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Abstract According to orthodox (Kolmogorovian) probability theory, conditional
probabilities are by definition certain ratios of unconditional probabilities. As a
result, orthodox conditional probabilities are regarded as undefined whenever their
antecedents have zero unconditional probability. This has important ramifications for
the notion of probabilistic independence. Traditionally, independence is defined in
terms of unconditional probabilities (the factorization of the relevant joint uncondi-
tional probabilities). Various “equivalent” formulations of independence can be given
using conditional probabilities. But these “equivalences” break down if conditional
probabilities are permitted to have conditions with zero unconditional probability. We
reconsider probabilistic independence in this more general setting. We argue that a
less orthodox but more general (Popperian) theory of conditional probability should
be used, and that much of the conventional wisdom about probabilistic independence
needs to be rethought.
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1 Introduction

According to orthodox (Kolmogorovian) probability theory, conditional probabilities
are by definition certain ratios of unconditional probabilities. As a result, orthodox
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conditional probabilities are regarded as undefined whenever their antecedents have
zero unconditional probability.1 Such zero probability cases are typically glossed over
or ignored altogether in standard treatments of probability, especially those found in
the philosophical literature. The orthodox treatment of conditional probabilities goes
hand in hand with the orthodox treatment of probabilistic independence. Traditionally,
independence is defined in terms of unconditional probabilities (the factorization of the
relevant joint unconditional probabilities). Various “equivalent” formulations of inde-
pendence can be given using conditional probabilities. But these “equivalences” pre-
suppose orthodoxy about conditional probabilities, and they break down if conditional
probabilities are permitted to have conditions with zero unconditional probability. In
this paper we reconsider the nature of probabilistic independence in this more general
setting.Wewill argue that when a less orthodox butmore general (Popperian) theory of
conditional probability is used, much of the conventional wisdom about probabilistic
independencewill need to be rethought. Because independence is such a central notion
in probability theory, we will conclude that the entire orthodox mathematical frame-
work for thinking about probabilities should be reconsidered at a fundamental level.

2 The orthodox theory of probability: Kolmogorov

Almost every textbook or article about probability theory since 1950 follows Kol-
mogorov’s approach.2 That is to say, almost all contemporary probabilists characterize
probabilities by: (i) taking unconditional probabilities P(•) as primitive, (ii) using Kol-
mogorov’s (1933/1950) axioms for P(•), and (iii) defining conditional probabilities
P(•|•) in terms of unconditional probabilities P(•) in the standard way, using Kol-
mogorov’s ratio definition. Specifically, most probabilists adopt the following frame-
work for probabilities:

Definition Let F be a field on a set �. An unconditional Kolmogorov probability
function P(•) is a function from F to [0,1] such that, for all A, B ∈ F :

K1. P(A) ≥ 0.
K2. P(�) = 1.
K3. If (A ∩ B) = ∅, then P(A ∪ B) = P(A) + P(B).3

We call a triple M = (�,F ,P) satisfying these axioms a Kolmogorov probability
model. The conditional Kolmogorov probability function P(•|•) inM is now defined
in terms of P(•) as the following partial function from F × F to [0,1]:

1 To be sure, Kolomogorov was well aware of this problem, and he went on to offer a more sophisticated
treatment of probability conditional on a sigma algebra, P(A||F), in order to address it. We will return to
this point later; as we will see, this approach also faces some serious problems.
2 To name just a few of the most famous of these, we have Parzen (1960), Papoulis (1965), Feller (1968),
Rozanov (1977), Loève (1977), Billingsley (1995), Ross (1998), and, of course, Kolmogorov (1933/1950)
himself.
3 Axiom K3 (finite additivity) is often strengthened to require additivity over denumerably many mutually
exclusive events. There is considerable controversy over the issue of countable additivity. Both Savage and
de Finetti urged against the assumption of countable additivity in the context of personalistic probability.
Moreover, the assumption of countable additivity has some surprising and paradoxical consequences in
Kolmogorov’s more general theory of conditional probability (Seidenfeld et al. 2001). We will briefly
comment on this issue below.
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K4. P(A|B) = de f
P(A∩B)

P(B) , provided P(B) > 0.

Thus, on the orthodox account, all probabilities are unconditional probabilities or
ratios thereof.

In his classic textbook, Billingsley (1995) writes that “the conditional probability
of a set A with respect to another set B. . . is defined of course by P(A|B) = P(A ∩
B)/P(B), unless P(B) vanishes, in which case it is not defined at all” (p. 427). Three
things leap out at us here: the ratio is regarded as a definition of conditional probability;
its being so regarded is obvious (“of course”); and it is regarded as not defined at all
when P(B) = 0. The very meaning of conditional probability is supposed to be
given by the ratio definition; whether this definition is adequate is not questioned;
and the conditional probability has no value (“defined” has another meaning here)
when its condition has probability 0. On another understanding, the account is silent
about such conditional probabilities. We need not choose one understanding over
the other here, since either way such conditional probabilities are problematic when
they should be well-defined, and indeed constrained to have particular values and not
others.

Now if ‘conditional probability’ were a purely formal notion, stipulatively defined
by K4, then there would be no worrying objection here. You can introduce a new
theoretical term and stipulate it to be whatever you like, and if your readers and
interlocutors are cooperative, they will adhere to the stipulation. If you want to
stipulate that by the ‘schmonditional probability of A, schmiven B’ you mean the
cube root of P(A ∪ B) − P(¬B), go right ahead. You will not find much enthusi-
asm for schmonditional probability, however, unless you can convince your audi-
ence that it does some distinctive work, that it captures some concept of use to
us.

Conditional probability is clearly intended to be such a concept. ‘The probability
of A, given B’ is not merely stipulated to be such-and-such a ratio; rather, it is meant
to capture the familiar notion of the probability of A in the light of B, or informed by
B, or relative to B. It is a useful concept, because even if Hume was right that there are
no necessary connections between distinct existences, still it seems there are at least
some non-trivial probabilistic relations between them. That’s just what we mean by
saying things like ‘B supports A’, or ‘B is evidence for A’, or ‘B is counterevidence
for A’, or ‘B disconfirms A’. Presumably it is a concept that will guide such judgments
that Kolmogorov is seeking to capture. Then it is an open question (somewhat in the
sense of Moore) whether he has succeeded. If he has, then that just means that he
has given us a good piece of conceptual analysis. By analogy, Tarski’s account of
logical consequence is not merely a stipulative definition, a new piece of jargon for
beleaguered students of logic to learn; rather, it is intended to capture the strongest
form of ‘support’ or ‘evidence for’ relation that could hold between two sentences.
It is intelligible to ask whether he has succeeded (and Etchemendy 1990 answers the
question in the negative).

So let us call the identification of conditional probabilities with ratios of uncondi-
tional probabilities the ratio analysis of conditional probability. In the next section, we
discuss some of its peculiarities. These are reasons for thinking that the ratio analysis
is unsuccessful.
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3 Some peculiarities of Kolmogorov’s ratio analysis of conditional probability

Let us look in more detail at the peculiarity that conditional probabilities are undefined
whenever their antecedents have zero unconditional probability. K4 has its proviso
for a reason. Now, perhaps the proviso strikes you as innocuous. To be sure, we
could reasonably dismiss probability zero antecedents as ‘don’t cares’ if we could be
assured that all probability functions of any interest are regular—that is, they assign
zero probability only to logical impossibilities. Unfortunately, this is not the case. As
probability textbooks repeatedly drum into their readers, probability zero events need
not be impossible, and indeed can be of real significance. It is curious, then, that some
of the same textbooks glide over K4’s proviso without missing a beat.

In fact, interesting cases of probability zero antecedents are manifold. Consider an
example due toBorel:Apoint is chosen at randomfrom the surface of the earth (thought
of as a perfect sphere); what is the probability that it lies in the Western hemisphere,
given that it lies on the equator? 1/2, surely. Yet the probability of the antecedent is 0,
since a uniform probability measure over a sphere must award probabilities to regions
in proportion to their area, and the equator has area 0. The ratio analysis thus cannot
deliver the intuitively correct answer. Obviously there are uncountably many problem
cases of this form for the sphere.

Nor is the problem limited to uncountable, or even infinite domains. Finite prob-
ability models can contain propositions that receive zero probability. While all con-
tradictions must have zero probability, the converse is not true—even in finite spaces.
For instance, rational agents (who may have credences over finite spaces) may—and
arguably must4—have irregular probability functions, and thus assign probability 0 to
non-trivial propositions.

Probability theory and statistics are shot through with non-trivial zero-probability
events. Witness the probabilities of continuous random variables taking particular
values (such as a normally distributed random variable taking the value 0).Witness the
various ‘almost sure’ results—the strong law of large numbers, the law of the iterated
logarithm, the martingale convergence theorem, and so on. They assert that certain
convergences take place, not with certainty, but ‘almost surely’. This is not merely
coyness, since these convergences may fail to take place—genuine possibilities that
receive probability 0, and interesting ones at that. A fair coin may land tails forever.

Moreover, it is usual to think that the chance function is irregular—after all, it is
usual to think that all propositions about the past have chance 0 or 1. (See Lewis 1980.)

And so it goes; indeed it could not have gone otherwise. For necessarily a proba-
bility distribution over uncountably many outcomes is irregular (still assuming Kol-
mogorov’s axiomatization). More than that: such a distribution must accord uncount-
ably many outcomes probability zero. For each such outcome, we have a violation of
a seeming platitude about conditional probability: that the probability of a proposi-
tion given that very proposition, is 1. Surely that is about as fundamental a fact about
conditional probability as there could be—on a par, we would say, with the platitude
about logical consequence that every proposition entails itself.

4 See Hájek (2003), Pruss (2013), Easwaran (2014).
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Equally platitudinous, we submit, is the claim that the conditional probability of a
proposition, given something else that entails that proposition, is 1: for all distinct X
and Y, if X entails Y then the probability of Y, given X, is 1. But clearly this too is
violated by the ratio analysis. Suppose that X and Y are distinct, X entails Y, but both
have probability 0 (e.g., X = ‘the randomly chosen point lies in the western hemisphere
of the equator’, and Y = ‘the point lands on the equator’). Then P(Y|X) is undefined;
but intuition demands that the conditional probability be 1.

The difficulties that probability zero antecedents pose for the ratio formula for
conditional probability are well known (which is not to say that they are unimpor-
tant). Indeed, Kolmogorov himself was well aware of them, and he offered a more
sophisticated account of conditional probability as a random variable conditional on a
sigma algebra, appealing to the Radon-Nikodym theorem to guarantee the existence of
such a random variable. But our complaints about the ratio analysis are hardly aimed
at a strawman, since (RATIO) is by far the most commonly used analysis of condi-
tional probability, especially in philosophical applications of probability. (Indeed,most
philosophers—even mathematically literate ones—would be unable to state the more
sophisticated account.) Moreover, the move to the more sophisticated account does
not solve all the problems raised in this paper. In particular, even that account does not
respect the platitudes of conditional probability stated above, as evidenced by the exis-
tence of so-called improper conditional probability random variables. Seidenfeld et al.
(2001) show just how extreme and how widespread violations of the platitudes can be.
And the more sophisticated machinery does not help with zero probability conditions
in finite domains. Above all, the more sophisticated theory still delivers unintuitive
verdicts regarding independence, as wewill see in Sect. 7. So that theory is no panacea.

Hájek (2003) goes on to consider further problems for the ratio formula: cases in
which the unconditional probabilities that figure in the ratio are vague (imprecise) or
are undefined, and yet the corresponding conditional probabilities are defined. (These
prove to be problematic also for the more sophisticated account, so therein lies no
solution either.) For our purposes in this paper, however, cases of probability zero
antecedents are problematic enough.

We conclude that it is time to rethink the foundations of probability. It is time to
question Kolmogorov’s axiomatization, and in particular the conceptual priority it
gives to unconditional probability. It is time to consider taking conditional probability
as the fundamental notion in probability theory.

4 An unorthodox account of conditional probability: Popper

There are variousways to define conditional probabilities as total functions fromF×F
to [0,1].5 Popper (1959) presents a general account of such conditional probabilities.
The functions picked-out by Popper’s axioms are typically called Popper functions.

5 For instance, Carnap (1950, 1952), Popper (1959), Kolmogorov (1933/1950), Rényi (1955) and several
others have proposed axiomatizations of conditional probability (as primitive). See Roeper and Leblanc
(1999) for a very thorough survey and comparison of these alternative approaches (in which it is shown that
Popper’s definition of conditional probability is the most general of the well-known proposals).

123



3984 Synthese (2017) 194:3979–3995

Here is a simple axiomatization of Popper functions. (We followRoeper and Leblanc’s
1999 set-theoretic axiomatization.6)

Definition Let F be a field on a set �. A Popper function Pr(•, •) is a total function
from F × F to [0,1] such that:

P1. For all A, B ∈ F , 0 ≤ Pr(A, B).
P2. For all A ∈ F ,Pr(A, A) = 1.
P3. If there exists a C ∈ F such that Pr(C, B) �= 1, then Pr(A, B) + Pr(¬A, B) = 1.
P4. For all A, B, C ∈ F ,Pr(A ∩ B, C) = Pr(A, B ∩ C) Pr(B, C).
P5. For all A, B, C ∈ F ,Pr(A ∩ B, C) = Pr(B ∩ A, C).
P6. For all A, B, C ∈ F ,Pr(A, B ∩ C) = Pr(A, C ∩ B).
P7. There exist A, B ∈ F such that Pr(A, B) �= 1.

We call a tripleM = (�,F ,Pr) satisfying these axioms a Popper probability model.
It can be shown (Roeper and Leblanc 1999, Chap 1) that the Popper function Pr(X,�),
thought of as a unary function of X, is just the Kolmogorovian unconditional probabil-
ity function P(X) defined on (�,F). In this sense, Popper functions can be thought of
as an (conservative) extension of theKolmogorovian theory of unconditional probabil-
ity. Indeed, Popper and Kolmogorov agreed on the nature of unconditional probability.
They only disagreed about the nature of conditional probability. The following impor-
tant fact about Popper functions will be used in subsequent sections:

For all A and B, Pr(A, A ∩ B) = 1.

This codifies our second platitude about conditional probability: the conditional prob-
ability of a proposition, given something else that entails that proposition, is 1. (P2
codifies the first: the probability of a proposition given that very proposition, is 1.)

Now, we do not want to insist that Popper’s axiomatization is necessarily definitive.
If some other simpler, more intuitive, or more powerful axiomatization of conditional
probability can be given, so much the better for our cause. But we will happily work
with Popper’s axiomatization in themeantime, mainly because it is the one best known
to philosophers.

6 This axiomatization is slightly different (syntactically) from Popper’s original axiomatization. But, the
two are equivalent (as Roeper and Leblanc show). Moreover, we are defining Popper functions over sets
rather than statements or propositions, which is non-standard. If you prefer, think of our sets as sets of
possible worlds in which the corresponding propositions are true. This is an inessential difference (since
it doesn’t change the formal consequences of the axiomatization), and we will use the terms “entailment”
and “set inclusion” interchangeably. Our aim here is to frame the various axiomatizations as generally (and
commensurably) as possible. We don’t want to restrict some axiomatizations (e.g., Popper’s) to logical lan-
guages or other structures that have limited cardinality. Popper’s aim was to provide a logically autonomous
axiomatization of conditional probability. Ours is simply to compare various axiomatizations in various
ways, with an eye toward independence judgments. So we don’t mind interpreting the connectives in both
Popper’s axiomatization andKolmogorov’s axiomatization, and doing so in the same (non-autonomous, set-
theoretic) way. Given our set-theoretic reading of the connectives, axioms P5 and P6 above are redundant.
We include them so that the reader can easily cross-check the above axiomatization with the (autonomous)
axiomatic system given in Roeper and Leblanc. We also recommend that text for various key lemmas and
theorems that are known to hold for Popper functions.
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5 Some preliminary reflections on independence

Wenowcome to the notion of independence—or rather, to thenotionsof independence,
since it will soon emerge that there are many.

On the Kolmogorovian theory of probability, A and B are said to be independent
(in a model M = (�,F ,P)) just in case

(FACTORIZATION) P(A ∩ B) = P(A) P(B).

Here we arrive at that part of probability theory that is distinctively probabilistic.
Axioms K1–K3 are general measure-theoretic axioms that apply equally to length,
area and volume (suitably normalized), and even to mass (suitably understood). It is
this characterization of independence that we find only in probability theory.

Note that (FACTORIZATION) generalizes nicely to n events, as follows:

A1, . . .,An are independent (in a model M = (�,F ,P))
iff

(GENERALIZED FACTORIZATION) P
(⋂

Ai
) = ∏

P(Ai).

The right hand side is to be understood as a shorthand for many simultaneous condi-
tions: all probabilities of two conjuncts factorize, all probabilities of three conjuncts
factorize, . . ., the probability of the conjunction of all n events factorizes.

K1–K3 presuppose nothing but the real interval [0, 1] and elementary set theory,
things that are antecedently well understood. But mathematics gives us no indepen-
dent purchase on ‘independence’. For that we must look elsewhere. Paralleling our
discussion of conditional probability in Sect. 2: If (FACTORIZATION) were simply
a stipulative definition of a new technical term, then there could be no objection to
it (nor to a stipulative definition of ‘schmindependence’, should anyone be moved to
give one).

But ‘independence’ is clearly a concept with which we were familiar before Kol-
mogorov arrived on the scene, even more so than the concept of ‘conditional prob-
ability’. The choice of word, after all, is no accident. Indeed, it has such a familiar
ring to it that we are liable to think that (FACTORIZATION) captures what we always
meant by the word ‘independence’ in plain English. The concept of ‘independence’ of
A and B is supposed to capture the idea of the insensitivity of (the probability of) A’s
occurrence (truth) to B’s, or the uninformativeness of B’s occurrence (truth) to A’s.
The probability of A is unmoved by how things stand with respect to B. Once again,
it is an open question whether Kolmogorov has succeeded in capturing this idea. If he
has, then that just means that he has given us a good piece of conceptual analysis.

We think that he has not succeeded. For starters, note that unlike ‘conditional
probability’, ‘independence’ is obviously a multifarious notion.We use the sameword
when we speak of logical independence, counterfactual independence, metaphysical
independence (the Humean absence of any ‘necessary connection’ between distinct
existences in virtue of which some proposition X is true in every possible world in
which another proposition Y is true), evidential independence, and now, probabilistic
independence. So at best, Kolmogorov has given us an analysis of just one concept of
independence among many. Still, that would be quite an achievement. Von Neumann
andMorgenstern certainly did us a service in giving us ‘game theory’, even if solitaire
doesn’t fall within its scope.
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So let us focus on probabilistic independence—and from now on when we speak
simply of ‘independence’, that’s what we will mean. It is usual to speak simply of one
proposition or event being independent of another, as in “A is independent of B”. This
is somewhat careless, encouraging one to forget that independence is a three-place
relation among two propositions and a probability model. Here we part from ordinary
English, and from all the other notions of ‘independence’ listed above, in which inde-
pendence is a two-place relation. Nevertheless, when a particular probability function
is for some reason salient, the usual practice might seem to be innocuous enough (and
in such cases we will sometimes follow it ourselves).

According to the orthodox account, probabilistic independence is symmetric: if A
is independent of B, then B is independent of A (with respect to a given probability
model). This is obvious from the symmetric role that A and B play in (FACTORIZA-
TION). Causal independence, on the other hand, is not symmetric: A can be causally
independent of B without B being causally independent of A: your survival depends
causally on a healthy distribution of air molecules in your vicinity while such a distri-
bution is causally independent of your survival. Similarly, A can be counterfactually
independent of B without B being counterfactually independent of A. We can have:

B �→ A and ¬B �→ A (A is counterfactually independent of B)

while having

A �→ B and ¬A �→ ¬B (B is counterfactually dependent on A).

(Lewis 1979mademuchof such asymmetries in counterfactual dependence in hiswork
on time’s arrow: the past, he argued, is counterfactually independent of the future but
the future is counterfactually dependent on the past.) And regarding supervenience as
a species of metaphysical dependence, this notion of dependence is also not symmet-
ric: mental states may be dependent on physical states without physical states being
dependent on mental states (think of multiple realizability of a given mental state).
To be sure, evidential independence appears to be symmetric. Perhaps, however, that
appearance should be questioned once we question the usual account of probabilistic
independence, as we are now.

Kolmogorov’s notion of independence may be the odd one out in various ways
among several notions of independence, but that does not yet mean that it is odd. Let
us now see just how odd it is.

6 Further peculiarities of the factorizing construal of independence

We have reflected at some length on the orthodox treatment of independence, defined
in terms of the factorization of joint probabilities as given by (FACTORIZATION).
We will call this the factorizing construal of independence.

According to the factorizing construal of independence, anything with extreme
probability has the peculiar property of being probabilistically independent of itself:

If P(X) = 0, then P(X ∩ X) = 0 = P(X)P(X).
If P(X) = 1, then P(X ∩ X) = 1 = P(X)P(X).

Yet offhand, we would have thought that identity is the ultimate case of dependence
(with one exception that we are about to note). Every possible proposition X is:
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• logically dependent on itself (since X entails X);
• counterfactually dependent on itself (since X �→ X and ¬X �→ ¬X);
• supervenient on itself (since in every possible world in which X is the case, X is
the case).7

To be sure, we should be cautious about drawing morals for probabilistic dependence
from other dependence relations. That said, offhand onewould expect the probabilistic
dependence of X onX to bemaximal, not minimal.Much as we took it to be a platitude
that

for every proposition X, the probability of X given X is 1,

so we take it to be a platitude that for every proposition X, X is dependent on X. What
better support, or evidence, for X could there be than X itself? What proposition could
X’s truth value be more sensitive to than X’s itself?

Well, perhaps we should allow exactly one exception: the case where X has proba-
bility 1. Perhaps then X is probabilistically insensitive to itself, since its probability is
alreadymaximal. It seems right that its probability is unmoved by its ownoccurrence—
it has nowhere higher to move! Very well then; let us admit the exception. But this very
consideration only drives home how serious the problem is at the other end: the case
where X has probability 0. The alleged self-independence of probability zero events
is disastrous by these lights, for their sensitivity to their own occurrence should be
maximal, not minimal.

In any case, perhaps the notion of probabilistic independence is not univocal. We
may well have more than one such concept. Then it should come as no surprise if our
intuitions are sometimes pulled in different ways—different concepts may be pulling
them. X is logically dependent on itself even if it has probability 1; perhaps we should
admit a notion of probabilistic independence that yields the same verdict?Wemaywell
want inductive logic, understood as probability theory, to be continuouswith deductive
logic.8 However, the Kolmogorovian orthodoxy treats probabilistic independence as
if it is univocal. And we insist that there is no concept of independence that should
regard probability zero events as independent of themselves. They could not be more
hostage to their own occurrence, probabilistically speaking!

More generally, according to the factorizing construal of independence, any propo-
sition with extreme probability has the peculiar property of being probabilistically
independent of anything. This includes anything that entails the proposition, and any-
thing that the proposition entails. Much as we took it to be a platitude that

for all X and Y, if X entails Y then the probability of Y, given X, is 1,

so we take it to be a platitude that for every proposition X, X is dependent on anything
that entails X. Again, we should perhaps grant probability 1 events exceptional status.
But all the more we should not grant exceptional status to probability 0 events, as
orthodoxywould have it. They could not be further from deserving exemption from the
platitude—even allowing for more than one conception of probabilistic independence.

7 The case of causal dependence is a little different because there are built-in logical or mereological
‘no-overlap’ constraints on the relata of the causal relation. See Arntzenius (1992) for discussion.
8 Thanks to Leon Leontyev for this way of expressing the point.
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We could perhaps tolerate these unwelcome consequences of the factorizing con-
strual of independence if every probability function of interest were regular. Then the
extreme-probability propositions would be confined to logical truths and contradic-
tions, and they could reasonably be dismissed as ‘don’t-cares’ (much as the result
that in classical logic everything follows from a contradiction might be dismissed as a
‘don’t-care’). But, just as we saw in our discussion of problems for the ratio analysis,
many of the propositions in question are ‘cares’: non-trivial propositions of genuine
interest to philosophy, probability theory, and statistics.

Moreover, of course there are irregular probability functions, whether we find them
interesting or not. Our theory should still deliver acceptable verdicts about which
propositions these functions regard as independent.9

7 “Equivalent” formulations of independence

As long as all relevant conditional probabilities are well-defined, the orthodox theory
has many other ways—via conditional probabilities—of saying that A and B are
independent. Here are four of the simplest and most common of these ways:10

i. P(A|B) = P(A)
ii. P(B|A) = P(B)
iii. P(A|B) = P(A|¬B)

iv. P(B|A) = P(B|¬A)

It is crucial that we add the caveat about all salient conditional probabilities being
well-defined. Otherwise the equivalence between the factorizing construal and these
alternative, conditional forms of independence breaks down. Some textbooks on prob-
ability neglect to mention this caveat.11 This is unfortunate since, as we just saw,
according to the factorizing construal, anything with extreme probability is proba-
bilistically independent of itself, whereas this is not the case for all the conditional
probability formulations of independence. For if P(B) = 0, then the orthodox theory
cannot deliver the mandatory verdict that the conditional probability of B, given itself,
is 1. Thus, whereas the factorizing construal gives a verdict on the self-independence
of such zero probability propositions, all of i–iv go silent. Similarly, if P(B) = 1, then
the orthodox theory goes silent on the value of P(B|¬B). So iii and iv go silent for
probability one propositions.

In the remaining sections, we will consider what happens when conditional prob-
abilities are defined even when their antecedents have probability zero. We will show

9 Thanks here to Leon Leontyev.
10 It is shown in Fitelson (1999, 2001) that, despite the unified nature of the Kolmogorovian theory of
probabilistic (in)dependence, there are many (radically) non-equivalent Kolmogorovian measures of degree
of dependence (i.e., degree of correlation among propositions).
11 See, for example, Pfeiffer (1990, pp. 73–84) who states 16 “equivalent” renditions of “A and B are proba-
bilistically independent” (including our four, above) without mentioning that this “equivalence” depends on
the assumption that the conditional probabilities are well-defined. He does the same thing in his discussion
of conditional independence (pp. 89–113). Moreover, in the very same text (pp. 454–462), he discusses
Kolmogorov’s more sophisticated definition of conditional probability. So, he is clearly well aware of the
problem of zero probability conditions in the general case. This is not atypical.
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that when conditional probabilities are taken as primitive (and defined as total func-
tions), a new and different theory of probabilistic independence emerges.

8 Conditional probability and independence—revisited

When we adopt a Popper—and we suggest, a proper—definition of conditional prob-
ability, we are forced to rethink the notion of probabilistic independence. Perhaps the
easiest way to see this is to reconsider the case in which the unconditional probability
of Z is zero. The Popper analogue of the factorizing construal will say that A and B
are independent (in (�,F ,Pr)) iff:

(POPPER FACTORIZATION) Pr(A ∩ B,�) = Pr(A,�) Pr(B,�).

But if Pr(Z,�) = 0, then Pr(Z ∩ Z,�) = 0 = Pr(Z,�)Pr(Z,�). That is, the
Popper analogue of the factorizing construal says that Z is independent of itself in
this case. However, if Pr(Z,�) = 0 , then Pr(Z, Z) = 1 > Pr(Z,�) = 0. So, on this
conditioning construal of probabilistic independence, Z is maximally dependent on
itself (i.e., Z is maximally positively relevant to itself). So, not only are the factorizing
construal and this conditioning construal of independence not equivalent; they are
incompatible in the strongest possible sense. This means that we are now forced to be
more precise about what we mean when we say that “X and Y are probabilistically
independent.”

We take it as intuitively clear that the factorizing construal is, in fact, an incorrect
account of probabilistic independence—indeed, we claim to have just shown this.
After all, it seems clear that nothing could be more relevant to Z than Z itself. The fact
that Z has (the Popper analogue of) unconditional probability zero does nothing to
undermine this intuition. Indeed, on any reasonable measure of incremental support,
Z’s incremental support for itself will be maximal.

A simple examplemakes thismore general point quite clearly. LetH be the hypothe-
sis that a coin generated by a certainmachinewill land heads. The background evidence
� includes the information that the machine in question spits out coins so that their
biases are uniformly distributed on [0,1]. Let B(b) be the proposition that the bias of
the coin is b. It is reasonable to assign zero probability to each of the B(b), since the
governing distribution is continuous, and it is also reasonable to assign conditional
probabilities so as to satisfy Pr(H, B(b)) = b. In any case, for some values of b, B(b) will
be highly relevant toH. That is, for some values of b—namely, high and low ones—we
will surely have Pr(H, B(b)) 
 Pr(H,�), or Pr(H, B(b)) � Pr(H,�). Moreover, it
seems intuitively obvious to us that, in such cases, we should say that B(b) and H
are probabilistically dependent. Alas, the orthodox account of independence cannot
say this. The conditioning construals of independence in which B(b) is the condition
do not speak at all. Worse still, the other conditioning construals and the factorizing
construal do speak, but one wishes they wouldn’t, because what they say is false: they
judge B(b) and H to be independent.

Moving to Kolmogorov’s more sophisticated treatment of conditional probability
will not save the day. For starters, his FACTORIZATION construal is stated purely in
terms of unconditional probabilities, so any finessing of conditional probability will
make no difference there. But even the more sophisticated versions of construals i –
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iv will fail. It follows from the results of Seidenfeld et al. (2001) that probability zero
events can be minimally rather than maximally dependent on themselves. Not only do
such events violate the platitude that every event is maximally self-dependent; they
could not violate it more.

So it seems that we must abandon Kolmogorov’s factorizing and conditioning con-
struals of independence. We propose replacing them with Popper-style conditioning
construals. But, which conditioning construals? As we mentioned above, there are
many possible candidates. We have already rejected the Popper analogue of the fac-
torizing construal. The following two candidates for analyzing ‘A is independent of B
(in (�,F ,Pr))’ naturally come to mind:

(� CONSTRUAL) Pr(A, B) = Pr(A,�)

(NEGATION CONSTRUAL) Pr(A, B) = Pr(A,¬B)

Interestingly, in the theory of Popper functions, (NEGATION CONSTRUAL) is
strictly logically stronger than (� CONSTRUAL), and (� CONSTRUAL) is strictly
logically stronger than (POPPER FACTORIZATION). To see that (POPPER FAC-
TORIZATION) does not entail either (� CONSTRUAL) or (NEGATION CON-
STRUAL), suppose that Pr(A∩B,�) = 0,Pr(B,�) = 0, Pr(A,�) < 1,Pr(A,¬B) <

1, and B entails A, so that Pr(A, B) = 1. Then, Pr(A∩B,�) = 0 = Pr(A,�)Pr(B,�),
but Pr(A, B) > Pr(A, �), and Pr(A, B) > Pr(A,¬B). To see that (� CONSTRUAL)
does not entail (NEGATIONCONSTRUAL), just let A = ¬� = ∅ and B = �. Then,
Pr(A, B) = 0 = Pr(A, �), since B = �. But Pr(A,¬B) = 1 �= Pr(A, B) = 0, since
¬B = A.

See the Appendix for axiomatic proofs of the chain of entailments (NEGATION
CONSTRUAL) ⇒ (� CONSTRUAL) ⇒ (POPPER FACTORIZATION).12

Moreover, both conditioning construals are superior to (POPPER FACTORIZA-
TION), since neither has the consequence that probability zero (conditional on �)
events are independent of themselves; they are rightly judged as self-dependent
(indeed, maximally so). However, (NEGATION CONSTRUAL) disagrees with (�
CONSTRUAL) in judging the self-dependence of probability one events (condi-

12 Suppose that B = ¬A. Is A independent of ¬A? The answer would seem to be no, paralleling our
earlier discussion of every event’s or proposition’s self-dependence—perhaps with one exception. If A has
(the Popper analogue of) unconditional probability zero, then perhaps it is probabilistically insensitive to
itself, since its probability is already minimal. It seems right that its probability is unmoved by its negation’s
occurrence—it has nowhere lower to move! (� CONSTRUAL) delivers this result (0 = 0). (NEGATION
CONSTRUAL) regards A as dependent on ¬A (0 �= 1). But as before, we may want to allow more than
one concept of independence to accommodate this result.
Suppose that A has probability 1, so that¬A has probability 0. This could happen in two ways: a non-trivial
way, and the trivial way in which Pr(_, ¬A) is the constant function 1. (See axiom P3.) In the latter case
we may call ¬A ‘anomalous’. In that case both construals judge A to be independent of ¬A (1 = 1). This
may seem surprising. However, we might simply bite the bullet, given how strange ¬A is—it doesn’t just
have probability 0, but it does so anomalously. It might not be much of a bullet; after all, contradictions
classically entail their own negations, so we have already been primed to expect anomalous propositions to
behave anomalously! Or we might revise (P3), so that rather than defaulting to a value of 1, probabilities
conditional on anomalous propositions get assigned some new non-numerical value, such as ANOMALY.
Then our CONSTRUALS would no longer judge A to be independent of ¬A, since it is not the case that
ANOMALY = 1. We are grateful to Hanti Lin for inspiring this paragraph.
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tional on �). (NEGATION CONSTRUAL) says that they are self-dependent, but
(� CONSTRUAL) says that they are self-independent. Given our earlier discussion,
in which we considered giving probability one events exceptional status in being self-
independent, this seems to be a point in favor of (� CONSTRUAL). Then again,
we also allowed that our concept of probabilistic independence may not be univo-
cal. Perhaps (� CONSTRUAL) and (NEGATION CONSTRUAL) codify different
senses in which the probability of A is unmoved by how things stand with respect
to B. It could be a matter of whether that probability is unmoved by the informa-
tion that B; or a matter of whether it is unmoved by the answer to the question
of which of B or not-B is the case.13 It is perhaps surprising that this distinction
can make a difference; more power to the Popper formalism that it brings out this
difference.

In any case, we need not settle here the issue of whether one of (� CONSTRUAL)
and (NEGATION CONSTRUAL) is superior to the other. What matters here is that
both (� CONSTRUAL) and (NEGATION CONSTRUAL) are superior to their Kol-
mogorovian counterparts.

There are further interesting consequences of our proposals. Probabilistic inde-
pendence, understood either as (� CONSTRUAL) or (NEGATION CONSTRUAL),
is not symmetric. Let Z have probability zero (conditional on �). According to (�
CONSTRUAL), Z is independent of ¬Z:

Pr(Z,¬Z) = 0 = Pr(Z,�).

But ¬Z is dependent on Z:

Pr(¬Z, Z) = 0 �= Pr(¬Z, W) = 1.

Similarly, we can have Pr(A, B) = Pr(A,¬B) without having Pr(B, A) =
Pr(B,¬A). Think of a random selection of a point from the [0, 1] interval. Let

A = the point is 1/2.
B = the point lies in [1/4, 3/4].

Then, intuitively, we should have:

Pr(A, B) = 0 = Pr(A,¬B).
Pr(B, A) = 1 �= 1/2 = Pr(B,¬A).

So on either construal, we can no longer just make claims of the form “A and B are
dependent”. We must now say things like “A is dependent on B” (as opposed to “B is
dependent on A”) to make clearwhich direction of dependence we have in mind. (This
brings probabilistic independence closer to causal, counterfactual, and supervenience,
which are similarly not symmetric, as we have seen.) On either construal, we can
distinguish two (asymmetric) notions of dependence in the obvious ways:

13 Thanks to Hanti Lin for helpful discussion here.
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• (� CONSTRUAL):
• A is positively dependent on B iff Pr(A, B) > Pr(A, �)
• A is negatively dependent on B iff Pr(A, B) < Pr(A, �)

• (NEGATION CONSTRUAL):
• A is positively dependent on B iff Pr(A, B) > Pr(A, ¬ B)
• A is negatively dependent on B iff Pr(A, B) < Pr(A, ¬ B)

The generalization to n ≥ 3 propositions is not so straightforward for either the (�
CONSTRUAL) or (NEGATION CONSTRUAL). We can’t just say that “A1, . . .,An
are mutually independent.” We need to say which of the Ai are independent of (or
dependent on) which.

To sum up: on a Popperian account of independence, we must specify a direction
of independence. Claims about probabilistic (in)dependence are now of the form: “A
is (in)dependent on (of) B, relative to a probability model M”. Properly understood,
probabilistic independence is an asymmetric, three-place relation.

A defender of the Kolmogorov orthodoxy might say at this point that we have done
his work for him: we have exposed how complicated independence becomes when it
is given a Popperian gloss. Doesn’t Ockham’s razor bid us to prefer the simpler theory
of independence? Of course not. We ought not multiply senses of independence (or of
anything else) beyond need. But in demonstrating the inadequacies of the Kolmogorov
treatment, we have demonstrated that patently the need is there. Thales’ theory that
everything is made of water is spectacularly simpler than modern chemistry. That’s
hardly a reason to prefer it.

9 Conditional independence—the plot thickens

Things get even more interesting when we consider the notion of conditional inde-
pendence. On the orthodox theory, this is again understood in terms of factorizing of
probabilities. Propositions A and B are said to be conditionally independent, given C
(according to a probability model (�,F ,P)) iff

P(A ∩ B|C) = P(A|C) P(B|C).

Call this the factorizing construal of conditional independence. But, once again, on
the orthodox view, this means that any proposition with extreme probability is con-
ditionally and unconditionally probabilistically independent of all other propositions,
for all conditions (with positive probability). This is incorrect for reasons we have
given.

Moreover, the “equivalence” between factorizing and conditioning construals of
independence breaks down even more easily in cases of conditional independence.
One conditioning construal of conditional independence of A and B, given C (or ‘C
screening-off A from B’) is that P(A|B ∩ C) = P(A|¬B ∩ C). Of course, this expres-
sion is regarded as undefined on the orthodox theory whenever P(B ∩ C) = 0, so
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the theory goes silent in such a case.14 This is not a happy result. As an illustration,
consider the following simple twist on the coin example. Let X be the proposition that
the bias of the coin is on [0, a], and Y be the proposition that the bias of the coin is
on [a, 1], with uniform distributions in each case. Intuitively, Pr(H, X∩Y) = a, even
though Pr(X ∩ Y) = 0. And for all values of a < 1, we surely want to say that H
and X are dependent, given Y. But, the orthodox theory cannot say this. The condi-
tioning construal of conditional independence just mentioned does not say anything:
P(H|X∩Y) is undefined. The factorizing construal of conditional independence says
that H and X are independent, given Y: P(H ∩ X|Y) = 0 = P(H|Y) P(X|Y). These
construals come apart from each other, and neither delivers the verdict that intuition
demands.

Note that this is a case in which none of the three propositions (taken individually)
has zero unconditional probability. It is a case in which the conditioning event “inter-
acts” with one of the other events, so as to undermine the putative “equivalence” of the
factorizing and conditioning construals of conditional independence in the orthodox
theory. This is onlymore bad news for the orthodox accounts of conditional probability
and independence.

But it is only more good news for the Popper-style accounts that we advocate,
for again they can handle all the requisite conditional probabilities with ease. Again,
we have two construals of ‘H is conditionally independent of X, given Y’, based
respectively on the (�CONSTRUAL) and (NEGATIONCONSTRUAL) respectively:

Pr(H, X ∩ Y) = Pr(H, Y).
Pr(H, X ∩ Y) = Pr(H,¬X ∩ Y).

There is no impediment to imposing the constraint that Pr(H, X∩Y) = a. So we have
(where a < 1):

Pr(H, X ∩ Y) = a �= Pr(H, Y) = Pr(H, bias of coin is on [a, 1]) = (1 + a)/2.

H is dependent on X, given Y, based on the (� CONSTRUAL). Moreover,

Pr(H, X∩Y) = a �= Pr(H,¬X∩Y) = Pr(H, bias of coin is on (a, 1]) = (1 + a)/2.

H and X are adjudicated as conditionally dependent, given Y (for a < 1), based on
the (NEGATION CONSTRUAL). Either way, our intuition is upheld.

10 A call to arms

We conclude that it is time to bring to an end the hegemony of Kolmogorov’s axiom-
atization, and with it, the Kolmogorovian account of independence. We seek indepen-
dence, as it were, from that account of independence. Popper’s axiomatization, and

14 An important special case occurs when C itself has zero unconditional probability. When this happens,
no event can be conditionally independent (or dependent) of any other event, given C. The example below is
even more compelling than this special case, since none of its individual propositions have zero probability.
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the conditioning construal of independence that it inspires, represent more promising
alternatives. Long live the revolution!15

Appendix

Proof of (NEGATIONCONSTRUAL)⇒ (�CONSTRUAL)⇒ (POPPERFACTOR-
IZATION).

First, we prove that (� CONSTRUAL) ⇒ (POPPER FACTORIZATION). Indeed,
we’ll prove the following more general result (the result in question is a special case
of the following, with C = �):

Pr(A, B ∩ C) = Pr(A, C) ⇒ Pr(A ∩ B, C) = Pr(A, C) Pr(B, C)

Assume Pr(A, B ∩ C) = Pr(A, C). Then, by Popper’s product axiom P4, we have

Pr(A ∩ B, C) = Pr(A, B ∩ C) Pr(B, C) = Pr(A, C) Pr(B, C). �
Now, we prove that (NEGATION CONSTRUAL) ⇒ (� CONSTRUAL). That is,
by logic,
Pr(A, B ∩ �) = Pr(A,¬B ∩ �) ⇒ Pr(A, B ∩ �) = Pr(A,�).
Now, Pr(A, B ∩ �) = Pr(A,¬B ∩ �) [Assumption]
Thus,
Pr(A, B ∩ �)Pr(B,�) = Pr(A,¬B ∩ �)Pr(B,�) [algebra]
But also,
Pr(A, B ∩ �)Pr(B,�) = Pr(A ∩ B,�) [Popper’s product axiom P4]
Thus,
Pr(A ∩ B,�) = Pr(A,¬B ∩ �)Pr(B,�),
and so
Pr(A ∩ B,�) = Pr(A,¬B ∩ �) (1 − Pr(¬B,�)) [Popper’s additivity axiom P3]

(This axiom implies Pr(B,�) + Pr(¬B,�) = 1,
since it is not that case that for all X, Pr(X,�) = 1. The fact that
there exists an X such that Pr(X,�) �= 1 is proven as lemma 4(t)
in Roeper and Leblanc (1999, p. 198).)

Pr(A ∩ B,�) = Pr(A,¬B ∩ �) − Pr(A,¬B ∩ �)Pr(¬B,�) [algebra]
Pr(A ∩ B,�) = Pr(A,¬B ∩ �) − Pr(A ∩ ¬B,�) [Popper’s product axiom P4]
Pr(A ∩ B,�) + Pr(A ∩ ¬B,�) = Pr(A,¬B ∩ �) [algebra]
Pr(A,�) = Pr(A,¬B ∩ �)

[It can be shown that Popper’s axioms imply Pr(A,�) = Pr(A∩B,�)+Pr(A∩
¬B,�),
since it is not the case that for all X, Pr(X,�) = 1 (as above).

15 We thank especially Leon Leontyev and Hanti Lin for very helpful comments.
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This is proved as Lemma 4(i) in Roeper and Leblanc (1999, p. 197).]

Pr(A,�) = Pr(A, B ∩ �) [by our assumption] �
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