionalism is true there are ultimately no analysanda, for all non-
propositional attitudes will reduce to propositional ones. For instance, to seek the
fountain of youth will be to strive to make the proposition true that the seeker find the
fountain of youth. But there are cogent reasons for resisting propositionalism, at the
very least with respect to contemplative attitudes like admiring, considering and, well,
contemplating.10 We continue to take objectual attitudes at face value, as irreducible
attitudes in their own right, rather than attempting to provide synonymy-preserving
translation rules from non-propositional to propositional attitudes.11 Should a strong
philosophical argument emerge to the effect that some attitudes are irreducibly non-
propositional, we shall thus already have a detailed theory to account for them.

What we can do is describe by example the sort of attitudes whose behaviour when
quantified into we are interested in studying:

– a seeks an abominable snowman
– a finds an abominable snowman
– a admires kindness to strangers
– a wants to become a millionaire
– a wants a colourless green shirt
– a attempts to sing notes beyond reach

8 Likewise it would not do to characterize, let alone define propositional attitudes as all and only those
attitudeswhose complement is denoted by a ‘that’-clause. Just think of howLatin phrases propositional com-
plements, as in Cato’s famous “Praeterea censeo Carthaginem delendam esse”. Some languages allow both
a ‘that’-clause variant and a Latin-style accusative-with-infinitive variant, but Latin does not (*“Praeterea
censeo ut Carthago delenda sit” is neither here nor there). For instance, in Dutch we have the choice
between “Tilman vindt dit niet kunnen” and “Tilman vindt dat dit niet kan” (“Tilman doesn’t think that this
is appropriate”) and in Italian between “Tilman la trova contenta” and “Tilman trova che lei sia contenta”
(“Tilman thinks that she is happy”). There are no semantic or logical differences, but competent speakers
may well detect an extra-semantic difference. For instance, the subjunctive ‘sia’ signals a slightly more
guarded attribution, leaving more wiggle room to qualify or even retract the attribution.
9 InDuží et al. (2010)weuse ‘notional’ after inspiration by theCzech phrase ‘pojmové postoje’ (‘conceptual
attitudes’). ‘Notional’ is the English term we would have preferred, for the attitudes under scrutiny confront
an agent with a concept or notion of an object, rather than with the conceptualized object directly. But
‘notional’ does not fit the bill entirely, either: also propositions are notional (because conceptual) in character,
and Quine (1956) already reserves ‘notional’ for a particular sort of attitudes, to be contrasted with those
he calls ‘relational’ (see Sect. 1.3 below).
10 See Crawford (2008, p. 86, n. 20), Montague (2007), Neale (1990, p. 155, n. 6), and Church (1951).
11 In fact, there are cases, in English and other languages, where a logical analysis will translate a non-
propositional locution into a propositional one. For instance, “I believe you“ is short for “I believe what
you are claiming”. “You stand refuted” is another example of the agent putting forward a proposition being
identified, at least linguistically (‘you’), with the proposition itself. We are not concerned with such cases
in this paper.
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– a prevents an accident
– a attempts to prevent an accident
– a worships Baal
– a wants to become the Archbishop of Rome
– a wants to become the Archbishop of Rome, but not the Head of State of the Vatican
– a calculates the square root of (5! + 5)
– a calculates the probability of winning the Spanish state lottery
– a proves Fermat’s Last Theorem (FLT)
– a is puzzled by the proof of FLT

A propositional attitude, on our construal, takes invariably either a possible-world
proposition (an intensional entity) or a structured hyperproposition as its comple-
ment. Thus propositional attitudes can be defined exhaustively by means of the logical
type of their respective complements. Not so with objectual attitudes. The list above
sports various complements, including properties (i.e. sets-in-intension), events (typed
as possible-world propositions, i.e. truth-values-in-intension), individual offices (i.e.
individuals-in-intension), mathematical operations, logical operations, etc. There is
little to no reason to assume the above list of complements to be exhaustive. Excluded
from our present analysis are cases like “Hitler admires Stalin” in case Stalin is typed
as an individual, which in our typed universe is an atomic extensional entity. Relations-
in-intension between individuals are not interesting with respect to existential quan-
tification: from R(a, b) it readily follows that there is an x and there is a y such that
R(x, y). To make the analysis of “Hitler admires Stalin” logically interesting, ‘Stalin’
needs to be construed as a name of an individual office, such that Hitler’s admiration
is aimed at an intensional entity.12 Only then will Hitler’s relation to Stalin qualify as
an attitude.

What we do in Sect. 5 is to demonstrate, for various particular types of complement,
how quantifying-in works with respect to factive and non-factive attitudes. These
applications will be instances of the particular rules explained and justified in the first
part of Sect. 5.

3.2 De re versus de dicto

Following in the footsteps of Frege’s semantic contextualism, Church (1956, p. 8, n.
20) says:

[I]n “Schliemann sought the site of Troy” the names ‘Troy’ and ‘the site of Troy’
occur obliquely. For to seek the site of some other city, determined by a different
concept, is not the same as to seek the site of Troy, not even if the two cities
should happen as a matter of fact (perhaps unknown to the seeker) to have had
the same site.

12 This construal is quite reasonable on independent grounds, for ‘Stalin’ (or ‘Ctalih’) was Ioseb
Jugashvili’s nom de guerre denoting a particular political persona that was marked by particular prop-
erties likely to stir enthusiasm in a fellow dictator. It is this persona Hitler admired, rather than Jugashvili
without any qualification of any of his capacities.
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According to this sort of contextualist semantics, in a context like “The site of Troy
is located in Asia Minor” the definite description (or name, in Church’s permissive
Fregean sense of ‘name’) ‘the site of Troy’ denotes a particular spot in Asia Minor,
provided ‘the site of Troy’ has a unique descriptum, whereas in a context like Church’s
above ‘the site of Troy’ denotes a concept of the site of Troy. Church argues that it is a
concept of a location, not the location itself, that guides Schliemann’s and every other
seeker’s search for the site of Troy.13 While we agree with Church’s view on what the
object of Schliemann’s search is, we want no truck with his contextualism.

What might a context-invariant semantics for an empirical definite description like
‘the site of Troy’ look like? What TIL can offer is this. Let ‘the site of Troy’ be a
functor denoting a function from empirical indices to atmost one individual,modelling
physical locations as logical individuals (i.e. particulars individuated solo numero).14

More specifically, let ‘the site of Troy’ denote a function from possible worlds to a
partial function from times to individuals; we call such a possible-world intension an
individual office. The functor denotes an empirical condition, namely the condition of
being a world/time pair such that it has a unique location that is the site of Troy. The
definite description nowhere and never denotes the satisfier, if any, of this condition
at the world/time pair of evaluation, i.e. ‘the site of Troy’ nowhere and never names a
particular location. Nor is the function the meaning of the definite description. Rather
its meaning is a procedure whose product is the function. (This claim will be qualified
below: the meaning is the privileged member of an equivalence class of procedures, a
primus inter pares).

So what is the semantic status of the location, if any, that is the satisfier of the
condition at theworld/time pair of evaluation?None. It is semantically inconsequential
which particular object, if any, happens to satisfy the condition. What does matter is
whether there is a satisfier rather than none and whether the satisfier in question is also
at the receiving end of other empirical conditions also requiring uniqueness, such that
the F is also the G.

‘The site of Troy’ always has, by way of semantic fiat, a denotation, namely the
function that its meaning produces. ‘The site of Troy’ has sometimes also a refer-
ence, namely the value, whenever there is one, of the function the site of Troy at the
world/time pair of evaluation. The bearer of a property such as being located in Asia
Minor is a value of the function and not the function itself. Yet ‘the site of Troy’ is not
linked semantically to its reference. This is the point where TIL’s distinction between
de re and de dicto enters. We say that the meaning presenting a function occurs de re
when the function descends to its value, if any, at the argument(s) chosen, and occurs
de dicto when the function itself is the subject of predication. Hence in “The site of
Troy is located in Asia Minor” the meaning of ‘the site of Troy’ occurs de re, whereas
it occurs de dicto in “Schliemann seeks the site of Troy”. That is, ‘the site of Troy’
invariably denotes a function, and the logical form in which the meaning of ‘the site of
Troy’ occurs determines whether its meaning occurs de re or de dicto. This implemen-

13 Church (1951, n. 15) offers various examples of non-propositional attitudes, including the famous
example of Ponce de León searching the fountain of youth.
14 The type of the functional values can be refined from individuals to the more complex one of locations.
For details, see Duží et al. (2010, § 5.2.2).
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tation of the de re/de dicto distinction is what enables TIL to maintain that a definite
description is a functor denoting a function without being stuck with the surreal view
that a function may be located in Asia Minor.

3.3 Relational versus notional

Central to Quine (1956) is his distinction between notional and relational attitudes.15

If Quine wants a sloop then, if his attitude is notional, any sloop will do to relieve him
of slooplessness, and if his attitude is relational then only a particular sloop will satisfy
his wish. The latter is arguably ambiguous: Quine wants a particular object, which
happens to be a sloop; orQuine has hismind set on one particular sloop, to the exclusion
of all other sloops. Be that as it may, Quine phrases relational attitudes by means of
existential locutions: “There is an x such that x is a sloop and Quine wants x”. It is
this phrasing of relational attitudes that pushes quantifying-in to the fore. Relational
attitudes have eluded philosophical conceptualization and logical formalization to a
much higher degree than notional attitudes have. The two classical hermeneutic efforts
are Kaplan (1968, 1986), followed by Crawford (2008).

Crawford (2008, p. 84) makes a point of distinguishing relational attitudes from de
re attitudes, due to the strong conception of the latter he subscribes to:

The assumption is that triadic or de re belief implies that the believer knows
who, or which object, his belief is about in the sense that he can in some salient
sense identify or recognize it.

We do not share Crawford’s exclusive conception of de re attitudes.16 In fact, ours
is a highly inclusive conception of de re attitudes, because an attribution of a de re
attitude reflects the attributer’s perspective and not the attributee’s. This is not to say
that we identify notional with de dicto attitudes and relational with de re attitudes.
Rather we disregard Quine’s pair. The main reason is the murkiness of the notion
of relational attitude, including the attempt to conceptualize and distinguish it from
that of notional attitude in terms of quantifying-in. A relational attitude, if we have
Quine and his commentators right, is all about having a particular object with a certain
property in mind. Yet existential quantification abstracts from who or what has that
property, merely recording the fact that the property has an instance. So it seems that
relational attitudes are too strong, and quantification too weak, for them to match up.

15 Quine (1956, p. 177) points out, correctly, that “[a]ppreciation of the difference is evinced in Latin and
Romance languages by a distinction of mood in subordinate clauses; thus “Procuro un perro que habla”
has the relational sense […] as against the notional “Procuro un perro que hable…”. ” (Italics inserted.).
Italian would have “Cerco un cane che parla” and “Cerco un cane che parli”, resp. In the first case (using
indicative) I am looking for a particular dog, which by the way also speaks; in the second case (using
subjunctive) I am looking for a talking dog, and any talking dog, or canine talker, will do, although there
may be none. A rough English approximation might be ‘a dog, who talks’ and ‘a dog that talks’. However,
the problem as we see it is how to convert this grammatical distinction found in Romance languages into a
logical distinction.
16 See Duží et al. (2010, p. 435) for the exclusive and the inclusive conception of de re attitudes.
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Quine’s relational/notional pair is historically at the root of the problem of
quantifying-in, but not necessarily conceptually at its root. Quantifying-in rears its
head, as soon as an existential quantifier needs to reach across a modal or attitudinal
operator. It is not intrinsically the case that the attitudinal variant of quantifying-in
must be conceptualized philosophically in terms of relational attitudes. It may be
that exportation of terms in subject position is valid only for relational attitudes, but
since we allow exportation also of terms in predicate position, the very validity of
quantifying-in cannot serve, for us, as a criterion of the specifically relational. Put
crudely, we are not comfortable with the relational/notional pair and are not sure what
exactly to make of it. Whatever relational attitudes may eventually turn out to be, the
philosophical challenge quantifying-in poses is, strictly speaking, to make good sense
of the notion that the quantity of entities xi that are such that somebody entertains a
certain attitude toward xi amounts to at least one.

3.4 Three kinds of context: display versus execution

The dichotomy between de dicto and de re described in Sect. 3.2 is a special case of the
three tiers TIL operates with. At the highest level of abstraction, the formal ontology of
TILoperateswith a fundamental dichotomybetweenhyperintensions (procedures) and
their products, i.e. functions.17 This dichotomy corresponds to two basicways inwhich
a procedure (meaning) can occur, to wit, displayed or executed.18 If the procedure is
displayed then the procedure itself is an object of predication; we say that it occurs
hyperintensionally. If the procedure is executed, then it is a constituent of another
procedure, and an additional distinction can be found at this level. The constituent
presenting a function may occur either intensionally (de dicto) or extensionally (de
re). If intensionally, then thewhole function is an object of predication; if extensionally,
then a functional value is an object of predication. Both distinctions are instrumental
in selecting a procedure or else what the meaning produces, which is either a function
or a functional value, as the functional argument of a function.

For an example of the contrast between displayed and executed procedures, con-
sider the mathematical equation sin(x) = 0. If a is solving this equation then a
is related to the very meaning of “sin(x) = 0” rather than the set of multiples
of the number π. a wants to execute the procedure expressed by “sin(x) = 0” in
order to find out which set of real numbers matches the equation. Hence in “a is
solving the equation sin(x) = 0” the meaning of “sin(x) = 0” is displayed. On
the other hand, if we claim that the solution of the equation sin(x) = 0 is the
set {. . .,−2π,−π, 0,π, 2π, . . .} the meaning of “sin(x) = 0” is executed to pro-
duce the set which is claimed to be identical to {. . . ,−2π,−π, 0,π, 2π, . . .}. Yet
the constituent meaning of “sin(x) = 0” occurs intensionally in the meaning of
“The solution of the equation sin(x) = 0 is the set {. . . ,−2π,−π, 0,π, 2π, . . .}”.

17 Formally speaking, extensional entities like individuals, numbers and truth-values are extreme forms of
0-ary functions, whereas sets are identified with their characteristic functions.
18 The vocabulary of ‘displayed’ and ‘executed’ replaces the previous vocabulary of ‘mentioned’ and ‘used’
employed in Duží et al. (2010), Duží and Jespersen (2012) and elsewhere.
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The whole set (a characteristic function) is the object of predication. An exam-
ple of an extensional occurrence of the meaning of ‘sin’ would be provided by
the meaning of the simple sentence “sin(π) = 0”. Here the value of the func-
tion sine at the argument π is the object of which it is predicated that it is equal
to zero.

The same differentiation applies also to the meanings of terms stemming from
empirical language. For an example of the contrast between intensional and extensional
occurrence, consider predication. Predication, in TIL, is an instance of functional
application: a characteristic function is applied to a suitable argument in order to
obtain a truth-value, according as the argument is an element of the set. In the case
of predication of empirical properties, the relevant set is obtained by extensionalizing
a property. In the context “The site of Troy is located in Asia Minor” we want the
functional value of the office the site of Troy to occur either as an argument for the set
of entities located inAsiaMinor or as an argument for the binary relation (-in-intension)
located in whose second argument is Asia Minor. Hence the meaning of ‘the site of
Troy’ occurs extensionally here. On the other hand, when Schliemann sought the site
of Troy, he was not related to any value of the denoted function. Rather he was related
to the whole office aiming to determine its value, if any. As a result, themeaning of ‘the
site of Troy’ occurs intensionally in “Schliemann sought the site of Troy”. Similarly,
the term ‘the temperature in Prague’ occurs extensionally in “The temperature in
Prague is 13 ◦C”, while in “The temperature in Prague is rising” the same meaning of
this definite description occurs intensionally. To be rising is a property of the whole
function rather than of any value. Finally, in “a knows (hyperintensionally) that the
temperature in Prague is 13 ◦C” the same meaning occurs hyperintensionally. When
knowing something hyperintensionally, we are related to the very meaning of the
embedded clause rather than the produced function (a possible-world proposition in
this case).

The two distinctions, between displayed/executed and intensional/extensional,
allow us to distinguish between three sorts of context. This paper zooms in on hyperin-
tensional contexts. What uniquely characterizes a hyperintensional context is the fact
that in it a hyperintension occurs displayed rather than executed. The hyperintension
is not executed in order to obtain an object beyond it, namely the object it is typed to
present (either a lower-order hyperintension or a function). Instead the hyperintension
itself occurs as a functional argument.

Here is a summary of the three kinds of context:

– hyperintensional context: one ormore hyperintensions occur displayed (though one
or more hyperintensions at least one order higher need to be executed in order to
produce the displayed hyperintensions)

– intensional context: one or more hyperintensions are executed in order to produce
one or more functions (moreover, the executed hyperintensions do not occur within
another hyperintensional context)

– extensional context: one or more hyperintensions are executed in order to pro-
duce one or more particular values of one or more functions at one or more given
arguments (moreover, the executed hyperintensions do not occur within another
intensional or hyperintensional context).
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The basic idea underlying the above trifurcation is that the same set of logical rules
apply to all three kinds of context, but they operate on different complements: hyper-
intensions, functions, and functional values, respectively. Consider the rule of substi-
tution of identicals. For a puzzle from the standard repertoire, consider how Partee’s
puzzle is generated19:

the temperature is 90◦F;
the temperature is rising

90◦ F is rising

Where ‘the temperature’ is a functor denoting a function, the first premise predicates
a property of a value of the function whereas the second premise predicates a property
of the entire function. A necessary requirement of valid substitution in the position
denoted by ‘the temperature’ inside the intensional context denoted by “The temper-
ature is rising” requires swapping one intension (a function) for another; swapping
an intension for a mere extension (a functional value) will not do. The morale is that
the rule of substitution of identicals has been misapplied, because the substituend is
of the wrong kind. The morale is not that the rule ‘breaks down’ when applied to
non-extensional contexts.20

Nor will swapping a hyperintension for an intension preserve validity in this argu-
ment:

Tilman knows that the glass before him is half-full;
necessarily, whatever is half-full is half-empty, and
whatever is half-empty is half-full

Tilman knows that the glass before him is half-empty

The argument is valid if Tilman’s two epistemic attitudes take possible-world proposi-
tions as complements. It is not valid if, as we are assuming, Tilman’s complements are
hyperpropositions, for then only hyperpropositions are the proper kind of substituends.

Needless to say, nor will swapping a hyperintension for an extension preserve
validity:

Tilman computes 5!
5! = 120

Tilman computes 120

The complements of Tilman’s hyperpropositional knowledge and his computational
efforts are hyperintensional contexts, in which hyperintensions must be substituted for
hyperintensions.

19 See also Duží et al. (2010, pp. 124–125).
20 Of course, the rule ‘breaks down’ when applied to opaque/oblique contexts. But then, every rule pre-
sumably does, for there is no knowing what the logic is of such contexts, if indeed they have one. The
notion of opacity/obliqueness is misplaced in a logical semantics, because its task is to enable us to draw
inferences we know to be valid.
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The technical ability to shift between executing and displaying hyperintensions is
what helps TIL to a notion of hyperintensional attitudes in the first place. Displayed
hyperintensions figure as the complements of hyperintensional attitudes by being the
second argument of functions taking agents to the hyperintensions they take an atti-
tude towards. Displayed hyperintensions pose far greater technical challenges than
do executed hyperintensions, not least when quantifying into them. These technical
challenges take centre stage in the remainder of this paper.

4 Logical foundations

4.1 Constructions as hyperintensions

Above we referred to hyperintensions interchangeably as ‘hyperintensions’, ‘proce-
dures’ and ‘meanings’. These three labels capture three different aspects of one and
the same underlying notion. The notion in question is that of construction; cf. Chap.
1. Constructions are the key entities of TIL. They are hyperintensionally individuated
procedures, of one or multiple steps, and they serve both as linguistic meanings and as
the complements of hyperintensional attitudes. When we talk about hyperintensional
attitudes, we intend constructional attitudes. Just to be clear, constructions are not
functions, nor are they formulae or otherwise linguistic entities. They are kindred to
Platonic forms, Bolzano-style ideas-in-themselves (Vorstellungen an sich) and Frege-
style Sinn. Their inductive definition below enumerates six different constructions.

Three remarks straightaway. The first is that variables are constructions. Techni-
cally, variables behave as defined byTarski, in virtue of total functions assigning values
to variables according to a valuation function v. But x is not a piece of language; ‘x’
is: ‘x’ designates the construction x , which constructs its value in one step simply by
having it as its v-assigned value. The second remark is that the construction Compo-
sition, which is the procedure of applying a function to an argument, is impervious to
whether it is ever executed by an agent, and whether the procedure produces a product.
The same Platonic traits are featured by Closure, which is the procedure of forming a
function, except that a Closure always produces a product, to wit a function, however
degenerate the function may be. The third remark is that Trivialization has the effect,
when applied to an object, that the Trivialization displays that object. This is absolutely
critical in helping us to a theory of hyperintensional attitudes. Thus, if ‘X ’ denotes
some construction, the notation ‘0X ’ (read: ‘the Trivialization of the construction X ’)
means that we are to ‘look at’ X itself, whereas the notation ‘X ’ means that we are to
‘look at’ what X constructs (if anything).

Tichý, in (1988, Chap. 5), introduces the logical core of TIL in the shape of two
fundamental definitions. He first defines constructions and afterwards the ramified
hierarchy of types. He then goes on to explain how the products of particular construc-
tions are typed. In the interest of simplicity we first define simple types of order 1,
then constructions together with the types of their products, and finally the ramified
hierarchy of types.
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Definition 1 (types of order 1) Let B be abase, where a base is a collection of pair-wise
disjoint, non-empty sets. Then:

(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1, . . . , βm(m > 0) be types of order 1 over B. Then the collection

(α β1 . . . βm) of all m-ary partial mappings from β1 ×.. × βm into α is a func-
tional type of order 1 over B.

(iii) Nothing else is a type of order 1 over B. ��
Remark 1 For the purposes of natural-language analysis, we are currently assuming
the following base of elementary types, each of which is part of the ontological com-
mitments of TIL:

o: the set of truth-values {T, F};
ι: the set of individuals (constant universe of discourse);
τ: the set of real numbers (doubling as temporal continuum);
ω: the set of logically possible worlds (logical space).

Definition 2 (construction)

(i) (Variable) Let valuation v assign object o to variable x . Then x is a construction
that v-constructs o.

(ii) (Trivialization) Let X be any object whatsoever (i.e. an extension, an intension,
or a construction). Then 0X is theTrivialization of X , which constructs X without
any change of X .

(iii) (Composition) Let Xv-construct a function f of type (α β1 . . . βm), and let
Y1, . . . ,Ymv-construct entities B1, . . . , Bm of types β1, . . . , βm , respectively.
Then the Composition [XY1 . . . Ym] v-constructs the value (an entity, if any, of
type α) of f on the tuple argument 〈B1, . . . , Bm〉. Otherwise the Composition
[XY1 . . . Ym] does not v-construct anything and so is v-improper.

(iv) (Closure) Let x1, . . . , xm be pair-wise distinct variables and Y a construc-
tion. Then [λx1 . . . xmY ] is the construction λ-Closure (or Closure). It v-
constructs the following function f of type (α β1 . . . βm). Let variables
x1, . . . , xm v-construct entities of types β1, . . . , βm , and let Y v-construct an
α-entity. Let v(B1/x1, . . . , Bm/xm) be a valuation identical with v at least
up to assigning objects B1/ β1, . . . , Bm/ βm to variables x1, . . . , xm . If Y is
v(B1/x1, . . . , Bm/xm)-improper (see iii), then f is undefined on 〈B1, . . . , Bm〉.
Otherwise the value of f on 〈B1, . . . , Bm〉 is theα-entity v(B1/x1, . . . , Bm/xm)-
constructed by Y .

(v) (Single Execution) Let X v-construct object o. Then the Single Execution 1X
v-constructs o. Let X be either a non-construction or a v-improper construction.
Then 1X is v-improper.

(vi) (Double Execution) Let X v-construct a construction Y and let Y v-construct
object Z (possibly itself a construction). Then the Double Execution 2X v-
constructs Z . Let X be a non-construction or a construction not constructing
another construction, or a construction constructing a v-improper construction.
Then 2X is v-improper.

(vii) Nothing else is a construction.
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The overarching idea behind the notion of construction is that, given some input
objects, we can apply operations or procedures or constructions to obtain some output
objects (or none, in some instances of Composition, Single and Double Execution).
As alreadymentioned, a variable constructs an object by having that object as its value
dependent on a valuation function v arranging variables and objects in a sequence.
Trivialization is our objectual counterpart of a non-descriptive constant term, which
simply harpoons a particular object. In programming jargon, Trivialization calls an
object: no object can be operated on without first having been called, i.e. retrieved
from a pool of objects. Composition is the procedure of functional application, rather
than the functional value (if any) resulting from application.21 Closure is the procedure
of functional abstraction, rather than the resulting function. The Single Execution 1X
is the same construction as X , provided X is a construction at all: the default mode
in which constructions occur is Single Execution. Single Execution serves basically
to differentiate between v-proper constructions, which are the ‘successful’ construc-
tions, and everything else, which are either v-improper (‘failing’) constructions or
non-constructions, which cannot be executed at all. Double Execution encodes the
transitivity of construction.22

Variables and Trivializations, as well as those instances of Single Execution where
X is an atomic construction, are the one-step or primitive or atomic constructions of
TIL, and none of them can be improper. In particular, what does not exist cannot be
Trivialized. (Similarly, what does not exist cannot be named; but it can be described,
as per ‘the largest prime’ or ‘is a winged unicorn’ or ‘the planet between Mercury and
the Sun’.) Composition, Closure, and Double Execution, as well as those instances of
Single Executionwhere X is composite, are themultiple-step or composite procedures.
An atomic construction is a structured whole with but one constituent part, namely the
construction itself. Importantly, the constituent part of 0X is 0X and not X , which is
located beyond 0X : the product of a procedure is no part of the procedure. A composite
construction is a structured whole with more constituent parts than just itself.

α-intensions are functions of type (αω), i.e. mappings with domain in possi-
ble worlds ω and range in the arbitrary type α. The frequently occurring type of
α-intensions is ((ατ)ω), i.e. mappings from possible worlds to chronologies of objects
of type α, abbreviated as ‘ατω’, where a chronology is a mapping from times τ to α.

Examples of frequently occurring intensions are:

– propositions (i.e. empirical truth-conditions) of type oτω (e.g. that the sky is blue)
– properties of individuals of type (oι)τω (e.g. being blue)
– individual roles/offices of type ιτω (e.g. the first dog in space)
– attributes of type (ιι)τω (e.g. the king of)
– binary relations-in-intension between individuals of type (oιι)τω (e.g. kicking)
– propositional attitudes of type (oιoτω)τω (e.g. knowing that a certain proposition
is true)

21 Cf. Soames (2010, p. 114).
22 Triple (Quadruple, …) Execution is a theoretical possibility, though one we have so far never had any
use for. The informal explications of constructions above draw on material from Jespersen (2014).
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– hyperpropositional attitudes of type (oι∗n)τω (e.g. knowing* that a certain propo-
sitional construction constructs a proposition that is true).

The definition of the ramified hierarchy of types divides into three parts: firstly, simple
types of order 1, which were already defined by Definition 1; secondly, constructions
of order n; thirdly, types of order n + 1.

Definition 3 (ramified hierarchy of types)
T1 (types of order 1). See Definition 1.
Cn (constructions of order n)

(i) Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of
order n over B.

(iii) Let X, X1, . . . , Xm(m > 0)be constructions of ordern over B. Then [X X1. . .Xm]
is a construction of order n over B.

(iv) Let x1, . . . , xm, X (m > 0)be constructions of ordern over B. Then [λx1 . . . xm X ]
is a construction of order n over B.

(v) Nothing is a construction of order n over B unless it so follows from Cn (i)–(iv).

Tn+1 (types of order n + 1)
Let ∗n be the collection of all constructions of order n over B. Then

(i) ∗n and every type of order n are types of order n +1.
(ii) If m > 0 and α, β1, . . . , βm are types of order n + 1 over B, then (α β1 . . . βm)

(see T1 (ii)) is a type of order n + 1 over B.
(iii) Nothing else is a type of order n + 1 over B.

Example 1 The number 1 and the function + are objects belonging to types τ and
(τττ), respectively, which are types of order 1. The Trivializations 01, 0+ are thus
constructions of order 1 belonging to type ∗1, the type of order 2. If a variable
x v-constructs numbers then x is a construction of order 1 belonging to ∗1, the
type of order 2. The Composition [0+ x 01] v-constructs the successor of the number
v-constructed by x . The Closure λx [0+ x 01] constructs the successor function of type
(ττ), a type of order 1. Hence this Composition and this Closure are also constructions
of order 1 belonging to ∗1, the type of order 2. The Trivializations of these construc-
tions, i.e. 0x , 0[0+ x 01], 0[λx [0+ x 01]], are constructions of order 2 belonging to ∗2,
the type of order 3. TheTrivialization 0[0[λx [0+ x 01]]], or ‘00[λx [0+ x 01]]’ for short,
is a construction of order 3, i.e. a member of ∗3, the type of order 4. This Trivialization
constructs a member of the type of order 3, namely the Trivialization 0[λx [0+ x 01]].
The Double Execution 2[0[λx [0+ x 01]]], or ‘20[λx [0+ x 01]]’ for short, is also a con-
struction of order 3, i.e. a member of ∗3, which is the type of order 4. It constructs
what is constructed by what is constructed by the Trivialization 0[λx [0+ x 01]], which
is the successor function, a member of the type of order 1. In general, 20C v-constructs
the same object as C v-constructs, if any; only that if C is a construction of order n
then 0C is a construction of order n + 1 and 20C is a construction of order n + 2.
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Definition 4 (quantifiers) The quantifiers ∀α, ∃α are total, type-theoretically poly-
morphous functions of type (o(oα)), for an arbitrary type α, defined as follows. The
universal quantifier ∀α is the function that associates a class S of α elements with T
if S contains all the elements of type α, otherwise with F. The existential quantifier
∃α is the function that associates a class S of α elements with T if S is a non-empty
class, otherwise with F. ��
Remark 2 Since the topic of this paper is existential quantification, we will examine
below various arguments whose conclusion is an existentially quantified construc-
tion. One should keep in mind, though, that quantifiers are not ‘special symbols’
as in first-order predicate logic. Rather they are classes of classes of α-objects. Thus
existential quantification translates into the procedure of applying the existential quan-
tifier ∃α to a class of α-objects. For instance, if Transcendental, of type (oτ), is the
class of transcendental numbers, then to claim that there are transcendental numbers
amounts to claiming that Transcendental is a non-empty class: [0∃τ 0Transcendental].
Moreover, since we work with properly partial functions, before applying an exis-
tential quantifier we must first prove that the argument class is non-empty. For
instance, if : is the division function of type (τττ), this would be an invalid derivation:
[0= [0: 05 00] 00] � [0∃τ λx [0= [0: 05 00] x], because the class constructed by the
Closure λx [0= [0: 05 00] x] is not non-empty. It is a degenerate class whose charac-
teristic function is undefined at all its arguments, because the Composition [0: 05 00]
is v-improper, and so is the Composition [0= [0: 05 00] x] for every valuation v.

Notational conventions Some logical objects, like truth-functions and quantifiers (cf.
Definition 4), are extensional entities: ∧ (conjunction), ∨ (disjunction) and ⊃ (impli-
cation) are of type (ooo), and ¬ (negation) of type (oo). When using constructions of
truth-functions, we will omit Trivialization and use infix notation to conform to stan-
dard notation in the interest of better readability. Also when using constructions of
identities of α-entities, =α /(oαα), we omit Trivialization, the type subscript, and use
infix notation when no confusion can arise. Instead of ‘[0∃α λx . . .]’, ‘[0∀α λx . . .]’
we will write ‘∃x . . .’, ‘∀x . . .’ when no confusion arises. Below all type indications
will be provided outside the formulae in order not to clutter the notation. Furthermore,
‘X/α’means that an object X is (amember) of typeα; ‘X →v α’means that the type of
the object valuation-constructed by X is α. We write ‘X → α’ if what is v-constructed
does not depend on a valuation v. This holds throughout: the variables w →v ω and
t →v τ. If C →v ατω then the frequently used Composition [[Cw]t], which is the
intensional descent (a.k.a. extensionalization) of the α-intension v-constructed by C ,
will be encoded as ‘Cwt ’.

Example 2 Let Cot, Sin/(ττ) be the trigonometric functions Cotangent, Sine, respec-
tively, π/τ, Improper/(o∗1) the class of constructions of order 1 that are v-improper
for every valuation v. Then

0Cot/∗1 → (ττ); 0π/∗1 → τ; [0Cot 0π]/∗1 → τ; 0Improper/∗2 → (o∗1);
0[0Cot 0π]/∗2 → ∗1; [0 Improper 0[0Cot 0π]]/∗2 → o;
[0=(ττ) [0Sin 0π] 00]/∗1 → o, or ‘[[0Sin 0π] = 00]’ for short;
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[0∧ [0 Improper 0[0Cot 0π]] [0=(ττ) [0Sin 0π] 00]]/∗2 → o, or

‘[[0 Improper 0[0Cot 0π]] ∧ [[0Sin 0π] = 00]]’, for short

Example 3 Let Happy/(oι)τω be a property of individuals, T ilman/ ι an individual.
Then [[0Happy w]t]/∗1 → (oι), or ‘0Happywt ’ for short, v-constructs the popula-
tion of the property of being happy in a givenw and t ; [0Happywt

0T ilman]/∗1 → o
v-constructsT orF according as Tilman is happy in a given worldw and time t of eval-
uation, and λwλt [0Happywt

0T ilman]/∗1 → oτω constructs the proposition that
Tilman is happy. If Know/(oι∗n)τω is a hyperpropositional attitude, then the Closure
λwλt [0Knowwt

0Tom 0[λwλt [0Happywt
0T ilman]]]/∗2 → oτω constructs the

proposition that Tom (hyperintensionally, i.e. explicitly) knows that Tilman is happy.

4.2 Displayed versus executed constructions

In Sect. 3.4 we sketched the difference between the twomodes in which a construction
can occur, to wit, displayed and executed. The Trivialization 0C of a construction C
displays the constructionCand all the subconstructions ofC . HenceC is not executed,
and so does not obtain an object beyond C . Instead C occurs itself as a functional
argument. Thus we have this contrast:

– (executed Composition) [0Cot 0π]: its constituent parts are the Composition itself,
0Cot, 0π. Since the cotangent function is not defined at π, the Composition is
v-improper for any valuation v

– (displayed Composition) 0[0Cot 0π]: this time the only constituent part of this
construction is the Trivialization itself, 0[0Cot 0π]. The Composition [0Cot 0π]
is not a constituent part. Instead it is displayed, in virtue of being constructed by
its Trivialization. In [0 Improper 0[0Cot 0π]] the Composition [0Cot 0π] is also
displayed rather than executed, and the Composition [0 Improper 0[0Cot 0π]]
constructs T, for it is true that the construction [0Cot 0π] is v-improper for every
valuation v. “[0 Improper [0Cot 0π]]” would mean that what [0Cot 0π] constructs
is improper, which is literally nonsensical.

To further demonstrate the difference between displayed and executed construc-
tions, consider this hyperintensional objectual attitude:

a calculates the cotangent of π

Types: a →v ι: a construction of an individual;Cot/(ττ): the trigonometric cotangent
function; Calculate/(oι∗n)τω: a relation-in-intension of an individual to a construc-
tion.

If an agent is related to what [0Cot 0π] constructs then the agent will be related to
nothing. But though the agent’s computational efforts are bound to be futile, the agent
is still engaged in a computational activity in which the agent is related intentionally to
something rather than nothing. By relating a mathematician to a construction, of type
∗n , we are not relating the mathematician to a piece of mathematical syntax. For sure,
apart from simple so-called mental maths, computational acts are aided by syntactic
manipulation; but to calculate is not tantamount to manipulating syntax. As Brown
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(1999, pp. 92–93) rightly says, ‘2’ and ‘two’ have the same sense; similarly ‘2 + 5’
and ‘two plus five’ share the same sense. In TIL we say that the last two terms encode
one and the same Composition: [0+ 02 05]. It is also irrelevant which name for an
object is used when the object is Trivialized. Thus, for instance, 02 and 0Two are one
and the same construction, and so are [0+ 02 05] and [0Plus 0Two 0Five]. Hence
from our point of view, calculating 2 + 5 and calculating two plus five are one and
the same attitude.23 To calculate is, rather, tantamount to manipulating abstract, extra-
mental, extra-notational procedures. Different (sorts of) agents may well manipulate
those procedures in somewhat different ways. Humans, computers, and extraterres-
trials (should they exist) encode the procedures in different ways, and already the
history of human mathematics has seen many notational systems and different ways
of encoding mathematical computations, but the mathematical procedures transcend
these differences.24

The analysis of the attitude mentioned above is this construction:

λwλt [0Calculatewt a
0[0Cot 0π]] (1)

In (1) the Composition [0Cot 0π] is displayed (by means of Trivialization) as the
second argument of the extensionalized relation-in-intension Calculate; and so are
all the sub-constructions within this Composition. They are not constituents of the
Closure (1). The Closure (1) decomposes into these constituent parts:

– λwλt [0Calculatewt a 0[0Cot 0π]]
– λt [0Calculatewt a 0[0Cot 0π]]
– [0Calculatewt a 0[0Cot 0π]]
– [[0Calculate w] t]
– [0Calculate w]
– 0Calculate
– w

– t
– a
– 0[0Cot 0π]

But not also:

– [0Cot 0π]
– 0Cot
– 0π

At any 〈w, t〉, whoever evaluates whether the truth-condition constructed by (1) is
satisfied at 〈w, t〉 is not ipso facto calculating the Composition [0Cot 0π]. They are
only checking whether a is in the process of executing this Composition, assigning

23 For sure, the empirical execution of a procedure can be more effective or easier using one notational
system rather than another. Brown (ibid.) calls this aspect the computational role of a particular notation.
We agree on this point. Yet this is a pragmatic aspect; the semantic role of particular notations remains the
same.
24 See Duží (2014a).
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the truth-value T or F, according as a is engaged in this futile activity. Hence (1) con-
structs a proposition that returns T or F at 〈w, t〉, regardless of the fact that [0Cot 0π]
constructs nothing.

Recall the three kinds of context in which a construction can occur, namely hyper-
intensional, intensional and extensional. (1) is an example of a construction in which
the Composition [0Cot 0π] occurs hyperintensionally. Hence its parts 0Cot and 0π

also occur hyperintensionally, i.e. in displayed mode.
On the other hand, in the Composition

[[0Cot 0π] = 00] (2)

the Composition [0Cot 0π] occurs executed. (2) decomposes into these constituents:

– [[0Cot 0π] = 00]
– [0Cot 0π]
– 0Cot
– 0π

– 00
– 0=
[0Cot 0π] being improper, the whole Composition (2) is improper as well: the function
=, typed to take a pair of numbers to a truth-value, does not obtain the required left-hand
argument to operate on.

If a construction C occurs executed as a constituent of a construction D, then C
can occur in D either intensionally or extensionally.25 Since in (2) the Composition
[0Cot 0π] occurs executed, its part 0Cot occurs executed aswell, namely extensionally.
The first argument of the function = is typed to be the value of the cotangent function
at the argument π. And since there is no such value, (2) comes out improper.

To adduce an example of an intensional occurrence of an executed construction,
consider “The cotangent function is trigonometric”. Where Trigonometric/(o(ττ))
is the class of trigonometric functions, the sentence receives the analysis

[0Trigonometric 0Cot] (3)

The construction 0Cot is a constituent that occurs intensionally. The entire cotangent
function, rather than any particular value, is the argument of the function Trigonomet-
ric.

A context in which constructions occur only executed, whether the context be
intensional or extensional, is easy to logically operate on. For one thing, existential
generalization into such contexts goes smoothly, as expected. For instance, if it is true
that the cotangent is a trigonometric function then there is a trigonometric function
( f →v (ττ)):

[0Trigonometric 0Cot]
∃ f [0Trigonometric f ]

25 Here we use the terms ‘intensionally’ and ‘extensionally’ in the sense of occurring in an intensional
or extensional context, respectively, rather than in the sense of possible-world semantics. See Duží et al.
(2010, § 2.6).
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If it is true that the sine of π equals zero then there is a function whose value at π is
zero, and there is a number at which the value of sine equals zero:

[[0Sin 0π] = 00]
∃ f [[ f 0π] = 00]

[[0Sin 0π] = 00]
∃x[[0Sin x] = 00]

To revisit an empirical example from Sect. 3.4, from the premise that the temper-
ature in Barcelona is rising we can deduce that there is an intension m (in casu a
magnitude of type ττω) such thatm is rising. But we cannot deduce that there is a par-
ticular value that is rising, for the construction of the magnitude occurs intensionally.
Let the type assignments be as follows: Rising/(o ττω)τω: a property of a magnitude;
T emperature_in/(τι)τω; Barcelona/ι; λwλt [0T emperature_inwt

0Barcelona]
→ ττω: magnitude; m →v ττω. Then we have the valid argument

λwλt [ 0Risingwt λwλt [ 0T emperature_inwt
0Barcelona]]

λwλt ∃m[ 0Risingwt m]
while this argument is invalid:

λwλt [0Risingwt λwλt [0T emperature_inwt
0Barcelona]]

λwλt [0= λwλt [0T emperature_inwt
0Barcelona]wt

090]
λwλt [0Risingwt

090]
In the first premise the Closure λwλt [0T emperature_inwt

0Barcelona] occurs
intensionally while in the second, extensionally. Hence only an equivalent construc-
tion of the same function can be substituted for this Closure; a merely v-congruent
construction will not suffice.

4.3 Substitution method

Applying logical operations to hyperintensional contexts is far from being an open-
and-shut matter. The technical complications we are confronted with are rooted in
displayed constructions. For instance, a variable occurring in a hyperintensional con-
text is displayed, i.e. Trivialization-bound, which means being bound in a manner that
overrides λ-binding. In particular, since a displayed construction cannot at the same
time be executed, valuation does not play any role in such a context. Yet an argument
of the form

a calculates the cotangent of π

a calculates the cotangent of something

is obviously valid. But careless existential generalization into a hyperintensional con-
text similar to generalization into an intensional or extensional context is not valid:

λwλt [0Calculatewt a 0[0Cot 0π]]
λwλt [0∃λx [0Calculatewt a 0[0Cot x]]]
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The reason is this. The Trivialization 0[0Cot x] constructs the Composition [0Cot x]
independently of any valuation v. Thus from the fact that at 〈w, t〉 it is true that a calcu-
lates [0Cot 0π], we can not validly infer that a calculates [0Cot x], because a calculates
the cotangent ofπ rather than of x . Put differently, the class of numbers constructed by
λx[0Calculatewt a 0[0Cot x]] will be non-empty, according as a calculates [0Cot x]
and regardless of a’s calculating [0Cot 0π]. The problem just described of λx being
unable to catch the occurrence of x inside the Trivialized construction is TIL’s way
of phrasing the standard objection to quantifying-in. Yet in TIL we have a way out
(or perhaps rather, a way in). In order to validly infer the conclusion, we need to pre-
process the Composition [0Cot x] and substitute the Trivialization of π for x . Only
then can the conclusion be inferred. To this end we deploy the polymorphic func-
tions Subn/(∗n∗n∗n∗n) and Trα/(∗n α) that operate on constructions in the manner
stipulated by the following dual definition.

Definition 5 (Subn, Trα) Let C1,C2,C3/∗n+1 → ∗n v-construct constructions D1,
D2, D3, respectively. Then the Composition [0Subn C1C2C3] v-constructs the con-
struction D that results from D3 by collisionless substitution of D1 for all occurrences
of D2 in D3. The function Trα/(∗nα) returns as its value the Trivialization of its
α-argument. ��
Example 4 Let variable y →v τ. Then [0Trτ y] v(π /y)-constructs 0π. The Compo-
sition [0Sub1 [0Trτ y] 0x 0[0Cot x]] v(π /y)-constructs the Composition [0Cot 0π].

Remark 3 Note that there is a substantial difference between the construction Trivi-
alization and the function Trα. Whereas 0y constructs just the variable y regardless
of valuation, y being 0-bound in 0y, [0Trτ y] v-constructs the Trivialization of the
object v-constructed by y. Hence y occurs free in [0Trτ y].

Below we will omit the superscripts n and α and write simply ‘Sub’ and ‘Tr’
whenever no confusion can arise.

It should be clear now how to validly derive that a calculates the cotangent of
something if a calculates the cotangent of π. The valid argument, in full TIL notation,
is this:

λwλt [0Calculatewt a 0[0Cot 0π]]
λwλt [0∃λy [0Calculatewt a [0Sub [0Tr y] 0x 0[0Cot x]]]]

Proof. Let Empty/(oτ) be an empty set of real numbers. Then for any world-time
pair 〈w, t〉 the following steps are truth-preserving:

(1) [0Calculatewt a 0[0Cot 0π]] ∅

(2) [0=v(π/y) [0Sub [0Tr y[ 0x 0[0Cot x]] 0[0Cot 0π]] 1, Definition 5
(3) [0Calculatewt a [0Sub [0Tr y] 0x 0[0Cot x]] 1, 2, Leibniz
(4) [λy [0Calculatewt a [0Sub [0Tr y] 0x 0[0Cot x]]] 0π] 3, λ-abstraction
(5) ¬[0Empty λy [0Calculatewt a [0Sub [0Tr y] 0x 0[0Cot x]]]] 4, Definition 2 (iii)
(6) [0∃λy [0Calculatewt a [0Sub [0Tr y] 0x 0[0Cot x]]]] 5, EG
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4.4 Hyperintensional individuation in terms of procedural isomorphism

Another issue we need to deal with is this. We must specify the rules for valid substi-
tution, because our logic is an extensional logic of hyperintensions where the exten-
sional rules of existential generalization and Leibniz’s substitution of identicals are
valid in all contexts, whether extensional, intensional or hyperintensional. Again, in
an extensional or intensional context there is no problem.We can substitute equivalent
constructions according to these rules of substitution:26

Rules of substitution into extensional and intensional contexts Let C , D be con-
structions that v-construct the same object for a given valuation v. Then C, D are
v-congruent and can be validly substituted in extensional contexts. Let C, D be con-
structions that v-construct the same object for every valuation v. Then C, D are logi-
cally equivalent and can be validly substituted in intensional contexts.

Logically equivalent constructions are v-congruent, while the converse obviously
does not hold. Yet the substitution of merely logically equivalent hyperintensions
is not valid in hyperintensional contexts, as already Carnap (1947, §§13ff) in effect
pointed out. From the linguistic point of view, in a hyperintensional context only
synonymous expressions can be substituted. The reason, phrased in TIL terminology,
is that the very meaning is displayed. Our thesis is that synonymous expressions have
structurally isomorphic meanings.27 And since meaning is a procedure, we need to
define the relation of procedural isomorphism between constructions, constructions
being a bit too fine-grained from the procedural point of view. The main issue is this.
Constructions that differ at most by using different λ-bound variables of the same type
differ so slightly that we wish to say that such constructions are one and the same
procedure. For instance, the Closures λx [0+ x 01], λy [0+ y 01], λz [0+ z 01], and
so on, are by Definition 2 different constructions of the successor function. Yet from
the procedural point of view they are isomorphic. They consist of the same steps:

– take the function plus
– take any number that is the value of x (or y, or z, or …)
– take the number 1
– apply the function plus to the chosen number x (or y, or z, or …) and 1
– abstract over the chosen number x (or y, or z, or …)

Thus if a calculates [λx [0+ x 01] 05] and b calculates [λy [0+ y 01] 05], we would
like to infer that a and b are related to one and the same procedure, although two
different constructions figure as complements. In both cases a and b are calculating
the successor of 5. But mathematical language introduces a distinction that is absent
from natural language. Thus we want something like the following sort of argument
to come out valid:

a calculates [λx [0+ x 01] 05]
b calculates [λy [0+ y 01] 05]

There is a procedure c such that a and b calculate c

26 For details and proofs, see Duží et al. (2010, § 2.6, § 2.7).
27 See also Duží (2014b).
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The conclusion must actually be stated more precisely, because when quantifying over
procedures we are quantifying over constructions:

a calculates [λx [0+ x 01] 05]
b calculates [λy [0+ y 01] 05]

There are constructions c, c′ such that a calculates
c and b calculates c′, and c, c′ are procedurally isomorphic

The notion of procedural isomorphism is a nod to Carnap’s intensional isomor-
phism and Church’s synonymous isomorphism. Any two terms or expressions whose
respective meanings are procedurally isomorphic are deemed semantically indistin-
guishable, hence synonymous. Thus procedurally isomorphic constructions can be
mutually substituted in any context, including hyperintensional ones. Nothing in this
particular paper hinges critically on this or that particular calibration of procedural
isomorphism. But it is critical to have available to us such an exact calibration. With-
out it our definition of hyperintensional context would lack one of its cornerstones,
namely an exact criterion of valid substitution inside such contexts. Without it, we
would fall short of providing a full theory of the sort of context we are explaining how
to quantify into.

Church proposed several alternatives in order to specify a criterion of synonymy.
Theweakest, ormost permissive, one is Alternative (A2), which is logical equivalence.
(A1) includes α- and β-conversion, while the strongest, or most restrictive, one, (A0),
includes α-conversion and meaning postulates for atomic constants such as ‘bachelor’
and ‘fortnight’. Church’s (A0) and (A1) leave room for additional Alternatives. One
such would be (A½), another (A¾). The former includes α- and η-conversion while
the latter adds to these two restricted β-conversion by name. In Duží et al. (2010)
we advocate (A½) whereas in Duží and Jespersen (2012) we prefer (A¾) to soak up
those differences between β-transformations that concern only λ-bound variables and
thus (at least appear to) lack natural-language counterparts. The restricted version of
equivalent β-reduction by name consists in substituting free variables for λ-bound
variables of the same type. For instance, the Composition [λx [0+x 01] y] can be
simplified to theComposition [0+ y 01]. Thus this transformation is just amanipulation
with λ-bound variables that has much in common with η- and less with β-reduction.
The latter is the operation of applying a function f to its argument a in order to obtain
the value of f at a (leaving it open whether a value emerges). No such features can
be found in restricted β-reduction. It is just a formal simplification of the original
construction.

Recently, however, we have grown discontent both with (A½) and (A¾). Hence we
wish to suggest a new definition of procedural isomorphism, (A1′′), which is one of
the novel contributions of this paper. This variant is very close to Church’s (A1). (A1′′)
includes α- and β-conversion by value. Thus we exclude η-conversion, and introduce
a new version of β-conversion.28

28 We are grateful to Jakub Macek for the proposal to include β-conversion by value.
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There are two reasons for not including η-conversion. The first reason is that it is
actually rather peculiar to claim that two procedures are isomorphic if they do not
have the same number of constituents. Yet the η-expanded construction of the form
λx [Fx] has two more constituents than the equivalent η-reduced construction F ,
because the former adds the steps of applying the function v-constructed by F to
the variable x followed by abstraction over the values of x . The second and more
important reason is the fact that η-conversion does not preserve logical equivalence in
a logic of partial functions such as TIL. To see this, consider the following example.
Let F v-construct a function of type ((α β)γ) that is not defined at the argument
v-constructed by A →v γ. Then the Composition [F A] →v (αβ) is v-improper.
However, the η-expanded construction λx [[F A] x] →v (αβ), x → β, v-constructs
a degenerate function, which is a function undefined at all its arguments. To be sure,
due to the v-improperness of [F A] the Composition [[F A] x] is also v-improper. But
λ-abstraction raises the context to an intensional one, hence the Closure λx [[F A] x]
v-constructs a degenerate function, which is an object, if a bizarre one. Hence the
constructions [F A] and λx [[F A] x] are not logically equivalent.29

In practice the exclusion of η-conversion from the definition of procedural iso-
morphism is going to be harmless. When analyzing expressions in TIL we apply
our method of literal analysis, which consists of three steps: (i) assigning types to
the objects mentioned by the sub-terms of the analyzed expression E ; (ii) combin-
ing the Trivializations of the objects mentioned by the semantically simple sub-terms
of E in order to obtain the construction of the object (if any) denoted by E ; (iii)
checking whether the resulting construction is type-theoretically coherent. Due to
step (ii) the application of this method yields a construction (namely the meaning
of E) that does not contain η-expanded subconstructions. For instance, the literal
analysis of “Tilman is happy” is the Closure λwλt [0Happywt

0T ilman] rather
than λwλt [λwλt [λx [0Happywt x]]wt

0T ilman], because the literal analysis
of the predicate ‘is happy’ is the Trivialization 0Happy rather than the Closure
λwλt [λx [0Happywt x]]. The types are Happy/(o ι)τω; T ilman/ ι; x → ι.

The reasons for excluding unrestricted β-conversion are these. Though it is the
fundamental computational rule of the λ-calculi, it is underspecified by this rule:
[λx C(x) A] � C(A/x). The procedure of applying the function v-constructed by
λx C(x) to the argument v-constructed by A can be executed in two different ways:
by value or by name. If by name then procedure A is substituted for all the occur-
rences of x into C . In this case there are two problems. First, conversion of this kind
is not guaranteed to be a logically equivalent transformation as soon as partial func-
tions are involved. This is due to the fact that A occurs in the extensional context
of the left-hand side construction, whereas when dragged into C its occurrence may
become intensional. Second, even in those cases where β-reduction is an equivalent
transformation, it may yield loss of analytic information of which function has been
applied to which argument.30 The idea of conversion by value is simple. Execute the
procedure A first, and only if A does not fail to produce an argument value on which

29 We are grateful to Jiří Raclavský for calling our attention to this problem. See also Raclavský (2010).
30 For details, see Duží (2010), Duží and Jespersen (2013, Sect. 5.4).
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C is to operate, substitute this value for x . The solution preserves logical equivalence,
avoids the problem of loss of analytic information, and moreover, in practice it is more
efficient. The efficiency is guaranteed by the fact that procedure A is executed only
once, whereas if this procedure is substituted for all the occurrences of the λ-bound
variable it can subsequently be executed more than once.

To elucidate the problem, imagine one has a procedure (embodied as a program)
C(x) with a ‘hole’ x (i.e. an unsaturated procedure with a formal parameter x), and a
subprogram A that specifies the material (argument value) to be filled into the hole x .
There are two ways of going about filling x :

(1) (by name) inserting into the hole x the whole subprogram A and then computing
C(A/x)

(2) (by value) computing A first in order to obtain the argument value a, and then
inserting a into the hole x and computing C(a/x)

Case 1 In this case there may be an undesirable side effect. Imagine that the subpro-
gram A is somehow garbled and as a result the whole procedureC gets garbled as well
after the insertion, damage being propagated upwards. Moreover, instead of the hole
x one gets A, and Amay conflict withC . This is a case of invalid β-reduction that fails
to preserve equivalence. Furthermore, even if A does not damage C when computing
C(A), after the execution of C(A) one will have lost track of A. The two procedures
have been merged together. Suppose one wants to compute another procedure E(x)
and to supply the same material for x . Even if the execution of C(A) turns out to be
successful, A may have been changed by the execution. There is no guarantee that
the same material will be supplied for x into E(x). This is a case of valid β-reduction
preserving equivalence but yielding loss of analytic information.

Case 2 Keep C(x), E(x), and A separate. Procedure A is evaluated only if needed,
and if so, only once. Everything is as it should be: no loss of analytic information
arises and equivalence is preserved.

Remark 4 In programming languages the difference between Cases 1 and 2 revolves
around the programmer’s choice of evaluation strategy. Historically, call-by-value
and call-by-name date back to Algol 60, a language designed in the late 1950s. The
difference between call-by-name and call-by-value is often called passing by reference
versus passing by value, respectively. Only purely functional languages such as Clean
and Haskell use call-by-name. For instance, Java manipulates objects by reference.
However, Java does not pass arguments by reference, but by value. Call-by-value is
not a single evaluation strategy, but rather a cluster of evaluation strategies in which
a function’s argument is evaluated before being passed to the function. In call-by-
reference evaluation (also referred to as call-by name or pass-by-reference), a calling
procedure receives an implicit reference to the argument sub-procedure. This typically
means that the calling procedure can modify the argument sub-procedure. A call-by-
reference language makes it more difficult for a programmer to track the effects of
a procedure call, and may introduce subtle bugs. The notion of reduction strategy in
the λ-calculi is similar to the evaluation strategy in programming languages, though
slightly distinct. Our proposal amounts to a specification of an evaluation strategy by-
value as adapted to TIL. Similar work has been done since the early 1970s, but merely
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for simple-typed or untyped λ-calculi. For instance, Plotkin (1975) proved that the
two strategies are not operationally equivalent. Moreover, the call-by-name strategy
cannot be used for a hyperintensional context like calculating, or in hyperintensional
λ-calculi such as TIL due to operational non-equivalence. Our substitution method
based around the functions Sub and Tr is similar to Chang and Felleisen (2012)’s call-
by-need reduction by value. But their work is couched in an untyped λ-calculus. TIL,
by contrast, is a hyperintensional, typed λ-calculus.

Our definition of β-equivalence is this:

Definition 6 (β-conversion by value) Let Y →v α; x1, D1→v β1, . . . , xn, Dn →v βn,

[λx1 . . . xnY ] →v (α β1 . . . βn). Then the conversion

[[λx1 . . . xnY ]D1 . . . Dn] →β
2[0Sub [0Tr D1] 0x1 . . . [0Sub [0Tr Dn] 0xn

0Y ]]

is β-reduction by value. The reverse conversion is β-expansion by value. ��
Claim 1 Let C, D be constructions such that C is identical to [[λx1 . . . xn Y ] D1 . . .

Dn] and D to 2[0Sub [0Tr D1] 0x1 . . . [0Sub [0Tr Dn] 0xn 0Y ]]. Then C, D are strictly
equivalent in the sense that for any valuation v they either v-construct one and the
same entity or are both v-improper.

Proof of Claim 1. If one or more of the constructions D1, . . . , Dn are v-improper
then so are both C and D, according to Definition 2, (iii) and (vi). Otherwise, let
D1, . . . , Dn all be v-proper, v-constructing the objects d1, . . . , dn , respectively. Then
by Definition 2, (iv) the Closure [λx1 . . . xnY ] v-constructs the following function f .
If Y is v(d1/x1, . . . , dn/xn)-improper, then f is undefined on 〈d1, . . . , dn〉 and thus
C is v(d1/x1, . . . , dn/xn)-improper according to Definition 2, (iii). Otherwise the
value of f on 〈d1, . . . , dn〉 is the α-entity v(d1/x1, . . . , dn/xn)-constructed by Y . Let
the entity v(d1/x1, . . . , dn/xn)-constructed by Y be a. Then by Definition 2, (iii) of
Composition, the construction C v-constructs a. We are to show that the construction
D also v-constructs a. The first Execution of D constructs Y (x1/0d1, . . . , xn/0dn),
i.e. the construction Y where according to the definition of the functions Sub and Tr all
the occurrences of the variables x1, . . . , xn are replaced by 0d1, . . . , 0dn , respectively.
Since the Trivializations 0d1, . . . , 0dn construct the entities d1, . . . , dn , respectively,
the second Execution v(d1/x1, . . . , dn/xn)-constructs the entity a, or else nothing in
case Y is v(d1/x1, . . . , dn/xn)-improper. HenceC and D come out strictly equivalent.

Remark 5 That constructions C, D are β-equivalent will be denoted ‘0C ≈β
0D’,

≈β /(o∗n∗n). In order to avoid misconceptions, in what follows we will use the term
‘λ-conversion’ in the same sense as Church’s for the conversion that we also call
‘β-conversion by name’, which is specified by the following rule:

[[λx1 . . . xn Y ]D1 . . . Dn] → Y (D1/x1, . . . , Dn/xn)

where the contracted construction arises from Y by collisionless substitution of
D1, . . . , Dn for x1, . . . , xn , respectively. The term ‘β-conversion’ will be reserved
for β-conversion by value.
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In order to define procedural isomorphism on the set of constructions of a par-
ticular order, we still need another definition, to wit the definition of α-conversion.
The standard definition, which defines α-equivalent constructions as those that differ
at most by using different λ-bound variables, is insufficient, because the β-reduced
constructions C, D that arise from α-equivalent constructions do not differ at most by
using different λ-bound variables. For instance, the constructions

[λx [0+ x 01] 05] and [λy [0+ y 01] 05]

are α-equivalent according to the standard definition. Yet their respective β-reduced
forms

2[0Sub [0Tr 05] 0x 0[0+ x 01]] and 2[0Sub [0Tr 05] 0y 0[0+ y 01]]

would not be α-equivalent. Yet they ought to be, because from the procedural point of
view it is irrelevant which variables are used as formal parameters of the respective
procedure. Thus we define:

Definition 7 (α-conversion) Let C, D be constructions. Then C, D are α-equivalent,
denoted ‘0C ≈α

0D’, ≈α /(o∗n∗n), if either C, D differ at most by using different
λ-bound variables, or their β-expanded forms differ at most by using different λ-bound
variables.

Claim 2 α-equivalent constructions are strictly equivalent by being either v-improper
or v-constructing one and the same entity.

Proof of Claim 2. Thanks to Claim 1 it suffices to prove that Closures of the
form [λx1 . . . xnY (x1, . . . , xn)], [λy1 . . . ynY (y1, . . . , yn)], where Y (x1, . . . , xn) dif-
fers from Y (y1, . . . , yn) only by collisionless substitution of the variables x1, . . . , xn
for y1, . . . , yn , respectively, v-construct one and the same function. But this immedi-
ately follows from Definition 2, (iv).

Definition 8 (procedural isomorphism) Let C, D be constructions. Then C, D are
procedurally isomorphic iff either C and D are identical or there are constructions
C1, . . . ,Cn(n > 1) such that 0C = 0C1,

0D= 0Cn , and for each Ci ,Ci+1(1≤ i<n)

it holds that 0Ci ≈α
0Ci+1 or 0Ci ≈β

0Ci+1.

Corollary of Definition 8 Procedural isomorphism is an equivalence relation defined
on a set of constructions such that procedurally isomorphic constructions are strictly
equivalent in the sense that for any valuation v they either v-construct one and the
same entity or they are v-improper.

Proof of Corollary Follows immediately from Claims 1 and 2.

Example 5 The above constructions

[λx [0+ x 01] 05], 2[0Sub [0Tr 05] 0x 0[0+ x 01]],
[λy [0+ y 01] 05], 2[0Sub [0Tr 05] 0y 0[0+ y 01]]
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are all procedurally isomorphic, because the following equivalences hold:

0[λx [0+ x 01] 05] ≈α
0[λy [0+ y 01] 05]

0[λx [0+ x 01] 05] ≈β
02[0Sub [0Tr 05] 0x 0[0+ x 01]]

02[0Sub [0Tr 05] 0x 0[0+ x 01]] ≈ α
0[λy [0+ y 01] 05]

0[λy [0+ y 01] 05] ≈β
02[0Sub[0Tr 05] 0y 0[0+ y 01]]

02[0Sub [0Tr 05] 0x 0[0+ x 01]] ≈α
02[0Sub [0Tr 05] 0y 0[0+ y 01]]

This completes the exposition of the logical tools we need.We are now ready to specify
the rules of existential generalization into hyperintensional contexts.

5 Rules for quantifying-in with applications

In Duží et al. (2010, § 5.3) we specifiedwhat we called rules (7) and (8) for quantifying
into hyperintensional objectual attitudes de dicto and de re. In what follows we adjust
those rules, which is another novel contribution of this paper. First, rule (7) for quan-
tifying into hyperintensional attitudes de dicto can be simplified in case we quantify
over the complement of the attitude. Hence we specify here rule (R1). Second, rule
(7) is generalized to quantify into the attitude complement over a constituent X of this
complement. Since in a hyperintensional context wemust fully respect the perspective
of the agent to whom the attitude is ascribed, we can quantify only over the constituent
construction X rather than an object v-constructed by X : see rule R2 below. Yet on
the additional assumption that the constituent X is v-proper we obtain a variant R′

2
of the rule R2 that quantifies also over the object v-constructed by X . Third, rule (7)
makes it possible to quantify over constructions only. Yet we need to quantify over
non-constructions as well. Thus we specify a stronger rule R3 for quantifying into
hyperintensional contexts that makes it possible to quantify over objects of any type.
Yet as mentioned above, we must respect the attitude agent’s perspective. For this rea-
son the rule R3 is applicable only if the complement constituent X is a Trivialization,
because then we can use the Tr function: see rule R3 below. Furthermore, we add a rule
for factive attitudes: see rule R4 below. Last but not least, the rules that were called (6)
and (8) in (ibid.) for quantifying into hyperintensional contexts de re are not correct,
because in the respective conclusions we failed to acknowledge the hyperintensional
character of the attitude. Here we present two correct active and passive variants of
rule R5 for quantifying into hyperintensional contexts de re.

Remark 6 In Remark 2 we explained that since we work with properly partial func-
tions, prior to applying an existential quantifier we must first prove that the argument
class is non-empty. Thus in the proofs that follow below we will use variants of
the following steps. Let F →v (oαβ); a →v α; b →v β. If [F a b] v-constructs
T then according to Definition 2 (iii) all the three constituents of this Composi-
tion are v-proper. In particular, if B is a β-object v-constructed by b, then [F a x]
v(B/x)-constructs T as well. Hence the Composition [λx [F a x] 0B] v-constructs
T, which in turn means that the class of β-objects v-constructed by the Closure
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λx [F a x] is non-empty, and the application of the existential quantifier yields
T as well: [0∃βλx [F a x]].

Let the types be Att∗ → (oι∗n)τω: an arbitrary construction of a hyperin-
tensional objectual attitude relation; a →v ι: a construction of an individual;
∃∗/(o(o∗n));C/∗n : a construction of attitude complement; 0C , c/∗n+1 →v ∗n . Then
the rule of quantifying over hyperintensional objectual contexts is straightforward:

[Att∗wt a 0C]
[0∃∗λc [Att∗wt a c]] (R1)

Proof of R1.Let Empty∗/(o∗n) be an empty class of constructions. Then the following
proof-steps are truth-preserving:

(1) [Att∗wt a 0C] ∅

(2) [λc [Att∗wt a c] 0C] 1, λ-abstraction
(3) ¬[0Empty∗ λc [Att∗wt a c]] 2, Definition 2 (iii)
(4) [0∃∗λc [Att∗wt a c]] 3, EG

The rule for quantifying into hyperintensional contexts makes use of the function Sub.
Let C(X) be a construction of an attitude complement with a constituent X/∗n →v

α; c/∗(n+1) →v ∗n; 2c/∗n+2 →v α; y →v α. Then:

[Att∗wt a 0C(X/y)]
[0∃∗λc [Att∗wt a [0Sub c 0y 0C(y)]]] (R2)

Proof of R2.According to Definition 5 of the Sub function [0Sub c 0y 0C(y)] v(X/c)-
constructs the construction C(X/y). Let =∗/(o∗n∗n) be the identity of constructions
of order n. Then the following proof-steps are truth-preserving:

(1) [Att∗wt a 0C(X/y)] ∅

(2) [0=∗ [0Sub c 0y 0C(y)] 0C(X/y)] 1, Definition 5
(3) [Att∗wt a [0Sub c 0y 0C(y)]] 1, 2, Leibniz
(4) [λc [Att∗wt a [0Sub c 0y 0C(y)]] 0X ] 3, λ-abstraction
(5) ¬[ 0Empty∗ λc [Att∗wt a [0Sub c 0y 0C(y)]]] 4, Definition 2 (iii)
(6) [0∃∗λc [Att∗wt a [0Sub c 0y 0C(y)]]] 5, EG

If the constituent X is v-proper, we can use a variant of the rule R2 called R′
2. Let the

additional types be x →v α; ∃/(o(oα)). Then:

[Att∗wt a 0C(X/y)]
[0∃∗λc [[Att∗wt a [0Sub c 0y 0C(y)]] ∧ 0∃λx [x = 2c]]] (R′

2)

Proof of R′
2. Let Proper/(o∗n) be the class of constructions that are not v-improper,

=∗/(o∗n∗n) the identity of constructions of order n,=α/(oαα) the identity of α-objects,
Empty/(oα) an empty class of α-objects. According to Definition 2 (i) and (vi), the
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Double Execution 2c v(X/c)-constructs what Xv-constructs. Thus if X is v-proper
then [0=α

2c X ] v-constructsT. Hence the following proof-steps are truth-preserving:

(1) [Att∗wt a 0C(X/y)] ∅

(2) [0=∗ [0Sub c 0y 0C(y)] 0C(X/y)] 1, Defintion 5
(3) [Att∗wt a [0Sub c 0y 0C(y)]] 1, 2, Leibniz
(4) [0Proper 0X ] ∅

(5) [0=α
2c X ] 4,Definition 2 (i), (vi)

(6) [λx [0=α
2c x] X ] 5, λ-abstraction

(7) [[λx[0=α
2c x] X ] ∧ [Att∗wt a [0Sub c 0y 0C(y)]]] 6, 3,∧I

(8) ¬[ 0Empty∗ λc [¬[ 0Empty λx [0=α
2c x]]

∧[Att∗wt a [0Sub c 0y 0C(y)]]]] 7,Definition 2 (iii)
(9) [0∃∗λc [0∃ λx [0=α

2c x]
∧ [Att∗wt a [0Sub c 0y 0C(y)]]]] 8,EG

If the constituent X is the Trivialization of an α-object b, thus guaranteeing that the
construction is proper, then we can access this hyperintensional context to quantify
over this α-object. To this end we have another special rule R3 that makes use of the
function Tr:

[Att∗wt a 0C(0b/y)]
[0∃λx[Att∗wt a [0Sub [0Tr x] 0y 0C(y)]]] (R3)

Proof of R3. According to Definition 5 the Composition [0Sub [0Tr x] 0y 0C(y)]
v(b/x)-constructs the construction C(0b/y) in which the occurrences of y have been
replaced by 0b. Thus the following proof-steps are truth-preserving:

(1) [Att∗wt a 0C(0b/y)] ∅

(2) [0=∗ [0Sub [0Tr x] 0y 0C(y)] 0C(0b/y)] 1, Definition 5
(3) [Att∗wt a [0Sub [0Tr x] 0y 0C(y)]] 1, 2,Leibniz
(4) [λx[Att∗wt a [0Sub [0Tr x] 0y 0C(y)]] 0b] 3, λ-abstraction
(5) ¬[0Empty λx[Att∗wt a [0Sub [0Tr x] 0y 0C(y)]]] 4,Definition 2 (iii)
(6) [0∃λx[Att∗wt a [0Sub [0Tr x] 0y 0C(y)]]] 5,EG

Next we specify a rule for factive attitudes like finding or having solved. Factive
attitudes are defined in terms of the notion of requisite.31 A requisite is an analytically
necessary relation-in-extension between two intensions such that, necessarily, any
object that instantiates one intension also instantiates the other (though not necessarily
the other way around). For instance, if the office of Head of State of the Vatican is a
requisite of the office of Archbishop of Rome (i.e. the office of Pope) then, necessarily,
whoever occupies the papal office must also occupy the requisite office.

Let Att f ∗/(oι∗n)τω be a factive objectual attitude. The type of requisite relevant
to factive hyperintensional attitudes is Req/(o(oια∗n)τω (oι∗n)τω), which is defined
as follows. Let I dentα/(oια∗n)τω be a relation between an individual, an α-object

31 See Duží et al. (2010, § 4.1).
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and a construction such that the individual succeeds in identifying the α-object as the
product of this construction, x →v ι, c →v ∗n, 2c →v α, then:

[0Req 0 I dentα Att f
∗ ] = ∀w∀t ∀ x c [[Att f ∗

wt x c] ⊃ [0 I dentαwt x
2c c]]

I dentα is a requisite of Att f
∗
iff, necessarily for all individuals x and all constructions

c, it holds that if x has an attitude Att f
∗
to c then x has identified the α-product 2c of

construction c.
Hence we define factive hyperintensional attitudes as those for which the above

requisite relation holds.
The rule R4 for factive objectual attitudes is this:

[Att f ∗
wt a 0C]

[0∃λx [[x = C] ∧ [0 I dentwt a x 0C]]] (R4)

Additional type C/∗n →v α.
Proof of R4

(1) [Att f ∗
wt a 0C] ∅

(2) [0Req 0 I dentαAtt f
∗ ] Definition of factivity

(3) ∀w∀t∀x c[[Att f ∗
wt xc] ⊃ [0 I dentαwt x

2c c]] 2,Definition of Req.

(4) [[Att f ∗
wt a 0C] ⊃ [ 0 I dentαwt a

20C 0C]] 3,∀E, a/x, 0C/c
(5) [0 I dentαwt a

20C 0C] 1, 4,MPP
(6) [ 0 I dentαwt a C 0C] 5,Definition 2, (vi): 20C = C
(7) [ 0Proper 0C] 6,Definition 2, (iii)
(8) [0=α x C] 7,Definition 2
(9) [ 0 I dentαwt a x 0C] 6, 8,Leibniz
(10) [[ 0=α xC] ∧ [0 I dentαwt a x 0C]] 8, 9,∧I
(11) ¬[0Empty λx[[x = C] ∧ [0 I dentαwt a x 0C]]] 10, λ-abstraction
(12) [0∃λx[[0=α x C] ∧ [0 I dentαwt a x 0C]]] 11,EG

The steps (6)–(8) above call for elucidation. In the Composition [0 I dentαwt a C 0C]
the construction C occurs both displayed and executed. The first occurrence of C is
executed while the second is displayed. Hence the first occurrence ofC is a constituent
of [0 I dentαwt a C 0C]. Since this Composition v-constructs T, according to Defin-
ition 2, (iii) this constituent must be proper. Thus we have step (7): [0Proper 0C].
And since C is v-proper, it v-constructs an α-object, which in turn justifies step (8):
[0=α x C].

(R1)–(R4) are rules for quantifying into hyperintensional attitudes de dicto. Next
we define a pair of rules for quantifying into hyperintensional contexts de re, both in
a passive and an active variant:
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[Att∗wt a [0Sub [0Tr X ] 0y 0C(y)]]
[0∃λx [Att∗wt a [0Sub [0Tr x] 0y 0C(y)]]] (R5 act)

[λx [Att∗wt a [0Sub [0Tr x] 0y 0C(y)] X ]]
[0∃λx [Att∗wt a [0Sub [0Tr x] 0y 0C(y)]]] (R5 pas)

Types: X/∗n → α; x, y/∗n →v α; ∃/(o(oα)); y free in C(y)/∗n .
Proof of R5 act

(1) [Att∗wt a [0Sub [0Tr X ] 0y 0C(y)]] ∅

(2) [λx[Att∗wt a [0Sub [0Tr x] 0y 0C(y)]] X ] 1, λ-abstraction
(3) ¬[0Empty λx [Att∗wt a [0Sub [0Tr x] 0y 0C (y)]]] 2,Definition 2 (iii)
(4) [0∃λx[Att∗wt a [0Sub [0Tr x] 0y 0C (y)]]] 3,EG

Proof of R5 pas. Since X occurs extensionally in the assumption, the proof is trivial:

(1) [λx[Att∗wt a [0Sub [0Tr x] 0y 0C (y)] X ]] ∅

(2) ¬[0Empty λx[Att∗wt a [0Sub [0Tr x] 0y 0C (y)]]] 2,Definition 2 (iii)
(3) [0∃λx [Att∗wt a [0Sub [0Tr x] 0y 0C (y)]]] 3,EG

In Duží et al. (2010, § 5.3) we specified what we called rules (2) and (4) for
quantifying into intensional contexts, which are contexts of empirical attitudes
Att/(o ι ατω)τω to intensions. In such cases the premise of the active variant has
the form [Attwt a 2[0Sub [0Tr X ] 0y 0C(y)]]. The result of the substitution must
itself be executed in order to obtain an intension, which explains the use of Double
Execution. In the case of attitudes to hyperintensions, the result of the substitution
is directly the construction to which a is related. For this reason the Compositions
[0Sub [0Tr X ] 0y 0C(y)] and [0Sub [0Tr x] 0y 0C(y)] require only one execution.

5.1 Mathematical objectual attitudes: applications

As explained above, mathematical attitudes are invariably hyperintensional. For
instance, if Tilman is seeking the last decimal of π, then he is seeking something.
Yet he is not seeking one particular number, because there is no such number that
would be the last decimal of π. And if per impossible there were such a number
Tilman would still be related to a construction typed to construct such a number rather
than the number itself, because otherwise there would be no process of seeking the
last decimal of π. Tilman would be confronted with the product (a particular number)
straightaway; the seeker would ipso facto be a finder, because there would be a relation
(-in-intension) between Tilman and a number.

Thus we have this valid argument:

Tilman is seeking the last decimal of π

Tilman is seeking something
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where something is restricted type-theoretically, so that the conclusion states that
Tilman is seeking something of one particular type.

In this case we apply (R1):

λwλt [0Seek∗
wt

0T ilman 0[0Last_Dec 0π]]
λwλt [0∃∗λc [0Seek∗

wt
0T ilman c]] (R1)

Types: Seek∗/(o ι ∗n)τω; T ilman/ι; Last_Dec/(vτ): the function that associates a
number with its last decimal digit; π / τ; c/∗2 →v ∗1.

Another inference based on (R1) is this:

Tilman is proving Fermat’s Last Theorem

There is a numerical construction c such that Tilman is proving c

Let FLT be specified as follows:32

∀x y z n[[n > 02] ⊃ ¬[xn + yn = zn]]

Then our argument obtains this analysis:

λwλt [0Provewt
0T ilman 0[∀x y z n [[n > 02] ⊃ ¬[xn + yn = zn]]]]

λwλt [0∃∗λc[0Provewt
0T ilman c]] (R1)

Types: Prove/(oι∗n)τω; the other types are obvious.
Yet another example:33

Tilman is solving the equation
(
x2 + x − 2

) = 0

There is something Tilman is solving

λwλt [0Solvingwt
0T ilman 0[λx[x2 + x − 2] = 0]]

λwλt [0∃∗λc [0Solvingwt
0T ilman c]]

(R1)

Here is an application of (R2):

Tilman computes the value of sin(x)/cos(x) at π

There is a construction such that Tilman computes its Composition with π

λwλt [0Computewt
0T ilman 0[λx [0: [0Sin x] [0Cos x]] 0π]]

λwλt[0∃∗λc [0Computewt
0T ilman [0Sub c 0g 0[g 0π]]]] (R2)

32 We are using ordinary infix notation without Trivialization to make the formalization of the construction
easier to read. Hence “[xn + yn = zn ]” is a shorthand notation for a couple of Compositions. If Pn is the
function nth power then in the full TIL notation we have “[0= [0+[0Pn x] [0Pn y]][0Pn z]]”.
33 Here we are again using a shorthand infix notation without Trivialization.
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Types: c/∗2 →v ∗1; g/∗1 →v (ττ); λ x [0: [0Sin x] [0Cos x]]/∗1 →v (τ τ); the
other types are obvious.

Since a Closure is not v-improper for any valuation v, we can apply (R
′
2):

Tilman computes the value of sin(x)/cos(x) at π

There is a construction of a function such that Tilman computes its value at π

λwλt [0Computewt
0T ilman 0[λx [0: [0Sin x][0Cos x]] 0π]]

λwλt [0∃∗λc [0∃λ f [ f = 2c] ∧ [0Computewt
0T ilman [0Sub c 0g 0[g 0π]]]]] (R′

2)

Additional types: 2c, g →v (τ τ).
From the premise in the first example above we can also derive that there is a number
such that Tilman is seeking its last decimal. Thus we have another valid argument:

Tilman is seeking the last decimal ofπ

There is a number such that Tilman is seeking its last decimal

This inference requires (R3):

λwλt [0Seek∗
wt

0T ilman 0[0Last_Dec 0π]]
λwλt [0∃λx [0Seek∗

wt
0T ilman [0Sub [0Tr x] 0y 0[0Last_Dec y]]]] (R3)

Types: x, y/∗1 →v τ; ∃/(o(o τ)).
If Tilman is seeking the millionth digit of the decimal expansion of π, he may succeed
in his effort and identify that number. Thus we have another argument that illustrates
the application of (R4):

Tilman finds the millionth digit of the decimal expansion ofπ

There is a number such that Tilman identifies it
as the millionth digit of the decimal expansion ofπ

λwλt [0Findwt
0T ilman 0[0Mill_Dec 0π]]

λwλt [0∃λx[[x = [0Mill_Dec 0π]] ∧ [ 0 I dentwt 0T ilman x 0[0Mill_Dec 0π]]]]
(R4)

Types: Find/(oι∗n)τω; v: the type of naturals; Mill_Dec/(ν τ): the function that
associates a real number with its millionth decimal digit; I dent/(oιν∗n)τω.

Suppose that Tilman is solving the equation (x2 + x − 2) = 0 and that his
effort meets with success, in that he finds the solution he was seeking. We can apply
rule R1:

123



Synthese (2015) 192:635–677 673

Tilman has solved the equation (x2 + x − 2) = 0

There is something that Tilman has solved

λwλt [0Solvedwt
0T ilman 0[λx [x2 + x − 2] = 0]]

λwλt [0∃λc [0Solvedwt
0T ilman c]]

(R1)

The argument is no doubt valid. Yet in this case we would like to derive more. To this
end we apply (R4). If Tilman has solved the equation x2 + x − 2 = 0 then there is
an (o τ)-object (in this case the set {1, −2}) satisfying the equation, and Tilman has
identified this set as the product of the construction [λx [x2 + x − 2] = 0]. Thus we
have:

λwλt [0Solvedwt
0T ilman 0[λx [x2 + x − 2] = 0]]

λwλt [0∃λs [[s=[λx[x2+x− 2]=0]] ∧[0 I dentwt
0T ilman s 0[λx[x2 + x − 2] = 0]]]]

Additional types: variable s →v (oτ), I dent/(o ι(o τ)∗n)τ ω

In Duží et al. (2010, Chap. 2) we defined the distinction between attitudes de
dicto and de re for attitudes to empirical notions. In mathematics a de re attitude is
characterized by an extensional occurrence of a constituent that v-constructs the value
of the denoted function. This value is then anaphorically referred to in the attitude
complement. Here is an example:

The last decimal of π is being calculated by Tilman

There is a number such that Tilman calculates it as the last decimal of π

The argument is valid, though drastically unsound: the premise presupposes the
existence of the last decimal of π. And if per impossibile a number n were the last
decimal of π then Tilman would be obtaining n as a result of his calculation of the
last decimal of π. Hence, existential generalization simply serves to make explicit
an implicit ontological presupposition incurred in the premise. In this case it is the
presupposed existence of the value of the function denoted by ‘the last decimal of’ at
the argument π.

If we analyzed the premise similarly as above, that is, in terms of the Closure

λwλt [0Calculatewt
0T ilman 0[0Last_Dec 0π]]

the existence of a last decimal ofπwould neither be presupposed, nor would it follow.
The Composition [0Last_Dec 0π] occurs hyperintensionally here, but in the de re case
it must occur extensionally. In order for [ 0Last_Dec 0π] to be a constituent occurring
extensionally, we must again deploy the functions Sub and Tr:

λwλt [0Calculatewt
0T ilman [0Sub [0Tr [0Last_Dec 0π]] 0y 0[[0Last_Dec 0π] = y]]]

Now we can apply (R5)-act in order to obtain the conclusion:
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λwλt [0Calculatewt
0T ilman [0Sub [0Tr [0Last_Dec 0π]] 0y 0[[0Last_Dec 0π] = y]]]

λwλt [0∃λx [0Calculatewt
0T ilman [0Sub [0Tr x] 0y 0[[0Last_Dec 0π] = y]]]]

5.2 Empirical objectual attitudes: an application

In Duží et al. (2010, § 5.2, § 5.3) much attention was devoted to objectual attitudes
whose complement is an intension like seeking or finding the site of Troy. Hence
we analyzed these attitudes as relations-in-intension sharing the polymorphous type
(o ι ατω)τω. We suggested that the default interpretation of objectual attitudes is as
intensional attitudes, because these attitudes concern an empirical object where it is
irrelevant how the intension is presented to, or conceptualized by, the ascribee.

This may often be true, but there are also cases where the mode of presentation of
the intension doesmatter. This is so with regard to, e.g., Tilman seeking an abominable
snowman without him seeking a yeti. In this case an intensional analysis will yield a
contradiction, because Tilmanwould be related, and at the same time not related, to one
and the same property by the seeking relation. Thus a truthful report of such a situation
needs to be hyperintensional. A hyperintensional analysis avails itself of two different
hyperintensions presenting the same property. When construed hyperintensionally,
Tilman’s search is only ostensibly inconsistent.

To get the example of Tilman seeking an abominable snowman and not seeking
a yeti off the ground, we are stipulating that ‘is a yeti’ and ‘is an abominable snow-
man’ are a pair not of synonymous but merely equivalent predicates. Their respective
meanings are co-intensional, but not procedurally isomorphic (co-hyperintensional).
The rationale for this stipulation is that the latter predicate has a molecular struc-
ture thanks to the application of the property modifier denoted by ‘abominable’ to
the property denoted by ‘snowman’, whereas the former predicate is atomic.34 One
could object that it seems reasonable to assume that there is a meaning postulate in
place to the effect that ‘is a yeti’ is shorthand for, or a notational variant of, ‘is an
abominable snowman’, the same way ‘lasts a fortnight’ is arguably short for ‘lasts
two weeks’. What speaks against this assumption, at least through the lens of TIL,
is that the Trivialization 0Yeti and the Composition [ 0Abominable 0Snowman] are
not procedurally isomorphic, but only equivalent constructions. Furthermore, from a
formal point of view at least, it is questionable what semantic and inferential gain may
be accrued from introducing a redundant predicate like ‘is a yeti’, on its construal as
a mere notational variant of ‘is an abominable snowman’.35

What we have on our hands is an empirical hyperintensional attitude, and we can
apply (R1):

Tilman is seeking an abominable snowman and not seeking a yeti

There is something Tilman is seeking and something (else) he is not seeking

34 For details on property modifiers, see Jespersen (2014, §5).
35 See Jespersen (2014, §6) for the parallel example of ‘is a bachelor’, ‘is an unmarried man’.
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λwλt [[0Seek∗
wt

0T ilman 0[0Abominable 0Snowman]] ∧ ¬[0Seek∗
wt

0T ilman 00Yeti]]
λwλt [0∃∗λc 0∃∗λ d [[0Seek∗

wt
0T ilman c] ∧ ¬[0Seek∗

wt
0T ilman d]]]

Types: Yeti, Snowman/(oι)τ ω; Abominable/((oι)τ ω(oι)τ ω): a property modifier;
[0Abominable 0Snowman] → (oι)τ ω; c, d/∗2 → ∗1; 2c, 2d →v (oι)τω.

In this case by applying (R′
2) we can derive a further conclusion:

Tilman is seeking an abominable snowman and not seeking a yeti

There is a property such that Tilman is seeking an instance of it via a construction c
and not seeking an instance of it via another construction d

λwλt [[0Seek∗
wt

0T ilman 0[0Abominable 0Snowman]] ∧ ¬[0Seek∗
wt

0T ilman 00Yeti]]
λwλt [0∃∗λc 0∃∗λd 0∃λp [[p = 2c] ∧ [p = 2d] ∧ [0Seek∗

wt
0T ilman c] ∧ ¬[0Seek∗

wt
0T ilman d]]]

Note that the premise demands the double Trivialization 00Yeti , because Tilman seeks
what 00Yeti constructs, namely 0Yeti .
Moreover, by applying R3 we can derive that Tilman is seeking something abominable
(where p, q → (oι)τω):

λwλt [[0Seek∗
wt

0T ilman 0[0Abominable 0Snowman]] ∧ ¬[0Seek∗
wt

0T ilman 00Yeti]]
λwλt [0∃λp [0Seek∗

wt
0T ilman [0Sub [0Tr p] 0q 0[0Abominable q]]]]

6 Conclusion

We demonstrated above how to validly quantify into various sorts of hyperintensional
contexts involving objectual (i.e. non-propositional) attitude complements. This clus-
ter of logical results was obtained in virtue of an extensional logic of hyperintensions,
namely Transparent Intensional Logic, which comes with a context-invariant, top-
down semantic theory that yields universal transparency to the exclusion of opaque
contexts.An extensional logic of hyperintensions is permissive or inclusive in the sense
of validating all the rules of extensional logic, including substitution of identicals and
existential generalization, also in hyperintensional contexts, but must at the same time
be restrictive or exclusive with regard to what counts as admissible operands.

The novelties of the paper are the following. The paper offers a formallyworked-out,
philosophicallymotivated criterion of hyperintensional individuation,which is defined
in terms of a slightly more carefully stated version of α-conversion and β-conversion
by value, which amounts to amodification of Church’s Alternative (A1).Moreover, we
presented a detailed study of the attitude of calculating. We propounded updated rules
for quantifying into hyperintensional contexts de dicto, which are an adjustment and
generalization of the rules presented in Duží et al. (2010). We presented an analysis of
ostensibly logically impossible empirical attitudes, which require at least two different
hyperintensional presentations of one and the same empirical property. Finally, we put
forward rules for quantifying into hyperintensional attitudes de re, which correct the
rules presented in Duží et al. (2010, § 5.3).
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We have proved two major things. First, it is always valid to quantify into hyper-
intensional attitude contexts and over hyperintensional entities. Second, factive atti-
tudes (e.g. finding an abominable snowman or having solved an equation) validate,
furthermore, quantifying over the (intensional or extensional) entities presented by
the respective constituent of the attitude complement, and so do non-factive attitudes
provided the respective constituent of the attitude complement presents the sort of
object that is to be quantified over.
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