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Abstract How should an agent revise her epistemic state in the light of doxastic
disagreement? The problems associated with answering this question arise under the
assumption that an agent’s epistemic state is best represented by her degree of belief
function alone. We argue that for modeling cases of doxastic disagreement an agent’s
epistemic state is best represented by her confirmation commitments and the evidence
available to her. Finally, we argue that given this position it is possible to provide an
adequate answer to the question of how to rationally revise one’s epistemic state in
the light of disagreement.

Keywords Bayesian epistemology · epistemic disagreement · probability
aggregation · social epistemology

1 Introduction

Doxastic disagreement between (epistemic) agents is one of the biggest challenges
of probabilistic approaches to social epistemology. Roughly speaking, two agents are
in doxastic disagreement with respect to a proposition if and only if (iff) they have
different doxastic attitudes towards that proposition. For instance, two agents are in
doxastic disagreement when the first agent believes a proposition and the second
does not, or when both have different credences (i.e., degrees of belief) in the same
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proposition. For illustration, let us consider a stock example of a special kind of
doxastic disagreement—peer disagreement:

You and your friend have been going out to dinner together regularly for many
years. You always tip 20 % and split the check (with each person’s share rounded
up to the nearest dollar), and you each do the requisite calculation in your head
upon receiving the check. Most of the time you have agreed, but in the instances
when you have not, you have taken out a calculator to check; over the years,
you and your friend have been right in these situations equally often. Tonight,
you figure out that your shares are $43, and become quite confident of this. But
then your friend announces that she is quite confident that your shares are $45.
Neither of you has had more wine or coffee, and you do not feel (nor does your
friend appear) especially tired or especially perky. How confident should you
now be that your shares are $43? (Christensen 2009: p. 757)

Almost everyone agrees that there are cases of doxastic disagreement, such as this
one, in which one is rational in revising one’s epistemic state. However, there is no
consensus on how to do that. In this paper we make considerable progress in answering
the question of how to (rationally) revise one’s epistemic state in the light of doxastic
disagreement, for cases in which one is rational in revising one’s epistemic state.

Section 2 introduces the standard probabilistic framework for modelling epistemic
states. We discuss normative requirements as well as rules, which have been proposed
in the literature, for how to (rationally) revise one’s epistemic state in the light of
doxastic disagreement within this framework. On the one hand we demonstrate that
it is not possible to simultaneously satisfy all these normative requirements. On the
other hand we argue against the various rules that have been suggested. Furthermore it
is shown that the standard framework cannot be used to model other important kinds
of epistemic disagreement besides doxastic disagreement. Section 3 argues for a new
philosophical solution to the problem of doxastic disagreement. In particular, Sect. 3
provides a new probabilistic framework for modeling epistemic states, which allows
us to model different kinds of epistemic disagreement. Finally, we argue that within
this new framework it is possible to provide an adequate answer to the question of
how to rationally revise one’s epistemic state in the light of epistemic disagreement.

2 The standard probabilistic framework

2.1 Modeling doxastic disagreement

The standard probabilistic framework for modeling epistemic states presupposes the
following:

Monistic Bayesianism First, a (rational) agent’s epistemic state is best represented by
her (rational) credences alone. Second, (rational) credences
obey the probability calculus and they are updated by strict
conditionalization.1

1 As a concession to simplicity, we restrict the discussion to strict conditionalization. Furthermore, the
label ‘Monistic Bayesianism’ can be traced back to Schurz (2012) and Unterhuber and Schurz (2013).
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Let us discuss Monistic Bayesianism in more detail: First, it requires that credences
obey the probability calculus. Probabilities are defined as follows: Let � be a set of
possibilities (e.g., possible worlds, we assume that � is finite) and let A be an algebra
of subsets over �. A function Pr : A → R is a probability function on A iff for
all propositions A, B ∈ A: (i) Pr(A) ≥ 0; (ii) if A = �, then Pr(A) = 1; (iii) if
(A ∩ B) = ∅, then Pr(A ∪ B) = Pr(A) + Pr(B); and, finally, (iv) if Pr(B) > 0,
then Pr(A|B) = Pr(A ∩ B)/ Pr(B) (definition of conditional probability). Second, it
requires that credences are updated by strict conditionalization. That is, that if Prt0 is the
agent’s credence function at time point t0, A is the logically strongest proposition that
the agent became absolutely certain of between time points t0 and t1, and Prt0(A) > 0,
the agent’s credence function should change to Prt1(B) = Prt0(B|A) for all B ∈ A.

Now we are in a position to specify doxastic disagreement. We use ‘PrCa ’ to refer
to agent a’s credence function. We say that two agents a1 and a2 are in doxastic
disagreement with respect to a proposition A iff PrCa1

(A) �= PrCa2
(A). And they

are in doxastic disagreement iff there is one such proposition. In addition, a group
(of agents) G is in doxastic disagreement with respect to A iff there are members a1
and a2 of G who are in doxastic disagreement with respect to A. And the group is in
doxastic disagreement iff there is one such proposition.

2.2 Aggregating credences within the standard framework

We presuppose that adequate rules for how to revise one’s credences in the light
of doxastic disagreement aggregate the credence functions of the agents involved to
one new (aggregated) credence function. Henceforth, we call such rules aggregation
rules. We use ‘AR[PrCa1

, . . . , PrCan
]’ to refer to the new credence function of the

group of agents G = {a1, . . . , an} that results from applying an aggregation rule AR.
One requirement on such an aggregation rule is that if PrCa1

, . . . , PrCan
is a ratio-

nal credence function, then AR[PrCa1
, . . . , PrCan

] is a rational credence function too.
Accordingly, ‘AR[PrCa1

, . . . , PrCan
](A)’ denotes the new (rational) credence of the

agents in proposition A. This setting presupposes that the agents not only learn that
they disagree with respect to some proposition, but that the agents learn each oth-
ers’ credence functions. Next, let us introduce some widely accepted presuppositions
concerning aggregation rules.

First, following (Wagner 2010: pp. 336–337) it is presupposed that one may use
the same (adequate) aggregation rule in the following cases: First, an agent revises
her credences in the light of doxastic disagreement in a group of which she is not a
member. For example, an agent is interested in whether her skin anomaly is cancerous.
She is not an expert but visits a group of dermatologists to solicit their expert opinions.
Unfortunately, these experts have different credences with respect to whether her skin
anomaly is cancerous. The agent may use an aggregation rule to aggregate (simul-
taneously) the credences of the others to form her own credence in that proposition.
Second, an agent revises her credences in the light of doxastic disagreement in a group
of which she is a member. For example, take the described skin anomaly example with
the difference that now the agent is a dermatologist who consults her colleagues. The
agent may use an aggregation rule to aggregate (simultaneously) the credences of the
others with her own credences to form her new credence. Third, a group is in doxastic
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disagreement and as a group they have to form an epistemic compromise. Even if the
members of the group are not required to revise their (individual) credences, they are
certainly required to agree on an epistemic compromise that respects each others’ cre-
dences. For example, the dermatologists have to form an epistemic compromise with
respect to whether her skin anomaly is cancerous, in order to make a joint decision
(e.g., group decision) on whether to surgically remove the skin anomaly (imagine, e.g.,
they are jointly liable in the case of a wrong decision).2 The members of the group
may use an aggregation rule to aggregate their credences (simultaneously) to form an
epistemic compromise. Finally, fourth, imagine a group is in doxastic disagreement.
For example, consider the above group of dermatologists, but this time they not only
want to form an epistemic compromise but also align their credences with that epis-
temic compromise. Each member of the group may use the same aggregation rule to
aggregate (simultaneously) the credences of the others with her own credences to form
her new credence. For simplicity we presuppose in the following that we are dealing
with cases of this latter kind. However, one should keep in mind that the same rules
are intended to be applied to cases of the other kinds too.

Second, one can distinguish levels of expertise in a coarse-grained way: experts,
fools, and peers.3 One can also distinguish level of expertise in a more fine-grained
way. We follow a typical idealising presupposition and assume that one can assign
to each member ai of a group G = {a1, . . . , an} a precise weight wG

i (of exper-
tise) within this group. This weight reflects the level of relative competence of an
agent within this group. The sum of the weights of all agents of the group equals
one (i.e.,

∑n
i=1 wG

i = 1). As it is standard, we also assume that an agent’s weight
applies for the whole algebra of propositions. The level of relative competence of an
agent within a group depends on her absolute or, respectively, unrelativized level of
competence and the level of absolute competence of the other members of the group.
Suppose for each member ai of a group G = {a1, . . . , an} one quantifies her level
of absolute competence with some number c(ai ) ∈ R

+. Then one can calculate the

2 The epistemic compromise of the group need not be interpreted as an epistemic state in the sense of a
mental state. One might rather interpret it as a kind of disposition to act.
3 The definition of peerhood, respectively an approach to how to assign different weights to the opinions
of epistemic agents, is very problematic. In their careful and valuable discussion of the equal weight view,
Jehle and Fitelson suggest that “two agents, a1 and a2, are epistemic peers regarding a proposition A: that
is, […] a1 and a2 are equally competent, equally impartial, and equally able to evaluate and assess the
relevant evidence regarding A” (Jehle and Fitelson 2009: p. 280; notation adapted). Even though this is not
a completely satisfying definition and it does not provide exact weights for all agents involved in a doxastic
disagreement, this characterization of peerhood belongs among the best we have. However, for Bayesians the
definition of peerhood is even more problematic. Many Bayesians hold that all a priori credence functions are
equally acceptable. According to Hájek (2011), e.g., “Orthodox Bayesians in the style of de Finetti recognize
no rational constraints on subjective probabilities beyond conformity to the probability calculus, and a rule
for updating probabilities in the face of new evidence, known as conditioning.” Thus, all probabilistic agents
should be deemed equally competent and therefore all probabilistic agents should treat each other as peers
with respect to every proposition. If this is correct, one wonders, couldn’t we construct a justification of
objective Bayesianism á la Williamson (2010) on basis of this assumption: before receiving any evidence
we should consider all possible agents as peers independently of which credence function they chose.
Then, if we come to a joint credence function with all possible probabilistic agents we end up with the
“objective degree of belief that every agent should have”. (A similar remark was made by Lorenzo Casini
in conversation.) Finally we update these objective credences “in the face of new evidence”.
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weight wG
i by the following formula: wG

i = c(ai )∑n
j=1 c(a j )

. It is noteworthy that our

assumption that
∑n

i=1 wG
i = 1 excludes cases where for all agents ai : c(ai ) = 0. In

this paper we presuppose that the agents involved know each others’ level of expertise;
all this is as standard in the literature. Weights of agents will play a prominent role
in Sect. 2.2.2.

Third, for simplicity we presuppose for a start that agents involved in a doxastic
disagreement share the same evidence. This is an idealization that we do not encounter
in real life. We readdress this issue in Sect. 2.3.

2.2.1 Normative requirements

In order to provide an aggregation rule, a number of normative requirements have
been suggested that any (adequate) aggregation rule should satisfy. In the following
we discuss the most prominent requirements. Let us start with the Irrelevance of
Alternatives (IA) requirement:4

(IA) If a group of agents G = {a1, . . . , an} aggregates their old credence functions
Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence in a proposition A depends

only on Prold
Ca1

(A), . . . , Prold
Can

(A). That is, there is some function f such that:

AR[Prold
Ca1

, . . . , Prold
Can

](A) = f (Prold
Ca1

(A), . . . , Prold
Can

(A)).

(IA) excludes that the agents’ aggregated credence in a proposition is influenced by the
old credences in propositions other than the proposition in question. (IA) is a common
requirement on aggregation rules since McConway (1981) and Wagner (1982). Its
attractiveness is due to the fact that it makes calculating the aggregated credence in a
proposition easy because one only has to consider the old credences in the proposition.

Another requirement, which is very influential, is the Convexity (C) requirement:

(C) If a group of agents G = {a1, . . . , an} aggregates their old credence functions
Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence in a proposition A is greater or

equal min{Prold
Cai

(A) : ai ∈ G} and smaller or equal max{Prold
Cai

(A) : ai ∈ G}.
That is, min{Prold

Cai
(A) : ai ∈ G} ≤ AR[Prold

Ca1
, . . . , Prold

Can
](A) ≤ max{Prold

Cai
(A) :

ai ∈ G}.
The following consideration speaks in favor of (C): suppose an aggregation rule vio-
lates this requirement. Then it yields that the aggregated credence of the agents a1 and
a2 in a proposition A lies outside of the interval [Prold

Ca1
(A), Prold

Ca2
(A)], imagine, e.g.,

AR[PrCa1
, . . . , PrCan

](A) > Prold
Ca1

(A) > Prold
Ca2

(A). Such a result would be counter-
intuitive, since the aggregation rule is intended to reconcile the individual credences.
Even if one ignored the old credence of a2 in A by adopting a1’s old credence in A qua
aggregated credence in A, it would still be closer to a2’s old credence in A than the one

4 The name is due to Jehle and Fitelson (2009). According to Genest and Zidek (1986), it is called Strong
Set-Wise Function Property by McConway (1981) and Strong Label Neutrality by Wagner (1982).
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which lies outside the interval. In addition, (C) entails the Unanimity (U) requirement,
which is very plausible:5

(U) If a group of agents G = {a1, . . . , an} aggregates their old credence func-
tions, Prold

Ca1
, . . . , Prold

Can
, and their old credences in a proposition A, Prold

Ca1

(A), . . . Prold
Can

(A), equal r , then their aggregated credence in A equals r too.

That is, AR[Prold
Ca1

, . . . , Prold
Can

](A) = r , if Prold
Cai

(A) = r , for all ai ∈ G =
{a1, . . . , an}.

Imagine that two agents agree on their old credences in a proposition. Then (U) requires
that both keep their old credences in the proposition qua aggregated credence. Rules on
how to revise one’s credences in the light of doxastic disagreement are only meant to be
used when agents are in doxastic disagreement with each other. They are superfluous
when the agents agree.

Now let us introduce more sophisticated requirements. The most uncontroversial
and at the same time most discussed of them is the Commutativity with Learning (CL)
requirement:6

(CL) If a group of agents G = {a1, . . . , an} aggregates their old credence functions,
Prold

Ca1
, . . . , Prold

Can
, an adequate aggregation rule, AR, is commutative with learn-

ing some proposition E (the evidence) by strict conditionalization on E .

That is, AR[PrCa1
(·|E), . . . , PrCan

(·|E)](A) = AR[PrCa1
(·),...,PrCan (·)](A∩E)

AR[PrCa1
(·),...,PrCan (·)](E)

for

all propositions E (with PrCai
(E) > 0 for all ai ∈ G = {a1, . . . , an}).

This requirement is indispensable for, at least, the following two reasons: first, it
guarantees that the time of aggregating credences plays no role. According to it, it
is irrelevant whether one first aggregates credences and afterwards incorporates new
evidence by strict conditionalization, or whether one incorporates new evidence first
and afterwards aggregates credences (see, also, Jehle and Fitelson 2009: p. 286). If an
aggregation rule does not satisfy (CL) this “might entice the subjects [or one of them]
to delay disclosing their opinions until after the data is reported, so as to increase the
relative weight of their respective distribution in the pool” (Genest and Zidek 1986: p.
118). In such a case, the aggregated credence function would not only be determined
by the aggregation rule and the agents’ credence functions, but also by when the
disagreement is taken into account.

Second, suppose a group of agents forms an epistemic compromise. Then (CL)
requires the group to agree on a joint credence function which will make them “make
decisions that appear to an outsider like the decisions of a single Bayesian agent”

5 Requirement (U) is discussed in Allard et al. (2012). Other authors discuss weaker unanimity require-
ments. For example, Wagner (2010) restricts this requirement to hold not for all propositions, but only for
possible worlds: AR[Prold

Ca1
, . . . , Prold

Can
](w) = r , if Prold

Cai
(w) = r , for all ai ∈ G. For the results men-

tioned and presented in the present paper the difference between (U) and weaker unanimity requirements
is irrelevant.
6 The name of this requirement is inspired by Wagner (2010), who calls it Commutativity with Condi-
tionalization. In addition, Wagner (2010) actually discusses a stronger requirement, according to which
an adequate aggregation rule should be commutative with Jeffrey Conditionalization. For simplicity, we
discuss the weaker requirement here.
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(Wagner 2010: p. 339). Following Wagner (2010) and others, we want to judge the
rationality of groups of agents by the same standards that we apply to individual agents.
For this purpose, satisfying (CL) is necessary.

Another important requirement is the No Zero Preservation (No-ZP) requirement:

(No-ZP) If a group of agents G = {a1, . . . , an} aggregates their old credence func-
tions, Prold

Ca1
, . . . , Prold

Can
, it is not the case that their aggregated credence in a

proposition A equals 0, whenever one of the members of G’s old credences
in A equals 0.
That is, it is not the case that AR[Prold

Ca1
, . . . , Prold

Can
](A) = 0, whenever

Prold
Cai

(A) = 0 for at least one ai ∈ G.

The satisfaction of (No-ZP) ensures that an agent is not required to adopt the aggregated
credence 0 just because there is another agent who has credence 0 in that proposition.7

Imagine two agents have different credences in a proposition and one of the agents has
credence 0 in this proposition. Then, according to the standard probabilistic betting
interpretation of credences, this latter agent is willing to bet everything, including
her life, on the negation of the proposition. Should the second agent be required to
have a credence 0 in the proposition and, thus, of one in its negation as well? This
would be implausible. The agent is not required to adopt a credence which commits
her to bet her life. This argumentation supports the even stronger requirement that
AR[Prold

Ca1
, . . . , Prold

Can
](A) > 0, whenever Prold

Cai
(A) > 0 for at least one ai ∈ G

with wG
i > 0. However, for the present purpose it suffices to work with the weaker

requirement (No-ZP).
Finally, let us address the most controversial requirement, the Preservation of Inde-

pendence (PI) requirement:

(PI) If a group of agents G = {a1, . . . , an} aggregates their old credence functions,
Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence function preserves initially-

agreed-upon judgements of independence.
That is, AR[Prold

Ca1
, . . . , Prold

Can
](A∩B) = AR[Prold

Ca1
, . . . , Prold

Can
](A)×AR[Prold

Ca1
,

. . . , Prold
Can

](B), if Prold
Cai

(A ∩ B) = Prold
Cai

(A) × Prold
Cai

(B), for all ai ∈ G.

-According to (PI) (which is prominently supported by Laddaga 1977), any aggregation
rule has to preserve initially-agreed-upon judgements of probabilistic independence.
Thus, if two agents agree that two propositions are probabilistically independent, then
they should keep agreeing about this. Jehle and Fitelson (2009), who are sympathetic
to this requirement (even though they do not ultimately strongly endorse it), remark
that

7 It is noteworthy that (No-ZP) is not the negation of the weak zero preservation property, discussed in
Genest and Zidek (1986). This latter requirement states that if all agents have credences 0, then the aggregated
credence is 0 too. This requirement is implied by (U). (No-ZP) is the negation of a strong zero preservation
property, which requires that if one of the members of the group has credence 0 in a proposition, then all
agents should adopt credence 0. This strong zero preservation property is not implied by (U). Allard et
al. (2012) discuss and defend a related requirement, the 0/1-forcing property, which is the negation of our
(No-ZP).
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from an epistemic point of view, assessments of (in)dependence can reflect evi-
dential relationships induced by an agent’s credence function [(viz., Bayesian
confirmation theory; see also Jeffrey (1987)]. In such contexts, we think it would
be undesirable for [an aggregation rule] to undermine agreed-upon assessments
of these important relations. (Jehle and Fitelson 2009: p. 283, emphasis in the
original)8

Accordingly, agreement on independence judgements are equally as important as
agreement with respect to credences. (U) requires that if two agents agree on their
credences in a proposition, then an adequate aggregation rule should not require that
they change their credences in that proposition. Similarly, (PI) requires that if two
agents agree on the probabilistic independence of two propositions, then an adequate
aggregation rule should not require that they change this judgment.

A number of philosophers argue that (PI) is implausible. In particular, Lehrer and
Wagner (1983): p. 340) argue that “for a large class of probability assessment problems,
there is neither a prior theoretical determination of independence nor even much inter-
est in posterior observations that certain propositions are independent.” In addition, the
satisfaction of (PI) sometimes requires reversing initially-agreed-upon comparisons
of credences (Lehrer and Wagner 1983; Genest and Wagner 1987).9 For example, all
members of the group initially agree that proposition A is more credible than propo-
sition B, but after aggregating their credences they agree that B is more credible.
Thus, in the decision process it might be the case that initially all agents agree that A
is more credible than B and that therefore they should opt for some specific action.
However, after aggregating their credences in accordance with (PI) they suddenly take
B to be the more credible proposition and that therefore they should opt for some
alternative action. This is certainly counterintuitive. Accordingly, today a number of
epistemologists do not think that (PI) is a mandatory requirement on aggregation rules.

Unfortunately, it is not possible to simultaneously satisfy all these normative
requirements, except in very limited cases. Satisfying some of them forces one to
violate others. For example, Lehrer and Wagner (1983) show that (IA) and (PI) are
not jointly satisfiable except dictatorially (i.e., by setting the weights wG

i at 0 for all
but one agent). A consequence of the observations of Genest et al. (1986) is that (CL)
is incompatible with each of the following requirements: (IA), (C), (U), (No-ZP), and
(PI) again except dictatorially. For a particular comprehensive overview of the rele-
vant results see Genest and Zidek (1986). Instead of focusing on these incompatible
requirements some philosophers have suggested specific aggregation rules.

2.2.2 Aggregation rules

The core idea of the aggregation rules that can be found in the literature can be summa-
rized by the slogan: split the difference (e.g., Jehle and Fitelson 2009). More specif-

8 To be precise, Jehle and Fitelson claim this for specific rules on how to revise one’s credence in the light
of peer disagreement, so-called equal weight rules. We return to these rules in Sect. 2.2.3.
9 Genest and Wagner (1987) refer in this context to (Raiffa 1968: pp. 231–233). Wagner (2010) provides
an interesting suggestion of how to reconcile (PI) with the aggregation rule (AM) (see below), if (PI) is not
required to hold for all propositions.
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ically, in order to come up with an aggregation rule, it is suggested that we measure
the distance, or difference, between the credences and meet somewhere in between
the original credences. For example, suppose two peers a1 and a2 are in doxastic dis-
agreement with respect to proposition A, then the aggregated credence in A should
be equally distanced from both agents’ original credences in A. We want to allow for
different weights associated with the different agents. Accordingly, we can specify the
slogan by the following Proportional Distance/Difference requirement (P�):

(P�) If a group of two agents G = {a1, a2} aggregate their old credence functions,
Prold

Ca1
and Prold

Ca2
, then the difference between the aggregated credence function

and their old credence functions is proportional to the weights assigned to both
agents.
That is, wG

1 �[AR[Prold
Ca1

, Prold
Ca2

], Prold
Ca1

] = wG
2 �[AR[Prold

Ca1
, Prold

Ca2
], Prold

Ca2
],

where � is a measure of the distance between probability functions and∑2
i=1 wG

i = 1.

In accordance with the splitting the difference slogan, two measures of the distance
of probability functions are discussed in the literature: the Relative Entropy Measure
and the Inverse Relative Entropy Measure. Both measures are defined on the atoms
ω ∈ � of the algebra A instead of the propositions in the algebra. The first measure
is the Relative Entropy Measure, or the Kullback-Leibler Divergence, (�RE):

(�RE) �RE [Pr1, Pr2] = ∑
ω∈�

[
log

[Pr1(ω)
Pr2(ω)

] × Pr1(ω)
]
.

(�RE) implies that the aggregated credence function can be calculated by taking the
weighted arithmetic mean of the old credence functions (Abbas 2009). The corre-
sponding rule is the Weighted Arithmetic Mean Rule (AM):

(AM) If a group of agents G = {a1, . . . , an} aggregates their old credence func-
tions, Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence function, AM[Prold

Ca1
,

. . . Prold
Can

], can be calculated as follows:

For all ω ∈ � : AM[old
Pr
Ca1

, . . .
old
Pr
Can

](ω) =
n∑

i=1

[
wG

i × old
Pr
Cai

(ω)
]

where wG
i ∈ R

+,
∑n

i=1 wG
i = 1.

In the mathematical literature on aggregation rules, it is called the Linear Opinion
Pooling Operator. �RE is the most widely used measure for quantifying the distance
between probability functions. However, it is not a distance measure in the strict sense
of the word because it is not symmetric. If one employs the following Inverse Relative
Entropy Measure (�IRE) one may get different results on the distance:

(�IRE) �IRE[Pr1, Pr2] = ∑
ω∈�

[
log

[Pr2(ω)
Pr1(ω)

] × Pr2(ω)
]
.

Measuring the distance by �I RE implies that the new credence function can be calcu-
lated by taking the normalized weighted geometric mean of the old credence functions
(Abbas 2009). The corresponding rule is the Normalized Weighted Geometric Mean
Rule (GM):
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Table 1 Balance sheet given Monistic Bayesianism

Aggregation rule\
Requirement

(IA) (C) (U) (CL) (No-ZP) (PI)

(AM) Yes Yes Yes No Yes No

(GM) No No No Yes No No

(GM) If a group of agents G = {a1, . . . , an} aggregates their old credence func-
tions, Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence function, G M[Prold

Ca1
,

. . . Prold
Can

], can be calculated as follows:

For all ω ∈ � : GM

[
old
Pr
Ca1

, . . .
old
Pr
Can

]

(ω) =
∏n

i=1 Prold
Cai

(ω)w
G
i

∑
ω∈�

∏n
i=1 Prold

Cai
(ω)w

G
i

where wG
i ∈ R

+,
∑n

i=1 wG
i = 1.

In the mathematical literature on aggregation rules, it is called the Logarithmic Opinion
Pooling Operator. The reason for this is that the above aggregation rule can be rewritten
in the form of the Linear Opinion Pooling Operator using the logarithms of the respec-
tive probabilities and using ln

[∑
ω∈�

∏n
i=1 Prold

Cai
(ω)w

G
i
]

as a normalizing constant.10

Both aggregation rules satisfy (P�). For comparing them, it is worthwhile to inves-
tigate which of the above normative requirements are satisfied by these aggregation
rules:

Table 1 suggests that both aggregation rules are unacceptable from a philosophical
point of view. On the one hand, (GM) does not satisfy any of the requirements except
(CL). In particular, neither the intuitively plausible requirements (IA), (C), and (U) nor
the indispensable requirement (No-ZP) are satisfied. That (GM) satisfies the important
requirement (CL) is not a sufficient reason for accepting it. (The dissatisfaction of (IA),
(C), (U), and (No-ZP) by (GM) follows trivially from the definition of (GM). For the
other results see Genest and Zideck (1986: pp. 118–119), who give a comprehensive
overview over the literature). (AM), on the other hand, satisfies most requirements,

10 The Logarithmic Opinion Pooling Operator can be rewritten as follows using the logarithms

of the respective probabilities and using ln
[ ∑

ω∈�

∏n
i=1 Prold

Cai
(ω)

wG
i

]
as a normalizing constant:

(GM′) If a group of agents G = {a1, . . . , an} aggregates their old credence functions, Prold
Ca1

, . . . , Prold
Can

,

then their aggregated credence function, G M ′[Prold
Ca1

, . . . Prold
Can

], can be calculated as follows:

For all ω ∈ � : ln
[
G M ′[ old

Pr
Ca1

, . . .
old
Pr

Can
](ω)

] =
n∑

i=1

ln
[
wG

i × old
Pr

Cai

(ω)
]

− ln
[ ∑

ω∈�

n∏

i=1

old
Pr

Cai

(ω)
wG

i
]

where wG
i ∈ R

+,
∑n

i=1 wG
i = 1.
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but not the indispensable (PI) and (CL) (again we refer to Genest and Zideck (1986:
pp. 118–119) for the relevant results), which is a sufficient reason for rejecting it. In
the light of this balance sheet many philosophers find both rules, (AM) and (GM),
unacceptable and are searching for alternatives.

2.2.3 Jehle and Fitelson’s approach

Recently, Jehle and Fitelson (2009) have suggested a new approach for dealing with
doxastic disagreement. They focus on cases of doxastic disagreement with respect
to so-called peer-propositions. For Jehle and Fitelson (2009: p. 280) a proposition is
a peer-proposition for two agents if both are “equally competent, equally impartial,
and equally able to evaluate and assess the relevant evidence regarding” this propo-
sition. Since Jehle and Fitelson consider only agents that are peers (with respect to
the proposition in question), they do not assign different weights to the agents’ (with
respect to this proposition). Jehle and Fitelson, however, do not subscribe to the sim-
plifying assumption that the agents are peers with respect to all propositions in the
algebra under consideration. Therefore, they do not subscribe to the requirement that
an aggregation rule should lead the agents to agreement on every proposition. Aware
of many of the results discussed in Sect. 2.2, Jehle and Fitelson reject the idea that
when agents “discover they disagree regarding a peer-proposition A, they should both
adopt a new credence for A that is the straight average of their initial credences for
A” (2009: pp. 283–284, notation adapted). As a possible replacement for the Straight
Average Rule, Jehle and Fitelson suggest, but do not endorse, two new rules on how to
deal with doxastic disagreement. In the following we introduce these rules and argue
that they are inadequate.

First, let us introduce the common core of the two rules suggested by Jehle and
Fitelson (2009): Approximate Straight Averaging + Minimal Change (ASAMC) and
Approximate Equality (AE). (ASAMC) is the following requirement:

(ASAMC) “If a1 and a2 find themselves disagreeing about a peer-proposition
A […], then they should each update on A so that:

new
Pr
Cai

(A) ≈
Prold

Ca1
(A) + Prold

Ca2
(A)

2

where Prnew
Cai

(A) is strictly between Prold
Ca1

(A) and Prold
Ca2

(A) and where the update
is done in a way that satisfies (P) [which requires that the new credences obey the
probability calculus] and (C) [our (CL)]. If additional changes must be made (on
non-peer-propositions) to Prold

Ca1
(·) and/or Prold

Ca2
(·) in order to ensure satisfaction

of (P) and (C), then the other changes should be made so as to minimize the
distance of Prnew

Ca1
(·) and Prnew

Ca2
(·) from the initial distribution(s) Prold

Ca1
(·) and

Prold
Ca2

(·), while maintaining satisfaction of (P) and (C).” (Jehle and Fitelson
2009: pp. 287–288, notation adapted).
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The requirement that Prnew
Cai

(A) ≈ Prold
Ca1

(A)+Prold
Ca2

(A)

2 says that the new credence(s)

in a proposition A should approximate the straight average of their old credences in
that proposition. Jehle and Fitelson suggest approximation only, since equality leads
to implausible results (see Jehle and Fitelson 2009: pp. 284–287). In addition, Jehle
and Fitelson “impose this strict between-ness requirement so as to rule out dictatorial
updates, which revert to one of the two initial assignments” and they “assume that
a ≈ b iff |a − b| < ε, for some ‘small’ ε > 0” (Jehle and Fitelson 2009: en. 14).

The satisfaction of (ASAMC) does not guarantee that the new credences are “close
to each other” (Jehle and Fitelson 2009: p. 288). If a rule for how to revise one’s
credences in the light of doxastic disagreement which is meant to resolve this dis-
agreement allows that the credences of two peers in peer-propositions end up not
being close to each other, then the entire discussion on such rules is superfluous. The
idea behind debates about how to resolve doxastic disagreement is that agents end
up agreeing, at least approximately, with each other. There are alternative views—
so called “steadfast views on disagreement” (see Christensen 2009)—which do not
require that doxastic disagreement is resolved. Since Jehle and Fitelson intend to pro-
vide an aggregation rule for resolving doxastic disagreement, they suggest to add the
following requirement to (ASAMC), which we call Approximate Equality (AE):

(AE) Prnew
Ca1

(A) ≈ Prnew
Ca2

(A) (Jehle and Fitelson 2009: p. 288).

(AE) ensures that the new credences of agents a1 and a2 in peer-proposition A are
approximately equal.

There are two ways in which the agents may satisfy (ASAMC) and (AE): first,
they end up with different credences in A or, second, they end up with equal cre-
dences, but one agent might change her credences more than the other agent (Jehle
and Fitelson 2009: pp. 288–289). Accordingly, Jehle and Fitelson suggest two differ-
ent requirements that are added to the common core and distinguish the first rule from
the second: the Agreement (A) requirement and what we call the Remaining Inequality
(RI) requirement.

(A) Prnew
Ca1

(A) = Prnew
Ca2

(A), where “the consensus value […] will (sometimes) have

to be closer to one of the initial credences than it is to the other. As a result,
one of the peers will have to make a larger change […] to their initial credence
than the other peer does” (Jehle and Fitelson 2009: pp. 288–289, emphasis in
the original).

(RI) Prnew
Ca1

(A) ≈ Prnew
Ca2

(A), where both credences “may remain unequal [but are]

equally far from the midpoint between the initial credences”, furthermore, it
allows that credences in peer-propositions end up being different (Jehle and
Fitelson 2009: p. 289, emphasis in the original).

Jehle and Fitelson’s first rule consists of the common core, (ASAMC) and (AE), plus
(A). Their second rule consists of the common core, (ASAMC) and (AE), plus (RI).

We begin with specific criticism of both rules. We end with a general criticism of the
common core of both rules. The first rule, which consists of (ASAMC), (AE), and (A),
allows for unequal treatment of both peers (Jehle and Fitelson 2009: p. 289). Strictly
speaking, it does not even require that the respective credences in peer-propositions
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are equally taken into consideration in cases whenever it is possible. Therefore, it
is not required that the new credence in a peer-proposition is “equally far from the
midpoint” whenever it is possible. More generally, often it will be the case that there
is more than one credence that satisfies (ASAMC), (AE), and (A). This makes the new
credence adopted on basis of the first rule somewhat arbitrary.11

The second rule, which consists of (ASAMC), (AE), and (RI), allows that two agents
end up with different credences with respect to a peer-proposition. A first criticism
is that it is unclear why agents should revise their credences in the light of doxastic
disagreement in the first place if the agents end up disagreeing with respect to a peer
proposition after all. Even worse, the second rule might require the agents to apply it
again and again since the agents keep on disagreeing after the application of the rule.12

A second criticism is that this rule does not require the agents to agree on a specific
credence in a proposition if they can agree without violating one of Jehle and Fitelson’s
other requirements. A third criticism is that this second rule does not help in cases where
a group has to form an epistemic compromise for a joint decision. Even if two agents
have the same utility function and approximate credences, it is not guaranted that they
will come to the same decision concerning the different options available. The fourth
and final criticism of the second rule is that it is not straightforwardly generalizable to
cases involving more than two agents. For example, imagine a case of peer disagree-
ment involving three agents and that the third agent’s credence in the peer-proposition
in question equals the straight average of the first two agents’ credences in this proposi-
tion. According to the second rule, the three credences in the peer-proposition should be
approximately equal and they should approximate the straight average of the credences,
i.e., the credence of the third agent. However, due to (RI) the second rule requires that
all credences are equally far from the midpoint. This latter requirement cannot be
satisfied in the present example, since the credence in the peer-proposition of the third
agent is already the midpoint of the first and the second agent’s credences in this
proposition.

Finally, we want to add one general criticism of (ASAMC) itself. In particular,
we argue that there is no aggregation rule that obeys (ASAMC) if we assume that
every proposition is a peer-proposition. This holds independently of whether we are
considering a case where a single agent applies an aggregation rule to determine
her new credences or whether all the agents apply the same aggregation rule for
resolving their doxastic disagreement (see Sect. 2.2, p. 7). First, note that (ASAMC)
requires that peer updating is commutative with learning by strict conditionalization,
which corresponds to our (CL). One consequence of the observations of Genest et al.
(1986) (for a discussion see also Genest and Zidek 1986; Wagner 2010; Allard et al.

11 One might even argue that in the light of this observation, Jehle and Fitelson (2009) do not even suggest
a proper aggregation rule, but rather a further normative requirement on aggregation rules. We just want to
flag this issue, without discussing it further.
12 The most intuitive approach to resolving this problem is to redefine doxastic disagreement. In particular,
one could circumvent this objection by defining that two agents a1 and a2 are in doxastic disagreement
with respect to some proposition A iff PrCa1

(A) �≈ PrCa2
(A).
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2012) is that (CL) can only be satisfied by Generalized Logarithmic Opinion Pooling
Operators, which have the following form:13

(GLP) If a group of agents G = {a1, . . . , an} aggregates their old credence func-
tions, Prold

Ca1
, . . . , Prold

Can
, then their aggregated credence function, GLP[Prold

Ca1
,

. . . Prold
Can

], can be calculated as follows:

For all ω ∈ � : GLP[old
Pr
Ca1

, . . .
old
Pr
Can

](ω) =
g(ω) × ∏n

i=1 Prold
Cai

(ω)w
G
i

∑
ω∈�

[
g(ω) × ∏n

i=1 Prold
Cai

(ω)w
G
i
]

where wG
i ∈ R,

∑n
i=1 wG

i =1, and g is some arbitrary bounded function with g(ω)∈R.

In addition, note that (ASAMC) imposes the strict between-ness requirement that
requires for every proposition the agents disagree upon, the new credence should be
strictly in-between the agents’ old credences. Given the assumption that every propo-
sition is a peer-proposition this requirement is slightly stronger than our requirement
(C). However, one consequence of the observations of Genest et al. (1986) (see also
Wagner 2010) is that Generalized Logarithmic Opinion Pooling Operators do not
satisfy (C) in all circumstances.14 Thus, if we presuppose that every proposition is
a peer-proposition, the strict between-ness requirement and (CL) are not in general
compatible.

2.3 Further problems

Section 2.2 shows that according to the state of the art there is no adequate aggregation
rule within the standard probabilistic framework for modeling epistemic states. The
present subsection demonstrates, in addition, that there are cases of epistemic disagree-
ment that are not cases of doxastic disagreement and cannot be modeled adequately
within this framework.

Consider the following examples: suppose, first, theoretical physicist a1 considers
experimental physicist a2 an expert with respect to gathering evidence, but a fool
with respect to the confirmational import of the respective evidence. Accordingly,
a1 would like to assume a2’s evidence, but to ignore a2’s judgement of the confirma-
tional import of the evidence. Or suppose, second, experimental physicist a3 considers
theoretical physicist a4 a fool with respect to gathering evidence, but an expert with
respect to the confirmational import of the given evidence. Accordingly, a3 would
like to ignore what agent a4 accepts as evidence, but to assume a4’s judgement of
the confirmational import of a3’s evidence. Both examples demonstrate that there are

13 Genest et al. (1986) discuss (Generalized) Logarithmic Opinion Pooling Operators for probability
density functions over continuous variables. In the present context, we concentrate on probability functions
over finite sets of possible worlds. Accordingly, we follow Wagner 2010 and Allard et al. 2012 in our
presentation of (Generalized) Logarithmic Opinion Pooling Operators.
14 In the “Appendix” we prove that aggregation rules of the form of (GLP) do not satisfy (C).
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cases of epistemic disagreement that cannot be understood as cases of doxastic dis-
agreement. In addition, they indicate that the doxastic disagreement of two agents can
be based on disagreement with respect to two aspects of their epistemic state: first,
they might disagree on the evidence on which they base their credences. We call this
form of disagreement evidential disagreement. Second, they might disagree on the
confirmational import of their evidence with respect to a proposition in question. We
call this form of disagreement confirmational disagreement. Finally, it might be the
case that the doxastic disagreement of two agents is based on evidential and confirma-
tional disagreement. That is the case if they have different evidence and they judge the
confirmational import of this evidence differently with respect to the proposition in
question. However, these cases of epistemic disagreement cannot be reduced to cases
of doxastic disagreement since two agents might be in evidential and confirmational
disagreement without being in doxastic disagreement. That is for example the case if
they have a different evidence and they judge the confirmational import of their evi-
dence differently, but accidentally end up with equal credences in the proposition in
question.

3 An alternative probabilistic framework

3.1 Modeling doxastic disagreement

The preceding sections demonstrate that the standard probabilistic framework for
modeling epistemic states and doxastic disagreement has two problems. First, it is
not possible to frame an adequate aggregation rule within the standard probabilistic
framework. Second, not all forms of epistemic disagreement can be modeled within
this framework. In particular, in this framework it is impossible to adequately model
evidential and confirmational disagreement. In the light of the problems, we suggest an
alternative probabilistic framework for modeling epistemic states, one which allows us
to model all forms of epistemic disagreement: doxastic, evidential, and confirmational
disagreement. The alternative probabilistic framework presupposes the following:

Pluralistic Bayesianism First, a (rational) agent’s epistemic state is best rep-
resented by (an ordered pair consisting of) her (rational) confirmation commit-
ments (i.e., the judgements of the confirmational import of the evidence, which
capture how agents justify their credences) and her total evidence. Second, the
agent’s (rational) credences equal her (rational) confirmation commitments con-
ditional on the evidence. And, finally, third, (rational) credences and (rational)
confirmation commitments obey the probability calculus.
That is, we propose (i) to represent a (rational) agent’s a epistemic state, E Sa =
〈Prcon fa , E〉, by her confirmation commitments, Prcon fa , and her total evidence,
E , (ii) that PrCa (A) = Prcon fa (A|E), and (iii) that PrCa and Prcon fa obey the
probability calculus.

Pluralistic Bayesianism or closely related frameworks are endorsed by a number of
philosophers, independently of the epistemological problems in the context of dox-
astic disagreement. Levi (1980) (the label ‘confirmation commitment’ is due to him)
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and, especially, Lange (1999) argue that adopting Pluralistic Bayesianism is important
for understanding the proper epistemic role of conditionalization within probabilis-
tic epistemology. Schurz (2012), and Unterhuber and Schurz (2013) argue that for
adequately representing uncertain conditionals we need to adopt a position closely
related to our Pluralistic Bayesianism. Brössel (2012) argues that an adequate the-
ory of confirmation must presuppose Pluralistic Bayesianism. In the following we
investigate whether this new framework helps in dealing with doxastic disagreement.
First, we demonstrate that within this framework we can adequately model cases of
epistemic disagreement that could not be modeled within the standard probabilistic
framework.

According to the first example, theoretical physicist a1 considers experimental
physicist a2 an expert with respect to gathering evidence, but a fool with respect to
the confirmational import of the respective evidence. Accordingly, a1 would like to
add agent a2’s evidence to her own, but to ignore a2’s judgement of the confirma-
tional import of the evidence. Accordingly, if a1’s old epistemic state is E Sold

a1
=

〈Prcon fa1
, E1〉 and a2’s old epistemic state is E Sold

a2
= 〈Prcon fa2

, E2〉, then a1’s new

epistemic state in the light of this disagreement is E Snew
a1

= 〈Prcon fa1
, E1 ∩ E2〉. 15

According to the second example, experimental physicist a3 considers theoretical
physicist a4 a fool with respect to gathering evidence, but an expert with respect
to the confirmational import of the respective evidence. Accordingly, a3 would like
to ignore what agent a4 accepts as evidence, but to assume a4’s judgement of the
confirmational import of the evidence. Accordingly, if E Sold

a3
= 〈Prcon fa3

, E3〉 and

E Sold
a4

= 〈Prcon fa4
, E4〉, then E Snew

a3
= 〈Prcon fa4

, E3〉.
These cases of epistemic disagreement are extreme cases in which the other agent’s

confirmation commitments are adopted or ignored, and in which the agent’s evidence
is adopted or ignored. It displays the versatility of this new framework, but it does not
answer the question of how to (rationally) revise one’s epistemic state in the light of
doxastic disagreement when one shares (total) evidence. Now let us consider whether
one can make progress in answering this question within this new framework.

15 An anonymous referee of this journal encouraged us to discuss in more detail why we suggest that
adding a2’s evidence to a1’s is best understood as taking the intersection of their evidence pools instead
of taking, for example, the union. The reason is that given our setup the agents’ evidence is represented
by a proposition understood as a set of possible worlds. Thus, the intersection of two propositions is a
logically stronger proposition, namely the conjunction of both propositions, the union of two propositions
is a logically weaker proposition, namely the disjunction of both propositions. Intuitively, adding a2’s
evidence to a1’s evidence should result in a logically stronger proposition and this is why we suggest taking
the intersection instead of the union. Thus, given our assumption that agent a1 wants to add a2’s evidence
to her own evidence, the intersection, respectively the conjunction, is the natural choice. However, suppose
agent a2’s evidence E2 is logically inconsistent with a1’s evidence E1, then the straightforward option,
i.e., taking the conjunction of both agents’ evidence, is not available. Currently, we are not in the position
to give a complete and well-founded reply to this problem. Tentatively, we suggest that if agent a1 wants
to add a2’s evidence E2 to hers even tough it is logically inconsistent with a1’s evidence E1, then a1
should use the belief merging operator suggested in Konieczny and Pino Pérez (2011) instead of taking the
conjunction or disjunction of both, E1 and E2. This would presuppose, however, that we do not represent
an agent’s evidence by a single proposition. Instead we would have to represent the agents’ evidence by a
set of propositions.
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3.2 Splitting the difference, revised

Suppose two agents a1 and a2 are in doxastic disagreement in the light of shared (total)
evidence E . Thus, even though E captures both agents’ evidence they end up with
different credences PrCa1

(A) and PrCa2
(A) with respect to proposition A. Given our

framework, this is due to their different confirmation commitments Prcon fa1
(A|E) and

Prcon fa2
(A|E), which depend on Prcon fa1

(A ∩ E), Prcon fa1
(E), and Prcon fa2

(A ∩ E),
and Prcon fa2

(E). Accordingly, a natural proposal is to apply the aggregation rules intro-
duced in Sect. 2.2 to confirmation commitments instead of credences. In the following
we propose a revised aggregation rule (AM*), the Weighted Arithmetic Mean Rule,
Revised, which corresponds to (AM), and argue that it adequately answers the question
of how to (rationally) revise one’s epistemic state in the light of doxastic disagreement.

Suppose the agents of a group all share the same evidence but disagree in their con-
firmation commitments and based on this in their credences towards some proposition.
Following our proposal they aggregate their confirmation commitments to resolve their
doxastic disagreement. The aggregation rule we want to propose for this purpose is
the following:

(AM*) If a group of agents G = {a1, . . . , an} aggregates their old epistemic states,
E Sold

a1
, . . . , E Sold

an
, in the light of shared total evidence E , then their aggre-

gated epistemic state, AM∗[E Sold
a1

, . . . , E Sold
an

], is defined as follows:

AM∗[E Sold
a1

, . . . , E Sold
an

] = 〈AM[ Pr
con fa1

, . . . Pr
con fan

], E〉

and

For all ω ∈ � : AM[ Pr
con fa1

, . . . Pr
con fan

](ω) =
n∑

i=1

[
wG

i × Pr
con fai

(ω)
]

where wG
i ∈ R

+ and
∑n

i=1 wG
i = 1.

For comparison, we also consider a revised aggregation rule that corresponds to
(GM), the Normalized Weighted Geometric Mean Rule, Revised (GM*):

(GM*) If a group of agents G = {a1, . . . , an} aggregates their old epistemic states,
E Sold

a1
, . . . , E Sold

an
, in the light of shared total evidence E , then their aggre-

gated epistemic state, G M∗[E Sold
a1

, . . . , E Sold
an

], is defined as follows:

G M∗[E Sold
a1

, . . . , E Sold
an

] = 〈G M[ Pr
con fa1

, . . . Pr
con fan

], E〉

and

For all ω ∈ � : G M[ Pr
con fa1

, . . . Pr
con fan

](ω) =
∏n

i=1 Prcon fai
(ω)w

G
i

∑
ω∈�

∏n
i=1 Prcon fai

(ω)w
G
i

where wG
i ∈ R

+ and
∑n

i=1 wG
i = 1.
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In the following, we show that (AM*) satisfies all our normative requirements
except (IA) and (PI) and argue that the non-satisfaction of these two requirements is
no epistemic deficit. In addition, we show that (GM*) satisfies only (CL). However,
keep in mind that we presuppose that the agents all share the same evidence. The
mentioned results for (AM*) and (GM*) depend on this background assumption.

First, consider requirement (IA). It requires that the aggregated credence in a propo-
sition is a function of the agent’s old credences in that proposition. Obviously, aggre-
gation rule (GM*) does not satisfy this requirement except dictatorially. Just sup-
pose two agents a1 and a2 received only the trivial evidence E ∪ ¬E and therefore
PrCai

= Prcon fai
for both of them. We already know from Sect. 2.2.2 that (GM) does

not satisfy (IA) except dictatorially, if we apply it to credence functions PrCa1
and

PrCa2
. Since we assumed that the agents received only the trivial evidence E ∪ ¬E

and PrCai
= Prcon fai

for both agents, this proves that (GM*) does not satisfy (IA)
except dictatorially. It is not so trivial to show that (AM*) does not satisfy (IA) except
dictatorially.16 Note that, according to the picture we are promoting, the agents’ cre-
dences in some proposition A depend on Prcon fai

(A ∩ E) and Prcon fai
(E), since

PrCai
(A) = Prcon fai

(A∩E)

Prcon fai
(E)

. This indicates that (AM*) does not satisfy requirement

(IA), and for a good reason. According to Pluralistic Bayesianism, there is more to
an agent’s epistemic state that is epistemically relevant than the agent’s credences.
According to it the agent’s confirmation commitments are epistemically relevant too,
since they capture how the agent justifies her credences. It is for this reason that we
reject (IA): if one disagrees with an agent on how to justify a certain proposition in the
light of the evidence, one should not take that agent’s credence in that proposition at
face value. Instead, one should come to an agreement on how to justify the proposition
in question by aggregating one’s confirmation commitments first and only afterwards
calculate the resulting credences. This requires considering more than just the agent’s
credences to determine her new epistemic state and the aggregated credences.

Now consider requirement (C). It requires that if a group of agents G =
{a1, . . . , an} aggregates their old credence functions Prold

Ca1
, . . . , Prold

Can
, then their

new credence in a proposition A, AR[Prold
Ca1

, . . . , Prold
Can

](A), is greater or equal

to min{Prold
Cai

(A) : ai ∈ G} and smaller or equal to max{Prold
Cai

(A) : ai ∈
G}. Aggregation rule (GM*) does not satisfy this requirement except dictatori-
ally. Just suppose again that two agents a1 and a2 received only the trivial evi-
dence E ∪ ¬E and therefore PrCai

= Prcon fai
for both of them. We know from

Sect. 2.2.2 (see Table 1) that (GM) does not satisfy (C) in this case except dic-
tatorially. Again, since we assumed that the PrCai

= Prcon fai
for both agents,

this proves that (GM*) does not satisfy (C) except dictatorially. Aggregation rule
(AM*) on the other hand satisfies (C)17, even if it reconciles the different cre-
dences of the agents indirectly by aggregating their confirmation commitments
first.

16 The proof can be found in the “Appendix”.
17 The proof can be found in the “Appendix”.
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The next requirement (U) demands that if a group of agents G = {a1, . . . , an}
aggregates their old credence functions, Prold

Ca1
, . . . , Prold

Can
, and all their old credences

in a proposition A, Prold
Ca1

(A), . . . , Prold
Can

(A), equal r , then their aggregated credence in

A, AR[Prold
Ca1

, . . . , Prold
Can

](A), equals r too. Again one can show that aggregation rule
(GM*) does not satisfy this requirement in general. Just suppose again that two agents
a1 and a2 received only the trivial evidence E ∪ ¬E and therefore PrCai

= Prcon fai
for both of them. We know from Sect. 2.2.2 (see Table 1) that (GM) does not satisfy
(U) in this case except dictatorially. Hence, (GM*) does not satisfy (U) either. (AM*),
however, satisfies (U), since it satisfies (C) and the latter implies the former.

Now let us turn to the more sophisticated requirements. Requirement (CL) demands
that an adequate aggregation rule is commutative with learning. It ensures that it is irrel-
evant whether one first aggregates epistemic states and afterwards incorporates new
evidence, or whether one incorporates new evidence first and afterwards aggregates
epistemic states (see also Jehle and Fitelson 2009: p. 286; Genest and Zidek 1986: p.
118). It also ensures that a group “will make decisions that appear to an outsider like the
decisions of a single Bayesian agent” (Wagner 2010: p. 339). According to the picture
we are promoting, this requirement is trivially satisfied by any possible aggregation
rule. Suppose two agents want to resolve their doxastic disagreement in the light of the
same evidence. In particular, suppose E Sa1 = 〈Prcon fa1

, E〉 and E Sa2 = 〈Prcon fa1
, E〉.

Independently of whether both agents first learn E ′ and then resolve their doxastic dis-
agreement or the other way around, we suggest that their new epistemic state is the
following: E Snew

ai
= 〈AR[Prcon fa1

Prcon fa2
], E ∩ E ′〉. As a result the credence of both

agents in some propositions A equals AR[Prcon fa1
Prcon fa2

](A|E ∩ E ′). Since this
holds for any possible aggregation rule it holds for (AM*) and (GM*) too. This is
good news, since (CL) is an indispensable requirement.

The (No-ZP) requirement demands that an agent (respectively, a group) is not
forced to adopt credence (respectively to agree to an epistemic compromise) 0
in some proposition just because the other agent has credence 0 in that proposi-
tion. (GM*) does not satisfy this requirement except dictatorially. Suppose agent
a1’s credence in some proposition A in the light of evidence E equals 0. Thus,
Prcon fa1

(A|E) = 0 and therefore Prcon fa1
(ω) = 0 for all ω ∈ (A ∩ E). By

the definition of (GM) it follows that G M[Prcon fa1
, . . . , Prcon fan

](ω) = 0, when-

ever Prcon fa1
(ω) = 0 and wG

1 �= 0. Therefore (GM*) does not satisfy (No-ZP)
except dictatorially. (AM*), however, satisfies (No-ZP). By the definition of (AM),
AM[Prcon fa1

, . . . , Prcon fan
](ω) > 0, whenever for at least one agent ai : Prcon fai

(ω) >

0 (assuming that this agent has a positive weight, i.e., wG
i > 0). This demonstrates that

(AM*) satisfies the indispensable requirement (No-ZP) and is in that respect preferable
to (GM*).

Finally, requirement (PI) demands that an adequate aggregation rule preserves
initially-agreed-upon judgements of probabilistic independence. As already noted,
following Lehrer and Wagner (1983) and Genest and Wagner (1987) this requirement
is rejected by a number of philosophers and mathematicians. We do not want to take
a definite stand concerning (PI). However, please note that neither (AM*) nor (GM*)
satisfies (PI) except dictatorially. We know from Sect. 2.2.2 (see Table 1) that (AM)
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Table 2 Balance sheet given Pluralistic Bayesianism

Aggregation rule\
Requirement

(IA) (C) (U) (CL) (No-ZP) (PI)

(AM*) No Yes Yes Yes Yes No

(GM*) No No No Yes No No

and (GM) do not satisfy (PI) except dictatorially. Now suppose again that two agents
a1 and a2 received only the trivial evidence E ∪ ¬E and therefore PrCai

= Prcon fai
for both of them. By definition of (AM*) and (GM*), this implies that neither (AM*)
nor (GM*) satisfies (PI) except dictatorially.

The following table provides an overview of the results achieved:
Table 2 demonstrates that aggregation rule (GM*) is inadequate from a philosoph-

ical point of view, since it does not satisfy any of the normative requirements except
(CL). As before, that (GM*) satisfies the important requirement (CL) is not a suffi-
cient reason for accepting it—especially if we compare it with aggregation rule (AM*).
The latter rule satisfies all our normative requirements except (IA) and (PI). However,
within the framework of Pluralistic Bayesianism we think it is actually a virtue of
(AM*) that it does not satisfy (IA). After all, Pluralistic Bayesianism is motivated
by the consideration that there is more that is relevant to an agent’s epistemic state
than simply her credences. In particular, the agents’ credences in some proposition A

depend on Prcon fai
(A ∩ E) and Prcon fai

(E), since PrCai
(A) = Prcon fai

(A∩E)

Prcon fai
(E)

. Once we

admit that the agents’ evidence and their confirmation commitments are relevant too,
it is natural to reject (IA) and instead to require that the aggregated credence func-
tion depends on Prcon fai

(A ∩ E) and Prcon fai
(E). Thus, that (AM*) does not preserve

initially-agreed-upon judgements of probabilistic independence is not a reason to reject
(AM*). However, the satisfaction of all the normative requirements (C)–(No-ZP) is a
good reason to adopt (AM*).

4 Conclusion

We demonstrated that it is not possible to simultaneously satisfy all normative require-
ments on aggregation rules within Monistic Bayesianism. Furthermore, within this
framework there is no rule that satisfies our most important normative requirements,
it is not even possible to model all forms of epistemic disagreement besides doxastic
disagreement. In particular, within Monistic Bayesianism it is not possible to model
evidential or confirmational disagreement.

If we revise our philosophical view that an agent’s epistemic state is best repre-
sented by her credence function alone, we have the resources to overcome the men-
tioned shortcomings. When we adopt Pluralistic Bayesianism it is not only possible
to model all forms of epistemic disagreement, but we also can provide an adequate
aggregation rule that satisfies the most important normative requirements. The core
philosophical idea of our solution is that if the agents involved in a doxastic dis-
agreement all share the same (total) evidence, but disagree in their credences, then
this must be due to a disagreement in their confirmation commitments. We suggested
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that the agents first agree on their confirmation commitments and thereby come to an
agreement in credences as well. Based on this suggestion we formulated the aggrega-
tion rule (AM*) and showed that it satisfies the indispensable normative requirements
(CL) and (No-ZP) and also the intuitive requirements (C) and (U). Since the alter-
native rule (GM*) does only satisfy (CL), (AM*) provides the best answer to the
question of how to rationally revise one’s epistemic state in the light of epistemic
disagreement.
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Appendix

Proof (GLP) does not satisfy (C) Suppose � = {ω1, ω2, ω3} and the following prob-
ability distributions Pra1 and Pra2 over �:

ω1 ω2 ω3

Pra1
2
3

1
3 0

Pra2
1
3 0 2

3

According to the above tabular, Pra1({ω2, ω3}) = 1
3 and Pra2({ω2, ω3}) = 2

3 . Thus,
an aggregation rule AR that satisfies (C) has the following property: Pra1({ω2, ω3}) ≤
AR[Pra1 , Pra2 ]({ω2, ω3}) ≤ Pra2({ω2, ω3}). If the aggregation rule AR satisfies
(ASAMC), then Pra1({ω2, ω3}) < AR[Pra1 , Pra2 ]({ω2, ω3}) < Pra2({ω2, ω3}),
because of its strict between-ness requirement. However, (rules of the form) (GLP)
cannot be such an aggregation rule, except dictatorially by setting the weight of one
of the agents, i.e., wG

1 or wG
2 , to 0. According to the definition:

For all ω ∈ {ω1, ω2, ω3} :GL P[Pr
a1

, Pr
a2

](ω) = g(ω)×[Pra1(ω)w
G
1 ×Pra2(ω)w

G
2 ]

∑
ω∈� g(ω)× [Pra1(ω)w

G
1 ×Pra2(ω)w

G
2 ]

where wG
i ∈ R,

∑2
i=1 wG

i = 1, and g is some arbitrary bounded function with
g(ω) ∈ R. Thus, if neither wG

1 nor wG
2 is set to 0, GLP[Pra1 , Pra2 ](ω) = 0 for all

ω ∈ {ω2, ω3}, since either Pra1(ω) = 0 or Pra2(ω) = 0 for all ω ∈ {ω2, ω3}. This
implies that GLP[Pra1 , Pra2 ]({ω2, ω3}) = 0 and therefore that it is not the case that
Pra1({ω2, ω3}) ≤ GL P[Pra1, Pra2 ]({ω2, ω3}) ≤ Pra2({ω2, ω3}). Thus, (GLP) does
not satisfy (C) and it does not satisfy (ASAMC). Please note, even if we set the weight
of one of the agents to 0, (GLP) would not satisfy (ASAMC), but it would satisfy (C).
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Proof (AM*) does not satisfy (IA) In order to show that (AM*) does not satisfy (IA)
we have to show that the aggregated credence is not a function of the credence of the
individual agents. For this purpose let G be some group with agents a1 and a2, and let
us suppose that PrCa1

(A) = Prcon fa1
(A|E) = 1

2 and PrCa2
(A) = Prcon fa2

(A|E) = 1
4

and wG
1 = wG

2 = 1
2 .

In Scenario I suppose (i) Prcon fa1
(E) = 1

2 and Prcon fa2
(E) = 1

4 , (i i)

Prcon fa1
(A ∩ E) = 1

4 and Prcon fa2
(A ∩ E) = 1

16 . Therefore, the new credence of the
agent’s equals the conditional aggregated credences AM[Prcon fa1

, Prcon fa2
](A|E) =

AM[Prcon fa1
,Prcon fa2

](A∩E)

AM[Prcon fa1
,Prcon fa2

](E)
= 5

12 .

In Scenario II suppose (i) Prcon fa1
(E) = 1

2 and Prcon fa2
(E) = 1

2 , (i i)

Prcon fa1
(A ∩ E) = 1

4 and Prcon fa2
(A ∩ E) = 1

8 . Therefore, the new credence of the
agents equals the conditional aggregated credences AM[Prcon fa1

, Prcon fa2
](A|E) =

AM[Prcon fa1
,Prcon fa2

](A∩E)

AM[Prcon fa1
,Prcon fa2

](E)
= 3

8 .

Thus, even though in both scenarios PrCa1
(A) = Prcon fa1

(A|E) = 1
2 and

PrCa2
(A) = Prcon fa2

(A|E) = 1
4 the aggregated credence in both scenarios differs.

This shows that the aggregated credence is not a function of the credences of the indi-
vidual agents. The reason for this result is that in both scenarios the agents disagree
in their confirmation commitments differently. After aggregating their confirmation
commitments (in E and (A ∩ E)) first, they come to different results in both scenarios
with respect to the question what their aggregated credence should be.

Proof (AM*) satisfies (C) Let G be some group with agents a1, . . . , am with
confirmation commitments Prcon fa1

, . . . , Prcon fam
and weights wG

1 , . . . , wG
m , where

∑m
j=1 wG

j = 1 and wG
i ≥ 0 for all i . We have to show that min

{
Prcon fai

(H∩E)

Prcon fai
(E)

|ai ∈ G

}

≤ AM[Prcon fa1
,... Prcon fam ](H∩E)

AM[Prcon fa1
,... Prcon fam ](E)

≤ max

{
Prcon fai

(H∩E)

Prcon fai
(E)

|ai ∈ G

}

. Without loss of gen-

erality let us assume that
Prcon fa1

(H∩E)

Prcon fa1
(E)

= min

{
Prcon fai

(H∩E)

Prcon fai
(E)

|ai ∈ G

}

and that

Prcon fam (H∩E)

Prcon fam (E)
= max

{
Prcon fai

(H∩E)

Prcon fai
(E)

|ai ∈ G

}

.

We know by this assumption that for all ai ∈ G:
Prcon fa1

(H∩E)

Prcon fa1
(E)

≤ Prcon fai
(H∩E)

Prcon fai
(E)

≤
Prcon fam (H∩E)

Prcon fam (E)
and thus by simple arithmetic that (i) Prcon fa1

(H ∩ E) × Prcon fai
(E) ≤

Prcon fa1
(E)×Prcon fai

(H ∩ E) and (ii) Prcon fam
(E)×Prcon fai

(H ∩ E) ≤ Prcon fam
(H ∩

E) × Prcon fai
(E).

In a first step (i) implies that for all ai ∈ G: Prcon fa1
(H ∩ E)×[wG

i Prcon fai
(E)] ≤

Prcon fa1
(E) × [wG

i Prcon fai
(H ∩ E)]. In a second step we can conclude that

∑m
j=1 Prcon fa1

(H ∩ E)×[wG
j Prcon fa j

(E)] ≤ ∑m
j=1 Prcon fa1

(E)×[wG
j Prcon fa j

(H ∩
E)]. In a third step this implies that Prcon fa1

(H ∩ E) × ∑m
j=1[wG

j Prcon fa j
(E)] ≤
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Prcon fa1
(E)×∑m

j=1[wG
j Prcon fa j

(H ∩ E)], which implies in the fourth step as desired

that
Prcon fa1

(H∩E)

Prcon fa1
(E)

≤
∑m

j=1

[
wG

j ×Prcon fa j
(H∩E)

]

∑m
j=1

[
wG

j ×Prcon fa j
(E)

] .

Similarly, in a first step (ii) implies that for all ai ∈ G: Prcon fam
(E) ×

[wG
i Prcon fai

(H ∩ E)] ≤ Prcon fam
(H ∩ E)×[wG

i Prcon fai
(E)]. In a second step we can

conclude that
∑m

j=1 Prcon fam
(E)×[wG

j Prcon fa j
(H ∩E)] ≤ ∑m

j=1 Prcon fam
(H ∩E)×

[wG
j Prcon fa j

(E)]. In the third step we can infer that Prcon fam
(E)×∑m

j=1[wG
j Prcon fa j

(H ∩ E)] ≤ Prcon fam
(H ∩ E) × ∑m

j=1[wG
j Prcon fa j

(E)]. Finally, in the fourth step

we can conclude as desired that

∑m
j=1

[
wG

j ×Prcon fa j
(H∩E)

]

∑m
j=1

[
wG

j ×Prcon fa j
(E)

] ≤ Prcon fam (H∩E)

Prcon fam (E)
.
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