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Abstract When can macroscopic data about a system be used to set parameters
in a microfoundational simulation? We examine the epistemic viability of tweaking
parameter values to generate a better fit between the outcome of a simulation and the
available observational data. We restrict our focus to microfoundational simulations—
those simulations that attempt to replicate the macrobehavior of a target system by
modeling interactions between microentities. We argue that tweaking can be effective
but that there are two central risks. First, tweaking risks overfitting the simulation
to the data and thus compromising predictive accuracy; and second, it risks compro-
mising the microfoundationality of the simulation. We evaluate standard responses to
tweaking and propose strategies to guard against these risks.

Keywords Microfoundations · Overfitting · Tuning · Calibration · Simulation ·
Estimation

Many computer simulations are intended by their designers to be “bottom-up” models
of macroscopic phenomena. Examples are found across the sciences:

• The flow of plasmas, modeled by simulating the interactions among large numbers
of fast-moving particles,

• the folding of proteins, by simulating the interactions among amino acids,
• the dynamics of ecosystems, by simulating the interactions of individual predators

and prey,
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• climate change, by simulating interacting volumes of atmosphere, ocean, and land,
• the fluctuations of stock markets, by simulating the interactions among traders,
• traffic jams, by simulating the movements of cars over road-segments,
• and so on.

In general, such simulations start with models of interacting individual entities
that in the aggregate produce the macroscopic phenomenon of interest. (Call these
the microfoundational entities.) Then they calculate the results of large numbers of
interactions over time, observing as macroscopic regularities develop.

In many of these simulations, much is already known about the macrophenomena
of interest. A traffic modeler may have detailed data about the conditions under which
traffic jams occur, and the protein folder knows the structure of a great number of actual
proteins. Thus simulations—like any other models—are built iteratively. The modeler
does not just write a simulation once, set it running, and read off the results. Anyone
who has written a simulation knows that the initial runs are invariably hopeless. Even
if we start with a good understanding of the relevant microentities, it takes repeated
tweaks and refinements for the results of the simulation to begin to approximate the
macrodata.

This, however, raises an immediate problem. The aim of a bottom-up model is to
generate the macrophenomena from models of interacting microentities. “Tuning” a
model, or tweaking the microparameters whenever we get results we do not like, can
amount to slapping an ad hoc bandaid on a broken model, insulating the model from
any empirical risk. If we hope to simulate the macrophenoma using micro-interactions
in an empirically informative way, we put our thumbs on the scale if we smuggle in
the macrodata whenever we get results we do not like.

Is it acceptable to use macrodata in setting microparameters, and if so, when? This
is part of a larger and under-theorized issue: the process of simulation model improve-
ment. Here we focus on tweaking in particular, just one type of improvement for
bottom-up simulation models.

In this paper, we argue that some of the most prevalent guidelines are overstated,
and that iterative tweaking of models is allowable in many circumstances. But we
also raise other problems for tweaking that have largely escaped notice. There are, we
argue, two distinct risks involved in the use of macrodata to set microparameters.

One risk is that tweaking compromises the simulation’s predictive accuracy. This is
tied to traditional problems of model selection and validation, problems that become
particularly thorny when applied to computer simulations. Simulators often worry
about “tuning” models to fit the data, and often discuss these worries in connection
with the procedures for “calibrating” and “validating” simulations. Looking at tweak-
ing from the lens of statistical inference, it can be understood as a coarse-grained strat-
egy for maximum likelihood estimates for parameter values. As explored in the model
selection literature, complex models with a large number of adjustable parameters run
a high risk of overfitting the model to the data. So tweaking may produce an ad hoc
simulation that merely accommodates the data. But it need not always fall into this trap.
This is true whether we use existing data to fit our models or seek new data to do this.

A second risk is not commonly discussed. This is risk to the simulation’s micro-
foundationality; that is, to whether the simulation succeeds at being bottom-up. Even
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when the use of macrodata in setting microparameters improves predictive accuracy,
the risk is that this victory may be achieved only by covertly smuggling the macrodata
into the simulation. If part of the aim of certain simulations is to have the macro-
phenomena emerge bottom-up from their microfoundations, this risk provides a
different reason for suspicion of tweaking.

We argue, however, that addressing these two risks does not mean foreswearing
the use of macrodata in tweaking models. We propose strategies for addressing each
of the risks. Unfortunately, there are tradeoffs among these strategies. For instance,
overfitting risks may be addressed in part by restricting the number of parameters
by, for instance, making individual microentities homogeneous. But, as we will see,
homogeneity among the elements of a simulation increases the risk of smuggling.

1 Good versus bad tweaking

It is easy to describe examples in which the use of macrodata to set microparameters
is illicit. Consider, as a simple case, an agent-based simulation of the behavior of a
large school of fish.

1.1 Tuning the herring

A school of herring may consist of tens of millions of individual fish, each reacting to
its environment and interacting with its neighbors. As a whole, schools exhibit large-
scale patterns. For instance, on encountering a predator such as a killer whale, a school
may split in two, leaving a wide berth for the predator, and rejoining once the whale has
passed through the school. These macroproperties of entire schools, measured using
multibeam sonar and echosounders (Axelsen et al. 2001; Nottestad and Axelsen 1999),
present high-quality data of the behaviors of herring schools on encountering preda-
tors. They show that schools have a number of anti-predation maneuvers, including
splitting in two, turning sharply in one direction or another, creating a vacuole around
the predator, and so on.

Suppose we build a simple agent-based model of herring behavior, intending to
simulate these macroscopic anti-predation maneuvers. In the first iteration of the sim-
ulation, we begin with some data we possess about the behaviors of individual herring.
We observe that individual herring can perceive a threat in two ways: they can per-
ceive it directly, or they can perceive a disturbance in their environment, such as a
threat reaction by other herring in their neighborhood. Our information about indi-
vidual herring also indicates that in response to a threat, an individual herring will
reverse direction and swim away as quickly as possible. So the basic elements of our
simulation are herring-agents with these behaviors, along with predator-agents, who
swim in straight lines.

When we run the simulation, we find a certain kind of behavior predicted in the face
of a threat. As a predator approaches, each of the herring-agents reverses direction,
a reversal which cascades through the school. Soon, the school is swimming in the
opposite direction it had been going.
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This first iteration of a model is plausible enough. Unfortunately, it does not match
the macroscopic data we have of herring behavior. On encountering a threat, the actual
data shows that the school does not reverse direction, but splits in two. Assigning these
simple characteristics to the agents, the simulation predicts the wrong macrobehavior
for the school. So we revise the model.

In the second iteration, we use the macrodata that the school splits in two on encoun-
tering a threat to tweak the properties of individual fish. To capture the observed macro-
behavior, we assign the agents two different personalities. We make the 5 million fish
in the left half of the school “lefties,” and the 5 million in the right half “righties.” The
lefties are disposed, on perceiving a threat, to take a sharp left turn for a while, before
returning to their original direction. The righties are disposed to turn right.

When the simulation is run, this tweak works. On encountering the predator the
school splits in half, just as the macrodata predicted. But this tweak is an illicit one. All
we really did, by assigning the fish different personalities in the right and left halves
of the school, was to bake the macro-outcome into the micro-assumptions. Despite the
fact that the simulation produces the correct macrophenomenon, it cannot be regarded
as a good “bottom-up” simulation.

While this example is an exaggerated one, it is worrisome, because the “tweaking”
method will be familiar to anyone who has ever written a simulation. Simulations
invariably begin as highly simplified idealizations, with the researcher hypothesizing
which microproperties are the crucial ones for generating the macrophenomena, and
what the appropriate parameter settings should be for modeling those microproperties.
Only through a process of iterative testing and revision—sometimes going through
generations of researchers—do the results of simulations ever manage to approach the
macrophenomena.

1.2 Overreacting

Given the perils of tweaking, some theorists adopt strict rules for the use of macrodata,
or prohibit its use altogether. Quite generally, theorists divide the use of macrodata
into two categories: the use of macrodata in model evaluation is put into the umbrella
of model “validation,” and the use of macrodata in setting parameters is “calibration.”

Randall and Wielicki (1997), for instance, take a hard line, insisting that parameters
can and should “be set once and for all before a model is run” (Randall and Wielicki
1997, p. 405):

“Good empiricism” is…applied before the model is run. The empirical parame-
ters of a model should be measured and then set, on the basis of these measure-
ments, before the model is used to make a prediction. The parameters should not
be adjusted a posteriori to improve the agreement between the model predictions
and other data. Tuning consists of … adjusting parameters after a model is run
to improve the agreement between the model results and data. Tuning is bad
empiricism. Calibration is bad empiricism with a bag over its head (p. 404).

While they admit that in practice scientists are often forced to resort to tuning, they
claim that this is an inferior strategy; once sufficient understanding of the underlying
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processes is achieved “then there is no excuse for continued tuning” (Randall and
Wielicki 1997, p. 404).

The “hard line” reaction finds its way into the actual practice of simulation design.
The following, for instance, is a fairly typical description of the methods employed
for constructing a simulation. Here the model is a cellular-automaton simulation of
vascularization:

In total, the model drew upon published independent experimental data obtained
from in vitro and in vivo experimental studies to govern 48 free parameters which
represented different aspects of the remodeling process, including cell prolifer-
ation rates and cell migration rates… All of the rules, equations, and parameters
that governed the simulated tissue environments and the cellular behaviors were
derived a priori and unequivocally from the literature or from independent exper-
imental observation. They were not altered by the CA simulation or any results
generated by the simulation (Pierce et al. 2004).

The experimenters take pains to insist that their microparameters were set “once
and for all” before the simulation was run.1

Similar reasoning underlies a more pessimistic reaction to validation. Oreskes et al.
(1994) suggest that calibration generates illusory confidence in a simulation, and we
must set our sights lower. Likewise, Kleindorfer et al. (1998) suggest that validation
be replaced with establishing social credibility. Rykiel (1996) argues that validation
criteria vary across contexts, and that primary use of validation is not confirmation,
but a kind of pragmatic establishment of model credibility.

But these are overreactions. Not only do modelers in fact develop models itera-
tively, using macrodata to tweak microparameters, but it is as easy to come up with
cases where such tweaking is clearly fruitful.

Consider, for example, the van der Waals equation for gases.2 The van der
Waals equation, (P + n2a/V2)(V − nb) = nRT, introduces two parameters: the vol-
ume excluded by a mole of particles, and the attraction between the particles. Near
the critical point, this equation is a substantial improvement over Boyle’s equation.

Van der Waals introduced his revision to the ideal gas law in part in response to
macro-measurements of departures of the behavior of certain gases from Boyle’s law
under various conditions (van der Waals 1910). Though it is a macroscopic equation
of state, however, his equation also provides a straightforward route for estimating the
properties of individual particles. In the nineteenth century, it was of course impossible
to measure the excluded volumes and interaction energies of particles directly. Calcu-
lations of these parameters for different gases were thus made on the basis of exper-
imental macro-measurements. Over time, other ways of estimating these parameters
were developed. For instance, the mechanical measurements were triangulated with
other macroproperties, such as polarizability and molar refractability. Still later, tech-
niques were developed for estimating the parameters more directly, such as using X-ray
crystallography to measure atomic spacing. All these later measurements together, of

1 Notice also the massive complexity of the simulation, with 48 free parameters per cell. As we will discuss
below, such complexity introduces substantial risks.
2 Our thanks to an anonymous reviewer of an earlier paper for suggesting this example.
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course, refined the values of the radii and interaction energies beyond those that could
be inferred from the mechanical properties of gases alone.3

This successful estimation of radii and interaction energies can be seen as an
instance of iterative microparameter-tweaking. Suppose we began with a crude guess
at the interaction energies and radii for a particular gas, and ran a simulation on that
basis. From the mismatch of the output of that simulation with the empirical macro-
data, we changed the parameters slightly, and re-ran the simulation. And so on, until
we arrived at a good match. This numerical method, performed properly, would arrive
at the same result as the analytic method of solving the equations for their parameters,
given empirical measurements of P, V, and T.

1.3 The moderate response: also an overreaction

In response to this sort of case, and to the actual practice of modelers, a more moder-
ate stance is often taken. The proposal is that a sharp separation be made between the
data used for “calibrating” a model, and the data used for testing the model. Müller
and von Storch (2004), for instance, regard calibration and validation as important
steps in the construction of models, but argue that a Chinese Wall be erected between
the data used for calibrating a model and that used for validating a model. They also
insist that calibration be involved only in tweaking parameters, and should not be used
for any other purpose, such as modifying functional forms or changing underlying
mechanisms.

This proposal, however, also misses the mark. Neither of the two prohibitions is jus-
tified. First, if the use of macrodata is acceptable for tweaking parameters, it may also
be acceptable for modifying functional forms or mechanisms. Consider, for instance,
the argument given by Bearman et al. (2004) for a hypothesis about relationship taboos
among American adolescents. They observe that the network of romantic interactions
in a particular high school closely resembles a chainlike spanning tree, with nearly a
complete absence of short cycles. Using an agent-based model, they build evidence for
hypotheses about the rules governing the interactions which generate that structure.
In other words, they infer and modify the mechanisms of their simulation to match
the observed macrostructure.

Second, the “Chinese Wall” restriction is also too strong. Bearman et al., for
instance, violate it, using macrodata both for the formulation and validation of their
models. In more general contexts, a number of people have argued in recent years
against the once-pervasive view that scientific hypotheses must be tested using only
“novel evidence” (e.g., Glymour 1980; Worrall 2002; Hitchcock and Sober 2004;
Mayo 2008). In connection with simulation in particular, we discuss this point in
more detail in the next section.

In the next two sections, we address predictive accuracy and microfoundationality,
and in the final section we apply these issues to difficult cases. We argue that both
are risks, and the use of macrodata in tweaking microparameters involves taking such
risks. Moreover, we argue that there can be tradeoffs between the risk of compromising

3 Cf. Bondi (1964).
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predictive accuracy and the risk of compromising microfoundationality. While
macrodata should therefore be used judiciously, its proper use can enhance bottom-up
models.

2 From the perspective of statistical inference

Comparing simulation tweaking to other kinds of inferences from data can help deter-
mine whether and when tweaking is good or bad. The consensus view is that tweaking
is (almost) always a bad thing. One source of this skepticism is the intuition that
accommodation is epistemically inferior to novel prediction, and that tweaking is an
extreme form of accommodation. On this view, tweaking involves a kind of guided
manipulation of simulation parameters to generate better fit between the simulation
outcomes and existing macrodata, and this manipulation compromises the accuracy of
the simulation. A superior method of testing simulations involves somehow estimating
or inferring parameter values independently, and then assessing fit between the simu-
lation outcomes and new macrodata. While there is something to this intuition worth
rescuing, it is often false (Hitchcock and Sober 2004). Investigating when and why it
is false is informative, and is best done by looking at simulation tweaking through the
lens of statistical inference.

Maximum likelihood estimation (MLE) provides a one way to estimate the value
of parameters that generate the best fit between model and data. MLE is common,
effective, and epistemically viable. Of course, successful MLE requires a number of
formal assumptions. In particular, basic MLE assumes that the data are the product of
a random variable that obeys a known probability model but has an unknown exact
distribution. The exact distribution is specified by the parameter values, which are
being estimated from the data. Consider a simple example: tossing a coin with an
unknown bias. We assume that coin tossing obeys a binomial model, and begin toss-
ing to estimate a single parameter, the probability of coming up heads (P). Say we
get heads 63 out of 100 tosses. The maximum likelihood estimate for the parameter is
P = 0.63. Based on the sample size we can estimate a confidence interval, and such
intervals narrow as sample size is increased. Notice that the background probability
model plays a crucial role in constraining the inference problem. Also notice that MLE
uses all the data, and more data increases the precision of the estimate.4

The inferential problem of estimating parameters for simulations of herring, traffic,
or economies introduces a degree of complexity that makes the formal assumptions
of statistical MLE problematic. The simulations used to model the behavior of these
systems are far from the well-behaved probability models assumed by MLE, and
often there is no clear way to get traction on what the family of distributions should
be for estimating the numerous simulation parameters from the data. Estimating the
bias of a coin assuming a binomial model is a far cry from tweaking herring evasion
parameters to fit the macrolevel schooling patterns we actually see. Yet, following a
suggestion made by Dawkins et al. (2001, pp. 3663–3664), there is a clear analogy

4 The formal justification for MLE is well established and we gloss those details here; see, e.g., Sokal and
Rohlf (1994) for biological applications, Royall (1997) on likelihood functions, or Burnham and Anderson
(2002) for the MLE and model selection.
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between tweaking and statistical techniques for estimation, especially MLE—both
procedures involve manipulating parameter values to increase the fit between what
counts as the model (the simulation or the probability model) and the observations.
The difference is that MLE, due to the strong formal assumptions, can use formal
methods to infer the maximum likelihood estimate from the data whereas tweaking a
simulation involves a step-by-step process of altering parameter values and evaluating
fit between simulation outcomes and macrodata. This step-by-step process is neces-
sary because of the increased complexity of the simulations. Thus, we can fruitfully
view tweaking (tuning, calibrating) as the coarse-grained strategy for MLE with very
complex models.

2.1 The risk of overfitting

This analogy casts doubt on the more extreme prohibitions against tweaking. Why
think tweaking is such a bad thing? If it counts as coarse-grained MLE then tweaking
represents an innovative way to estimate parameter values for very complex models,
not an undue epistemic risk. In fact, the analogy does show that a general prohibition
against parameter tweaking is misguided. Fitting a model to data is an excellent way to
produce an accurate model of some system. However, the general prohibition responds
to a genuine epistemic worry, a worry also brought about by the tweaking-MLE
analogy: the risk of overfitting the model to the data.

The risk of overfitting faces any MLE problem for models with multiple param-
eters. It is commonly discussed in terms of the curve-fitting problem. Given enough
parameters, we can generate a curve that will fit all the data points in a scatter plot
exactly. Such a curve may have the best fit, but it provides useless predictions. If
our model has too many parameters then MLE will overfit the model, compromising
predictive accuracy. Simulations are massively complex models with many parame-
ters, and therefore face a severely increased risk of overfitting.

Statisticians have developed tools to cope with the risk of overfitting for MLE:
model selection statistics.5 The formal details are complex but the core idea is simple.
Model selection statistics balance fit to data against the complexity of a model in order
to rigorously compare the overall predictive accuracy of models of differing complex-
ity (Burnham and Anderson 2002). The number of adjustable parameters determines
the complexity of the model. Increasing the number of parameters, and thus increas-
ing the complexity of the fitted model, incurs a penalty. Statistical model selection
identifies the model that provides the best tradeoff between fit and complexity in order
to maximize expected predictive accuracy.

Statistical model selection cannot be applied without modification to assessing the
predictive accuracy of complicated simulations, for simulation parameter tweaking
is not the same as fitting a polynomial to a set of data. Yet, continuing the analogy
between tweaking and MLE, model selection provides an important insight. Sup-
pose we want to fit a microfoundational simulation to some macrodata. Consider one

5 In the philosophical literature AIC has received the most attention. See, for example, the argument by
Forster and Sober (1994) that this model selection framework shows how simplicity matters in science.
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simulation with a large number of parameters. We can make this into a model selection
problem by sorting the parameters into two groups: adjustable and fixed parameters.
Start by treating all parameters as fixed. Then begin by tweaking one, then two, and
so on. Any of the parameters are fair game for tweaking, but we decide how many
parameters should count as adjustable by deploying model selection considerations.
The increased fit generated by tweaking another parameter must counterbalance the
increase in complexity by allowing more parameters to be tweaked. Any tweaking of
simulation parameters risks overfitting the simulation to the data, a risk that increases
with the number of parameter we allow to be adjusted. Tweaking all the parameters of
a very complex simulation to increase fit will almost certainly compromise the predic-
tive accuracy of the simulation. But tweaking some parameters to increase fit is simply
good scientific practice, for lack of fit to data compromises predictive accuracy just as
well. So tweaking can be legitimate insofar as the risk of overfitting can be mitigated.

2.2 When is tweaking viable?

In sharp contrast to the statistician, the consensus among scientists who work with very
complex simulations is that tweaking is an epistemically inferior way to determine
parameter values (see, e.g., Randall and Wielicki 1997). While these scientists often
see tweaking in just the way described here as analogous to MLE, they claim that it
should be avoided because it compromises a scientist’s ability to test their hypotheses
about how the simulations represent the target systems. Tweaking insulates the sim-
ulation from disconfirmation.6 This is an endorsement of the tenacious intuition that
accommodating a theory to existing data is problematic, and that novel predictions or
tests provide a better source of epistemic support.

Hitchcock and Sober (2004) use the model selection framework to explore accom-
modation versus prediction. Let us briefly discuss their example. They contrast two
scientists, Penny the predictor and Annie the accommodator, who are trying to fit a
polynomial function C to the data D. Penny uses a subset of D to fit her curve C p,
then uses it to accurately predict the rest of the data in D, whereas Annie fits her curve
Ca to the entire data set D. Is C p better than Ca? There is no general answer because
it depends on how C p and Ca are inferred; in some cases C p will be better, in some
cases Ca will be better, and in other cases the choice will be irrelevant (Hitchcock and
Sober 2004, pp. 15–21). One case is particularly relevant to the views in the simula-
tion literature. If both Penny and Annie guard against overfitting, so both use model
selection to select the curve that maximizes the tradeoff between fit and complexity,
then Annie’s Ca provides the best curve, for she uses all the data. Since Penny uses
only a subset of the data then C p can’t have a higher predictive accuracy than Ca

(Hitchcock and Sober 2004, p. 17). Just as there is no general reason to prefer curves
that make novel predictions to curves fitted using the entire data set, we should expect
no general solution to the question of whether tweaking is legitimate.

6 “The problem with tuning is that it artificially prevents a model from producing a bad result” (Randall
and Wielicki 1997, p. 404). Recall that they define tuning as “the practice of adjusting parameters after a
model is run, to improve the agreement between the model results and data” (Randall and Wielicki 1997,
p. 405).
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This moral reveals the flaw in the moderate solution to tweaking. Recall that the
moderate solution involves partitioning the data into two sets, one used strictly for
calibrating the simulation (i.e., tweaking the parameters to fit the simulation model
to the data), and the other set used to test the fitted simulation model. While this
heuristic does help guard against overfitting, it does so at the cost of underutilizing
the data. Other strategies, such as model selection statistics, can guard against over-
fitting while utilizing all the data, as Hitchcock and Sober make clear. The cost of the
“Chinese Wall” heuristic for calibration and testing decreases as the total amount of
data increases. In machine learning a common technique uses algorithms to train mod-
els on a subset of data (called the training set), then measure the success of models
applied to new data sets, but such techniques are only effective with very large data sets
(Bishop 2006). Thus, it can be effective if we have sufficient data, but in all other cases
it provides only a crude response to the problem of overfitting that makes inefficient
use of available data.

The same considerations also answer the misconceived skepticism towards cali-
bration found in Oreskes et al. (1994). They argue that such procedures often involve
further tweaking of the simulation when testing it against the second data set, and so
do not provide any test or support of the simulation model—the result is that “the
so-called verification is a failure” (Oreskes et al. 1994, p. 643). Yet so long as we
take sufficient steps to guard against overfitting, using all the data to tweak or fit a
simulation does not result in failure, but is a step towards providing a predictively
accurate simulation.

Tweaking, like accommodation, is legitimate provided we guard sufficiently against
the risk of overfitting. And tweaking utilizes the data to maximum effect. But how
do we know we are not guilty of overfitting? The answer will depend crucially on
the details. It is often observed that independent information about the underlying
processes is beneficial for simulation construction. Our analysis clarifies one of the
benefits: using independent information to constrain parameter values will always help
mitigate the risk of overfitting. In our herring simulation, having independent informa-
tion on the behavioral repertoire of individual herring will provide constraints to tweak-
ing that guard against overfitting our simulation to the macrodata on predator evasion.
Integrating background information into the simulation is crucial for this reason.

Notice that the discussion in this section has focused on predictive accuracy, a
feature of the simulation model that compares the output of the model to the data.
Tweaking should be avoided if it overfits the model to the data. But we may have
independent concerns about the effects of tweaking microparameters to increase the
fit to macrodata. Such tweaking may compromise the interpretation of a putatively
bottom-up simulation. We now turn to this issue.

3 Microfoundations

As our preposterous herring-simulation shows, blindly tweaking parameters can do
violence not only to the predictive accuracy of a simulation, but also to whether it
is “bottom-up.” In the second iteration, we tuned the psychologies of the individual
herring to match the macrodata, so that half the agents were artificially set to be lefties
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and half to be righties. This was already a bad move, just from the perspective of
maximizing predictive accuracy. If, for instance, the lefties and righties change their
relative positions, the macrobehavior collapses. But it also has a different problem.
Tuning the model in this way smuggles the macroproperties of the school into the
microproperties of the individual herring. The modeled “herring” are little more than
encoded fragments of the school as a whole, rather than representations of individual
actors.

Some theorists may not consider this “smuggling” to be a defect. The instrumental-
ist, for instance, purports to be unconcerned about anything but predictive accuracy.
Inasmuch as predictive accuracy is the goal, even a strictly macroscopic model may
do a better job than any extant microfoundational model at fitting the data. A simple
Taylor Rule, for instance, may do a better job modeling the relation between inflation
and interest rates than a model of individual agents. Likewise, the van der Waals equa-
tion or some other macroscopic state equation may do a better job modeling the relation
between temperature and pressure in a gas than a model in statistical mechanics.

Predictive accuracy, however, is but one factor in model development and selection.
There are a number of reasons one might want a model or simulation to be genuinely
microfoundational, even at the expense of fit. Among the reasons are:
Extrapolation: Despite the better fit of a macromodel to the data, there may be reason
to be more confident in a microfounded model than a macromodel, when applied
to new circumstances. In economics, for instance, Robert Lucas’s (1976) critique of
structural macroeconomic models has led many people to favor microfoundational
models. Lucas argues that macroeconomic models tend to fail when public policy
changes, since the expectations and hence the choices of individual actors change in
response to changes in policy. In place of structural models, he argued that macro-
economic models should be built on “deep parameters,” such as the tastes and tech-
nology of individual actors, which he claims are policy invariant.
Descendent simulations: Simulations are not one-shot affairs. A microfoundational
model may be preferred not because we expect that early models will be predictively
superior to macromodels, but because we have reason to suspect that they lay better
foundations for the long-term development of models.
Modularity: Microfoundational simulations may also be more conducive to modular
construction. There are many reasons modularity may be desirable. Models do not
stand on their own, but rather parts of models get incorporated into other models.
There are advantages to conforming to a common ontology, reusing model-parts that
others have built, and repurposing parts of a simulation in other simulations. There
are also practical considerations, including scalability, design and engineering con-
siderations, and so on. These often take strong precedence over the optimization of a
particular model.
Explanatory value: Microfoundational models are widely regarded as explanatorily
superior to macromodels. In general, this is not justified, as critiques of mid-century
views on explanation have made clear. However, more considered perspectives still
leave room for the explanatory privilege of microfoundational models, at least
for certain purposes. Kincaid (1986), for instance, gives a measured defense of
“individualistic” explanations in the social sciences. Similar motivations seem to drive
recent arguments for mechanism-based explanations, as in Machamer et al. (2000).
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Insights into microentities: It is often a central goal of models to gain insights into the
properties of the microentities generating a macrophenomenon, apart from modeling
the macrophenomenon. Equally, in simulations we often seek to gain understanding
of patterns of aggregation. It is not only the macroresults that are of interest, nor the
microentities that interact with one another, but how the macroresults are produced
from the interactions.

3.1 How can tweaking take a toll on microfoundationality?

It is a puzzle how tweaking the parameters of a simulation could possibly have an effect
on whether the simulation is microfoundational. The following seems like a plausible
picture of simulations. A modeler chooses a set of entities to represent with elements
or components of a simulation. Each of those entities is structurally described in the
components of the simulation, assigning them attributes, behaviors, and so on. Initial
conditions are set, and then the simulation is set off and running. For the simulation
to be microfoundational, then, seems to be a matter of modeling a macrophenomenon
by choosing to represent entities from some base on which the macrophenomenon
supervenes (where the base is understood to exclude macroentities).

In this picture, what we might call the “modeled ontology” of a simulation is fixed
by the modeler independently of how the microentities are represented. Changes to
the representation, and in particular, tweaks to attributes or parameters, have no effect
on which entities are modeled. Tweaking parameters would seem unable to make any
difference at all in which entities the components of a simulation represent. And hence
would seem unable to make a difference as to whether the simulation is microfoun-
dational.

Our tweaked herring simulation, however, was supposed to show at least in prin-
ciple that tweaking parameters may indeed have an effect on whether a simulation is
microfoundational. The suggestion was that in the course of tweaking the parameters
of the model, the macroentities were “smuggled into” the simulation.

The idea is that whether or not the modeler intends it, macroentities may nonethe-
less sneak into what the simulation represents. In the herring case, the modeler intends
to represent herring psychology, dividing the dispositions of the herring into “lefties”
and “righties.” But despite what the modeler wants, there may be factors outside those
intentions that determine what the components of the simulation represent. The fact
that the herring-components were tuned, the way they were, to match the macrodata,
makes those components represent something other than the intended interpretation
of the modeler.

The herring case is a caricatured one. But there are real-world cases in which this
is a real issue, of importance to modeling methodology.

Consider, for instance, “representative agent” models in economics. These models
seek to balance analytic tractability with a desire to model macroeconomic phenom-
ena in terms of their microfoundations. Because it is generally impossible to give
closed-form solutions to models that include heterogeneous sets of individuals, these
models treat the choices of a diverse set of agents as the choices of one “representative”
individual whose choices are the same as the aggregate choices of the population as
a whole.
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Despite how widely these models are employed in contemporary macroeconomics,
a number of people have criticized their basic assumptions. Kirman (1992, p. 118), for
instance, points out that there is no reason to expect an aggregate of individual agents,
even if those agents are maximizers and even if they have identical preferences, to act
itself as a collective maximizer. This threatens to gut the ability of a representative
agent model to guide policy.

Hoover (2006) has gone on to deny that these models should even be considered
properly microfoundational at all. The representative agent, he argues, is similar to
Quetelet’s “average man,” with 2.3 children and living in one property that is partly
wholly rented, partly wholly owned, and partly on the streets. Neither the “average
man” nor the representative agent is really an agent at all. Rather, “the representative
agent is nothing else but an aggregate in microeconomic drag” (Hoover 2006, p. 146).

If Hoover’s diagnosis is correct, a modeler may fully intend a model to be micro-
foundational and yet, depending on the basis for constructing the model, it may in
fact be a macromodel “in drag.” The same can be extended to simulations: despite the
modeler’s intention to refer to an element of the supervenience base, facts about how
the simulation is constructed may trump those intentions.

Once we notice this problem, it becomes clear that it is potentially rampant in sim-
ulations. When dealing with putatively microfoundational simulations, it is easy to
smuggle in macroproperties. Unfortunately, even some of the heuristics we might use
to reduce the risk of overfitting end up increasing the threat that microfoundationality
will be compromised.

Consider, for instance, TRANSIMS, a large-scale system for simulating the move-
ment of people around a city, on foot and in cars and in public transportation (Barrett
et al. 2000; Cetin et al. 2002; Eubank et al. 2004). Among the many parts of the model
is a “traffic microsimulator,” which simulates the flow of cars on the network of streets
in a city, as they follow routes toward destinations, change lanes, and enter and exit
parking spaces. The microsimulator is implemented as a cellular automaton, with the
streets treated as long thin grids of car-sized cells, and cars jumping from cell to cell
as they move through the streets.

In the simulation, the actual dynamics of movement from cell to cell are neglected.
But suppose we wanted to add some of this texture to the TRANSIMS model. One
option is to add a large number of parameters, representing many characteristics of
the road. This, however, can seriously increase the risk of overfitting. A different
response is to introduce a single parameter, representing the key factor or factors
affecting cell-to-cell dynamics. The problem is that as we tweak such a factor, we risk
finding ourselves in the shoes of the herring-modeler or of the representative-agent
theorist, encoding the macrodata in “microfoundational drag.” Having chosen a single
parameter to modify, in order to mitigate the risk of overfitting, we risk losing control
over what that parameter represents.

3.2 Guarding against smuggling

Treatments of the “tuning” of simulations, we argued above, tend to draw too sim-
ple a line between acceptable and unacceptable procedures for tweaking. Among the
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errors is that too much is often made of the distinction between accommodation and
prediction. Here there is a different moral.

If we are to guard against overfitting, all the data is just data. But if we are to guard
against the risk of compromising microfoundations, we need to treat microdata and
macrodata somewhat differently. A different set of tests is called for, beyond those that
evaluate predictive accuracy. Independent of the question of comparing simulations
from the perspective of predictive accuracy, we should test for the effect of tweaking
on what we might call the “representational integrity” of the simulation.

A good deal of testing for representational integrity is already performed, implicitly
if not explicitly, by modelers in actual situations. One feature that can be straightfor-
ward to test is a simulation’s modularity. This may be performed either by testing
subparts of a simulation on their own, or else by swapping parts of a simulation into
a different simulation of a macrophenomenon.

It is misleading to collapse all the microdata and macrodata together, without dis-
tinguishing the different testing goals they are to serve. It is easy to overlook the
fact that we may have two different kinds of reasons for wanting a simulation to be
microfoundational. One is to enhance the simulation’s predictive success about macro-
phenomena.7 But as we mentioned, there are many other reasons we might want a
simulation to be microfoundational, apart from improving a simulation’s predictive
success about macrobehavior. These may be minor considerations or substantial ones,
and we suggest it is better to consider them separately rather than simply incorporating
micro-constraints into one data set.

Modularity is just one among a variety of features by which the “representational
integrity” of a simulation can be tested. The notion of microfoundationality is a
complicated one, and it is not clear that even if a simulation fails to be thoroughly
modular, it invariably fails to be microfoundational. For instance, one might defend
a representative agent simulation that fails to be modular as still being microfoun-
dational, on the basis that it is a good idealization of agents relative to a particular
macroeonomic problem (cf. Woodford 2006). Similarly, Satz and Ferejohn (1994)
defend rational choice theory as an individualistic methodology in social theory despite
the failure of rationality assumptions when applied on an individual basis.

Furthermore, there are tests for the “representational integrity” of a simulation that
do not require modularity. For instance, in the sexual behavior paper, inferences are
drawn about the relationship patterns among adolescents in light of the macrostruc-
ture of the graph of their interactions. The macrostructure of the graph provides good
evidence that a behavioral constraint holds at the individual level. Such evidence may
preempt the need for testing at the individual level.

In short, with the iterative tweaking of simulations, there is a real risk that
simulation parameters become artifacts of the macrosystem, rather than genuinely

7 Even this important role for microfoundationality sometimes goes unrecognized. For instance, the view
of Friedman (1953) that the only goal of a science is its predictive success and that the “realism” of
the assumptions involved in generating those predictions is unimportant, remains influential. Those who
dispute this claim often follow the lines of Hausman (1992), which appeal to the contribution of “realistic
assumptions” to a model’s predictive success about macrobehavior. Interestingly, even what Hausman calls
“wide predictive success” appears to be focused on the macro-predictions, rather than both the macro- and
micro-predictions.
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microfoundational. While it is difficult to characterize precisely when such smuggling
of macrodata occurs, we may nonetheless test for the features normally exhibited by
microfoundational models, and develop strategies for improving microfoundationality
as an independent goal.

4 Conclusion

We have restricted our discussion to simulation and to tweaking, though to some extent
the results can be extended to broader classes of models and to other processes for
model-improvement.

Tweaking parameters is both common and useful. It is unnecessary to adhere to the
strict code that many worried methodologists put forward, i.e., that macrodata must
be isolated in one way or another from the iterated improvement of a simulation. That
code is probably impossible to follow anyway, inasmuch as the macrodata affects
model iterations, even at the level of the selection of basic structures to be included in
a simulation. The iterative process of model development can stretch over the course
of a researcher’s career, and indeed passes on from researcher to researcher in the
modeling community. It is a good thing that the strict codes are misguided, because to
follow them would hamstring the practice of modeling. We come to praise tweaking,
not to bury it.

That does not mean, however, that tweaking is risk free. One of the devilish problems
of tweaking is that addressing the risks respectively involves conflicting recommen-
dations. The simplifications that mitigate the risk of overfitting, such as treating a
heterogeneous population of agents as one single representative agent, may be the
very thing that compromises the microfoundationality of a simulation.
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