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Abstract The Jeffreys–Lindley paradox displays how the use of a p value (or number
of standard deviations z) in a frequentist hypothesis test can lead to an inference that
is radically different from that of a Bayesian hypothesis test in the form advocated
by Harold Jeffreys in the 1930s and common today. The setting is the test of a well-
specified null hypothesis (such as the Standard Model of elementary particle physics,
possibly with “nuisance parameters”) versus a composite alternative (such as the Stan-
dard Model plus a new force of nature of unknown strength). The p value, as well
as the ratio of the likelihood under the null hypothesis to the maximized likelihood
under the alternative, can strongly disfavor the null hypothesis, while the Bayesian
posterior probability for the null hypothesis can be arbitrarily large. The academic
statistics literature contains many impassioned comments on this paradox, yet there
is no consensus either on its relevance to scientific communication or on its correct
resolution. The paradox is quite relevant to frontier research in high energy physics.
This paper is an attempt to explain the situation to both physicists and statisticians, in
the hope that further progress can be made.

Keywords Jeffreys–Lindley paradox ·Lindley’s paradox ·Bayesianmodel selection ·
p values · High energy physics

1 Introduction

On July 4, 2012, the leaders of two huge collaborations (CMS and ATLAS) presented
their results at a joint seminar at the CERN laboratory, located on the French–Swiss
border outside Geneva. Each described the observation of a “new boson” (a type of
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particle), suspected to be the long-sought Higgs boson (Incandela and Gianotti 2012).
The statistical significances of the results were expressed in terms of “σ”: carefully
calculated p values (not assuming normality) were mapped onto the equivalent num-
ber of standard deviations in a one-tailed test of the mean of a normal (i.e., Gaussian)
distribution. ATLAS observed 5σ significance by combining the two most powerful
detection modes (different kinds of particles into which the boson decayed) in 2012
data with full results from earlier data. With independent data from a different appara-
tus, and only partially correlated analysis assumptions, CMS observed 5σ significance
in a similar combination, and when combining with some other modes as CMS had
planned for that data set, 4.9σ .

With ATLAS and CMS also measuring similar values for the rates of production
of the detected particles, the new boson was immediately interpreted as the most
anticipated and publicized discovery in high energy physics (HEP) since the Web was
born (also at CERN). Journalists went scurrying for explanations of the meaning of
“σ”, and why “high energy physicists require 5σ for a discovery”. Meanwhile, some
who knew about Bayesian hypothesis testing asked why high energy physicists were
using frequentist p values rather than calculating the posterior belief in the hypotheses.

In this paper, I describe some of the traditions for claiming discovery in HEP, which
have a decidedly frequentist flavor, drawing in a pragmatic way on both Fisher’s ideas
and theNeyman–Pearson (NP) approach, despite their disagreements over foundations
of statistical inference. Of course, some HEP practitioners have been aware of the
criticisms of this approach, having enjoyed interactions with some of the influential
Bayesian statisticians (both subjective and objective in flavor) who attended HEP
workshops on statistics. These issues lead directly to a famous “paradox”, as Lindley
(1957) called it, when testing the hypothesis of a specific value θ0 of a parameter
against a continuous set of alternatives θ . The different scaling of p values and Bayes
factors with sample size, described by Jeffreys and emphasized by Lindley, can lead
the frequentist and the Bayesian to inconsistent strengths of inferences that in some
cases can even reverse the apparent inferences.

However, as described below, it is an understatement to say that the community
of Bayesian statisticians has not reached full agreement on what should replace p
values in scientific communication. For example, two of the most prominent voices of
“objective” Bayesianism (J. Berger and J. Bernardo) advocate fundamentally different
approaches to hypothesis testing for scientific communication. Furthermore, views in
the Bayesian literature regarding the validity of models (in the social sciences for
example) are strikingly different than those common in HEP.

This paper describes today’s rather unsatisfactory situation. Progress in HEPmean-
while continues, but it would be potentially quite useful if more statisticians become
aware of the special circumstances in HEP, and reflect on what the Jeffreys–Lindley
(JL) paradox means to HEP, and vice versa.

In “high energy physics”, also known as “elementary particle physics”, the objects
of study are the smallest building blocks of matter and the forces among them. (For
one perspective, see Wilczek (2004).) The experimental techniques often make use
of the highest-energy accelerated beams attainable. But due to the magic of quantum
mechanics, it is possible to probe much higher energy scales through precise mea-
surements of certain particle decays at lower energy; and since the early universe was
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hotter than our most energetic beams, and still has powerful cosmic accelerators and
extreme conditions, astronomical observations are another crucial source of informa-
tion on “high energy physics”. Historically, many discoveries in HEP have been in
the category known to statisticians as “the interocular traumatic test; you know what
the data mean when the conclusion hits you between the eyes.” (Edwards et al. 1963,
p. 217, citing J. Berkson). In other cases, evidence accumulated slowly, and it was con-
sidered essential to quantify evidence in a fashion that relates directly to the subject
of this review.

A wide range of views on the JL paradox can be found in reviews with commentary
by many distinguished statisticians, in particular those of Shafer (1982), Berger and
Sellke (1987), Berger and Delampady (1987a), and Robert et al. (2009). The review of
Bayes factors by Kass and Raftery (1995) and the earlier book by economist Leamer
(1978) also offer interesting insights. Some of these authors view statistical issues
in their typical data analyses rather differently than do physicists in HEP; perhaps
the greatest contrast is that physicists do often have non-negligible belief that their
null hypotheses are valid to a precision much greater than our measurement capability.
Regarding the search byATLAS andCMS that led to the discovery of “aHiggs boson”,
statistician van Dyk (2014) has prepared an informative summary of the statistical
procedures that were used.

In Sects. 2–4, I review the paradox, discuss the concept of the point null hypothe-
sis, and observe that the paradox arises if there are three different scales in θ having
a hierarchy that is common in HEP. In Sect. 5, I address the notions common among
statisticians that “all models are wrong”, and that scientists tend to be biased against
the null hypothesis, so that the paradox is irrelevant. I also describe the likelihood-ratio
commonly used in HEP as the test statistic. In Sect. 6, I discuss the difficult issue of
choosing the prior for θ , and in particular the scale τ of those values of θ for which
there is non-negligible prior belief. Section 7 briefly describes the completely different
approach to hypothesis testing advocated by Bernardo, which stands apart from the
bulk of the Bayesian literature. In Sect. 8, I discuss how measured values and confi-
dence intervals, for quantities such as production and decay rates, augment the quoted
p value, and how small but precisely measured effects can provide a window into very
high energy physics. Section 9 discusses the choice of Type I error α (probability of
rejecting H0 when it is true) when adopting the approach of NP hypothesis testing,
with some comments on the “5σ myth” of HEP. Finally, in Sect. 10, I discuss the
seemingly universal agreement that a single p value is (at best) a woefully incomplete
summary of the data, and how confidence intervals at various confidence levels help
readers assess the experimental results. I summarize and conclude in Sect. 11.

As it is useful to use precisely defined terms, wemust be aware that statisticians and
physicists (and psychologists, etc.) have different naming conventions. For example,
a physicist says “measured value”, while a statistician says “point estimate” (and
while a psychologist says “effect size in original units”). This paper uses primarily the
language of statisticians, unless otherwise stated. Thus “estimation” does not mean
“guessing”, but rather the calculation of “point estimates” and “interval estimates”.
The latter refers to frequentist confidence intervals or their analogs in other paradigms,
known to physicists as “uncertainties on the measured values”. In this paper, “error” is
generally used in the precisely defined sense of Type I and Type II errors of Neyman–
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Pearson theory (Sect. 9), unless obvious from context. Other terms are defined in
context below. Citations are provided for the benefit of readers who may not be aware
that certain terms (such as “loss”) have specific technical meanings in the statistics
literature. “Effect size” is commonly used in the psychology literature, with at least two
meanings. The first meaning, described by the field’s publication manual (APA 2010,
p. 34) as “most often easily understood”, is simply the measured value of a quantity in
the original (often dimensionful) units. Alternatively, a “standardized” dimensionless
effect size is obtained by dividing by a scale such as a standard deviation. In this
paper, the term always refers to the former definition (original units), corresponding
to the physicist’s usual measured value of a parameter or physical quantity. Finally,
the word “model” in statistics literature usually refers to a probabilistic equation that
describes the assumed data-generating mechanisms (Poisson, binomial, etc.), often
with adjustable parameters. The use of “model” for a “law of nature” is discussed
below.

2 The original “paradox” of Lindley, as corrected by Bartlett

Lindley (1957), with a crucial correction by Bartlett (1957), lays out the paradox in
a form that is useful as our starting point. This exposition also draws on Sect. 5.0 of
Jeffreys (1961) and on Berger and Delampady (1987a). It mostly follows the notation
of the latter, with the convention of upper case for the random variable and lower case
for observed values. Figure 1 serves to illustrate various quantities defined below.

Suppose X having density f (x |θ) is sampled, where θ is an unknown element of
the parameter space �. It is desired to test H0: θ = θ0 versus H1: θ �= θ0. Following
the Bayesian approach to hypothesis testing pioneered by Jeffreys (also referred to as
Bayesian model selection), we assign prior probabilities π0 and π1 = 1 − π0 to the
respective hypotheses. Conditional on H1 being true, one also has a continuous prior
probability density g(θ) for the unknown parameter.

As discussed in the following sections, formulating the problem in this manner
leads to a conceptual issue, since in the continuous parameter space �, a single point
θ0 (set of measure zero) has non-zero probability associated with it. This is impossible

Fig. 1 Illustration of quantities used to define the JL paradox. The unknown parameter is θ , with likelihood
functionL(θ) resulting from a measurement with uncertainty σtot . The point MLE is θ̂ , which in the sketch
is about 5σtot away from the null hypothesis, the “point null” θ0. The point null hypothesis has prior
probability π0, which can be spread out over a small interval of width ε0 without materially affecting the
paradox. The width of the prior pdf g(θ) under H1 has scale τ . The scales have the hierarchy ε0 � σtot � τ
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with a usual probability density, for which the probability assigned to an interval tends
to zero as the width of the interval tends to zero. Assignment of non-zero probability
π0 to a single point θ0 is familiar to physicists by using the Dirac δ-function (times
π0) at θ0, while statisticians often refer to placing “probability mass” at θ0, or to
using “counting measure” for θ0 (in distinction to “Lebesgue measure” for the usual
density g for θ �= θ0). The null hypothesis corresponding to the single point θ0 is
also commonly referred to as a “point null” hypothesis, or as a “sharp hypothesis”.
As discussed below, just as a δ-function can be viewed as useful approximation to a
highly peaked function, for hypotheses in HEP it is often the case that the point null
hypothesis is a useful approximation to a prior that is sufficiently concentrated around
θ0.

If the density f (x |θ) under H1 is normal with mean θ and known variance σ 2, then
for a random sample {x1, x2, . . . xn}, the sample mean is normal with variance σ 2/n,
i.e., X has density N (θ, σ 2/n). For conciseness (and eventually to make the point that
“n” can be obscure), let

σtot ≡ σ/
√
n. (1)

The likelihood is then

L(θ) = 1√
2πσtot

exp
{
−(x − θ)2/2σtot

2
}

, (2)

with maximum likelihood estimate (MLE) θ̂ = x . By Bayes’s Theorem, the posterior
probabilities of the hypotheses, given θ̂ , are:

P(H0|θ̂ ) = 1

A
π0 L(θ0) = 1

A
π0

1√
2πσtot

exp
{
−(θ̂ − θ0)

2/2σtot
2
}

(3)

and

P(H1|θ̂ )= 1

A
π1

∫
g(θ)L(θ)dθ = 1

A
π1

∫
g(θ)

1√
2πσtot

exp
{
−(θ̂ − θ)2/2σtot

2
}
dθ.

(4)

Here A is a normalization constant to make the sum of the two probabilities equal
unity, and the integral is over the support of the prior g(θ).

There will typically be a scale τ that indicates the range of values of θ over which
g(θ) is relatively large. One considers the case

σtot � τ, (5)

so that g(θ) varies slowly where the rest of the integrand is non-negligible, and there-
fore the integral approximately equals g(θ̂), so that

P(H1|θ̂ ) ≈ 1

A
π1 g(θ̂) (6)

123



400 Synthese (2017) 194:395–432

Then the ratio of posterior odds to prior odds for H0, i.e., the Bayes factor (BF), is
independent of A and π0, and given by

BF ≡ P(H0|θ̂ )

P(H1|θ̂ )

/
π0

π1
≈ 1√

2πσtotg(θ̂)
exp

{
−(θ̂ − θ0)

2/2σtot
2
}

= 1√
2πσtotg(θ̂)

exp(−z2/2), (7)

where

z = (θ̂ − θ0)/σtot = √
n(θ̂ − θ0)/σ (8)

is the usual statistic providing the departure from the null hypothesis in units of σtot.
Some authors (e.g., Kass and Raftery (1995)) use the notation B01 for this Bayes
factor, to make clear which hypotheses are used in the ratio; as this paper always uses
the same ratio, the subscripts are suppressed. Then the p value for the two-tailed test
is p = 2(1−
(z)), where 
 is the standard normal cumulative distribution function.
(As discussed in Sect. 5.2, in HEP often θ is physically non-negative, and hence a
one-tailed test is used, i.e., p = 1 − 
(z).)

Jeffreys (1961, p. 248) notes that g(θ̂) is independent of n and σtot goes as 1/
√
n,

and therefore a given cutoff value of BF does not correspond to a fixed value of z. This
discrepancy in the sample-size scaling of z and p values compared to that of Bayes
factors (already noted for a constant g on p. 194 in his first edition of 1939) is at the
core of the JL paradox, even if one does not take values of n so extreme as to make
P(H0|θ̂ ) > P(H1|θ̂ ).

Jeffreys (1961, Appendix B, p. 435) curiously downplays the discrepancy at the
end of a sentence that summarizes his objections to testing based on p values (almost
verbatim with p. 360 of his 1939 edition): “In spite of the difference in principle
between my tests and those based on [p values], and the omission of the latter to give
the increase in the critical values for large n, dictated essentially by the fact that in
testing a small departure found from a large number of observations we are selecting
a value out of a long range and should allow for selection, it appears that there is not
much difference in the practical recommendations.” He does say, “At large numbers
of observations there is a difference”, but he suggests that this will be rare and that the
test might not be properly formulated: “internal correlation should be suspected and
tested”.

In contrast, Lindley (1957) emphasized how large the discrepancy could be, using
the example where g(θ) is taken to be constant over an interval that contains both θ̂

and the range of θ in which the integrand is non-negligible. For any arbitrarily small p
value (arbitrarily large z) that is traditionally interpreted as evidence against the null
hypothesis, there will always exist n for which the BF can be arbitrarily large in favor
of the null hypothesis.

Bartlett (1957) quickly noted that Lindley had neglected the length of the interval
over which g(θ) is constant, which should appear in the numerator of the BF, and
which makes the posterior probability of H0 “much more arbitrary”. More generally,
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the normalization of g always has a scale τ that characterizes the extent in θ for which
g is non-negligible, which implies that g(θ̂) ∝ 1/τ . Thus, there is a factor of τ in the
numerator of BF. For example, Berger and Delampady (1987a) and others consider
g(θ) having density N (θ0, τ

2), which, in the limit of Eq. 5, leads to

BF = τ

σtot
exp(−z2/2). (9)

There is the same proportionality in the Lindley/Bartlett example if the length of their
interval is τ . The crucial point is the generic scaling,

BF ∝ τ

σtot
exp(−z2/2). (10)

Of course, the value of the proportionality constant depends on the form of g and
specifically on g(θ̂).

Meanwhile, fromEq. 2, the ratioλof the likelihoodof θ0 under H0 and themaximum
likelihood under H1 is

λ = L(θ0)/L(θ̂) (11)

= exp
{
(θ̂ − θ0)

2/2σtot
2
} /

exp
{
(θ̂ − θ̂ )2/2σtot

2
}

(12)

= exp(−z2/2) (13)

∝
(σtot

τ

)
BF. (14)

Thus, unlike the case of simple-vs-simple hypotheses discussed below in Sect. 2.2,
this maximum likelihood ratio takes the side of the p value in disfavoring the null
hypothesis for large z, independent of σtot/τ , and thus independent of sample size
n. This difference between maximizing L(θ) under H1, and averaging it under H1
weighted by the prior g(θ), can be dramatic.

The factor σtot/τ (arising from the average of L weighted by g in Eq. 4) is often
called the “Ockham factor” that provides a desirable “Ockham’s razor” effect (Jaynes
2003, Chap. 20) by penalizing H1 for imprecise specification of θ . But the fact that
(even asymptotically) BF depends directly on the scale τ of the prior g(θ) (and more
precisely on g(θ̂)) can come as a surprise to those deeply steeped in Bayesian point and
interval estimation, where typically the dependence on all priors diminishes asymptot-
ically. The surprise is perhaps enhanced since the BF is often introduced as the factor
by which prior odds (even if subjective) are modified in light of the observed data,
giving the initial impression that the subjective part is factorized out from the BF.

The likelihood ratio λ = exp(−z2/2) takes on the numerical values 0.61, 0.14,
0.011, 0.00034, and 3.7E-06, as z is equal to 1, 2, 3, 4, and 5, respectively. Thus, in
order for the Ockham factor to reverse the preferences of the hypotheses in the BF
compared to the maximum likelihood ratio λ, the Ockham factor must be smaller than
these numbers in the respective cases. Some examples of σtot and τ in HEP that can
do this (at least up to z = 4) are in Sect. 5.1. As discussed below, even when not in
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the extreme case where the Ockham factor reverses the preference of the hypotheses,
its effect deserves scrutiny.

From the derivation, the origin of the Ockham factor (and hence sample-size depen-
dence) does not depend on the chosen value of π0, and thus not on the commonly
suggested choice of π0 = 1/2. The scaling in Eq. 10 follows from assigning any
non-zero probability to the single point θ = θ0, as described above using the Dirac
δ-function, or “probability mass”.

The situation clearly invited further studies, and various authors, beginning with
Edwards et al. (1963), have explored the impact of changing g(θ), making numerical
comparisons of p values to Bayes factors in contexts such as testing a point null
hypothesis for a binomial parameter. Generally they have given examples in which
the p value is always numerically smaller than the BF, even when the prior for θ “gives
the utmost generosity to the alternative hypothesis”.

2.1 Is there really a “paradox”?

A trivial “resolution” of JL paradox is to point out that there is no reason to expect
the numerical results of frequentist and Bayesian hypothesis testing to agree, as they
calculate different quantities. Still, it is unnerving to many that “hypothesis tests” that
are both communicating scientific results for the same data can have such a large
discrepancy. So is it a paradox?

I prefer to use the word “paradox” with the meaning I recall from school, “a state-
ment that is seemingly contradictory or opposed to common sense and yet is perhaps
true” (Webster 1969, definition 2a). This is the meaning of the word, for example, in
the celebrated “paradoxes” of Special Relativity, such as the Twin Paradox and the
Pole-in-Barn Paradox. The “resolution” of a paradox is then a careful explanation of
why it is not a contradiction. I therefore do not use the word paradox as a synonym
for contradiction—that takes a word with (I think) a very useful meaning and wastes
it on a redundant meaning of another word. It can however be confusing that what
is deemed paradoxical depends on the personal perspective of what is “seemingly”
contradictory. If someone says, “What Lindley called a paradox is not a paradox”,
then typically they either define paradox as a synonym for contradiction, or it was
always so obvious to them that the paradox is not a contradiction that they think it is
not paradoxical. (It could also be that there is a contradiction that cannot be resolved,
but I have not seen that used as an argument for why it is not a paradox.) Although it
may still be questionable as to whether there is a resolution satisfactory to everyone,
for now I think that the word paradox is quite apt. As the deep issue is the scaling of
the BF with sample size (for fixed p value) as pointed out by Jeffreys already in 1939,
I follow some others in calling it the Jeffreys–Lindley (JL) paradox.

Other ambiguities in discussions regarding the JL paradox include whether the
focus is on the posterior odds of H0 (which includes the prior odds) or on the BF
(which does not). In addition, while one often introduces the paradox by noting the
extreme cases where the p value and the BF seem to imply opposite inferences, one
should also emphasize the less dramatic (but still disturbing) cases where the Ockham
factor plays a large (and potentially) arbitrary role, even if the BF favors H1. In the
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latter cases, it can be claimed that the p value overstates the evidence against H0. In
this paper I focus on the BF, following some others, e.g. Edwards et al (1963, who
somewhat confusingly denote it by L , p. 218) and Bernardo (1999, p. 102). I also
take a rather inclusive view of the paradox, as the issue of differences in sample size
scaling is always present, even if not taken to the extreme limit where the Ockham
factor overwhelms the BF, and even reverses arbitrarily small prior probability for H0.

2.2 The JL paradox is not about testing simple H0 vs simple H1

Testing simple H0: θ = θ0 vs simple H1: θ = θ1 provides another interesting contrast
between Bayesian and frequentist hypothesis testing, but this is not an example of the
JL paradox. The Bayes factor and the likelihood ratio are the same (in the absence
of nuisance parameters), and therefore in agreement as to which hypothesis the data
favor. This is in contrast to the high-n limit of the JL paradox,

In the situation of the JL paradox, there is a value of θ under H1 that is equal to the
MLE θ̂ , and which consequently has a likelihood no lower than that of θ0. The extent
to which θ̂ is not favored by the prior is encoded in the Ockham factor of Eq. 14, which
means that the BF and the likelihood ratio λ can disagree on both the magnitude and
even the direction of the evidence.

Simple-vs-simple hypothesis tests are far less common in HEP than simple-vs-
composite tests, but have arisen as the CERN experiments have been attempting to
infer properties of the new boson, such as the quantum numbers that characterize
its spin and parity. Again supposing X having density f (x |θ) is sampled, now one
can form two well-defined p values, namely p0 indicating departures from H0 in
the direction of H1, and p1 indicating departures from H1 in the direction of H0. A
physicist will examine both p values in making an inference.

Thompson (2007, p. 108) argues that the set of the two p values is “the evidence”,
andmany inHEPmayagree.Certainly neglecting oneof the p values canbedangerous.
For example, if θ0 < θ̂ < θ1, and σtot � θ1 − θ0, then it is conceivable that H0 is
rejected at 5σ , while if H1 were the null hypothesis, it would be rejected at 7σ . A
physicist would be well aware of this circumstance and hardly fall into the straw-man
trap of implicitly accepting H1 by focusing only on p0 and “rejecting” (only) H0. The
natural reaction would be to question both hypotheses; i.e., the two-simple-hypothesis
model would be questioned. (In this context, Senn (2001, pp. 200–201) has further
criticism and references regarding the issue of sample-size dependence of p values.)

3 Do point null hypotheses make sense in principle, or in practice?

In the Bayesian literature, there are notably differing attitudes expressed regarding
the relevance of a point null hypothesis θ = θ0. Starting with Jeffreys, the fact that
Bayesian hypothesis testing can treat a point null hypothesis in a special way is con-
sidered by many proponents to be an advantage. (As discussed in Sect. 9, frequentist
testing of a point null vs a composite alternative is tied to interval estimation, a com-
pletely different approach.) The hypothesis test is often phrased in the language of
model selection: the “smaller” model H0 is nested in the “larger” model H1. From
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this point of view, it seems natural to have one’s prior probabilities π0 and π1 for the
two models. However, as mentioned above, from the point of view of putting a prior
on the entire space � in the larger model, this corresponds to a non-regular prior that
has counting measure (δ-function to physicists) on θ0 and Lebesgue measure (usual
probability density to physicists) on θ �= θ0.

As discussed by Casella and Berger (1987a), some of themore disturbing aspects of
the JL paradox are ameliorated (or even “reconciled”) if there is no point null, and the
test is the so-called “one-sided test”, namely H0: θ ≤ θ0 versus H1: θ > θ0. Given the
importance of the issue of probability assigned to the point null, some of the opinions
expressed in the statistics literature are highlighted below, to contrast with the attitude
in HEP described in Sect. 5.

Lindley (2009) lauds the “triumph” of Jeffreys’s “general method of significance
tests, putting a concentration of prior probability on the null—no ignorance here—and
evaluating the posterior probability usingwhat we now call Bayes factors.” As a strong
advocate of the use of subjective priors that represent personal belief, Lindley views
the probability mass on the point null as subjective. (In the same comment, Lindley
criticizes Jeffrey’s “error” of integrating over the sample space of unobserved data in
formulating his eponymous priors for use in point and interval estimation.)

At the other end of the spectrum of Bayesian theorists, Bernardo (2009) comments
on Robert et al. (2009): “Jeffreys intends to obtain a posterior probability for a precise
null hypothesis, and, to do this, he is forced to use a mixed prior which puts a lump
of probability p = Pr(H0) on the null, say H0 ≡ θ = θ0 and distributes the rest
with a proper prior p(θ) (he mostly chooses p = 1/2). This has a very upsetting
consequence, usually known as Lindley’s paradox: for any fixed prior probability p
independent of the sample size n, the procedure will wrongly accept H0 whenever the
likelihood is concentrated around a true parameter value which lies O(n−1/2) from
H0. I find it difficult to accept a procedurewhich is known to produce thewrong answer
under specific, but not controllable, circumstances.” When pressed by commenters,
Bernardo (2011b) says that “I am sure that there are situations where the scientist
is willing to use a prior distribution highly concentrated at a particular region and
explore the consequences of this assumption. . . What I claim is that, even in precise
hypothesis testing situations, the scientist is often interested in an analysis which does
not assume this type of sharp prior knowledge….” Bernardo goes on to advocate
a different approach (Sect. 7), which “has the nontrivial merit of being able to use
for both estimation and hypothesis testing problems a single, unified theory for the
derivation of objective ‘reference’ priors.”

Some statisticians find point null hypotheses irrelevant to their own work. In the
context of an unenthusiastic comment on the Bayesian information criterion (BIC),
Gelman and Rubin (1995) say “More generally, realistic prior distributions in social
science do not have amass of probability at zero….” Raftery (1995b) disagrees, saying
that “social scientists are prepared to act as if they had prior distributions with point
masses at zero. . . social scientists often entertain the possibility that an effect is small”.

In the commentary of Bernardo (2011b), C. Robert and J. Rousseau say, “Down
with point masses! The requirement that one uses a point mass as a prior when testing
for point null hypotheses is always an embarrassment and often a cause of misunder-
standing in our classrooms. Rephrasing the decision to pick the simpler model as the
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result of a larger advantage is thus much more likely to convince our students. What
matters in pointwise hypothesis testing is not whether or not θ = θ0 holds but what
the consequences of a wrong decision are.”

Some comments on the point null hypothesis are related to another claim, that
all models and all point nulls are at best approximations that are wrong at some
level. I discuss this point in more detail in Sect. 5, but include a few quotes here.
Edwards et al. (1963) say, “. . . in typical applications, one of the hypotheses—the
null hypothesis—is known by all concerned to be false from the outset,” citing others
including Berkson (1938). Vardeman (1987) claims, “Competent scientists do not
believe their own models or theories, but rather treat them as convenient fictions. A
small (or even 0) prior probability that the current theory is true is not just a device to
make posterior probabilities as small as p values, it is the way good scientists think!”

Casella and Berger (1987b) object specifically to Jeffreys’s use of π0 = π1 = 1/2,
used in modern papers as well: “Most researchers would not put 50% prior proba-
bility on H0. The purpose of an experiment is often to disprove H0 and researchers
are not performing experiments that they believe, a priori, will fail half the time!”
Kadane (1987) expresses a similar sentiment: “For the last 15 years or so I have been
looking seriously for special cases in which I might have some serious belief in a null
hypothesis. I have found only one [testing astrologer]…I do not expect to test a precise
hypothesis as a serious statistical calculation.”

As discussed below, such statisticians have evidently not been socializingwithmany
HEPphysicists. In fact, in the literature I consulted, I encountered very few statisticians
who granted, as did Zellner (2009), that physical laws such as E = mc2 are point
hypotheses, and “Many other examples of sharp or precise hypotheses can be given
and it is incorrect to exclude such hypotheses a priori or term them ‘unrealistic’….”

Condensed matter physicist and Nobel Laureate Philip Anderson (1992) argued for
Jeffreys-style hypothesis testing with respect to a claim for evidence for a fifth force
of nature. “Let us take the ‘fifth force’. If we assume from the outset that there is a
fifth force, and we need only measure its magnitude, we are assigning the bin with
zero range and zero magnitude an infinitesimal probability to begin with. Actually, we
should be assigning this bin, which is the null hypothesis we want to test, some finite
a priori probability—like 1/2—and sharing out the remaining 1/2 among all the other
strengths and ranges.”

Already in Edwards et al. (1963, p. 235) there was a key point related to the situation
inHEP: “Bayesians. . . must remember that the null hypothesis is a hazily defined small
region rather than a point.” They also emphasized the subjective nature of singling out
a point null hypothesis: “At least for Bayesian statisticians, however, no procedure for
testing a sharp null hypothesis is likely to be appropriate unless the null hypothesis
deserves special initial credence.”

That the “point” null can really be a “hazily defined small region” is clear from the
derivation in Sect. 2. The general scaling conclusion of Eq. 10 remains valid if “hazily
defined small region” means that the region of θ included in H0 has a scale ε0 such that
ε0 � σtot. To a physicist, this just means that computing integrals using a δ-function
is a good approximation to integrating over a finite region in θ . (Some authors, such
as Berger and Delampady (1987a) have explored quantitatively the approximation
induced in the BF by non-zero ε0).
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4 Three scales for θ yield a paradox

From the preceding sections, we can conclude that for the JL paradox three scales in
the parameter space �, namely:

1. ε0, the scale under H0;
2. σtot, the scale for the total measurement uncertainty; and
3. τ , the scale under H1;

and that they have the hierarchy

ε0 � σtot � τ. (15)

This situation is common in frontier experiments in HEP, where, as discussed in
Sect. 5.1, the three scales are often largely independent. We even have cases where
ε0 = 0, i.e., most of the subjective prior probability is on θ = 0. This is the case if θ

is the mass of the photon.
As noted for example by Shafer (1982), the source of the precision of σtot does not

matter as long as condition in Eq. 15 is satisfied. The statistics literature tends to focus
on the case where σtot arises from a sample size n via Eq. 1. This invites the question
as to whether n can really be arbitrarily large in order to make σtot arbitrarily small.
In my view the existence of a regime where the BF goes as τ/σtot for fixed z (as in
Eq. 10) is the fundamental characteristic that can lead to the JL paradox, even if this
regime does not extend to σtot → 0. As I discuss in Sect. 5.1, such regimes are present
in HEP analyses, and there is not always a well-defined n underlying σtot, a point I
return to in Sects. 5.2 and 6 below in discussing τ . But we first consider the model
itself.

5 HEP and belief in the null hypothesis

At the heart of the measurement models in HEP are well-established equations that are
commonly known as “laws of nature”. By some historical quirks, the current “laws” of
elementary particle physics, which have survived several decades of intense scrutiny
with only a fewwell-specifiedmodifications, are collectively called a “model”, namely
the Standard Model (SM). In this review, I refer to the equations of such “laws”, or
alternatives considered as potential replacements for them, as “core physics models”.
The currently accepted core physics models have parameters, such as masses of the
quarks and leptons, which with few exceptions have all been measured reasonably
precisely (even if requiring care to define).

Multiple complications arise in going from the core physics model to the full mea-
surement model that describes the probability densities for observations such as the
momentum spectra of particles emerging from proton-proton collisions. Theoretical
calculations based on the core physics model can be quite complex, requiring, for
example, approximations due to truncation of power series, incomplete understanding
of the internal structure of colliding protons, and insufficient understanding of the
manner in which quarks emerging from the collision recombine into sprays of parti-
cles (“jets”) that can be detected. The results of such calculations, with their attendant
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uncertainties, must then be propagated through simulations of the response of detec-
tors that are parametrized usingmany calibration constants, adjustments for inefficient
detection, misidentification of particles, etc. Much of the work in data analysis in HEP
involves subsidiary analyses to measure and calibrate detector responses, to check the
validity of theoretical predictions to describe data (especially where no departures are
expected), and to confirm the accuracy of many aspects of the simulations.

The aphorism “all models are wrong” (Box 1976) can certainly apply to the detector
simulation, where common assumptions of normal or log-normal parameterizations
are, at best, only good approximations. But the pure core physics models still exist
as testable hypotheses that may be regarded as point null hypotheses. Alternatives
to the SM are more generalized models in which the SM is nested. It is certainly
worth trying to understand if some physical parameter in the alternative core physics
model is zero (corresponding to the SM), even if it is necessary to do so through the
smoke of imperfect detector descriptions with many uninteresting and imperfectly
known nuisance parameters. Indeed much of what distinguishes the capabilities of
experimenters is how well they can do precisely that by determining the detector
response through careful calibration and cross-checks. This distinction is over-looked
in the contention (Berger and Delampady 1987a, p. 320) that a point null hypothesis in
a core physics model cannot be precisely tested if the rest of the measurement model
is not specified perfectly.

There is a deeper point to be made about core physics models concerning the
difference between a model being a good “approximation” in the ordinary sense of the
word, and the concept of a mathematical limit. The equations of Newtonian physics
have been superseded by those of special and general relativity, but the earlier equations
are not just approximations that did a good job in predicting (most) planetary orbits;
they are the correct mathematical limits in a precise sense. The kinematic expressions
for momentum, kinetic energy, etc., are the limits of the special relativity equations in
the limit as the speed goes to zero. That is, if you specify amaximum tolerance for error
due to the approximation of Newtonian mechanics, then there exists a speed below
which it will always be correct within that tolerance. Similarly, Newton’s universal
law of gravity is the correct mathematical limit of General Relativity in the limit of
small gravitational fields and low speeds (conditions that were famously not satisfied
to observational precision for the orbit of the planet Mercury).

This limiting behavior can often be viewed through an appropriate power series. For
example, we can expand the expression for kinetic energy T from special relativity,
T = √

p2 + m2−m, in powers of p2/m2 in the non-relativistic limitwheremomentum
p is much smaller than themassm. TheNewtonian expression, T = p2/2m, is the first
term in the series, followed by the lowest order relativistic correction term of p4/8m3.
(I use the usual HEP units in which the speed of light c is 1 and dimensionless; to use
other units, substitute pc for p, and mc2 for m.)

An analogous, deeper concept arises in the context of effective field theories. An
effective field theory in a sense consists of the correct first term(s) in a power series
of inverse powers of some scale that is much higher than the applicable scale of the
effective theory (Georgi 1993). When a theory is expressed as an infinite series, a key
issue is whether there is a finite number of coefficients to be determined experimen-
tally, from which all other coefficients can be (at least in principle) calculated, with no
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unphysical answers (in particular infinity) appearing for measurable quantities. The-
ories having this property are called renormalizable, and are naturally greatly favored
over theories that give infinities for measurable quantities or that require in effect an
infinite number of adjustable parameters. It was amajormilestone inHEP theorywhen
it was shown that the SM (including its Higgs boson) is in a class of renormalizable
theories (’t Hooft 1999); removing the Higgs boson destroys this property.

In the last three or four decades, thousands of measurements have tested the con-
sistency of the predictions of the SM, many with remarkable precision, including of
coursemeasurements at the LHC.Nonetheless, the SM iswidely believed to be incom-
plete, as it leaves unanswered some obvious questions (such as why there are three
generations of quarks and leptons, andwhy their masses have the values they do). If the
goal of a unified theory of forces is to succeed, the current mathematical formulation
will become embedded into a larger mathematical structure, such that more forces and
quanta will have to be added. Indeed much of the current theoretical and experimental
research program is aimed at uncovering these extensions, while a significant effort
is also spent on understanding further the consequences of the known relationships.
Nevertheless, whatever new physics is added, we also expect that the SM will remain
a correct mathematical limit, or a correct effective field theory, within a more inclusive
theory. It is in this sense of being the correct limit or correct effective field theory that
physicists believe that the SM is “true”, both in its parts and in the collective whole.
(I am aware that there are deep philosophical questions about reality, and that this
point of view can be considered “naive”, but this is a point of view that is common
among high energy physicists.)

It may be that on deeper inspection the distinction between an ordinary “approxi-
mation” and a mathematical limit will not be so great, as even crude approximations
might be considered as types of limits. Also, the usefulness of power series breaks
down in certain important “non-perturbative” regimes. Nonetheless, the concepts of
renormalizability, limits, and effective field theories are helpful in clarifying what is
meant by belief in core physics models. Comparing the approach of many physicists
to that of statisticians working in other fields, an important distinction appears to be
the absence of core “laws” in their models. Under such circumstances, one would
naturally be averse to obsession about exact values of model parameters when the
uncertainty in the model itself is already dominant.

5.1 Examples of three scales for θ in HEP experiments

Many searches at the frontier of HEP have three scales with the hierarchy in Eq. 15.
An example is an experiment in the 1980s that searched for a particular decay of a
particle called the long-lived neutral kaon, the K0

L. This decay, to a muon and electron,
had been previously credibly ruled out for a branching fraction (probability per kaon
decay) of 10−8 or higher. With newer technology and better beams, the proposal was
to search down to a level of 10−12. This decay was forbidden at this level in the SM,
but there was a possibility that the decay occurred at the 10−17 level (Barroso et al.
1984) or lower via a process where neutrinos change type within an expanded version
of the SM; since this latter process was out of reach, it was included in the “point null”

123



Synthese (2017) 194:395–432 409

hypothesis. This search was therefore a “fishing expedition” for “physics beyond the
Standard Model” (BSM physics), in this case a new force of nature with σtot ≈ 10−12

and ε0 ≈ 10−17. Both the scale τ of prior belief and g(θ) would be hard to define,
as the motivation for performing the experiment was the capability to explore the
unknown with the potential for a major discovery of a new force. For me personally,
π1 was small (say 1%), and the scale τ was probably close to that of the range being
explored, 10−8. (The first incarnation of the experiment reached σtot ≈ 10−11, without
evidence for a new force (Arisaka et al. 1993)). As discussed in Sect. 8.2, searches
for such rare decays are typically interpreted in terms of the influence of possible new
particles with very high masses, higher than can be directly produced.

As another example, perhaps the most extreme, it is of great interest to determine
whether or not protons decay, i.e., whether or not the decay rate is exactly zero, as so
far seems to be the case experimentally. Experiments have already probed values of the
average decay rate per proton of 1 decay per 1031–1033 years. This is part of the range
of values predicted by certain unified field theories that extend the SM (Wilczek 2004).
As the age of the universe is order 1010 years, these are indeed very small rates. Thanks
to the exponential nature of such decays in quantum mechanics, the search for such
tiny decay rates is possible by observing nearly 1034 protons (many kilotons of water)
for several years, rather than by observing several protons for 1034 years! Assigning
the three scales is rather arbitrary, but I would say that σtot ≈ 10−32 and τ initially was
perhaps 10−28. Historically the null hypothesis under the SM was considered to be a
point exactly at zero decay rate, until 1976 when ’t Hooft (1976) pointed out an exotic
non-perturbative mechanism for proton decay. But his formula for the SM rate has a
factor of about exp(−137π) = 10−187 that makes it negligible even compared to the
BSM rates being explored experimentally. (See Babu et al. (2013) for a recent review.)

Finally, among the multitude of current searches for BSM physics at the LHC to
which Eq. 15 applies, I mention the example of the search for production a heavy ver-
sion of the Z0 boson (Sect. 8), a so-called Z′ (pronounced “Z-prime”). The Z′ would be
the quantum of a new force that appears generically in many speculative BSMmodels,
but without any reliable prediction as to whether the mass or production rate is acces-
sible at the LHC. For these searches, ε0 = 0 in the SM; σtot is determined by the LHC
beam energies, intensities, and the general-purpose detector’s measuring capabilities;
the scale τ is again rather arbitrary (as are π0 and g), but much larger than σtot.

In all three of these examples, the conditions of Eq. 15 are met. Furthermore,
the three scales are largely independent. There can be a loose connection in that an
experiment may be designed with a particular subjective value of τ in mind, which
then influences how resources are allocated, if feasible, to obtain a value of σtot that
may settle a particular scientific issue. But this kind of connection can be tenuous in
HEP, especially when an existing general-purpose apparatus such as CMS or ATLAS
is applied to a new measurement. Therefore there is no generally applicable rule of
thumb relating τ to σtot.

Even if some sense of the scale τ can be specified, there still exists the arbitrariness
in choosing the form of g. Many experimenters in HEP think in terms of “orders of
magnitude”, with an implicit metric that is uniform in the log of the decay rate. For
example, some might say that “the experiment is worth doing if it extends the reach
by a factor of 10”, or that “it is worth taking data for another year if the number of
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interactions observed is doubled”. But it is not at all clear that such phrasing really
corresponds to a belief that is uniform in the implicit logarithmic metric.

5.2 Test statistics for computing p values in HEP

There is a long tradition in HEP of using likelihood ratios for both hypothesis testing
and estimation, following established frequentist theory (Stuart et al. 1999, Chap.
22) such as the NP Lemma and Wilks’s Theorem. This is sometimes described
in the jargon of HEP (James 1980), and other times with more extensive sourcing
(Eadie et al. 1971; Baker and Cousins 1984; James 2006; Cowan et al. 2011). When
merited, quite detailed likelihood functions (both binned and unbinned) are con-
structed. In many cases, θ is a physically non-negative quantity (such as a mass or a
Poisson mean) that vanishes under the null hypothesis (θ0 = 0), and the alternative is
H1: θ > 0. The likelihood-ratio test statistic, denoted by λ, and its distribution under
the null hypothesis (see below) are used in a one-tailed test to obtain a p value, which
is then converted to z, the equivalent number of standard deviations (σ ) in a one-tailed
test of the mean of a normal distribution,

z = 
−1(1 − p) = √
2 erf−1(1 − 2p). (16)

For example, z = 3 corresponds to a p value of 1.35 × 10−3, and z = 5 to a p value
of 2.9 × 10−7. (For upper confidence limits on θ , p values are commonly modified
to mitigate some issues caused by downward fluctuations, but this does not affect the
procedure for testing H0).

Nuisance parameters arising from detector calibration, estimates of background
rates, etc., are abundant in these analyses. A large part of the analysis effort is devoted
to understanding and validating the (often complicated) descriptions of the response
of the experimental apparatus that is included in λ. For nuisance parameters, the uncer-
tainties are typically listed as “systematic” in nature, the name that elementary statistics
books use for uncertainties that are not reduced with more sampling. Nevertheless,
some systematic uncertainties can be reduced as more data is taken and used in the
subsidiary analyses for calibrations.

A typical example is the calibration of the response of the detector to a high-energy
photon (γ ), crucial for detecting the decay of the Higgs boson to two photons. The
basic detector response (an optical flash converted to an analog electrical pulse that is
digitized) must be converted to units of energy. The resulting energy “measurement”
suffers from a smearing due to resolution as well as errors in offset and scale. Special
calibration data and computer simulations are used to measure both the width and
shape of the smearing function, as well as to determine offsets and scales that still have
residual uncertainty. In terms of the simple N (θ, σtot

2) model discussed throughout
this paper, we have complications: the response function may not be normal but can
be measured; the bias on θ may not be zero but can be measured; and σtot is also
measured.All of the calibrationsmay changewith temperature, position in the detector,
radiation damage, etc. Many resources are put into tracking the time-evolution of
calibration parameters, and therefore minimizing, but of course never eliminating, the
uncertainties.
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Such calibration takes place for all the subdetectors used in a HEP experiment, for
all the basic types of detected particles (electrons, muons, pions, etc.). Ultimately, with
enough data, certain systematic uncertainties approach constant values that limit the
usefulness adding more data. (Example of limiting systematics would include finite
resolution on the time dependence of detector response; control of the lasers used for
calibration; magnetic field inhomogeneities not perfectly mapped; imperfect material
description in the detector simulation; and various theoretical uncertainties.)

Once models for the nuisance parameters are selected, various approaches can be
used to “eliminate” them from the likelihood ratio λ (Cousins 2005). “Profiling” the
nuisances parameters (i.e., re-optimizing the MLEs of the nuisance parameters for
each trial value of the parameter of interest) has been part of the basic HEP software
tools (though not called profiling) for decades (James 1980). The results on the Higgs
boson at the LHC have been based on profiling, partly because asymptotic formulas
for profile likelihoods were generalized (Cowan et al. 2011) and found to be useful. It
is also common to integrate out (marginalize) nuisance parameters in λ in a Bayesian
fashion (typically using evidence-based priors), usually through Monte Carlo integra-
tion (while treating the parameter of interest in a frequentist manner).

In many analyses, the result is fairly robust to the treatment of nuisance parameters
in the definition of λ. For the separate step of obtaining the distribution of λ under
the null hypothesis, asymptotic theory (Cowan et al. 2011) can be applicable, but
when feasible the experimenters also perform Monte Carlo simulations of pseudo-
experiments. These simulations treat the nuisance parameters in some frequentist and
Bayesian-inspired ways, and are typically (though not always) rather insensitive to the
choice of method.

To the extent that integrations are performed over the nuisance parameters, or that
profiling yields similar results, the use of λ as a test statistic for a frequentist p value
is reminiscent of Bayesian-frequentist hybrids in the statistics literature (Good 1992,
Sect. 1), including the prior-predictive p value of Box (1980). Within HEP, this mix of
paradigms has been advocated (Cousins and Highland 1992) as a pragmatic approach,
and found in general to yield reasonable results under a variety of circumstances.

The complexity of such analyses is worth keeping in mind in Sect. 6, when the
concept of the “unit measurement” with σ = √

nσtot is introduced as a basis for some
“objective” methods of setting the scale τ . The overall σtot is a synthesis of many
samplings of events of interest as well as events in the numerous calibration data sets
(some disjoint from the final analysis, some not). It is unclear what could be identified
as the number of events n, since the analysis does not fit neatly into the concept of n
identical samplings.

5.3 Are HEP experimenters biased against their null hypotheses?

Practitioners in disciplines outside of HEP are sometimes accused of being biased
against accepting null hypotheses, to the point that experiments are set up with the sole
purpose of rejecting the null hypothesis (Bayarri 1987). Strong bias against publishing
null results (i.e., results that do not reject the null hypothesis) has been described, for
example, in psychology (Ferguson and Heene 2012). Researchers might feel the need
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to reject the null hypothesis in order to publish their results, etc. It is unclear to what
extent these characterizations might be valid in different fields, but in HEP there is
often significant prior belief in both the model and the point null hypothesis (within
ε0). In many searches in HEP, there is a hope to reject the SM and make a major
discovery of BSM physics in which the SM is nested. But there is nonetheless high (or
certainly non-negligible) prior belief in the null hypothesis. There have been hundreds
of experimental searches for BSM physics that have not rejected the SM.

In HEP, it is normal to publish results that advance exploration of the frontiers even
if they do not reject the null hypothesis. The literature, including the most prestigious
journals, has many papers beginning with “Search for…” that report no significant
evidence for the sought-for BSM physics. Often these publications provide useful
constraints on theoretical speculation, and offer guidance for future searches.

For physical quantities θ that cannot have negative values, the unbiased estimates
will be in the unphysical negative region about half of the time if the true value of
θ is small compared to σtot. It might appear that the measurement model is wrong
if half the results are unphysical. But the explanation in retrospect is that the null
hypotheses in HEP have tended to be true, or almost so. As no BSM physics has been
observed thus far at the LHC, the choices of experiments might be questioned, but
they are largely constrained by resources and by what nature has to offer for discovery.
Huge detector systems such as CMS and ATLAS are multipurpose experiments that
may not have the desired sensitivity to some specific processes of interest. Within
constraints of available resources and loosely prioritized as to speculation about where
the BSM physics may be observed, the collaborations try to look wherever there is
some capability for observing new phenomena.

5.4 Cases of an artificial null that carries little or no belief

As noted above, the “core physics models” used in our searches typically include the
SM as well larger models in which the SM is embedded. In a typical search for BSM
physics, the SM is the null hypothesis and carries a non-negligible belief. However,
there does exist a class of searches for which physicists place little prior belief on the
null hypothesis, namely when the null hypothesis is the SMwith a missing piece! This
occurs when experimenters are looking for the “first observation” of a phenomenon
that is predicted by the SM to have non-zero strength θ = θ1, but which is yet to be
confirmed in data. The null hypothesis is then typically defined to be the simple hypoth-
esis θ = θ0 = 0, i.e., everything in the SM except the as-yet-confirmed phenomenon.
While the alternative hypothesis could be taken to be the simple hypothesis θ = θ1, it
is more common to take the alternative to be θ > 0. Results are then reported in two
pieces: (i) a simple-vs-composite hypothesis test that reports the p value for the null
hypothesis, and (ii) confidence interval(s) for θ at one or more confidence level, which
can be then compared to θ1. This gives more flexibility in interpretation, including
rejection of θ0 = 0, but with a surprising value of θ̂ that points to an alternative other
than the SM value θ1. Furthermore as in all searches, collaborations typically present
plots showing the distribution of z values obtained from Monte Carlo simulation of
pseudo-experiments under each of the hypotheses. From these plots one can read off
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the “expected z” (usually defined as median) for each hypothesis, and also get a sense
for how likely is a statistical fluctuation to the observed z.

An example from Fermilab is the search for production of single top quarks via
the weak force in proton-antiproton collisions (Abazov et al. 2009; Aaltonen et al.
2009; Fermilab 2009). This search was performed after the weak force was clearly
characterized, and after top quarks were observed via their production in top-antitop
quark pairs by the strong force. The search for single top-quark production was exper-
imentally challenging, and the yields could have differed from expectations of the SM
due to the possibility of BSM physics. But there was not much credence in the null
hypothesis that production of single top quarks did not exist at all. Eventually that null
was rejected at more than 5σ . The interest remains on measured values and partic-
ularly confidence intervals for the production rates (via more than one mechanism),
which thus far are consistent with SM expectations.

Another example is the search for a specific decay mode of the Bs particle that
contains a bottom quark (b) and anti-strange-quark (s). The SM predicts that a few out
of 109 Bs decays yield two muons (heavy versions of electrons) as decay products.
This measurement has significant potential for discovering BSM physics that might
enhance (or even reduce) the SM probability for this decay. The search used the null
hypothesis that the Bs decay to twomuons had zero probability, a null that was recently
rejected at the 5σ level. As with single top-quark production, the true physics interest
was in the measured confidence interval(s), as there was negligible prior belief in the
artificial null hypothesis of exactly zero probability for this decay mode. Of course,
a prerequisite for measuring the small decay probability was high confidence in the
presence of this process in the analyzed data. Thus the clear observation (rejection of
the null) at high significance by each of two experiments was one of the highlights
of results from the LHC in 2013 (Chatrchyan et al. 2013a; Aaij et al. 2013; CERN
2013).

As the Higgs boson is an integral part of the SM (required for the renormalizability
of the SM), the operational null hypothesis used in searching for it was similarly taken
to be an artificial model that included all of the SM except the Higgs boson, and
which had no BSM physics to replace the Higgs boson with a “Higgs-like” boson.
However, the attitude toward the hypotheses was not as simple as in the two previous
examples. The null hypothesis of having “no Higgs boson” carried some prior belief,
in the sense that it was perhaps plausible that BSM physics might mean that no SM
Higgs boson (or Higgs-like boson) was observable in the manner in which we were
searching. Furthermore, the search for the Higgs boson had such a long history, and
had become so well-known in the press, that there would have been a notable cost to a
false discovery claim. In my opinion, this was an important part of the justification for
the high threshold that the experimenters used for declaring an observation. (Sect. 9
discusses factors affecting the threshold).

Analogous to the two previous examples, the implementation of the alternative
hypothesis was as the complete SM with a composite θ for the strength of the Higgs
boson signal. (This generalized alternative allowed for a “Higgs-like” boson that per-
haps could not be easily distinguished with data in hand.) However, the mass of the
Higgs boson is a free parameter in the SM, and had been only partially constrained
by previous measurements and theoretical arguments. Compared to the two previous
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examples, this complicated the search significantly, as the probabilities of different
decay modes of the Higgs boson change dramatically as a function of its mass.

This null hypothesis of no Higgs (or Higgs-like) boson was definitively rejected
upon the announcement of the observation of a new boson by both ATLAS and CMS
on July 4, 2012. The confidence intervals for signal strength θ in various decay sub-
classes, though not yet precise, were in reasonable agreement with the predictions for
the SM Higgs boson. Subsequently, much of the focus shifted to measurements of
describing different production and decay mechanisms. For measurements of contin-
uous parameters, the null hypothesis has reverted to the complete SM with its Higgs
boson, and the tests (e.g., Chatrchyan et al. (2013b, Fig. 22) and Aad et al. (2013, Figs.
10–13)) use the frequentist duality (Sect. 9 below) between interval estimation and
hypothesis testing. One constructs (approximate) confidence intervals and regions for
parameters controlling various distributions, and checks whether the predicted values
for the SM Higgs boson are within the confidence regions. For an important simple-
vs-simple hypothesis test of the quantum mechanical property called parity, p values
for both hypotheses were reported (Chatrchyan et al. 2013c), as described in Sect. 2.2.

6 What sets the scale τ?

As discussed by Jeffreys (1961, p. 251) and re-emphasized by Bartlett (1957), defining
the scale τ (the range of values of θ over which the prior g(θ) is relatively large) is a
significant issue. Fundamentally, the scale appears to be personal and subjective, as is
the more detailed specification of g(θ). Berger and Delampady (1987a), Berger and
Delampady (1987b) state that “the precise null testing situation is a prime example
in which objective procedures do not exist,” and “Testing a precise hypothesis is a
situation in which there is clearly no objective Bayesian analysis and, by implication,
no sensible objective analysis whatsoever.” Nonetheless, as discussed in this section,
Berger and others have attempted to formulate principles for specifying default values
of τ for communicating scientific results.

Bartlett (1957) suggests that τ might scale as 1/
√
n, canceling the sample-size

scaling in σtot and making the Bayes factor independent of n. Cox (2006, p. 106)
suggests this as well, on the grounds that “. . . in most, if not all, specific applications
in which a test of such a hypothesis [θ = θ0] is thought worth doing, the only serious
possibilities needing consideration are that either the null hypothesis is (very nearly)
true or that some alternative within a range fairly close to θ0 is true.” This avoids
the situation that he finds unrealistic, in which “the corresponding answer depends
explicitly on n because, typically unrealistically, large portions of prior probability
are in regions remote from the null hypothesis relative to the information in the data.”
Part of Cox’s argument was already given by Jeffreys (1961, p. 251), “. . . themere fact
that it has been suggested that [θ ] is zero corresponds to some presumption that [θ ] is
small.” Leamer (1978, p. 114)makes a similar point, “. . . a prior that allocates positive
probability to subspaces of the parameter space but is otherwise diffuse represents a
peculiar and unlikely blend of knowledge and ignorance”. (As Sect. 5.1 discusses,
this “peculiar and unlikely blend” is common in HEP.) Andrews (1994) also explores
the consequences of τ shrinking with sample size, but these ideas seem not to have
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led to a standard. As another possible reconciliation, Robert (1993) considers π1 that
increases with τ , but this seems not to have been pursued further.

Many attempts in the Bayesian literature to specify a default τ arrive at a suggestion
that does not depend on n, and hence does not remove the dependence of the Ockham
factor on n. In the search for any non-subjective n-independent scale, the only option
seemingly at hand is σtot when n = 1, i.e., the original σ (Eq. 1) that expresses the
uncertainty of a single measurement. This was in fact suggested by Jeffreys (1961, p.
268), on the grounds that there is nothing else in the problem that can set the scale,
and was followed, for example, in generalizations by Zellner and Siow (1980).

Kass and Wasserman (1995) do the same, which “has the interpretation of ‘the
amount of information in the prior on [θ ] is equal to the amount of information about
[θ ] contained in one observation’ ”. They refer to this as a “unit information prior”,
citing Smith and Spiegelhalter (1980) as also using this “appealing interpretation of
the prior.” It is not clear to me why this “unit information” approach is “appealing”,
or how it could lead to useful, universally cross-calibrated Bayes factors in HEP. As
discussed in Sect. 5.2 the detector may also have some intrinsic σtot for which no
preferred n is evident. Raftery (1995a, pp. 132, 135) points out the same problem.
After defining a prior for which, “roughly speaking, the prior distribution contains
the same amount of information as would, on average, one observation”, he notes the
obvious problem in practice: the “important ambiguity. . . the definition of [n], the
sample size.” He gives several examples for which he has a recommendation.

Berger and Pericchi (2001, with commentary) review more general possibilities
based on use of the information in a small subset of the data, and for one method claim
that “this is the first general approach to the construction of conventional priors in
nested models.” Berger (2008, 2011) applied one of these so-called “intrinsic priors”
to a pedagogical example and its generalization from HEP. Unfortunately, I am not
aware of anyone in HEP who has pursued these suggestions. Meanwhile, recently
Bayarri et al. (2012) have reconsidered the issue and formulated principles resulting
“. . . in a newmodel selection objective prior with a number of compelling properties.”
I think that it is fair to conclude that this is still an active area of research.

6.1 Comments on non-subjective priors for estimation and model selection

For point and interval estimation, Jeffreys (1961) suggests two approaches for obtain-
ing a prior for a physically non-negative quantity such as the magnitude of the charge
q of the electron. Both involve invariance concepts. The first approach (pp. 120–123)
considers only the parameter being measured. In his example, one person might con-
sider the charge q to be the fundamental quantity, while another might consider q2 (or
some other power qm ) to be the fundamental quantity. In spite of this arbitrariness
of the power m, everyone will arrive at consistent posterior densities if they each take
the prior for qm to be 1/qm , since all expressions d(qm)/qm) differ only by a propor-
tionality constant. (Equivalently, they can all take the prior as uniform in ln qm , i.e.,
in ln q.)

Jeffreys’s more famous second approach, leading to his eponymous rule and priors,
is based on the likelihood function and some averages over the sample space (i.e., over
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possible observations). The likelihood function is based on what statisticians call the
measurement “model”. Thismeans that “Jeffreys’s prior” is derived not by considering
only the parameter beingmeasured, but rather by examining themeasuring apparatus.
For example, Jeffreys’s prior for a Gaussian (normal) measurement apparatus is uni-
form in themeasured value. If themeasuring apparatus has Gaussian response in q, the
prior is uniform in q. If the measuring apparatus has Gaussian response in q2, then the
prior is uniform in q2. If the physical parameter is measured with Gaussian resolution
and is physically non-negative, as for the charge magnitude q, then the functional form
of the prior remains the same (uniform) and is set to zero in the unphysical region
(Berger 1985, p. 89).

Berger and Bernardo refer to “non-subjective” priors such as Jeffreys’s prior as
“objective” priors. This strikes me as rather like referring to “non-cubical” volumes
as “spherical” volumes; one is changing the usual meaning to the word. Bernardo
(2011b) defends the use of “objective” as follows. “No statistical analysis is really
objective, since both the experimental design and the model assumed have very strong
subjective inputs. However, frequentist procedures are often branded as ‘objective’
just because their conclusions are only conditional on the model assumed and the
data obtained. Bayesian methods where the prior function is directly derived from the
assumed model are objective in this limited, but precise sense.”

Whether or not this defense is accepted, so-called “objective” priors can be deemed
useful for point and interval estimation, even to frequentists, as there is a deep
(frequentist) reason for their potential appeal. Because the priors are derived by
using knowledge of the properties of the measuring apparatus, it is at least con-
ceivable that Bayesian credible intervals based on them might have better-than-
typical frequentist coverage properties when interpreted as approximate frequen-
tist confidence intervals. As Welch and Peers (1963) showed, for Jeffreys’s priors
this is indeed the case for one-parameter problems. Under suitable regularity con-
ditions, the approximate coverage of the resulting Bayesian credible intervals is
uniquely good to order 1/n, compared to the slower convergence for other priors,
which is good to order 1/

√
n. Hence, except at very small n, by using “objec-

tive” priors, one can (at least approximately) obey the Likelihood Principle and
obtain decent frequentist coverage, which for some is a preferred “compromise”.
Reasonable coverage can also be the experience for Reference Priors with more
than one parameter (Philippe and Robert 1998, and references therein). This can
happen even though objective priors are improper (i.e., not normalizable) for many
prototype problems; the ill-defined normalization constant cancels out in the calcu-
lation of the posterior. (Equivalently, if a cutoff parameter is introduced to make
the prior proper, the dependence on the cutoff vanishes as it increases without
bound.)

For model selection, Jeffreys proposed a third approach to priors. As discussed in
Sect. 2 and 3, from the point of view of the larger model, the prior is irregular, as
it is described by a probability mass (a Dirac δ-function) on the null value θ0 that
has measure zero. The prior g(θ) on the rest of � must be normalizable (eliminating
improper priors used for estimation) in order for the posterior probability to be well-
defined. ForGaussianmeasurements, Jeffreys argued that g should be aCauchydensity
(“Breit–Wigner” in HEP).
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Apart from the subtleties that led Jeffreys to choose the Cauchy form for g, there
is the major issue of the scale τ of g, as discussed in Sect. 6. The typical assumption
of “objective Bayesians” is that, basically by definition, an objective τ is one that
is derived from the measuring apparatus. And then, assuming that σtot

2 reflects n
measurements using an apparatus that provides a variance for each of σ 2, as in Eq. 1,
they invoke σ as the scale of the prior g.

Lindley (e.g., in commenting on Bernardo (2011b)) argues in cases like this that
objective Bayesians can get lost in the Greek letters and lose contact with the actual
context. I toofind it puzzling that one canfirst argue that theOckham’s factor is a crucial
feature of Bayesian logic that is absent from frequentist reasoning, and then resort to
choosing this factor based on the measurement apparatus, and on a concept of sample
size n that can be difficult to identify. The textbook by Lee (2004, p. 130) appears to
agree that this is without compelling foundation: “Although it seems reasonable that
[τ ] should be chosen proportional to [σ ], there does not seem to be any convincing
argument for choosing this to have any particular value….”

It seems that, in order to be useful, any “objective” choice of τ must provide
demonstrable cross-calibration of experiments with different σtot when n is not well-
defined. Another voice emphasizing the practical nature of the problem is that of
Kass (2009), saying that Bayes factors for hypothesis testing “remain sensitive—to
first order—to the choice of the prior on the parameter being tested.” The results are
“contaminated by a constant that does not go away asymptotically.” He says that this
approach is “essentially nonexistent” in neuroscience.

7 The reference analysis approach of Bernardo

Bernardo (1999) (with critical discussion) defines Bayesian hypothesis testing in terms
very different from calculating the posterior probability of H0: θ = θ0. He proposes
to judge whether H0 is compatible (his italics) with the data:

“Any Bayesian solution to the problem posed will obviously require a prior distri-
bution p(θ) over �, and the result may well be very sensitive to the particular choice
of such prior; note that, in principle, there is no reason to assume that the prior should
necessarily be concentrated around a particular θ0; indeed, for a judgement on the
compatibility of a particular parameter value with the observed data to be useful for
scientific communication, this should only depend on the assumed model and the
observed data, and this requires some form of non-subjective prior specification for θ

which could be argued to be ‘neutral’; a sharply concentrated prior around a particular
θ0 would hardly qualify.” He later continues, “. . . nested hypothesis testing problems
are better described as specific decision problems about the choice of a useful model
and that, when formulated within the framework of decision theory, they do have a
natural, fully Bayesian, coherent solution.”

Unlike Jeffreys, Bernardo advocates using the same non-subjective priors (even
when improper) for hypothesis testing as for point and interval estimation. He defines
a discrepancy measure d whose scaling properties can be complicated for small n,
but which asymptotically can be much more akin to those of p values than to those
of Bayes factors. In fact, if the posterior becomes asymptotically normal, then d
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approaches (1+ z2)/2 (Bernardo 2011a, b). A fixed cutoff for his d (which he regards
as the objective approach), just as a fixed cutoff for z, is inconsistent in the statistical
sense, namely it does not accept H0 with probability 1 when H0 is true and the sample
size increases without bound.

Bernardo and Rueda (2002) elaborate this approach further, emphasizing that the
Bayes factor approach, when viewed from the framework of Bernardo’s formulation in
terms of decision theory, corresponds to a “zero-one” loss-difference function, which
they refer to as “simplistic”. (Loss functions are discussed byBerger (1985, Sect. 2.4).)
The zero-one loss is so-named because the loss is zero if a correct decision ismade, and
1 if an incorrect decision is made. Berger states that, in practice, this loss will rarely
be a good approximation to the true loss.) Bernardo and Rueda prefer continuous
loss functions (such as quadratic loss) that do not require the use of non-regular
priors. A prior sharply spiked at θ0 “assumes important prior knowledge…very strong
prior beliefs,” and hence “Bayes factors should not be used to test the compatibility
of the data with H0, for they inextricably combine what the data have to say with
(typically subjective) strong beliefs about the value of θ .” This contrasts with the
commonly followed statement of Jeffreys (1961, p. 246) that (in present notation), “To
say that we have no information initially as to whether the new parameter is needed
or not we must take π0 = π1 = 1/2”. Bernardo and Rueda reiterate Bernardo’s
above-mentioned recommendation of applying the discrepancy measure (expressed
in “natural” units of information) according an absolute scale that is independent of
the specific problem.

Bernardo (2011b) provides a major review (with extensive commentary), referring
unapprovingly to point null hypotheses in an “objective” framework, and to the use
begun by Jeffreys of two “radically different” types of priors for estimation and for
hypothesis testing. He clarifies his view of hypothesis testing, that it is a decision
whether “to act as if H0 were true”, based on the expected posterior loss from using
the simpler model rather than the alternative (full model) in which it is nested.

In his rejoinder, Bernardo states that the JL paradox “clearly poses a very serious
problem toBayes factors, in that, under certain conditions, theymay lead tomisleading
answers. Whether you call this a paradox or a disagreement, the fact that the Bayes
factor for the null may be arbitrarily large for sufficiently large n, however relatively
unlikely the data may be under H0 is, to say the least, deeply disturbing…the Bayes
factor analysis may be completely misleading, in that it would suggest accepting the
null, even if the likelihood ratio for the MLE against the null is very large.”

At a recent PhyStat workshop where Bernardo (2011a) summarized this approach,
physicist Demortier (2011) considered it appropriate when the point null hypothesis
is a useful simplification (in the sense of definitions in decision theory) rather a point
having significant prior probability. He noted (as did Bernardo) that the formalism can
account for point nulls if this is desired.

8 Effect size in HEP

As noted in the introduction, in this paper “effect size” refers to the point and interval
estimates (measured values and uncertainties) of a parameter or physical quantity,
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typically expressed in the original units. Apparently, reporting of effect sizes is not
always automatic in some disciplines, leading to repeated reminders to report them
(Kirk 1996; Wilkinson et al. 1999; Nakagawa and Cuthill 2007; APA 2010). In HEP,
however, point estimates and confidence intervals for model parameters are used to
summarize the results of nearly all experiments, and to compare to the predictions of
theory (which often have uncertainties as well).

For experiments in which one particle interacts with another, the meeting point for
comparison of theory and experiment is frequently an interaction probability referred
to as a “cross section”. For particles produced in interactions and that subsequently
decay (into other particles), the comparisonof theory and experiment typically involves
the decay rate (probability of decay per second) or its inverse, the mean lifetime.
Measurements of cross sections and decay rates can be subdivided into distinguishable
subprocesses, as functions of both continuous parameters (such as production angles)
and discrete parameters (such as the probabilities known as “branching fractions” for
decay into different sets of decay products).

In the example of the Higgs boson discovery, the effect size was quantified
through confidence intervals on the product of cross sections and the branching
fractions for different sets of decay products. These confidence intervals provided
exciting indications that the new boson was indeed “Higgs-like”, as described
by Incandela and Gianotti and the subsequent ATLAS and CMS publications
(Aad et al. 2012; Chatrchyan et al. 2012). By spring 2013, more data had been ana-
lyzed and it seemed clear to both collaborations that the boson was “a” Higgs boson
(leaving open the possibility that there might be more than one). Some of the key
figures are described in the information accompanying the announcement of the 2013
Nobel Prize in Physics (Swedish Academy 2013, Figs. 6 and 7).

8.1 No effect size is too small in core physics models

If one takes the point of view that “all models are wrong” (Box 1976), then a tiny
departure from the null hypothesis for a parameter in a normal model, which is condi-
tional on the model being true, might be properly disregarded as uninteresting. Even
if the model is true, a small p value might be associated with a departure from the null
hypothesis (effect size) that is too small to have practical significance in formulating
public policy or decision-making. In contrast, core physics models reflect presumed
“laws of nature”, and it is always of major interest if departures with any effect size
can be established with high confidence.

In HEP, tests of core physics models also benefit from what we believe to be the
world’s most perfect random-sampling mechanism, namely quantum mechanics. In
each of many repetitions of a given initial state, nature randomly picks out a final
state according to the weights given by the (true, but not completely known) laws
of physics and quantum mechanics. Furthermore, the most perfect incarnation of
“identical” is achieved through the fundamental quantum-mechanical property that
elementary particles of the same type are indistinguishable. The underlying statistical
model is typically binomial or its generalizations and approximations, especially the
Poisson distribution.
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8.2 Small effect size can indicate new phenomena at higher energy

For every force there is a quantum field that permeates all space. As suggested in 1905
by Einstein for the electromagnetic (EM) field, associated with every quantum field is
an “energy quantum” (called the photon for the EM field) that is absorbed or emitted
(“exchanged”) by other particles interacting via that field.While themass of the photon
is presumed to be exactly zero, the masses of quanta of some other fields are non-zero.
The nominal mass m, energy E , and momentum p of such energy quanta are related
through Einstein’s equation, m2 = E2 − p2. (For unstable particles, the definition of
the nominal mass is somewhat technical, but there are agreed-on conventions.)

Interactions inmodernphysics are possible because energyquanta canbe exchanged
even when the energy E and momentum p being transferred in the interaction do
not correspond to the nominal mass of the exchanged quantum. With a quantity q2

(unrelated to symbol for the charge q of the electron) defined by q2 = (E)2−(p)2,
quantum mechanics reduces the probability of the reaction as q2 departs from the true
m2 of the exchanged particle. In many processes, the reduction factor is at leading
order proportional to

1

(m2 − q2)2
. (17)

(As q2 can be positive or negative, the relative sign of q2 and m2 depends on details
of the process. For positive q2, the singularity of m2 = q2 is made finite by another
term that can be otherwise neglected in the present discussion.) What q2 is accessible
depends on the available technology; in general, larger q2 requires higher-energy
particle beams and therefore more costly accelerators.

For the photon, m = 0, and the interaction probability goes as 1/q4. On the other
hand, if the mass m of the quantum of a force is so large that m2 � |q2|, then the
probability for an interaction to occur due to the exchange of such a quantum is pro-
portional to 1/m4. By looking for interactions or decays having very low probability,
it is possible to probe the existence of massive quanta with m2 well beyond those that
can be created with concurrent technology.

An illustrative example, studied by Galison (1983), is the accumulation of evidence
for the Z0 boson (with mass mZ), an electrically neutral quantum of the weak force
hypothesized in the 1960s. Experiments were performed in the late 1960s and early
1970s using intense beams of neutrinos scattering off targets of ordinary matter. The
available |q2| was much smaller than m2

Z, resulting in a small reaction probability
in the presence of other processes that obscured the signal. CERN staked the initial
claim for observation (Hasert et al. 1973). After a period of confusion, both CERN and
Fermilab experimental teams agreed that they had observed interactions mediated by
Z0 bosons, even though no Z0 bosons were detected directly, as the energies involved
(and hence

√|q2|) were well below mZ.
In another type of experiment probing the Z0 boson, conducted at SLAC in the late

1970s (Prescott et al.. 1978), specially prepared electrons (“spin polarized electrons”
in physics jargon) were scattered off nuclei to seek a very subtle left-right asymmetry
in the scattered electrons arising from the combined action of electromagnetic and
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weak forces. In an exquisite experiment, an asymmetry of about 1 part in 104 was
measured to about 10% statistical precision with an estimated systematic uncertainty
also about 10%. The statistical model was binomial, and the experiment had the ability
to measure departures from unity of twice the binomial parameter with an uncertainty
of about 10−5. I.e., the sample size of scattered electrons was of order 1010. This
precision in a binomial parameter is finer than that in anESPexample that has generated
lively discussion in the statistics literature on the JL paradox (Bernardo 2011b, pp.
19, 26, and cited references, and comments and rejoinder). More recent experiments
measure this scattering asymmetry even more precisely. The results of Prescott et
al. confirmed predictions of the model of electroweak interactions put forward by
Glashow, Weinberg, and Salam, clearing the way for their Nobel Prize in 1979.

Finally, in 1982, the technology for creating interactionswith q2 = m2
Z was realized

at CERN through collisions of high energy protons and antiprotons (and subsequently
at Fermilab). And in 1989, “Z0 factories” turned on at SLAC and CERN, colliding
electrons and positrons at beam energies tuned to q2 = m2

Z. At this q
2, the small

denominator in Eq. 17 causes the tiny deviation in the previous experiments to become
a huge increase in the interaction probability, a factor of 1000 increase compared to
the null hypothesis of “no Z0 boson”. (There is an additional term in the denominator
of Eq. 17 that reflects the instability of the Z0 boson to decay and that I have neglected
thus far; at q2 = m2

Z, it keeps the expression finite.)
This sequence of events in the experimental pursuit of the Z0 boson is somewhat of

a prototype for what many in HEP hope will happen again. A given process (scattering
or decay) has rate zero (or immeasurably small ε0) according to the SM. If, however,
there is a new boson X with mass mX much higher than accessible with current
technology, then the boson may give a non-zero rate, proportional to 1/m4

X , for the
given process. The null hypothesis is that X does not exist and the rate for the process is
immeasurably small. As mX is not known, the possible rates for the process if X does
exist comprise a continuum, including rates arbitrarily close to zero. But these tiny
numbers in the continuum map onto possibilities for major, discrete, modifications to
the laws of nature—new forces!

The searches for rare decays described in Sect. 5.1 are examples of this approach.
For rare decays of K0

L particles, an observation of a branching fraction at the 10−11

level would have indicated the presence of a new mass scale some 1000 times greater
than the mass of the Z0 boson, which is more than a factor of 10 above currently
accessible q2 values at LHC. Such mass scales are also probed by measuring the
difference between the mass of the K0

L and that of closely related particle, the short-
lived neutral kaon (K0

S). The mass of the K0
L is about half the mass of the proton,

and has been measured to a part in 104. The K0
L − K0

S mass difference has been
measured to a part in 1014, far more precisely than the mass itself. The difference
arises from higher-order terms in the weak interaction, and is extremely sensitive to
certain classes of speculative BSM physics. Even more impressively, the observation
of proton decay with a decay rate at the level probed by current experiments would
spectacularly indicate a new mass scale a factor of 1013 greater than that of the mass
of the Z0 boson.

Alas, none of these experiments has observed processes that would indicate BSM
physics. In the intervening years, there have however been major discoveries in neu-
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trino physics that have redefined and extended the SM. These discoveries established
that the mass of the neutrino, while tiny, is not zero. In some physics models called
“seesaw models”, the neutrino mass is inversely proportional to a mass scale of BSM
physics; thus one interpretation is that the tiny neutrino masses indicate a new very
large mass scale, perhaps approaching the scale probed by proton decay (Hirsch et al.
2013).

9 Neyman–Pearson testing and the choice of Type I error probability α

In Neyman–Pearson (NP) hypothesis testing, the Type I error α is the probability
of rejecting H0 when it is true. For testing a point null vs a composite alternative,
there is a duality between NP hypothesis testing and frequentist interval estimation
via confidence intervals. The hypothesis test for H0: θ = θ0 versus H1: θ �= θ0,
at significance level (“size”) α, is entirely equivalent to whether θ0 is contained in a
confidence interval for θ with confidence level (CL) of 1−α. As emphasized by Stuart,
Ord, and Arnold (1999, p. 175), “Thus there is no need to derive optimal properties
separately for tests and intervals: there is a one-to-one correspondence between the
problems….”

Mayo and Spanos (2006) argue that confidence intervals have shortcomings that
are avoided by using Mayo’s concept of “severe testing”. Spanos (2013) argues this
specifically in the context of the JL paradox. I am not aware of widespread application
of the severe testing approach, and do not yet understand it well enough to see how it
would improve scientific communication in HEP if adopted. Hence the present paper
focuses on the traditional frequentist methods.

As mentioned in Sect. 5.2, in HEP the workhorse test statistic for testing and esti-
mation is often a likelihood-ratio λ. In practice, sometimes one first performs the
hypothesis test and uses the duality to “invert the test” to obtain confidence intervals,
and sometimes one first finds intervals. Performing the test and inverting it in a rigorous
manner is equivalent to the original “Neyman construction” of confidence intervals
(Neyman 1937). Such a construction using the likelihood-ratio test statistic has been
advocated by Feldman and Cousins (1998), particularly in irregular problems such as
when the null hypothesis is on the boundary. Inmore routine applications, approximate
confidence intervals or regions can be obtained by finding maximum-likelihood esti-
mates of unknown parameters and forming regions bounded by contours of differences
in ln λ as in Wilks’s Theorem (James 1980, 2006).

Confidence intervals in HEP are typically presented for conventional confidence
levels (68, 90, 95%, etc.). Alternatively, when experimenters report a p value with
respect to some null value, anyone can invoke the NP accept/reject paradigm by com-
paring the reported p value to one’s own (previously chosen) value of α. From a
mathematical point of view, one can define the post-data p value as the smallest sig-
nificance level α at which the null hypothesis would be rejected, had that α been
specified in advance (Rice 2007, p. 335). This may offend some who point out that
Fisher did not define the p value this way when he introduced the term, but these
protests do not negate the numerical identity with Fisher’s p value, even when the
different interpretations are kept distinct.
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Regardless of the steps through which one learns whether the test statistic λ is in
the rejection region of a particular value of θ , one must choose the size α, the Type
I error probability of rejecting H0 when it is true. Neyman and Pearson introduced
the alternative hypothesis H1 and the Type II error β for the probability under H1
that H0 is not rejected when it is false. They remarked, (Neyman and Pearson 1933a,
p. 296) “These two sources of error can rarely be eliminated completely; in some
cases it will be more important to avoid the first, in others the second. . . . The use of
these statistical tools in any given case, in determining just how the balance should be
struck, must be left to the investigator.”

Lehmann andRomero (2005, p. 57, and earlier editions byLehmann) echo this point
in terms of the power of the test, defined as 1−β: “The choice of a level of significance
α is usually somewhat arbitrary. . . the choice should also take in consideration the
power that the test will achieve against the alternatives of interest….”

For simple-vs-simple hypothesis tests discussed in Sect. 2.2, the power 1−β is well-
defined, and, in fact, Neyman and Pearson (1933b, p. 497) discuss how to balance the
two types of error, for example by considering their sum. It is well-known today that
such an approach, including minimizing a weighted sum, can remove some of the
unpleasant aspects of testing with a fixed α, such as inconsistency in the statistical
sense (as mentioned in Sect. 7, not accepting H0 with probability 1 when H0 is true
and the sample size increases without bound).

But this optimization of the tradeoff between α and β becomes ill-defined for a test
of simple vs composite hypotheses when the composite hypothesis has values of θ

arbitrarily close to θ0, since the limiting value of β is 0.5, independent of α (Neyman
and Pearson 1933b, p. 496). Robert (2013) echoes this concern that in NP testing,
“there is a fundamental difficulty in finding a proper balance (or imbalance) between
Type I and Type II errors, since such balance is not provided by the theory, which
settles for the sub-optimal selection of a fixed Type I error. In addition, the whole
notion of power, while central to this referential, has arguable foundations in that this
is a function that inevitably depends on the unknown parameter θ . In particular, the
power decreases to the Type I error at the boundary between the null and the alternative
hypotheses in the parameter set.”

Unless a value of θ in the composite hypothesis is of sufficiently special interest to
justify its use for considering power, there is no clear procedure. A Bayesian-inspired
approach would allow optimization by weighting the values of θ under H1 by a prior
g(θ). As Raftery (1995a, p. 142) notes, “Bayes factors can be viewed as a precise
way of implementing the advice of [Neyman and Pearson (1933a)] that power and
significance be balanced when setting the significance level. . . there is a conflict
between Bayes factors and significance testing at predetermined levels such as .05 or
.01.” In fact, Neyman and Pearson (1933b, p. 502) suggest this possibility if multiple θi
under the alternative hypothesis are genuinely sampled from known probabilities 
i :
“. . . if the 
i ’s were known, a test of greater resultant power could almost certainly
be found.”

Kendall and Stuart and successors (Stuart et al. 1999, Sect. 20.29) view the choice
of α in terms of costs: “. . . unless we have supplemental information in the form
of the costs (in money or other common terms) of the two types of error, and costs
of observations, we cannot obtain an optimal combination of α, β, and n for any
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given problem.” But prior belief should also play a role, as remarked by Lehmann
and Romero (2005, p. 58) (and earlier editions by Lehmann): “Another consideration
that may enter into the specification of a significance level is the attitude toward the
hypothesis before the experiment is performed. If one firmly believes the hypothesis
to be true, extremely convincing evidence will be required before one is willing to
give up this belief, and the significance level will accordingly be set very low.”

Of course, these vague statements about choosing α do not come close to a formal
decision theory (which is however not visibly practiced inHEP). For the case of simple
vs composite hypotheses relevant to the JL paradox, HEP physicists informally take
into account prior belief, the measured values of θ and its confidence interval, as well
as relative costs of errors, contrary to myths about automatic use of a “5σ” criterion
discussed in the next section.

9.1 The mythology of 5σ

Nowadays it is commonly written that 5σ is the criterion for a discovery in HEP. Such
a fixed one-size-fits-all level of significance ignores the consideration noted above by
Lehmann, and violates one of the most commonly stated tenets of science—that the
more extraordinary the claim, the more extraordinary must be the evidence. I do not
believe that experienced physicists have such an automatic response to a p value, but
it may be that some people in the field may take the fixed threshold more seriously
than is warranted.

The (quite sensible) historical roots of the 5σ criterion were in a specific context,
namely searches performed in the 1960s for new “elementary particles”, now known
to be composite particles with different configurations of quarks in their substructure.
A plethora of histograms were made, and presumed new particles, known as “reso-
nances” showed up as localized excesses (“bumps”) spanning several histogram bins.
Upon finding an excess and defining those bins as the “signal region”, the “local p
value” could be calculated as follows. First the nearby bins in the histogram (“side-
bands”) were used to formulate the null hypothesis corresponding to the expected
number of events in the signal region in the absence of a new particle. Then the (Pois-
son) probability under the null hypothesis of observing a bump as large as or larger
than that seen was calculated, and expressed in terms of standard deviations “σ” by
analogy to a one-sided test of a normal distribution.

The problem was that the location of a new resonance was typically not known in
advance, and the local p value did not include the fact that “pure chance” had lots of
opportunities (lots of histograms and many bins) to provide an unlikely occurrence.
Over timemanyof the alleged new resonanceswere not confirmed in other independent
experiments. In the group led by Alvarez at Berkeley, histograms with putative new
resonances were compared to simulations drawn from smooth distributions (Alvarez
1968). Rosenfeld (1968, p. 465) describes such simulations and rough hand calcula-
tions of the number of trials, and concludes, “To the theorist or phenomenologist the
moral is simple: wait for nearly 5σ effects. For the experimental group who have spent
a year of their time and perhaps a million dollars, the problem is harder. . . go ahead
and publish. . . but they should realize that any bump less than about 5σ calls only for
a repeat of the experiment.”
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The original concept of “5σ” in HEP was therefore mainly motivated as a (fairly
crude) way to account for a multiple trials factor (MTF, Sect. 9.2) in searches for
phenomena poorly specified in advance. However, the threshold had at least one other
likely motivation, namely that in retrospect spurious resonances often were attributed
to mistakes in modeling the detector or other so-called “systematic effects” that were
either unknown or not properly taken into account. The “5σ” threshold provides crude
protection against such mistakes.

Unfortunately, many current HEP practitioners are unaware of the original moti-
vation for “5σ”, and some may apply this rule without much thought. For example,
it is sometimes used as a threshold when an MTF correction (Sect. 9.2) has already
been applied, or when there is no MTF from multiple bins or histograms because
the measurement corresponds to a completely specified location in parameter space,
aside from the value of θ in the composite hypothesis. In this case, there is still the
question of how many measurements of other quantities to include in the number of
trials (Lyons 2010). Further thoughts on 5σ are given in a recent note by Lyons (2013).

9.2 Multiple trials factors for scanning nuisance parameters that are not eliminated

The situation with the MTF described in the previous section can arise whenever there
is nuisance parameter ψ that the analysts choose not to eliminate, but instead choose
to communicate the results (p value and confidence interval for θ ) as a function of ψ .
The search for the Higgs boson (Aad et al. 2012; Chatrchyan et al. 2012) is such an
example, where ψ is the mass of the boson, while θ is the Poisson mean (relative to
that expected for the SMHiggs boson) of any putative excess of events at mass ψ . For
each mass ψ there is a p value for the departure from H0, as if that mass had been
fixed in advance, as well as a confidence interval for θ , given that ψ . This p value is
the “local” p value, the probability for a deviation at least as extreme as that observed,
at that particular mass. (Local p values are correlated with those at nearby masses
due to experimental resolution of the mass measurement.)

One can then scan all masses in a specified range and find the smallest local p value,
pmin. The probability of having a local p value as small or smaller than pmin, anywhere
in a specifiedmass range, is greater than pmin, by a factor that is effectively aMTF (also
known as the “Look Elsewhere Effect” in HEP). When feasible, the LHC experiments
use Monte Carlo simulations to calculate the p value that takes this MTF into account,
and refer to that as a “global” p value for the specified mass range. When this is
too computationally demanding, they estimate the global p value using the method
advocated by Gross and Vitells (2010), which is based on that of Davies (1987).

To emphasize that the range of masses used for this effective MTF is arbitrary or
subjective, and to indicate the sensitivity to the range, the LHC collaborations chose
to give the global p value for two ranges of mass (Aad et al. (2012, pp. 11,14) and
Chatrchyan et al. (2012, pp. 33,41)). Some possibilities were the range of masses for
which the SM Higgs boson was not previously ruled out at high confidence; the range
of masses for which the experiment is capable of observing the SM Higgs boson; or
the range of masses for which sufficient data had been acquired to search for any new
boson. The collaborations made different choices.
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10 Can results of hypothesis tests be cross-calibrated among different searches?

In communicating the results of an experiment, generally the goal is to describe the
methods, data analysis, and results, as well as the authors’ interpretations and con-
clusions, in a manner that enables readers to draw their own conclusions. Although
at times authors provide a description of the likelihood function for their observa-
tions, it is common to assume that confidence intervals (often given for more than one
confidence level) and p values (frequently expressed as equivalent z of Eq. 16) are
sufficient input into inferences or decisions to be made by readers.

It can therefore be asked what is the result of an author (or reader) taking the p
value as the “observed data” for a full (subjective) Bayesian calculation of the posterior
probability of H0. One could even attempt to go further and formulate a decision on
whether to claim publicly that H0 is false, using a (subjective) loss function describing
one’s personal costs of falsely declaring a discovery, compared to not declaring a true
discovery.

FromEq. 10, clearly z alone is not sufficient to recover the Bayes factor and proceed
as a Bayesian. This point is repeatedly emphasized in articles already cited. (Even
worse is to try to recover the BF using only the binary inputs as to whether the p value
was above some fixed thresholds (Dickey 1977; Berger and Mortera 1991; Johnstone
and Lindley 1995)). The oft-repeated argument (e.g., Raftery 1995a, p. 143) is that
there is no justification for the step in the derivation of the p value where “probability
density for data as extreme as that observed” is replaced with “probability for data as
extreme, or more extreme”. Jeffreys (1961, p. 385) still seems to be unsurpassed in his
ironic way of saying this (italics in original), “What the use of [the p value] implies,
therefore, is that a hypothesis that may be true may be rejected because it has not
predicted observable results that have not occurred.”

Good (1992) opined that, “The real objection to [p values] is not that they
usually are utter nonsense, but rather that they can be highly misleading, espe-
cially if the value of [n] is not also taken into account and is large.” He sug-
gested a rule of thumb for taking n into account by standardizing the p value
to an effective size of n = 100, but this seems not to have attracted a follow-
ing.

Meanwhile, often a confidence interval for θ (as invariably reported in HEP
publications for 68% CL and at times for other values) does give a good sense
of the magnitude of σtot (although this might be misleading in certain spe-
cial cases). And one has a subjective prior and therefore its scale τ . Thus, at
least crudely, the required inputs are in hand to recover the result from some-
thing like Eq. 10. It is perhaps doubtful that most physicists would use them
to arrive at the same Ockham factor as calculated through a BF from the
original likelihood function. On the other hand, a BF based on an arbitrary
(“objective”) τ does not seem to be an obviously better way to communicate a
result.

While the “5σ” criterion in HEP gets a lot of press, I think that when a decision
needs to be made, physicists intuitively and informally adjust their decision-making
based on the p value, the confidence interval, their prior belief in H0 and g(θ), and
their personal sense of costs and risks.
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11 Summary and Conclusions

More than a half century after Lindley drew attention to the different dependence of p
values and Bayes factors on sample size n (described two decades previously by Jef-
freys), there is still no consensus on how best to communicate results of testing scien-
tific hypotheses. The argument continues, especiallywithin the broader Bayesian com-
munity, where there is much criticism p values, and praise for the “logical” approach
of Bayes factors. A core issue for scientific communication is that the Ockham factor
σtot/τ is either arbitrary or personal, even asymptotically for large n.

It has always been important inBayesian point and interval estimation for the analyst
to describe the sensitivity of results to choices of prior probability, especially for
problems involving many parameters. In testing hypotheses, such sensitivity analysis
is clearly mandatory. The issue is not really the difference in numerical value of p
values and posterior probabilities (or Bayes factors) as one must commit the error
of transposing the conditional probability (fallacy of probability inversion) to equate
the two. Rather, the fundamental question is whether a summary of the experimental
results, with say two or three numbers, can (even in principle) be interpreted in a
manner cross-calibrated across different experiments. The difference in scaling with
sample size (or more generally, the difference in scaling with σtot/τ ) of the BF and
likelihood ratio λ is already apparent in Eq. 14; therefore the additional issue of tail
probabilities of data not observed, pithily derided by Jeffreys (Sect. 10 above), cannot
bear all the blame for the paradox.

It is important to gain more experience in HEP with Bayes factors, and also with
Bernardo’s intriguing proposals. For statisticians, I hope that this discussion of the
issues in HEP provides “existence proofs” of situations where we cannot ignore the JL
paradox, and renews some attempts to improve methods of scientific communication.
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