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Abstract In this work, we investigate the relationship between paraconsistent seman-
tics and some well-known topological spaces such as connected and continuous spaces.
We also discuss homotopies as truth preserving operations in paraconsistent topolog-
ical models.
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1 Introduction and motivation

The well-studied notion of deductive explosion describes the situation where any
formula can be deduced from an inconsistent set of formulas (or from its deductive
closure). In other words, in deductively explosive logics, we have {ϕ,¬ϕ} � ψ for all
formulas ϕ,ψ where � is a logical consequence relation. In this respect, both “clas-
sical” and intuitionistic logics are known to be deductively explosive. Paraconsistent
logic, on the other hand, is the umbrella term for the logical systems where the logical
consequence relation is not explosive.

A variety of philosophical and logical objections can be raised against paraconsis-
tency, and almost all of these objections can be dismissed in a rigorous fashion. In this
work, we will not be concerned about the philosophical implications of paraconsis-
tency, and refer the reader to the following references for a detailed overview of the
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subject from philosophical, logical and historical perspectives (da Costa et al. 2007;
Priest 1998, 2002, 2007).

As the definition implies, paraconsistency has largely been approached from a
proof theoretical point of view. Most of the work in this field concerns proof theoreti-
cal concepts, such as derivability of certain formulas and tableaux methods in various
paraconsistent logics. In this work, however, we will consider semantical aspects of
paraconsistency. A central theme in the semantics of paraconsistency is true contradic-
tions. Therefore, perhaps it would be wiser to call our approach dialetheic rather than
paraconsistent. Dialetheism is the view which asserts that there are true contradictions.
It does not mean that all contradictions are true, but it maintains that there are some true
contradictions. In this paper, in order not to make the terminology more complicated
for the reader, we will use the term paraconsistent and dialetheism interchangeably.

Here, our object of study is topological models. We define them classically, and
show how a paraconsistent logic can be defined in this framework following the usual
approach. More specifically, we investigate the relationship between paraconsistency
and some well-known topological spaces. We achieve this by considering paraconsis-
tent topological semantics.

We need to make it clear at the beginning of our paper that the notions paracon-
sistency and dialetheism do not refer to the meta-logical (such as set theoretical or
arithmetical) properties of the formal systems which we are discussing.1 For that
reason, some of our structural definitions and proof methods are classical.2 Namely,
paraconsistency does not claim that all primitives should be defined inconsistently nor
inconsistencies should be allowed at meta-theoretical level. Paraconsistency, we under-
line, is a system where we control the inconsistencies and allow sensible deductions
under their presence. For instance, in our system, we define most of the mathematical
primitives (topology, subset, membership etc.) in the classical sense. One of our goals
in this paper is to demonstrate how paraconsistency occurs at the object level in such
classically defined models. Paraconsistency then will occur when we introduce a non-
classical operator within the classical framework. This is indeed the usual strategy for
paraconsistent logics. For instance, in some well known paraconsistent logics, truth
values or negations were defined paraconsistently where the rest of the system retained
its classical properties (da Costa 1974; Priest 1979). A similar strategy should also
be familiar from intuitionistic logics where only some connectives and definitions are
introduced non-classically (Mints 2000).

The use of topological semantics for paraconsistent logic is not new. To our
knowledge, the earliest work discussing the connection between inconsistency and
topology goes back to Goodman (1981).3 In his paper, Goodman discussed “pseudo-
complements” in a lattice theoretical setting and called the topological system he

1 Thanks to the anonymous referee for bringing this point to my attention.
2 For instance, classical oriented readers of paraconsistency may find it quite puzzling when paraconsistent
logicians employ proof by contradiction as a proof method. Paraconsistent logic or dialetheism, note again,
does not claim that all contradictions are acceptable.
3 Thanks to Chris Mortensen for pointing this work out. Even if the paper appeared in 1981, the work had
been carried out around 1978. In his paper, Goodman indicated that the results were based on an early work
that appeared in 1978 only as an abstract.
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obtains “anti-intuitionistic logic”. In a recent work, Priest discussed the dual of the
intuitionistic negation operator and considered that operator in a topological frame-
work (Priest 2009). Similarly, Mortensen discussed topological separation principles
from a paraconsistent and paracomplete point of view and investigated various incon-
sistent theories in some topological spaces (Mortensen 2000). The relation between
paraconsistency and some modal logics was discussed by Béziau as well (Béziau
2005). However, none of the aforementioned works investigated the relation between
topological spaces and paraconsistent semantics in detail, and it is our task here to
provide that.

We also underline that similar investigations have been carried out extensively for
various classical modal logics (Aiello et al. 2007, 2003; van Benthem and Bezhan-
ishvili 2007). What we achieve here is to provide the reader with observations on para-
consistent topological spaces in such a way that similarities and differences between
classical and non-classical logics can be seen more clearly from a semantic angle.
One direction of this research program (namely the classical one) has been pursued
thoroughly, and now it is time to do justice to the whole research program.

The organization of the paper is as follows. First, we present the topological basics
of our subject in a nutshell. Then, we point out the connections between topological
semantics and paraconsistency and make some further observations between different
types of topologies and paraconsistency, and present our results. Finally, after a brief
remark on the modal version of paraconsistent topological semantics, we conclude
with possible research directions for future work, underlining the fact that the field is
largely unexplored.

2 Basics

2.1 Definitions

The history of topological semantics for (classical modal) logics can be traced back to
the early 1920s, making it the first semantics for a variety of modal logics (Goldblatt
2006). The major revival of topological semantics for modal logics is due to McKin-
sey and Tarski when they initiated a study of topological semantics and algebras for
topological spaces (McKinsey and Tarski 1944, 1946). Following the same research
program, the extension of topological semantics to intuitionistic logic can also be
achieved in a natural way (Mints 2000).

In this section, we briefly mention the basics of topological semantics to set the
basis of our discussion. We give two equivalent definitions of topological spaces here
for our purposes. We call the first one “the open set” definition, and the second “the
closed set” definition.

Definition 2.1 (Open set definition) The structure 〈S, σ 〉 is called a topological space
if it satisfies the following conditions.

1. S ∈ σ and ∅ ∈ σ .
2. σ is closed under arbitrary unions and under finite intersections.
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Definition 2.2 (Closed set definition) The structure 〈T, τ 〉 is called a topological space
if it satisfies the following conditions.

1. T ∈ τ and ∅ ∈ τ .
2. τ is closed under finite unions and under arbitrary intersections.

Collections σ and τ are called topologies. The elements of σ are called open sets
whereas the elements of τ are called closed sets. A set is open if its complement in the
same topology is closed and vice versa. Functions can easily be defined on topological
spaces. A function is called continuous if the inverse image of an open (respectively,
closed) set is open (respectively, closed), and a function is called open if the image
of an open (respectively, closed) set is open (respectively, closed). Moreover, two
topological spaces are called homeomorphic if there is a continuous bijection with a
continuous inverse from one space to the other. Two continuous functions are called
homotopic if there is a continuous deformation between the two—namely, if one
function can be continuously transformed to the other. Homotopy is an equivalence
relation and gives rise to the subject of homotopy groups which is a foundational
subject in algebraic topology.

It should be underlined that our definitions are the standard textbook definitions of
classical topological primitives. We believe this is important for two reasons. First,
it shows on a more philosophical and ideological level that paraconsistency is quite
natural and expected even under the very basic classical notions, and that there is a
way to handle true contradictions with the given classical primitives. Second, more
pragmatically, we build our current (and future) work on paraconsistent topologies on
the already existing body of mathematical work in the field, so that we can extend
our research program to various other subfields of topology (mereotopology), algebra
(Co-Heyting algebras) and game theory (epistemic game theoretical paradoxes) in the
future.

2.2 Syntax and semantics

Let us now define our syntax before discussing the semantics. We denote a countable
set of propositional variables with P . The symbol ⊥ stands for contradiction. We
use a language of propositional modal logic with the modality ♦, and define the dual
modality � in the usual sense. Informally, we construct the language of the basic
unimodal logic recursively in the standard fashion by using the symbols ⊥, ∼, ∧ and
♦. When we discuss negation in a classical or intuitionistic frameworks, we will use
the ¬ symbol in order to distinguish it.

Since our focus is paraconsistent logic, we need to be precise about the ⊥ symbol.
As we will indicate later on, ⊥ is a constant which is true nowhere. Note that in para-
consistent logics, we do not define contradiction as p ∧ ∼p since some contradictory
statements may be satisfiable.

Let us now fix some notation and terminology. The extension of a formula ϕ in the
model M is defined as the points in M at which ϕ is satisfied, and denoted as [ϕ]M .
We will omit the superscript if the model we are working in is obvious. Moreover, by
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a theory, we mean a deductively closed set of formulas. We define a subtheory in the
usual sense by using the classical subset relation.4

In topological semantics, the modal operator � for necessitation corresponds to
the topological interior operator Int where Int(O) is the largest open set contained
in set O . Furthermore, one can dually associate the topological closure operator Clo
with the possibility modal operator ♦ where the closure Clo(O) of a given set O is
the smallest closed set that contains O . In this framework, the extensions of Boolean
cases are obvious. The extension of a modal formula �ϕ will then be associated with
an open set in the topology. Thus, we have [�ϕ] = Int([ϕ]). Similarly, we will put
[♦ϕ] = Clo([ϕ]) associating Clo operator with the ♦ modality. Therefore, in the
classical setting, modalities necessarily produce topological entities such as open or
closed sets. However, the extension of Booleans may or may not be topological entities.

At this stage we can take one step further, and suggest that extension of any propo-
sitional variable will be an open set (Mints 2000; Mortensen 2000). In that setting,
conjunction and disjunction work as before for finite intersections and unions. Never-
theless, the negation can be problematic as the complement of an open set is generally
not an open set, thus may not be the extension of a formula in the language. For this
reason, we need to define the negation operator topologically as the open complement
(interior of the complement) of a given set. In this semantics, ¬p is true if and only
if p is true at the interior of the complement of the extension of p. By this method,
we obtain an intuitionistic logic that supports the incomplete theories where such sys-
tems can also be called paracomplete. It is easy to show that in paracomplete logics,
p ∨ ¬p → � is not necessarily true. Topological semantics for paracomplete logics
(particularly for intuitionistic logic) are well known and well studied, and we will not
pursue them here.

A similar idea can be used to obtain paraconsistent logics where we stipulate that the
extension of any propositional variable will be a closed set. In order to avoid a similar
problem with the negation operator, we define the negation as the closed complement.
Namely, in this semantics, ∼p is true if and only if p is true at the closure of the
complement of the extension of p. We call such systems paraconsistent topological
modal logics. They are our main focus in this work.

Now, let us consider the boundary ∂(·) of a set O where ∂(O) is defined as
∂(O) := Clo(O)−Int(O). Then for a formulaϕ, consider the boundary of its extension
∂([ϕ]) in a topology. We will now briefly explain how paracomplete and paraconsistent
semantics differ underlining the importance boundary points in the semantics.

Let us start with paracomplete logics. Let x ∈ ∂([ϕ]). Since [ϕ] is open in paracom-
plete logics, x /∈ [ϕ] by definition. Similarly, x /∈ [¬ϕ] as the open complement is also
open by definition. Thus, neither ϕ nor ¬ϕ is true at the boundary points. We conclude
that in paracomplete topological semantics, any theory with formulas which have both
nonempty extensions and nonempty open complements is incomplete. Consequently,
we can make a similar observation about the boundary points using paraconsistent
topological semantics. Now, take x ∈ ∂([ϕ]) where [ϕ] is closed in paraconsistent
topological models. By the above definition, since we have x ∈ ∂([ϕ]), we obtain

4 Remember that our meta-theory is classical, thus the subset relation we resort to is also classical.
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x ∈ [ϕ] as [ϕ] is closed. Yet, ∂([ϕ]) is also included in [∼ϕ] which we have defined as
a closed set. Thus, by the same reasoning, we conclude x ∈ [∼ϕ]. Thus, x ∈ [ϕ∧∼ϕ]
yielding that x |
 ϕ∧∼ϕ. Therefore, in paraconsistent topological models, any theory
with formulas which have nonempty extensions and nonempty closed complements is
inconsistent. This summarizes our exposition of the subject; so far, we have recalled
how paracomplete and paraconsistent semantics can be defined and understood in a
topological setting with classically defined primitives.

Let us be more precise now. Given a topological space 〈T, τ 〉, we define a paracon-
sistent topological modal model as M = 〈T, τ, V 〉 where T and τ are as before, and
V : P �→ ℘(T ) is a valuation function mapping propositional variables to subsets
of T . An important distinction of paraconsistent topological modal models is that we
stipulate that V (P) ⊆ K(τ ) where K(τ ) is the set of closed sets in topology τ . In
other words, the valuation of propositional variables are closed sets. Here, also note
that the topological space can be “larger” than what can be covered by the model and
its semantics. In other words, if we consider the topological space as the real world,
the model (with its language and semantics) represents what we can discuss about the
real world with the given language and semantics.

Finally, let us make a notational convention. Throughout the paper, we will use the
notation in Definition 2.1 when we are referring to topological spaces defined with
respect to opens, and we will use the notation in Definition 2.2 for the topological
spaces defined with respect to closed sets such as paraconsistent topological models.
In short, 〈T, τ 〉 will be reserved for paraconsistent topological models to distinguish
them from the classical or paracomplete ones.

3 Topological properties and paraconsistency

In this section, we investigate the relation between various basic topological proper-
ties and paraconsistency. Our work can be seen as a continuation and an expansion
of Mortensen’s earlier work where he briefly discussed some topological separation
axioms and their relation to the inconsistent theories (Mortensen 2000). Here, we
extend his approach to some other topological properties and spaces, and discuss the
behavior of such spaces under some special functions.

Let us now clarify the syntax and semantics of our system which we call paracon-
sistent topological logic (PTL). Given a countable set of propositional variables P ,
we define the language of PTL recursively as follows for p ∈ P .

ϕ : := ⊥ | p | ∼ϕ | ϕ ∧ ϕ | ♦ϕ

Note that the language of PTL has the contradiction symbol ⊥ which is not necessarily
logically equivalent to p ∧ ∼p as we have observed earlier.

Given a paraconsistent topological model M = 〈T, τ, V 〉, we define the semantics
in terms of the extensions of the formulas. For a set X , we denote its closed complement
(closure of its complement) by Xc.

• [⊥] = ∅
• [p] is a closed set in T
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• [∼ϕ] = [ϕ]c (= Clo(T − [ϕ]))
• [ϕ ∧ ψ] = [ϕ] ∩ [ψ]
• [♦ϕ] = Clo([ϕ])

We denote the satisfaction of a formula ϕ at a pointw in a model M by M, w |
 ϕ.
The proof theoretical rules we employ are modus ponens (from ϕ and ϕ → ψ derive
ψ) and necessitation (from � ϕ derive � �ϕ). We use the symbol ≡ for logical
equivalence. Furthermore, De Morgan laws do not necessarily hold in PTL as the
closure and intersection operators do not commute in this semantics.5

Note that in this paper, our concern is not to axiomatize PTL or present its relevant
completeness or decidability results. What we are trying to achieve is to observe the
behavior of certain formulas in certain topological spaces within the paraconsistent
framework.

A word of caution is necessary here. Since we stipulated that the extension of
Booleans are closed sets, and Clo(Clo(X)) = Clo(X) by basic topology, the diamond
modality is redundant. In other words, because of the way we defined negation and the
topological connection between the ♦ and Clo operators, it is easy to see that p ↔ ♦p
is valid in PTL. Nevertheless, for the reasons of completeness of our structure, we still
keep the standard modal operator ♦ in our language similar to the reason as to why the
public announcement operator is kept in the language of public announcement logic
even if it does not increase the expressibility of the language but provides succinctness
(van Ditmarsch et al. 2007).

Finally, observe that the semantics of PTL makes it clear how we understand the
symbol ⊥ paraconsistently. In PTL, ⊥ is true nowhere. Another way of seeing this is
the fact that in PTL, p ∧∼p is not logically equivalent to ⊥. It is very easy to provide
a PTL model for this case. Take an arbitraryw from the nonempty extension [p ∧∼p]
for some p ∈ P . Then, w ∈ [p] and w ∈ [∼p]. Thus, w ∈ [p] and w ∈ [p]c, namely
p ∈ ∂([p]). In short, as long as the boundary of [p] is nonempty, we cannot deduce
⊥ from p ∧ ∼p. Thus, PTL is a paraconsistent logic, as expected.

When topological spaces and inconsistencies are concerned, discrete topologies
where every subset is closed (or dually open) provide an interesting case. We conclude
this section with Mortensen’s observation.

Proposition 3.1 (Mortensen 2000) If a topological space 〈S, σ 〉 is discrete, then every
theory on 〈S, σ 〉 is consistent and complete.

Proof See the aforementioned reference. ��
Similarly, at the other extreme of the spectrum, in a trivial topology (where only

closed sets are the empty set and the space itself), every theory is consistent and
complete as well.

In the rest of the paper, we will investigate how the topological semantics for PTL
interacts with different topological models. The proofs of our results will demonstrate
how paraconsistency works. Briefly, we allow true contradictions in our logic, not
in its metatheory. For this reason, for instance, in our proofs we often use proof by

5 See Ferguson (2012) for a more detailed treatment of non-classical logics that do not satisfy DeMorgan’s
laws.
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contradiction by obtaining contradictions towards the meta-logical or set theoretical
properties of PTL. PTL is equipped to handle true contradictions at the object level by
its semantics, but not at the meta level. This is essentially a design choice. It is possible
to design a system with paraconsistent meta-theory in a paraconsistent set theory and
arithmetic. However, in our work our focus is working with the contradictions at the
object level. Some metaphysical reasons can be given for this choice, yet we will
refrain ourselves from dwelling on the metaphysics of paraconsistency as our main
focus here is the logical and topological properties of PTL.

3.1 Connectedness

In this section, we discuss connectedness and its relation to paraconsistency. Let us
start with the basic definitions. A topological space is called connected if it is not the
union of two disjoint non-empty closed sets. The same definition works if we replace
“closed sets” with “open sets”. Let us state the formal definition to be precise.

Definition 3.2 A set X is called connected if A∪B �= ∅ whenever A, B are nonempty
closed subsets and X = A ∪ B. Moreover, it is called totally disconnected if all of its
subsets with more than one element are disconnected.

We note that in any connected topological space, the only subsets with empty
boundaries are the space itself and the empty set (Bourbaki 1996).6 We now define
connected formulas as follows.

Definition 3.3 A formula ϕ is called connected in a model M , if for any two formulas
α1 and α2 with nonempty closed (or dually, open) extensions in M , if ϕ ≡ α1 ∨ α2,
then we have [α1 ∧α2] �= ∅. We will call a theory connected if it is generated by a set
of connected formulas.

In other words, connected formulas are formulas which cannot be split into two
formulas with disconnected extensions within the language. For example, � is a con-
nected formula, as we cannot find two formulas ϕ and ∼ϕ with nonempty extensions
and empty intersection. In such a case, we have [ϕ∧∼ϕ] = ∂([ϕ]) = ∂([∼ϕ]) which
is nonempty by construction. Similarly, ⊥ is never connected.

There is an interesting connection between connected formulas and Parikh’s lan-
guage splitting, and this is one of the reasons why we suggested the above definition
(Parikh 1999). Parikh’s work discusses situations where a theory can be written as a
logical consequence of formulas from disjoint languages, making his approach syntac-
tic. In this respect, connected formulas can be seen as the semantical anti-counterpart
of language splitting. In our case, connected formulas are formulas which cannot be
split semantically. Now, we suggest a semantical (and topological) cousin of Parikh’s
language splitting. First, we define subtopologies. Given a topology τ , a we call τ1 a
subtopology of τ if τ1 ⊆ τ where ⊆ is the classical subset relation. We call τ1 and τ2
disjoint subtopologies of τ if both τ1 and τ2 are subtopologies of τ , and τ1 ∩ τ2 = ∅.
Now, we define semantic splitting as follows.

6 Also, note that connectedness as a property is not definable in the (classical) modal language (Cate et al.
2009).
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Definition 3.4 Given a topological model M = 〈S, σ, V 〉, let σ1 and σ2 be disjoint
subtopologies of σ . We say a formula is split into σ1 and σ2, if there are two formulas
α1 and α2 with [α1] ⊆ σ1 and [α2] ⊆ σ2, and ϕ ≡ α1 ∨ α2.

This definition can easily be extended to the case of n < ω subtopologies. Notice
that since the arbitrary union of closed sets may not be closed, we do not define
splittings into more than ω subtopologies.

Proposition 3.5 Connected formulas cannot be split.

Proof The proof is quite immediate. Let ϕ be a connected formula. In order to get a
contradiction, assume it can be split into τ1 and τ2 in the given model M = 〈T, τ, V 〉.
Therefore, there are some α1 and α2 with [α1] ⊆ τ1 and [α2] ⊆ τ2, and ϕ ≡ α1 ∨
α2. However, since τ1 and τ2 is disjoint, [α1] ∩ [α2] = ∅. Thus, ϕ is disconnected,
contradicting the earlier assumption. ��

However, we can split any formula with nonempty extension in discrete topologies.

Proposition 3.6 Let M = 〈T, τ, V 〉 be a topological (paraconsistent) model. If τ is
discrete and |T | > 1, then every formula with nonempty extension in M can be split.

Proof First, recall that discrete topologies with at least two elements are totally dis-
connected. Let M = 〈T, τ, V 〉 be a given topological (paraconsistent) model where
τ is discrete and |T | > 1. Take an arbitrary formula ϕ with a nonempty extension.
Consider [ϕ]. Proof is by induction on ϕ.

The proposition holds vacuously for ϕ ≡ ⊥ since [⊥] = ∅. Similarly, the argument
is quite straight-forward for ϕ ≡ p for propositional variable p. Let τ1 = {[p]}, and
τ2 = τ − τ1 to obtain p ≡ p ∨ ⊥.

For conjunction, assume ϕ ≡ ψ ∧ψ ′ where ψ and ψ ′ can both be split. Assume ψ
is split into τ1 and τ2 with formulas α1 and α2 respectively. Similarly, assume that ψ ′
is split into τ ′

1 and τ ′
2 with the formulas α′

1 and α′
2. Thus, we have ψ ≡ α1 ∨ α2 and

ψ ′ ≡ α′
1 ∨ α′

2 with the associated disjointness conditions. Then we observe that ϕ is
split into τ1 and τ2 where τ1 is the intersection topology of τ1 and the disjoint union of
τ ′

1 ∪τ ′
2. Similarly, τ2 is the intersection topology of τ2 and the disjoint union of τ ′

1 ∪τ ′
2.

Since, τ1 and τ2 are assumed to be disjoint topologies, τ1 and τ2 are disjoint topologies
as well. Therefore, we split ϕ into τ1 and τ2 with α1 ∧ (α′

1 ∨ α′
2) and α2 ∧ (α′

1 ∨ α′
2).

In order to see that the claim holds for negated formulas, assume ϕ = ∼ψ for
some ψ . Therefore, by induction hypothesis ψ can be split, namely for subtopologies
τ1, τ2, there are two formulas α1, α2 with [α1] ⊆ τ1 and [α2] ⊆ τ2, and ψ ≡ α1 ∨ α2.
Consider ∼ψ which is ∼(α1 ∨ α2). Then, ϕ can be split into τ ′

1 and τ ′
2 where τ ′

1 = τ2
and τ ′

2 = τ1.
This completes the proof. ��
Note that Mortensen’s result (Theorem 3.1) stated that every theory in discrete

spaces is consistent. He then goes ahead and makes further observations about T0 and
T1 separation principles and consistency. We refer the interested reader to his work
(Mortensen 2000). Now, we improve his results.
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Theorem 3.7 A PTL model with no connected formulas cannot have true contradic-
tions.

Proof We will show that in a model M = 〈T, τ, V 〉 with no connected formula, we
cannot find a formula α for which [α ∧ ∼α] �= ∅.

To get a contradiction, assume that in M that has no connected formula, there is a
formula α for which [α ∧ ∼α] �= ∅. Call α ∧ ∼α as ϕ.

By the assumption, ϕ is not connected. So, for every two formulas α1 and α2 for
which ϕ ≡ α1 ∨ α2, we have [α1] ∩ [α2] = ∅ contradicting the earlier assumption. ��

We can extend this result quite straight-forwardly.

Theorem 3.8 A PTL model with totally disconnected topology cannot be inconsistent.

Proof Let M = 〈T, τ, V 〉 be a PTL model where τ is totally disconnected. Towards
a contradiction, assume that for ϕ, we have a true contradiction ϕ ∧ ∼ϕ. Consider
[ϕ] ∩ [∼ϕ]. Since, the formula ϕ ∧ ∼ϕ is a true contradiction, [ϕ] ∩ [∼ϕ] �= ∅. This
is a contradiction towards the total disconnectedness of τ . Thus, M cannot have true
contradictions or inconsistencies. ��

So far, we have investigated some immediate results on connected formulas and
paraconsistent models. Now, let us make some further observations.

Theorem 3.9 Every connected formula is satisfiable in some connected (classical)
topological space.

Proof Let ϕ be a connected formula and M = 〈W, ν, V 〉 a (classical) topological
space where for some w ∈ W, w |
 ϕ. Then, define a connected subspace M |ϕ =
〈Wϕ, νϕ, Vϕ〉 as follows. Let Wϕ = W ∩[ϕ]M so that Wϕ = [ϕ]M|ϕ . Notice that Wϕ �=
∅ as w ∈ Wϕ . The topology νϕ then is defined as follows νϕ = {O ∩ Wϕ : O ∈ ν}.
It is easy to verify that νϕ is indeed a topology (in fact the induced topology), so we
skip it. Valuation V is restricted in the usual sense. Now, we need to show that νϕ is
connected.

Now, take any two formulas α1 and α2 with nonempty open extensions in M |ϕ.
Observe that if ϕ ≡ α1 ∨α2, then [α1 ∧α2] �= ∅. Since Wϕ = [ϕ], and the extensions
[α1] and [α2] are nonempty by the condition, this shows that the space Wϕ is connected
with respect to the topology νϕ . ��

Note that the way we obtained a topological submodel is a rather standard method in
modal logics. A similar theorem within the context of dynamic epistemic logic showing
the completeness of that logic in topological spaces also used a similar construction
(Başkent 2011, 2012).

Corollary 3.10 Every connected theory is satisfiable in some connected (classical)
topological space.

So far, we have made observations in classical topological spaces. Nevertheless,
connected theories may be inconsistent or incomplete in some situations.
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Theorem 3.11 Every connected theory in a paraconsistent topological logic is incon-
sistent. Moreover, every connected theory in a paracomplete topological logic is
incomplete.

Proof Let T be a connected theory generated by a set of connected formulas {ϕi }i , so
ϕi ∈ T for each i in a closed set topology. By the earlier corollary, T is satisfiable in
some connected space, say 〈W, σ 〉.

Consider an arbitrary ϕi from the basis of T . Since it is a connected formula, assume
that we can write it as ϕi ≡ α ∨ β for [α ∧ β] �= ∅. Let x ∈ ∂[α ∧ β] ⊆ [ϕi ] as we
are in a closed set topology and therefore [ϕ] is closed. Thus, T includes ϕi which
in turn includes the theories at x . By our earlier remarks in Sect. 2.2, this makes T
inconsistent in σ .

As a special case, in PTL, observe that if � ∈ T where [�] = W , then T is
inconsistent as well. Take � ≡ p ∨ ∼p for some propositional variable p with
nonempty extension. Then, [p ∧ ∼p] �= ∅.

The second part of the corollary about the incomplete theories and paracomplete
models can be proved similarly. ��

The converse direction is a bit more interesting. Do connected spaces satisfy only
connected formulas?

Proposition 3.12 Let X be a connected topological space of closed sets with a para-
consistent topological model on it. Then the only subtheory that is not inconsistent is
the empty theory.

Proof As we mentioned earlier, in any connected topological space, the only subsets
with empty boundary are the space itself and the empty set. Thus, all other subsets will
have a boundary, and their theories will be inconsistent by the earlier observations. By
Theorem 3.11, the space itself produces an inconsistent theory. Therefore, the only
theory which is not inconsistent is the empty theory. ��

Based on this observation, we can prove a more general result.

Proposition 3.13 Let X be a connected topological space of closed sets. Then for a
collection of nonempty theories T1, . . . , Tn with nonempty intersection

⋂
i Ti , then we

conclude
⋃

i Ti is inconsistent.

Proof Each theory Ti will have a closed set of points Xi that satisfies it in the given
topology. Since,

⋂
i Ti �= ∅, we observe

⋂
i Xi �= ∅. Therefore,

⋃
i Xi is connected

and not equal to X . Thus,
⋃

i Xi has a nonempty boundary and the theories generated
at the boundary points will be inconsistent. ��

A basic property of the boundary operator yields the following observation.

Proposition 3.14 Let X = 〈T, τ 〉 be an arbitrary connected topological space of
closed sets. Define X = {C : C = T \ B for some B in X}. Then, X and X have the
same inconsistent boundary theories.
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Proof The proof simply observes the fact that a set and its complement share the same
boundary. A similar result can be shown for paracomplete theories, and we leave it to
the reader. ��

The proofs in this chapter illustrate our understanding of paraconsistency well. We
allow contradictions at the object level, yet at the meta-level, as exemplified by our
frequent use of the method of proof by contradiction, we do not allow contradictions.
Simply put, it is the PTL which is inconsistent, not the set theory or arithmetic it is
built on.

3.2 Continuity

A recent research program that considers topological modal logics with continuous
functions was suggested to give a unified account of temporal and topological aspects
of modal logic (Artemov et al. 1997; Kremer and Mints 2005). In their work, authors
associated the modalities with continuous functions as follows ©p = f −1(p) where
© is the temporal next time operator and f is a continuous function.

In our work, we tend to diverge from the classical modal logical approach, and
focus on the connection between continuous or homeomorphic functions and modal
logics with an agenda of applying it to paraconsistency.

An immediate theorem, which was stated and proved in various papers, would
also work for paraconsistent logics, particularly for PTL (Kremer and Mints 2005).
Consider two closed set topologies τ and τ ′ on a given set T , and a homeomorphism
f : 〈T, τ 〉 �→ 〈T, τ ′〉. Akin to a previous theorem of Kremer and Mints, we have
a simple way to associate the respective valuations between two models M and M ′
which respectively depend on τ and τ ′, so that we can have a truth preservation result.
So, define V ′(p) = f (V (p)). Then, we have M |
 ϕ iff M ′ |
 ϕ.

Theorem 3.15 Let M = 〈T, τ, V 〉 and M ′ = 〈T, τ ′, V ′〉 be two paraconsistent topo-
logical models (where τ, τ ′ are closed set topologies) with a homeomorphism f from
〈T, τ 〉 to 〈T, τ ′〉 with V ′(p) = f (V (p)). Then M |
 ϕ iff M ′ |
 ϕ for all ϕ.

Proof The proof is by induction on complexity of formulas.
Let M, w |
 p for some propositional variable p. Then,w ∈ V (p). Since we are in a

paraconsistent topological model, V (p) is a closed set and since f is a homeomorphism
f (V (p)) is closed as well, and f (w) ∈ f (V (p)). Thus, M ′, f (w) |
 p. The converse
direction is similar and based on the fact that the inverse function is also continuous.

Negation is less immediate. Let M, w |
 ∼ϕ. Then w is in the closure of the
complement of V (ϕ). So, w ∈ Clo((V (ϕ))c). Then, f (w) ∈ f (Clo(V (ϕ))c).
Moreover, since f is bicontinuous as f is a homeomorphism, we observe that
f (w) ∈ Clo( f ((V (ϕ))c)). By the induction hypothesis, f (w) ∈ Clo((V ′(ϕ))c) yield-
ing M ′, f (w) |
 ∼ϕ. The converse direction is also similar.

We leave the conjunction case to the reader and proceed to the modal case.
Assume M, w |
 ♦ϕ. Thus, w ∈ V (♦ϕ). Thus, w ∈ Clo(V (ϕ)). Then, f (w) ∈
f (Clo(V (ϕ))). Since f is a homomorphism, we have f (w) ∈ Clo( f (V (ϕ))). By the
induction hypothesis, we then deduce that f (w) ∈ Clo(V ′(ϕ)) which in turn yields
that f (w) ∈ V ′(♦ϕ). Thus, we deduce M ′, f (w) |
 ♦ϕ.
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The converse direction is as expected and we leave it to the reader. ��
Notice that the above theorem also works in paracomplete/intuitionistic topological

models, and we leave the details to the reader.
Assuming that f is a homeomorphism may seem a bit strong. We can separate it

into two, one direction of the biconditional is satisfied by continuity of f whereas the
other direction is satisfied by the openness of f .

Corollary 3.16 Let M = 〈T, τ, V 〉 and M ′ = 〈T, τ ′, V ′〉 be two paraconsistent topo-
logical models with a continuous f from 〈T, τ 〉 to 〈T, τ ′〉. Define V ′(p) = f (V (p)).
Then M |
 ϕ implies M ′ |
 ϕ for all ϕ.

Corollary 3.17 Let M = 〈T, τ, V 〉 and M ′ = 〈T, τ ′, V ′〉 be two paraconsistent
topological models with an open f from 〈T, τ 〉 to 〈T, τ ′〉. Define V ′(p) = f (V (p)).
Then M ′ |
 ϕ implies M |
 ϕ for all ϕ.

Proofs of both corollaries depend on the fact that Clo operator commutes with
continuous functions in one direction, and it commutes with open functions in the other
direction. Similar corollaries can be given for paracomplete/intuitionistic frameworks
as the Int operator also commutes in one direction with open functions and in the other
direction with continuous functions, and we leave this to the reader as well.

Furthermore, any topological operator that commutes with continuous, open and
homeomorphic functions will reflect the same idea and preserve truth. Thus, these
results can easily be generalized.

We can now take one step further to discuss homotopies in paraconsistent topo-
logical modal models. To our knowledge, the role of homotopies as transforma-
tions between truth preserving continuous isomorphisms or bisimulations under some
restrictions has not yet been discussed within the field of topological models of (clas-
sical or non-classical) modal logic. Therefore, we believe our treatment is the first
introduction of homotopies in topological semantics of modal logics. The reason why
we start from paraconsistent (paracomplete) modal logics is the simple fact that the
extension of each propositional variable is a closed (open) set making our task rela-
tively easy and straightforward.

Recall that a homotopy is a description of how two continuous functions can be
deformed to each other. We now state the formal definition.

Definition 3.18 Let S and S′ be two topological spaces with continuous functions
f, f ′ : S → S′. A homotopy between f and f ′ is a continuous function H : S ×
[0, 1] → S′ such that if s ∈ S, then H(s, 0) = f (s) and H(s, 1) = f ′(s).

In other words, a homotopy between f and f ′ is a family of continuous functions
Ht : S → S′ such that for t ∈ [0, 1] we have H0 = f and H1 = g and the map t → Ht

is continuous from [0, 1] to the space of all continuous functions from S to S′. Notice
that homotopy relation is an equivalence relation. Thus, if f and f ′ are homotopic,
we denote it with f ≈ f ′. Then the immediate question is the following. Why do we
need homotopies in logic? We will now use homotopies to obtain a generalization of
Theorem 3.15.
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Assume that we are given two topological spaces 〈S, σ 〉 and 〈S, σ ′〉 and a family
of continuous functions ft for t ∈ [0, 1]. Define a model M as M = 〈S, σ, V 〉. Then,
for each ft with t ∈ [0, 1], define Mt = 〈S, σ, Vt 〉 where Vt = ft (V ). Then, by
Theorem 3.15, we observe that M |
 ϕ iff Mt |
 ϕ. Now, what is the relation among
Mt s? The obvious answer is that their valuation form a homotopy equivalence class.
Let us now see how it works.

Define H : S × [0, 1] →′ such that if s ∈ S, then H(s, 0) = f0(s) and H(s, 1) =
f1(s). Then, H is a homotopy. Therefore, given a (paraconsistent) topological modal
model M , we generate a family of models {Mt }t∈[0,1] whose valuations are generated
by homotopic functions.

Definition 3.19 Given a model M = 〈S, σ, V 〉, we call the family of models {Mt =
〈S, σ, Vt 〉}t∈[0,1] generated by homotopic functions and M homotopic models. In the
generation, we put Vt = ft (V ).

Theorem 3.20 Homotopic paraconsistent (paracomplete) topological models satisfy
the same modal formulas.

Proof See the above discussion. ��
In the above discussion, we have focused on continuous functions and the homo-

topies they generate. We can also discuss homeomorphisms and their homotopies
which generate homotopy equivalences between spaces. In that case, homotopic equiv-
alent spaces can be continuously deformed to each other. This would give us, under
the correct valuation, a stronger notion of bisimulation that we call continuous topo-
bisimulation. We will first start with the definition of topo-bisimulation before intro-
ducing continuous topo-bisimulation (Aiello and van Benthem 2002).

Definition 3.21 For topological models 〈S, σ, V 〉 and 〈S′, σ ′, V ′〉, two points s ∈ S
and s′ ∈ S′ are said to be topologically bisimular (topo-bisimular, for short) if they
satisfy the following conditions.

1. The points s and s′ satisfy the same propositional variables
2. For s ∈ O ∈ σ , there is O ′ ∈ σ ′ such that s′ ∈ O ′ and for all t ′ ∈ O ′, there is

t ∈ O such that t and t ′ are topo-bisimular
3. For s′ ∈ O ′ ∈ σ ′, there is O ∈ σ such that s ∈ O and for all t ∈ O , there exists

t ′ ∈ O ′ such that t and t ′ are topo-bisimular

Now we can extend it to continuity.

Definition 3.22 Let M = 〈S, σ, V 〉 and M ′ = 〈S′, σ ′, V 〉 be two paraconsistent
(paracomplete) topological models. We say M, w and M ′, w′ are continuously topo-
bisimular if M, w and M ′, w′ are topo-bisimular and there is a homeomorphism f
between 〈S, σ 〉 and 〈S′, σ ′〉 such that V ′ = f (V ).

Note that in the above definition, we need a stronger notion of homeomorphism
rather than just continuity as the bisimulation is a symmetric relation.

Theorem 3.23 Continuously bisimular states satisfy the same modal formulas.
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Proof The proof is a routine induction on the complexity of formulas in the standard
sense. ��

What about the converse? Can we have a property akin to Hennesy–Millner property
so that for some topologies that satisfy exactly the same formulas, we can construct a
homeomorphism in between? Clearly the answer to this question is positive if we are
in finite spaces and the construction is essentially the same as in the classical case. We
refer the interested reader to a textbook treatment of classical modal logic to see how
Hennesy-Millner property is treated (Blackburn et al. 2001).

A next step towards homotopy groups and their use in modal logic can be antici-
pated. Note that homotopy groups essentially classifies the spaces with regard to their
continuous deformability to each other, and it seems feasible to import such a concept
to modal logics. Nevertheless, in order not to diverge our focus here, we will not pursue
that path and leave it for future work.

3.3 Modal direction

In this section, we briefly review the modal approaches to paraconsistency in order to
make our work more self-contained.

One possible modal interpretation of paraconsistency focuses on the negation oper-
ator (Béziau 2005). Under the usual alethic reading of � and ♦ modalities, one can
define an additional operator ∼ as ¬�, or equivalently ∼ϕ ≡ ♦¬ϕ. Notice that this
definition corresponds to our earlier definition of negation being the closed com-
plement. For this interpretation, recall that ♦ operator needs to be taken as the Clo
operator.

The Kripkean semantics of the new paraconsistent negation operator ∼ is as follows
(Béziau 2005). Let us take a modal model M = 〈W, R, V 〉 where R is a binary relation
on the non-empty set of states W and V is valuation. Take an arbitrary state w ∈ W .

∼ϕ is false at w if and only if ϕ is true at every v with wRv
More technically, we have the following reasoning in S5.

w �|
 ∼ϕ iff w �|
 ¬�ϕ
iff w |
 �ϕ
iff ∀v.(wRv → v |
 ϕ)

iff w |
 ϕ

Furthermore, as it was observed, ∼ modality is indeed S5, and an S5 logic can be
given by taking ∼ as the primitive negation symbol with the intended interpretation.
Nevertheless, for our current purposes, the S4-character of that modality is sufficient
and we will not go into the details of such a construction. We refer the interested
reader to the following references for a further investigation of this subject (Béziau
2002, 2005).

It is easy to notice the similarity of modal negation we presented here and the
topological negation that we used throughout his paper. Therefore, it is a nice exercise
to import our topological results from topological semantics to Kripke semantics with
the aforementioned negation at hand.
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For this reason, we offer a transformation from topological models to Kripke models
which is similar to the standard translation between classical topological models and
Kripke models (Aiello and van Benthem 2002). Given a topological paraconsistent
model M = 〈T, τ, V 〉, we put s Rτ t when s ∈ Clo(t) to get a Kripke model Mτ =
〈T, Rτ , V 〉. This transformation is truth preserving.

Theorem 3.24 Given a topological paraconsistent model M, if M, w |
 ϕ then
Mσ , w |
 ϕ where Mσ is obtained from M by the transformation that wRσ v when
w ∈ Clo(v).

Proof The proof is by induction on the complexity of formulas. We will prove the
negation case, and leave the other cases to the reader. Note that we use ∼ for both
paraconsistent Kripkean negation and PTL negation; nevertheless, the context will
make it clear which one we mean.

Let M = 〈T, τ, V 〉 be given. Assume M, w |
 ∼ϕ. Since, the topological negation
∼ is the closure of the set theoretical complement, we observe that M, w |
 ♦¬ϕ.
Therefore, for every closed set U ∈ τ , there is a point v ∈ U such that M, w |
 ¬ϕ.
Observe that since v ∈ U for closed U , we observe thatw ∈ Clo(v). Then, putwRτ v.
So, in the model Mτ = 〈T, Rτ , V 〉, we have Mτ , w |
 ∃v(wRτ v and Mτ , v |
 ¬ϕ).
Then, by the usual semantics of modal logic, we observe Mτ , w |
 ♦¬ϕ which is
nothing but Mτ , w |
 ¬�ϕ. Finally, by definition, we conclude Mτ , w |
 ∼ϕ. ��

A well-known transformation from Kripke frames generates a topological space. In
that case, opens are downward (or upward) closed sets (subtrees) in the Kripke model.
It is also easy to prove that this transformation respects the truth of the formulas in
paraconsistent Kripke models.

Theorem 3.25 Given a paraconsistent Kripke model M, if M, w |
 ϕ then MR, w |

ϕ where MR is obtained from M by the transformation that the closed sets are down-
ward closed subsets with respect to the accessibility relation R.

This establishes the correspondence between paraconsistent topological models
and paraconsistent Kripke models in a natural way.

4 Conclusion and future work

In this work, we focused on the connection between some topological spaces and
paraconsistent logic. There are many open questions that we have left for further
work. Some of them can be summarized as follows.

• How can we logically define homotopy and cohomotopy groups in paraconsistent
or paracomplete models?

• How would paraconsistency be affected under various topological products?
• What is the (paraconsistent) logic of regular sets?
• What is the connection between paraconsistency and mereotopology, in particular

between PTL and mereotopology?
• Which topological properties are definable in PTL?
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The aforementioned questions form yet another research program in which tools
from algebraic topology and algebraic geometry can be employed in a non-classical
sense. The interaction between truth and inconsistency in such frameworks exhibits a
novel research program where such tools can be useful. Moreover, region based modal
logics and mereotopology have presented a variety of results about the logic of space
(Pratt-Hartman 2007). Considering the use of regular sets within the framework of
region based modal logics, it is not difficult to see a connection between region based
modal logics and paraconsistent logics as they both share a similar algebraic structure.

The strong algebraic connection between topological models points out to a very
interesting research direction. Considering the dual relation between intuitionistic
and paraconsistent logics and their algebraic structures, the relation between such
non-classical logics and modal algebras was already investigated (Rauszer 1977).
Extending such work using topological algebras is yet another research direction for
future work.

Another possible application of such systems is epistemic logics where the knowers
or agents can have inconsistent or incomplete belief bases. The intuitive connection
between AGM style belief updates and paraconsistency is yet to be established within
our framework. One important strength of our system is that topologies have a stronger
set of tools to deal with infinite cases (such as infinite conjunctions) which is important
in some situations within the theme of belief revision. In the domain of epistemic logic,
there has been some recent work in the field applying topological ideas to dynamic
epistemologies (Başkent 2012). A next step would be to expand those classical systems
to paraconsistent ones. We leave such stimulating discussions to future work.
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