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Abstract We defend a set of acceptance rules that avoids the lottery paradox, that
is closed under classical entailment, and that accepts uncertain propositions without
ad hoc restrictions. We show that the rules we recommend provide a semantics that
validates exactly Adams’ conditional logic and are exactly the rules that preserve a
natural, logical structure over probabilistic credal states that we call probalogic. To
motivate probalogic, we first expand classical logic to geo-logic, which fills the entire
unit cube, and then we project the upper surfaces of the geo-logical cube onto the
plane of probabilistic credal states by means of standard, linear perspective, which
may be interpreted as an extension of the classical principle of indifference. Finally,
we apply the geometrical/logical methods developed in the paper to prove a series of
trivialization theorems against question-invariance as a constraint on acceptance rules
and against rational monotonicity as an axiom of conditional logic in situations of
uncertainty.

Keywords Lottery paradox - Uncertain acceptance - Ramsey test - Conditional
logic - Belief revision - Framing effects

1 The lottery paradox

If Bayesians are right, one’s credal state should be a probability measure p over prop-
ositions, where probabilities represent degrees of belief. It seems that one also accepts
propositions in light of p. Acceptance of proposition A is sometimes portrayed as a
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momentous inference making A certain, in the sense that one would bet one’s life
against nothing that A is true (e.g., Levi 1967). But that extreme standard would elim-
inate almost all ordinary examples of accepted propositions. We therefore entertain a
more modest view of acceptance, according to which the set of propositions accepted
in light of p should, in some sense, aptly capture some characteristics of p to others or,
in everyday cognition, to ourselves. That view is non-inferential in the sense that p is
not conditioned on the propositions accepted, but it is inferential in another sense—the
accepted propositions may serve as premises in arguments whose conclusions are also
accepted in the same, weak sense.

It seems that high probability short of full certainty suffices for acceptance, a view
now referred to as the Lockean thesis. But the Lockean rule licenses acceptance of
inconsistent sets of propositions, however high the threshold » < 1 is set. For there
exists a fair lottery with more than 1/(1—r) tickets. Itis accepted that some ticket wins,
since that proposition carries probability 1. But for each ticket, it is also accepted that
the ticket loses, since that proposition has probability greater than r. So an inconsistent
set of propositions is accepted. That is Kyburg’s (1961) lottery paradox.

To elude the paradox, one must abandon either the full Lockean thesis or classical
consistency. Kyburg pursued the second course by rejecting the classical inference rule
that A, B jointly imply A A B, so that the collection of propositions of form “ticket
i does not win” does not entail “no ticket wins”. Most responses side with classical
logic and constrain the Lockean thesis in some manner to avoid contradictions. For
example, Jeffrey (1970) recommended that the entire practice of acceptance be aban-
doned in favor of reporting probabilities. Levi (1967) rejected the idea that acceptance
can be based on probability alone, since utilities should also be consulted. Or one may
impose as a necessary condition that accepted propositions be certain (van Fraassen
1995; Arl6-Costa and Parikh 2005). Or one may restrict the Lockean thesis to cases in
which no logical contradiction happens to result (Pollock 1995; Ryan 1996; Douven
2002).

Our approach is different. Instead of restricting the Lockean thesis, we revise it.
In particular, we defend an unrestricted rule of acceptance that is contradiction-free
and yet capable of accepting uncertain propositions—even propositions of fairly low
probability. Like the Lockean rule, the proposed rule has a parameter that controls its
strictness. When the parameter is tuned toward 1, the proposed rule is almost indistin-
guishable from the classical logical closure of the Lockean rule; but as the parameter
drops toward O, the proposed rule’s geometry shifts steadily away from that of the
Lockean rule so as to avert the lottery paradox.

The rule we recommend was invented by Levi (1996, p. 286), who saw no jus-
tification for it except as a loose approximation to an alternative rule he took to be
justified by decision-theoretic means (1967, 1969).! We provide two justifications of
the rule. The first is that it preserves logical structure, in the sense that it accepts

1 Levi writes: “I do not know how to derive it from a view of the cognitive aims of inquiry [i.e. seeking
more information and avoiding error] that seems attractive” (1996, p. 286). We rediscovered the rule as a
consequence of our work on Ockham’s razor. The problem was to extend the Ockham efficiency theorem
(Kelly 2008) from methods that choose theories to methods that update probabilistic degrees of belief on
theories. That required a concept of retraction of credal states, expounded in Kelly (2011). We thank Teddy
Seidenfeld for bringing the prior publication of the rule to our attention.
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stronger propositions in stronger probabilistic credal states. The crux is to order prob-
abilistic credal states according to relative logical strength, as Boolean algebra does
for propositions. We do so in two steps. First, we start with a sigma algebra of propo-
sitions (closed under negation and countable disjunction) and then extend that sigma
algebra to cover the entire unit cube by introducing a new connective —, interpreted
as negation to degree d, so that —g¢ is equivalent to ¢ and —1¢ is equivalent to ¢.
The resulting logical structure is called geologic (Sect. 4). Next, we view geologic
through the picture plane of possible credal states to obtain a logical structure over
credal states that we call probalogic (Sects. 5 and 6). Then it is natural to require
that every acceptance rule preserves probalogical structure when it maps probabilistic
credal states to standard, Boolean propositions.

The requirement that acceptance rules preserve probalogical structure has an appeal-
ing consequence for the theory of acceptance: we show that the rules we recommend
are exactly the rules that preserve probalogical structure (Sect. 7). In contrast, no plau-
sible logical structure on probability measures is preserved by the Lockean rule or its
variants (Sect. 8).

Our second justification of the proposed acceptance rules concerns the logic of con-
ditionals and defeasible reasoning. Frank P. Ramsey proposed an influential, epistemic
condition for acceptance of conditional statements, now commonly referred to as the
Ramsey test:

If two people are arguing ‘If A, then B?’ and are both in doubt as to A, they are
adding A hypothetically to their stock of knowledge and arguing on that basis
about B; so that in a sense ‘If A, B’ and ‘If A, =B’ are contradictories. We
can say that they are fixing their degrees of belief in B given A. (Ramsey 1929,
footnote 1)2

Suppose that an agent is in a probabilistic credal state p and adopts an acceptance
rule. We propose the following interpretation of the Ramsey test: the agent accepts
the (flat) conditional ‘if A then B’ when, by the acceptance rule she adopts, she
would accept B in the credal state p(-|A) that results from p by conditioning on A.
Thus, conditional acceptance is reduced to Bayesian conditioning and acceptance of
non-conditional propositions. This natural semantics allows one to characterize the
axioms of conditional logic in terms of their geometrical constraints on acceptance
rules, in much the same way that axioms of modal logic are standardly characterized
in terms of constraints on accessibility relations among worlds. Accordingly, for each
of the axioms in Adams’ (1975) conditional logic, we solve for its geometrical con-
straint on acceptance rules (Sect. 9). These constraints are shown to be satisfied by the
rules that preserve probalogical structure, so the probalogic-preserving rules validate
Adams’ logic with respect to the Ramsey test (Sect. 10). Conversely, Adams’ logic
is shown to be complete with respect to the Ramsey test when acceptance follows
probalogic-preserving rules (Sect. 12). The result is a new probabilistic semantics: it
defines validity simply as preservation of acceptance, which improves upon Adams’
(1975) e—6 semantics; and it allows for accepting propositions of low probabilities,

2 We take the liberty of substituting A, B for p, ¢ in Ramsey’s text.
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which improves upon Pearl’s (1989) infinitesimal semantics. Thus, the recommended
acceptance rules are vindicated both by probalogic and by conditional logic.

One might hope for validating a stronger logic of flat conditionals than Adams’,
e.g. system R (Lehmann and Magidor 1992) or, stronger still, the AGM axioms for
belief revision (Harper 1975; Alchourron et al. 1985). We close the door on that hope
with a new trivialization theorem (Sect. 11). In light of that result, we propose that
Adams’ conditional logic reflects Bayesian ideals better than AGM belief revision
does.

Finally, the acceptance rules we recommend are sensitive to framing effects deter-
mined by an underlying question. One might hope that the advantages of the proposed
rules could be obtained without question-dependence. Again, we close the door on
that hope with a series of trivialization theorems (Sects. 13 and 14), employing the
geometrical techniques described above. We conclude that, all things considered, the
advantages of the recommended acceptance rules within questions justify their depen-
dence on questions.

2 The geometry of the lottery paradox

Let £ = {E; : i € I} be a countable collection of mutually exclusive and jointly
exhaustive propositions over some underlying set of possibilities. Let « (either w or
some finite n) denote the cardinality of £. We think of £ as a guestion in context whose
potential answers are the various E;. Let A be the least collection of propositions con-
taining £ that is closed under negation and countable disjunction and conjunction, and
let P denote the set of all (countably additive) probability measures defined on A.
We think of P as the space of probabilistic credal states over answers to question &.
Occasionally we write P,. or & to emphasize the cardinality of £.

We assume that acceptance rules produce sets of propositions that are closed under
classical entailment so that, without loss of generality, each acceptance rule may be
viewed as a map « : P — A, where proposition a(p) is understood as the strongest
proposition accepted in light of probability measure p. Then proposition A is accepted
by rule « at credal state p, written p |-, A, if and only if «(p) entails A. The accep-
tance zone of A under « is defined as the set of all credal states at which A is accepted
by «.

For example, the Lockean acceptance rule with threshold set to r in the unit interval
is just the mapping:

2 (p) = \{A € A: p(a) = ). e

Each probability measure p in P can be represented with respect to £ as the «-dimen-
sional vector (p(E;) : i € I) with components in the unit interval summing to one.
In the context of question &£, we identify p with its vector, so that the ith component
pi equals p(E;). In the case of three answers, P corresponds to the set of all such
3-vectors, which is the equilateral triangle in R? whose corners have Cartesian coor-
dinates e; = (1,0, 0), e2 = (0, 1,0) and e3 = (0, 0, 1) (Fig. 1). To avoid ambiguity,
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1,0,0
P(E;) ( :

Fig. 1 The space P3 of probabilistic credal states

(0,1,0)

(1,0,0)

Fig. 2 Acceptance zone for Ey vV E3 under A,

we let (e;); pick out the jth component of ¢;. Reformulate the Lockean rule (1) as
follows?:

M (p) = \{=Ei: p(—E;) > randi € I}; )
=/\{ﬂEi:pi§1—randieI}. (3)

By this formulation, the acceptance zone of —E| under A, with respect to question &3
is depicted in Fig. 2. The Lockean rule is geometrical—its acceptance zone for —F

3 This is equivalent to the original formulation because, first, every proposition A is equivalent to the con-
junction of all propositions of form —E; that are entailed by A and, second, propositions of form —FE; that
are entailed by A are at least as probable as A.
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Fig. 3 Acceptance zones under A,

has a definite, trapezoidal shape that results from truncating the triangular space P3
parallel to one side. As threshold r is dropped, the trapezoid becomes thicker. The
acceptance zones of —FE, and —E3 are included in Fig. 3a. By closure under entail-
ment, proposition E is accepted exactly when both —FE, and —FEj3 are accepted, so
the corner, diamond-shaped zones license acceptance of potential answers to £. When
r < 2/3, the propositions —E1, —=E», —E3 are all accepted at the probability measures
contained in the small, dark, central triangle (Fig. 3b). But that set of propositions is
inconsistent so, by closure under entailment, the dark, central triangle is the acceptance
zone of the inconsistent proposition _L. That is just the lottery paradox for thresholds
r < 2/3 (interpret E; as the proposition “ticket i wins”).

Geometrically, the lottery paradox arises because the Lockean rule’s acceptance
zones for the various propositions —E; crash clumsily into one another as the prob-
ability threshold r decreases. It is easy to design alternative acceptance zones that
bend progressively as they approach the center of the triangle so that they eventually
meet without overlapping like the leaves of a camera shutter (Fig. 4). The proposed
acceptance zones are almost indistinguishable from those of the Lockean rule when
r is close to 1. As r approaches 0, the bending becomes more pronounced and the
lottery paradox is avoided.

y 4 \\
E, \

Fig. 4 Progressively bent zones that avert collision
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A special, symmetric case of the proposed rule, which we call the symmetric cam-
era shutter rule, modifies the Lockean rule as follows. Test whether answer E; to £
should be rejected at credal state p by considering, not probability p; itself, but the
probability ratio:

Di
o(pi=——"—,
max; p;
resulting in the modified rule:
v(p) = N(-Ei:o(pyi<l-randiel). )

The symmetric camera shutter rule is algebraically the same as the Lockean rule
(3) except that probability is divided by the probability distribution’s mode. Say that
acceptance rule « is everywhere consistent if and only if p ¥, L for each p in P, and
say that « is non-skeptical if and only if for each E; in £ there exists p in P such that
p(E;) < 1land p Iy E;. Then:

Proposition 1 Let £ contains at least two answers. The symmetric camera shutter
rule v, is everywhere consistent and non-skeptical, for each r such that0 < r < 1.

Proof For everywhere consistency, note that since Zi pi = 1, so there exists i € [
such that p; = max; p;. Then, since r > 0,

U(p)i=1$1—r

so p I, —E;, by formula (4). It follows that p |, L. For non-skepticism, let E; be
an arbitrary answer, and it suffices to show that E; is accepted by v, at some credal
state p such that p; < 1. Let p; = 1/(2 — r). Since £ contains at least two answers,
choose j in I distinct from i and let p; = (1 —r)/(2 — r). Since a probability dis-
tribution is normalized, py = 0 for all k£ # i, j. Note that p; is the mode of p, since
r > 0. So for each k # i:

IA

1—r,

1£1—r,

o(pk
o(p)i

since » > 0. Hence p I, E;, by formula (4), with p; =1/(2—r) < 1,sincer < 1.
O

On the other hand:

Proposition 2 Suppose that £ is countably infinite. The Lockean rule A, is either
skeptical or somewhere inconsistent, for each r such that 0 <r < 1.

Proof 1f the Lockean rule is not skeptical, then » < 1, and thus there exists p in P,
such that p; <1 —r, foreach i € I. So by formula (3), A-(p) = L, and hence A, is
somewhere inconsistent. O
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3 Respect for logic
The range of acceptance rule o : P — A has a natural, Boolean logical structure:
('A’ S? \/’ /\7 J-? T)’

where the partial order < corresponds to classical entailment or relative strength of
propositions and Vv and A are the least upper bound and the greatest lower bound with
respect to <, which correspond to the usual propositional operations of disjunction
and conjunction.* If there were also a motivated logical structure

(’Pﬂ S’ \/7 /\’ J_’ T)
on the space of probabilistic credal states, in which < is intended, again, to reflect

relative strength, then an obvious constraint on acceptance rules would be to preserve
logical structure in the sense that:

P =<q=a(p) <aq); (5)
a(pVvg) = a(p)Vvalg); (6)
a(pAng) = a(p) Aa(q); (7

ale;)) = E; )
a(T) =T; )
all) = 1. (10)

Any plausible logical structure over P should also satisfy the following constraint:
the unit vectors e;, fori € I, are exactly the strongest credal states in P. (11)

Then we already have the following assurance against inconsistency:

Proposition 3 (no lottery paradox) Suppose that acceptance rule o and relative
strength < over P satisfy conditions (5), (8), and (11). Then « is everywhere con-
sistent.

Proof Suppose for reductio that for some credal state p, «(p) = L. Then, by condi-
tion (11), there exists a strongest state e; such that ¢; < p. So a(e;) < a(p), by (5).
Then by (8), we have that E; = a(e;) < a(p) = L. So E; < L, which is false in the
Boolean logical structure of A. O

Therefore, the lottery paradox witnesses the failure of the Lockean rule to preserve
logical structure. But the lottery paradox is only the most glaring consequence of
the Lockean rule’s disrespect for logical structure. It is plausible to suppose that with
respect to question &, if one’s credal state p accords non-maximal probability to answer

4 In algebraic logic, A < B means that A is at least as strong as B.
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Fig. 5 Deeper trouble for the Lockean rule

E;, compared to all the alternative answers to £, then upon receiving the information
that refutes exactly E;, the posterior credal state p(-|—E;) is at least as strong as p;
namely:

pi#m]aij = p(I=E) < p. (12)

But then the Lockean rule again fails to preserve relative strength, i.e., it violates con-
dition (5). Recall from Fig. 3 that a consistent Lockean rule’s acceptance zone for E;
is a diamond. The diamond has the wrong shape—its sides meet at an angle that is
too acute. For consider a credal state p very close to the inner apex of the diamond, as
depictedin Fig. 5. Letq = p(:|—E3). By condition (12), we have thatg < p.But point
q lies on the side of the triangle opposite ez because g3 = 0, and ¢ lies on the ray from
e3 that passes through p because q1/g2 = p1/p2- So A(q) = —~E3 £ E> = A(p).
Therefore, g < pbuti(g) £ A(p), which violates (5). That is another counterintuitive
way to fail to preserve logical order even when the lottery paradox does not arise.

The preceding argument illustrates a further point: intuitions about relative strength
of credal states are tied to conditioning. The boundaries of acceptance zones deter-
mined by the Lockean rule do not follow the geometrical rays that correspond to
the trajectories of probabilistic credal states under conditioning. For that reason, the
Lockean rule is a bad choice for trying to explicate the acceptance of conditionals in
terms of conditional probabilities. Specifically, consider the following interpretation
of the Ramsey test. Let A, B be arbitrary propositions in .A. Let the flat conditional
with antecedent A and consequent B be expressed by A = B. (The arrow notation
‘=" does not denote a binary operation on propositions; it is simply a suggestive way
to refer to the ordered pair (A, B). We propose that the Ramsey test be explicated by
the following acceptance condition for flat conditionals’:

plre A= B <& p(|A)Irq B or p(A)=0. (13)

So when the antecedent has nonzero probability, this semantic rule says that flat con-
ditional A = B is accepted at credal state p if and only if, when one “adds A

Sf p(A) # 0, p(-]A) is defined to be p(- A A)/p(A); otherwise it is undefined.
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hypothetically to one’s stock of knowledge” and thereby hypothetically conditions
p on A to obtain posterior credal state p(-|A), one accepts the consequent B in the
posterior state. Consider again the consistent Lockean rule A and credal state p in
Fig. 5. Then, as is evident from the picture, we have:

p Iy Ea,
p ¥, —E3z = Es.

Note that —E3 is entailed by E», so Lockean rule A instructs one to retract her accep-
tance of £, when a logical consequence of E» is learned or supposed. That contradicts
intuitions about scientific method and violates almost all logics of conditionals that
have interested logicians, including Adams (1975) conditional logic.® On the other
hand, to preserve acceptance under logically entailed information, it suffices to require
conditions (5) and (12). For by (12), credal state ¢ would have been at least as strong
as credal state p and hence, by (5), any proposition accepted in p remains accepted in
q,e.g., Er.

The angles formed by the sides of the acceptance zones are crucial to the preser-
vation of logical structure. The acceptance rules we recommend—the camera shutter
rules—do have acceptance zones with the correct angles at their corners and, there-
fore, do not encounter any of the preceding logical difficulties. We will show that the
camera shutter rules preserve a very natural logical structure on state space P and,
therefore, yield a soundness and completeness theorem for Adams’ conditional logic
that is simpler and more natural than Adams’ original version (1975).

4 Geologic

Consider classical, infinitary propositional logic, which allows for countable disjunc-
tion and conjunction.’ Start with propositional constants L, T and propositional vari-
ables V, = {E; : i € I}, where the countable index set / has cardinality «. Let \/ j o
and A\ j ¢; be countable disjunction and conjunction, respectively. Let language L,
be the least set containing the propositional constants in V. that is closed under nega-
tion, countable disjunction, and countable conjunction. We interpret the propositional
variables to be mutually exclusive and exhaustive. Under that restriction, each truth
assignment is a k -dimensional basis vector ¢;. Let B, denote the set of all such vectors.
The valuation function for classical logic is definable as follows. In the base case:

v, (Ej) =ei-ej; v, (T)=1; v,(L) =0,

6 Specifically, the principle that acceptance be preserved under logically implied information can be shown
to be equivalent to Cautious Monotonicity, given two other axioms in Adams’ conditional logic (a.k.a
system P): Right Weakening, And. That system will be discussed in detail latter.

7 For classic studies concerning completeness infinitary logic, cf. Karp (1964) and Barwise (1969). Our
applications make no reference to completeness or to proof systems for infinitary logic.
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where - denotes the vector inner product x - y = 3 ;; X; ;. In the inductive case:

Ve (=) = 1= v, (8); v, | \/ ¢ = max(vg, (¢)):

J

v, [ \ @i | = min(vg, (¢)).
i .
Logical entailment is definable in terms of valuation as follows:

dPEY — v,(@P) <v, ), foralliel.
Let the proposition [[¢], expressed by ¢ in language L, denote the set of all assign-

ments in B, in which ¢ evaluates to 1. Each proposition [[¢ ]l is represented uniquely
by its valuation vector:

Ve (P) = (v, (@) 1@ € 1),

which belongs to 2. Define the following relations and operations over 2~:

u<v < u; <vj, foralliinl; (14)
=) = 1-v; (15)
\/ v/ = max vij; (16)
i), /
A\ v = minv/. (17)
i), !

Then the structure of classical, infinitary logic is captured® by the mathematical struc-
ture:

£e=(2%= V. A\ 1.0).

Figure 6a illustrates £3, which bears a suggestive resemblance to the unit cube [0, 1]3
(Fig. 6b), but it is really just a string-and-bead figure whose strings happen to be sized
and stretched to outline a cube. However, one can extend classical propositional logic
on L, to a fuzzy language L that generates fuzzy propositions covering the entire
«-dimensional unit cube [0, 11.° A fuzzy proposition is just a fuzzy subset (Zadeh

8 I.e., the Lindenbaum-Tarski algebra of language L, is isomorphic to L.

9 The idea may sound similar to multi-valued logic, but it is quite different. In multi-valued logic, (discrete)
logical formulas in L, are interpreted over an expanded, continuous space of assignments (Hajek 1998;
Novak et al. 2000)—such logics generate a discrete, weakening of classical logic, rather than a continuous,
conservative extension of classical logic.
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(1,1,1) (1,1,1)
(1,1,0) } (0,1,1) (1,1,0) | (1,0, 1) 1(0,1,1)
(1,0,0) (0,0, 1) (1,0, 0) R ' (0,0,1)
&,w
(0,0, 0) (0,0, 0)
(a) (b)

Fig. 6 Bead-and-string logic versus geologic

1965) of By, which is representable by a fuzzy characteristic function from By to
[0, 1] and, hence, by a fuzzy valuation vector v in [0, 1]°. Formula (14) represents the
fuzzy subset relation and formulas (15) through (17) correspond to fuzzy complement,
intersection, and union over fuzzy propositions.

Here is one natural way to extend classical logic over L, to cover the x-dimensional
unit cube. For each real number d in the unit interval, let the partial negation —g ¢ be
understood as the negation of ¢ to degree d, interpreted as follows:

Ve; (d @) = d ve; (=) + (1 — d)ve; (¢).

In particular, —o¢ is equivalent to ¢», whereas — ¢ is equivalent to —¢. Between these
extremes, —1/2¢ hovers semantically midway between ¢ and —¢. Let L} be the result
of expanding language L, with —,. Otherwise, the preceding definitions of valuation
function v,; and valuation vector (v, (¢) : i € I) remain unaltered.'? Partial negation
never generates values outside of the unit interval, so all valuation vectors for LY are
in the unit cube [0, 1]¢. Conversely, every vector v in [0, 1]¢ is the valuation vector
of some formula in L, namely:

\/ (=1 Ei A Ep).

iel

So the propositions expressible by the fuzzy language £} correspond to the vectors
in the x-dimensional unit cube [0, 1]¢. Therefore, we refer to the logic just defined as
geologic.

Formulas (14)—(17) still make sense for fuzzy valuation functions (because they
correspond to the standard definitions of the fuzzy set theoretic operations). Therefore,

10 More directly, one can simply introduce a new unary connective a¢ called scalar multiple interpreted
by ve; (ad) = ave,; (¢). But we found it harder to motivate usage of such a connective.
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Fig. 7 Geological operations

the structure of geologic is:

i = (1011, = \/, Ao 1,0).

Since the valuation definition for geologic is exactly the same as for classical logic
over the fragment L, it follows that £ restricted to L, is just £,—in other words,
geologic is a conservative extension of classical, infinitary logic.

Since the operations in £ correspond to fuzzy set theoretical operations on prop-
ositions, it is immediate that the geological operations satisfy associativity, commu-
tativity, distributivity, and the De Morgan rules (Zadeh 1965). Excluded middle and
disjunctive syllogism, on the other hand, can fail spectacularly for propositions in the
unit cube’s interior. For example, let ¢ denote the center (%, e, % ...) of the unit
cube. Then:

—c =c;
cV e =c

ey V) A—c =c.

In spite of that, we think of geologic as the natural extension of classical logic to fuzzy
propositions. Associativity, commutativity, distributivity, and the De Morgan rules are
all motivated by symmetries of the unit cube. Excluded middle is not motivated by
symmetry—it is a mere artifact of an impoverished syntax. Furthermore, unlike modal
logic, which is also a conservative extension of classical propositional logic, geologic
arises from the addition of an extensional negation.

Filling the interior of the Boolean algebra to make it a genuine cube provides an
explanatory, geometrical perspective on classical logic. For example, given points v
and  in the unit cube, find the smallest parallelepiped solid S (v, ) containing v and u
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Fig. 8 Geometry of the De Morgan rules

whose sides are parallel to the sides of the cube. Then the uppermost vertex of S(v, u)
is v V u and the lowermost vertex of S(v, u) is v A u (Fig. 7a). The parallelepiped
S(v, u) is like a sub-crystal within the cube, which is another reason for thinking
of geologic as geological.!! The geometry of full geological negation is just reflec-
tion through the center ¢ of the cube, which is a natural generalization of Boolean
complementation. To construct the partial negation —4 v of v, first reflect v through
¢ to obtain the full negation —v. Now draw a straight line segment between v and
—v. Then —,v is the point that lies proportion d of the way from v to —v along the
line segment (Fig. 7b). Consider the classical De Morgan rules. Since full negation
involves projection through the center ¢ of the cube, think of ¢ as the aperture of a
pinhole camera. It is a familiar fact that projection through an aperture inverts the
image. But the disjunction v V u is the top vertex of the parallelepiped spanning v and
u. Projecting the parallelepiped through the aperture inverts it and turns the top vertex
into the bottom vertex—the conjunction of the projection of v with the projection of
u (Fig. 8).

5 Logic from a probabilistic perspective

For our purposes, the point of geologic is that it affords a unified perspective on logic
and probability.'> The set PP3 of possible credal states is a horizontal, triangular plane
through the unit cube of geological propositions (Fig. 6b). Thus, credal state space

' Note that the same geometrical relationships would hold even if the unit cube were stretched along its
various axes to form a prism. We will return to that theme in the last section of the paper.

12 pDye to the truth-functionality of conjunction in fuzzy logic, the fuzzy logic community tends to view
fuzzy logic in isolation from probability theory, rather than as a tool for understanding probability theory,
as we propose.
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‘P53 has a natural embedding within geologic. That embedding generalizes to each
countable cardinality «.!3

Valuation and probability assignment can both be viewed as inner products within
the geological cube:

vE[(u) =é€-u,

pb) =p-b,

where u is a vector in [0, 1] corresponding to an arbitrary, geological proposition,
ve; 18 a valuation function corresponding to a classical assignment, b is a Boolean
valuation vector in 2* corresponding to a classical proposition, and p is a probability
measure/vector in P,.

Say that probability measure p is uniform with respect to £ if and only if p assigns
only zero or a fixed value to the answers in £. The support of p is the disjunction of
all elements of £ that p assigns non-zero probability to (recall that £ is countable).
The classical principle of indifference is a mapping o that associates each uniform
probability distribution p with its support. For example, o associates (%, %, 0) with the

classical proposition a(%, % 0) = (1, 1, 0). Construct a ray from _L through uniform
distribution p and then o (p) is the (classical) proposition on the upper surface of the
unit cube that the ray points to (Fig. 9a). Algebraically, o (p) is the (unique) scalar
multiple of p in the unit cube that has at least one component equal to 1, which amounts
to the formula encountered earlier in the definition of the symmetric camera shutter
acceptance rules:

4

o(p)i = ——, foriel.
manpj

Say that geological proposition u is fully satisfiable if and only if there exists e¢; such
that v, (u) = 1, i.e. u has a component equal to 1. So o (p) is the (unique), fully
satisfiable, geological valuation vector that is proportional to p. In classical logic, the
mapping o (p) is defined only for uniform p, but it is defined for all p in geologic,
since the (continuous) upper surface of the geological cube covers the entire triangle
of probability measures (Fig. 9b). Now every probability measure p has a unique,
geological proposition o (p) that stands to p in much the same way that the support
of p stands to uniform p.

Mapping o has a heuristic interpretation. Think of the unit cube as a room with
tiled walls (Fig. 10). Imagine that there is a digital camera embedded in the baseboard
of the room at corner L. Think of the triangle P5 as the picture plane corresponding
to the 2-dimensional image received by the camera. Then the inverse o ~! of o is
the classical perspective rendering of the room’s interior on the picture plane. The
perspective is extreme because the camera is literally embedded in the lower corner

13 Perhaps the destiny of geologic is to liberalize all of the type restrictions on the preceding two equations,
so that the entire unit cube does triple-duty as generalized propositions, generalized inconsistent or inde-
terministic assignments, and generalized non-normalized degrees of belief. We leave that solid philosophy
unexplored in this paper.
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T T

(1,1, 1/2)

(1,1,0)

(2/5, 2/5, 1/5)

N

(1/2,1/2.0) |

1 1

(a) (b)

vanishing

< vanishing ' vanishing
point point

(a) (b)

Fig. 10 A literal, probabilistic perspective on logic

of the room, so the floor and adjacent walls are tangent to the camera’s view and are
rendered as the boundaries of the triangular picture.

The point of the preceding detour through geologic is that the picture plane is the
space P3 of probability measures on .43 and the walls and ceiling of the office are the
fully satisfiable propositions in geologic. So Fig. 10 literally illustrates geologic from a
probabilistic perspective. That perspective sheds new light on the lottery paradox and
its associated conundrums. In particular, note the similarity between the acceptance
zones of the proposed, paradox-avoiding rule (Fig. 4) and the projected coordinate
lines of the unit cube (Fig. 10b). The boundaries of the former always follow the latter.
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6 Probalogic

We understand “logic” in the broad, pragmatic sense that logic is wherever logical
structure is. If the logical structure pertains to relative strength of credal states, then
there is a logic of such states, even though the states in question are not necessarily
propositional and the logical relations among them are not plausibly interpreted as
arguments. And if the structure happens to be relative to pragmatic factors such as
a question that elevates the significance of certain propositions as relevant answers,
then logic, itself, is pragmatic—we do not insist that logic must in some sense be prior
to or independent of such considerations. Our view accords with an ancient tradition
according to which logic is a tool or organon for inquiry, which typically begins with
some question and ends with an answer thereto. In this section, we introduce a logic
of probabilistic credal states in the broad, pragmatic sense just outlined.

When credence is modeled as qualitative belief in a proposition, it is straightfor-
ward to judge the relative strength of credal states in terms of the classical, logical
strength of the propositions believed:

Bp <BYy < ¢=.

We propose, in a similar spirit, that probabilistic credal states inherit their logical
strength from their unique, geological images:

p<q < o(p) <o(q) (18)
<= o(p)i <o(q); foralli el. (19)

Disjunction Vv and conjunction A are standardly defined, respectively, as the least
upper bound and the greatest lower bound with respect to <. We call the resulting
logical structure on probability measures probalogic:

(P, <, Vv, N).

Probalogic is just geologic from a probabilistic perspective.

Consider arbitrary credal state p in P3. Which credal states are probalogically at
least as weak as p? First, project p up to geological proposition o (p) on the upper
surface of the geological cube. The geological consequences of o (p) consist of the
parallelepiped containing T whose sides are parallel to the sides of the unit cube and
whose bottom-most corner is o (p) (Fig. 11). Since o (p) is incident to an upper sur-
face of the cube, the parallelepiped is, in this case, a rectangle lying entirely in one
upper face of the unit cube (or, in degenerate cases, entirely within an upper edge of
the unit cube). The credal states probalogically weaker than p are contained within
the linear perspective projection of that rectangle onto the picture plane P3. Note that,
according to the usual rules of linear perspective, parallel sides of the rectangles meet
at vanishing points, which correspond to the corners of Ps that are not closest to p.
Similarly, the geological propositions in the range of ¢ that are geologically at least
as strong as o (p) are in the rectangle with sides parallel to the sides of the unit cube
that has o (p) as its upper corner and the nearest unit vector ¢; to o (p) as its lower
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geologically probalogically
stronger

geologically f
stronger |

(a)

Fig. 11 Probalogical strength

corner. So the inverse image of that rectangle under o is the set of the credal states that
are probalogically at least as strong as o (p). We call the partial order < so defined
relative probalogical strength.

Probalogical disjunction, conjunction, and negation can be defined similarly, as the
projections of the corresponding, geological disjunction:

pvqg=0'o(p) Vo) (20)
pAg=0"Yop)Ao(@); 1)
—p =0 (=a(p)). (22)

Since the geological disjunction of two propositions on the upper surface of the unit
cube is also on the upper surface of the unit cube, P;3 is closed under probalogical
disjunction. Geometrically, these logical operations can be constructed as perspective
renderings of the corresponding geological operations on the cube (Figs. 12, 13, and
14). Probalogical constants and operations are not necessarily defined. In finite ques-
tions, T denotes the uniform distribution, but in countably infinite questions there is
no such distribution. There is no interpretation of L. Letting L = T is obviously
unappealing, but any choice of L that is off-center is equally implausible. Geologi-
cal negation is closed over the lower edges of the upper faces of the unit cube, but
is not closed elsewhere over the upper faces of the unit cube, so probalogical nega-
tion is defined only over the perimeter of P. Furthermore, if o (p) and o (g) are on
different upper faces of the unit cube, then the conjunction o (p) A o(gq) lies below
the upper faces of the unit cube, so p A ¢ =0"'(o(p) A 5(q)) is undefined in that
case.

Although we will not pursue the idea in this paper, there is a way to expand P
to a space over which probalogical conjunction and disjunction are closed. Some
assumptions are so certain that one does not even conceive of their falsity—e.g., that
a particle cannot have two distinct momenta at the same time but can have a definite
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Fig. 12 Probalogical conjunction and disjunction within a face
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Fig. 13 Probalogical conjunction and disjunction across faces

Fig. 14 Negation around the perimeter
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T

-

1 1

Fig. 15 o extended to measures normalized to a value <1

momentum and position at the same time. But when experience gets strange, we may
come to doubt our basic assumptions without having thought yet of any concrete
alternatives. In such cases, a natural response is to transfer probability mass to a non-
descript “catchall hypothesis” absent from the original algebra A3. Within 43, the
resulting credal state appears to be normalized to a value less than 1. Accordingly,
let P* denote the set of all additive measures p on A such that 0 < p(T) < 1.
Then the problem of closure under negation and conjunction is solved by plau-
sibly extending o to a bijection between P* and the entire unit cube as follows
(Fig. 15):
Di

o*(p)i = p(T) ————, foriel.
manpj

So Egs. 18-22, with o replaced by ¢ *, induce a probalogical structure on P* that is
closed under the probalogical operations of conjunction, disjunction, and negation.

7 Acceptance that respects probalogic

A probalogical acceptance rule v is an acceptance rule that preserves probalogical
structure in the sense of morphism conditions (5)—(8). 14 As described in the preceding
section, condition (7) is understood to hold only when p A g is defined over P.

Recall the camera-shutter-like acceptance rules introduced above as one geometri-
cal strategy for solving the lottery paradox. The rules can be stated a bit more generally,
by allowing the threshold r and the strictness of the inequality to vary with i. Say that
acceptance rule v is a camera shutter rule for £ if and only if there exist thresholds
{r; : i € I} in the unit interval and inequalities {<); : i € I} that are either < or <,
such that for each pin P and i € I:

14 Note that (5) is redundant, for it is derivable from (6).
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l. v(p) = AN{—Ei:o(p)i<il—riandi € I};
2. if ;g =<thenr; > 0;
3. if<g; =<thenr; < 1.

Note that 0 is omitted in the second condition to make it possible to not accept —E;, and
1 is omitted in the third condition to make it possible to accept —E;—else morphism
condition (8) would be violated trivially. The main result of this section is that, over
countable dimensions, the camera shutter rules are precisely the rules that preserve
probalogic.

Theorem 1 (representation of probalogical rules) Suppose that £ is countable. Then
an arbitrary acceptance rule is probalogical if and only if it is a camera shutter rule.

The proof proceeds by a series of lemmas. Let p, ¢ be in P. Define:

q<ip & 0o(q)i <o(p.

Lemma 1 Suppose thatq <; p. Then p = (p Vei) A (p V q).

Proof See Fig. 16. By the definition of probalogic in terms of geologic, it suffices to
show that

o(p)=o0((pVe)A(pVaq).
By geologic, the jth component of the right hand side expands to:

min(max (o (p), o (e);), max(o(p);,o(q);)).

Since (¢;); = 1, it follows that max(o(p)i, o(e;);) = 1. Since o(q); < o(p)i, it
follows that max(o (p);i, 0(q)i) = o (p)i.Soa((p Ve) A(pVq))i =o(p)i. Now
let Ej bein & for j # i.Then (¢;); = 0,somax(c(p);, o (e;);j) = o(p);.In general,
min(x, max(x, y)) = x, so we have as well thato ((p Ve, ) A(pVq)); =o(p);. O

Lemma 2 Let v satisfy morphism conditions (6), (7), and (8). Let i € I. Then:

plky, —E; and q <; p = q Ik, —E;.

Fig. 16 Proof of Lemma 1
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Proof Suppose that p IF —E; and that ¢ <; p. Since p IF —E;, it follows that
pi < maxy pg. For otherwise, ¢; < p, so by morphism condition (5), ¢; IF —E;,
contrary to morphism condition (8). Since it is also the case that ¢ <; p, Lemma
1 yields that p = (p VvV e;) A (p V ). Suppose for reductio that v(g) is logically
compatible with E;. Then by morphism condition (6), v(p V q) is compatible with
E;. By morphism condition (8), v(e;) is compatible with E;. So again by morphism
condition (6), v(p V ¢;) is compatible with E;. So v(p) = v((p Vei) A (pV q)) is
compatible with E;, by morphism condition (7) and by the fact that E; is an atom in
algebra A. But p I, —E;. Contradiction. Hence, ¢ -, —E. O

Proof of Theorem 1 For the only if side, leti € . Define:
1—r; = sup{o(p);: pePandpl, ~E;}.

Suppose that o (p); <; 1 — r;. Then p I, —E;, by Lemma 2. Suppose that o (p); >
1 — ri. Then p I, —E;, by the definition of 1 — r;. Finally, suppose that o (p); =
o(q); = 1 —r;. Consider the case in which there exists 7 in P such thato (r) = 1 —r;
and r I+, —E;. Then p IF, —=F and ¢q I, —F, by Lemma 2. In the alternative case, it
is immediate that p I/, —F and g |, —E. Thus, p |-, —E; if and only if ¢ I, —E;.
Set <i; = < in the former case and set <|; = < in the latter case. In the former case,
suppose for reductio that r; = 0. Then v(e;) IF —E;, contradicting morphism condi-
tion (8), so r; > 0, as required. In the latter case, suppose for reductio that r; = 1.
Then v(e;) I E;, contradicting morphism condition (8), so r; > 0, as required. For
the if side of the theorem, suppose that v is a camera shutter rule for countable £. For
morphism condition (5), suppose that p < g. Then o (p); < o(q);, foreachi € I.
Then ¢ |-, —E; implies p |, =E;, so v(p) < v(g). For morphism condition (6), let
v(p) = Aand v(g) = B, so:

A= /\{_‘Ei co(p)i < 1 —rih
B = /\{_‘Ei co(q)i <i 1 —ri}

LetD = {—E; : A < E; and B < E;} and note that AV B = /\ D. Suppose that —E;
isinD. Theno (p); <; 1 —r; and o (q); <; 1 —r;. Hence, max(o (p);, 0(q);) i 1l —r;.
Thus, v(p A g) < —E;. Suppose that —E; is not in D. Then either o (p); ;1 — r; or
o(q)i Ail —ri,somax(o(p)i,o(q)i) Ail —r; and, thus, v(p A q) £ —E;. Hence,
—E; is in D if and only if v(p A q) < —E;. Therefore, v(p Vq) = AND = AV B.
The dual argument works for morphism condition (7). O

Recall that the conditions (5)—(7) omit preservation of negation and of the infini-
tary versions of disjunction and conjunction. There are good reasons to drop those
conditions.

Proposition 4 [In finite dimensions, no probalogical acceptance rule preserves infinite
conjunction and disjunction.

Proof Consider probalogical acceptance rule v for question {E; : i € I}. By mor-
phism condition (8), v(e;) = E| and v(ez) = E5. Let L be the straight line connecting

@ Springer



Synthese (2012) 186:531-575 553

e1 with e. Note that no uniform distribution with infinite support is encountered along
this line, so it is continuous. So by morphism condition (5), there is a boundary point
b such that g I+, E1, for all g closer to e than b, and g Iff, E|, for all g farther from
e than b. Let m be the mid-point of L. Consider the case in which p is between m
and e;. Consider the case in which b I, E1. Let {p; : i € N} be a discrete sequence
of points in line segment e; b that converges to b and let {g; : i € N} be a discrete
sequence of points in line segment m b that converges to b. Then:

\/Pi=b=/\qi~
i i

Suppose that b I, Eq. Then v(\/; pi) # V; v(pi). Alternatively, suppose that b I,
Ey. Then v(A; i) # N\; v(gi). o

Proposition 5 In finite dimensions, no probalogical acceptance rule also preserves
probalogical negation.

Proof Let p = (%, %, 0). Assume, for reductio, that acceptance rule v is probalogical
and preserves probalogical negation as well. So by Proposition 1, v is a camera shutter
rule. Suppose that v rejects E3 in p. So o (ez) = % <2 1 — rp. Note, in Fig. 14, that
—p = (0, %, %). So by preservation of negation, v does not reject £ at —p. Thus:
o(ey) = % #2 1 — rp, which is a contradiction. The case in which v does not reject
E> in p is similar. The argument generalizes to arbitrary, finite dimensions. O

On the other hand, setting each r; = % almost preserves negation, in the sense that
negation is preserved at all points on the perimeter of the triangle except at the six
probability assignments with range {0, %, %}. But even so, no other setting for the r;

other than % has that property, so the demands imposed by negation preservation are
unreasonably strict.

8 Acceptance that does not respect probalogic

The acceptance rules we recommend, the camera shutter rules, are exactly the rules
that preserve probalogical structure. Alternative acceptance rules proposed by Kyburg
(1961) and by Pollock (1995) fail to preserve probalogical structure—actually, they
fail to preserve any plausible logical structure.

Each Kyburgian acceptance rule y, is a Lockean rule without closure under con-
junction:

xr={AeA:p(Ad)=r}

Let question & be ternary and set r = % In Fig. 17, the set X2 (c) of propositions

accepted at the center ¢ = (%, % %) is indicated by a solid line and the set ! (e3) is
indicated by a dashed line. Rule x 2 does not preserve logical order in any plausible
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Fig. 17 Kyburgian acceptance rule

sense, for corner e3 is at least as strong as center ¢, but x 2 (e3) is, intuitively, not at
least as strong as x 2 (c) due to the retraction of e V e5.

There is, therefore, a hidden dilemma in Kyburg’s thesis that one should give up
closure of accepted propositions under conjunction. On the one hand, if only T is
accepted at the uniform measure c, then there is no lottery paradox and, hence, there
is no motivation for failing to close the accepted propositions under conjunction. On
the other hand, if some proposition other than T is accepted at c—say, a disjunc-
tion D that is incompatible with E;—then, using the same argument as above, when
one jumps from the center c to the stronger state e;, one must accept E; (which has
probability one) and retract D (which has probability zero) and thus one must fail to
expand the set of accepted propositions. In contrast, all camera shutter rules preserve
probalogic.

Pollock (1995), Ryan (1996), and Douven (2002) all propose what we will call
Pollockian variants of the Lockean acceptance rule. The basic idea is to restrict the
Lockean rule to cases in which it produces no paradox. The idea is illustrated, for
ternary &, in Fig. 18. The basic difference between Pollockian and Lockean rules in
3-dimensions is that the former return T whenever the latter return L (compare to
Fig. 3). The choice of T as a substitute for _L is natural enough, on grounds of sym-
metry, but due to the shape of Pollockian acceptance zones, there still exists no single
logical structure that all Pollockian rules preserve.

Proposition 6 Suppose that £ is ternary. Let < be an arbitrary partial order on P
whose binary least upper bound operation Y is totally defined. Then there exists at least
one Pollockian acceptance rule that is not a structure preserving map from (P, <, Y)
to (A, <, V).

Proof Suppose the contrary for reductio. Let 77, be a Pollockian rule. When r > %, as
in Fig. 18a, the rule 7, accepts E1V Ep at p = (%, %, 0)and E» Vv Ezatg = (0, %, %),
respectively, whose disjunctionis E1V E>V E3 = T. So, to preserve disjunction, p Y g
must lie within the white triangle, where T is accepted. If we let  approach % from
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Fig. 18 Pollockian acceptance rules

above, as in Fig. 18b, the white triangle converges to the center point ¢ = (%, %, %),
so p Y g = c¢. Now consider the case in which r < % (Fig. 18c). By preservation of
disjunction, we have:

T =7.(c)
=7:(p Y q)
= n-(p) V 7r(q)
=(E1VE)VE
= E|V Ej.

Hence T = E; V E», a contradiction. O

A dilemma for Pollockian theorists is that, on the one hand, symmetry precludes
accepting anything other than T at the center point ¢, but that implies that there is no
logical structure on P that all Pollockian rules preserve. In contrast, all camera shutter
rules preserve probalogic.

9 The geometry of conditional logic

Asillustrated in Fig. 5, acceptance zones with the wrong shape can invalidate plausible
principles of nonmonotonic reasoning. In fact, each axiom of the logic for flat con-
ditionals corresponds to a definite, geometrical constraint on acceptance zones. The
correspondences are established in this section and are used below to demonstrate that
each probalogical rule validates a plausible set of axioms for conditional logic due to
Adams (1975).

The acceptance condition of a conditional is defined by (13) as an explication of
Ramsey test:

plFk¢e A= B < p(|A)IF4 B or p(A)=0.

The set of axioms known as Adams’ conditional logic (Adams 1975) or system P
have been widely recognized as central to conditional and nonmonotonic reasoning
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(Kraus et al. 1990). They state closure properties for a set of accepted conditionals.
Here we rewrite them as closure properties for the set of conditionals accepted at a
fixed credal state p under a fixed acceptance rule o (where the horizontal line means
material implication):

(Reflexivity) i

plFg A= A
Fo A B . . . .
(Left Equivalence) % if A is classically equivalent to C.
o
Fo A B . . .
(Right Weakening) ZH—O[TzC if B classically entails C.
o
plke A= B

(And) plFq A= C
plre A= (BAC)

plrg A= C
Or) plre B=C
Pl (AVB) = C

plke A= B
(Cautious Monotonicity) p -y, A = C
plFe (AANB)=C

Say that acceptance rule « validates an axiom for conditional logic if and only if, for
each credal states p, o together with p satisfies that axiom. Say that « validates a set
of axioms if and only if « validates each axiom in that set. Some axioms in Adams’
logic are validated trivially.

Proposition 7 Each acceptance rule validates And Left Equivalence, and Right Weak-
ening.

Proof Immediate from the modeling assumption: with respect to each credal state and
each acceptance rule, there is a strongest accepted proposition that entails all the other
accepted propositions. O

Proposition 8 Let o be an acceptance rule. Then, o validates Reflexivity if and only
if o accepts every certain proposition in the following sense: p |-y A for each credal
state p in P and each proposition A in A such that p(A) = 1.

Proof For the only if side, suppose that o validates Reflexivity. Suppose further that
p(A) = 1. Then we have that p IF, A = A (by Reflexivity), and thus that p(-|A) Iy
A (note that p(-|A) exists), and hence that p I, A (because p = p(:|A)). So « accepts
every certain proposition. For the converse, let o be an acceptance rule and p a credal
state. Either credal state p(-|A) is undefined, and thus we have that p IFy, A = A
by default. Or p(:|A) is defined, and thus p(A|A) = 1 and then p(:|A) Ik, A (by
acceptance of every certain proposition) and hence we have that p -, A = A (by
definition). O
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Axioms Cautious Monotonicity and Or impose substantial geometrical constraints
on acceptance rules. Let A be a proposition in .A. Let P|A denote the set of all p in P
such that p(A) = 1, which we will call the facet of simplex P for proposition A. The
line segment with endpoints p, ¢ in simplex P is defined by convex combination: '3

q = {ap+ (1 —a)q:a€]0,1]}.

Say that ¢q is a projection of p from facet P|—A onto facet P|A if and only if (i) there
exists a line segment L through p with endpoint g in P|A and the other endpoint in
facet P|—A and (ii) p is not in the complementary facet P|—A. Projection is equivalent
to Bayesian conditioning:

Lemma 3 Credal state q is a projection of p from facet P|—A onto facet P|A if and
only if p(-|A) is defined and g = p(-|A).

Proof This lemma is trivially true when p is in P|A or in P|—A, so suppose that p is
neither in P| A nor in P|—A and, thus, that both p(-|A) and p(-|—A) are defined. For
the if side, consider line segment L = p(-|A) p(-|—A), whose endpoints are in P|A
and p(-|—A), respectively. Note that p lies on L, since for each B in A,

p(B) = p(B|A)p(A) + p(B|=A)p(=A) = ap(B|A)+ (1 —a) p(B|—A),

where a = p(A). Therefore, p(-|A) is a projection of p from PP|—A onto P|A. For the
only if side, suppose that g is a projection of p from facet P|—A onto facet P|A. So g
is in P| A and there exists credal state r in P|—A such that line segment g 7 contains
p- Then, p lies in the interior of g 7, since p is neither in P|A nor in P|—A. So there
exists a in the open interval (0, 1) such that p = ag + (1 — a)r. Then it suffices to
show that ¢ = p(-|A). Consider the case in which E; £ A. Then E; < —A. Since ¢
is in facet P|A, we have that g(E;) = 0 = p(E;|A). Now consider the case in which
E; < A.Then since r is in facet P|—A, we have that r(E;) = 0, so p(E;) = aq(E;).
Similarly, we have that g(A) = 1 and r(A) = 0, so p(A) = a -1+ 0 = a. Hence,
q(E)) = p(Epja = p(E)/p(A) = p(E)p(AIE)/p(A) = p(EilA). So q(-)
agrees with p(-|A) for all E; in £ and, thus, for all B in A, as required. O

Proposition 9 (geometry of Cautious Monotonicity) Let o be an acceptance rule.
Then, o validates Cautious Monotonicity if and only if the following condition holds:
for each credal state p and for each proposition A, if @ accepts A at p, then o accepts
A at the projection of p on the facet P|B, for each logical consequence B of A (as
long as the projection exists). In light of Lemma 3, the condition may be restated as:

plra A, A< B, and p(-|B)isdefined — p(-|B) -4 A. (23)
Proof The proof of the only if side involves unpacking the definitions and checking

that the projection condition (23) is simply an instance of Cautious Monotonicity. For
the if side, assume that the projection condition (23) holds. Suppose that p -, A = B

15" Addition is defined as vector addition; multiplication is defined as scalar multiplication.
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and p Iy A = C. It suffices to show that p I, (A A B) = C.If p(:-|A A B) is
undefined, then by default p I, (A A B) = C. So suppose that p(-|A A B) is defined
and, thus, p(-|A) is defined. Then argue as follows:

plre A= B, plFg A= C

=gl B, gk C letting g = p(:|A),

= qlkq BAC, (BAC)<B

= q(|B)IFy BAC by condition (23) and the existence of g (-|B)
which equals p(-|A A B),

— p(.|AAB)IF, BAC since p(-|A A B) = q(-|B),

— p(|AAB)IF, C

— plke (AAB) = C. O

Proposition 10 (geometry of Or) Let « be an acceptance rule that validates Reflex-
wity. Then, o validates Or if and only if the following condition holds: for each line
segment L connecting two complementary facets P|B and 'P|—B, and for each prop-
osition A in A, if a accepts A at both endpoints of L, then a accepts A at each point
on L; in light of Lemma 3, the condition may be restated as:

pCIB) Ik, A, p(-|=B) Ik, A = plH, A. (24)
Proof For the only if side, argue as follows:

pCIB) kg A, p(:|=B) ko B
— plke B= A, plby - B = A
— plk¢ (BV—B) = A by axiom Or,
— p(-|BV—=B) -4 A
= p Iy A.

For the converse, suppose that p I, A = C and p I, B = C. It suffices to show
that p IF, (A Vv B) = C. If both p(-|A) and p(-|B) are undefined, then p(-|A Vv B)
is undefined and thus we have that p I, (A VvV B) = C by default. If one is defined
and the other is undefined—say, p(-|A) is defined and p(:|B) is undefined—then
p(B) = 0and thus p(-|A Vv B) = p(:|A) is defined, so:

plke A= C

— p(1A) Iy C

— p(lAVB) Ik C by p(1AV B) = p(-|A),
= plrg (AVB)=C

Last, suppose that both p(-|A) and p(-|B) are defined. So p(-|A Vv B) is defined. Then
argue for Or as follows:

plre A= C, plFy B=C
— p(lA) ke C, pCIB) Iy €
— q(1A) ke C, gCIB) Iy € letting g = p(|A Vv B),
50 ¢(-|A) = p(|A) and ¢(-|B) = p(| B).
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— qlFq CV—A, gl CV =B (%) see the explanation below,

== qlFq CV—(AV B) by classical entailment,

= qlkq CV—=(AV B), since g(A Vv B) = 1 and Proposition 8 applies,
qlFq AV B

— gl C by classical entailment,

= p(JAV B) Ik C
— plro (AV B) = C.

It only remains to establish step (). By the symmetric roles of A and B, it suffices
to show that g (:|A) |-, C implies that g I, C v =A. If ¢(-|—A) is undefined, then
qg(A) = 1—-—¢g(—wA) = 1—-0=1and thus g = ¢g(:|A) IF, C < C VvV —A, so
q lFo C Vv —=A.If g(-|—A) is defined, then we have both that ¢g(-|A) I, C (by sup-
position) and that g(-|—A) I, —A (by Reflexivity and Proposition 8). So we have
both that g(-|A) I, C v —A and that g (-|—A) I, C v —A (by classical entailment).
Hence g I, C v —A, by the convexity condition (24). O

10 The geometry of system P

In this section we examine the geometric constraints imposed by the entire system P.
It is an easy corollary of the geometrical characterizations in the preceding section
that:

Theorem 2 (Lin 2011) Each probalogical rule validates system P.

Proof sketch When |E| = 3, one can verify by a picture that probalogical rules satisty
the geometric conditions given in Propositions 7—10. The routine verification can be
easily generalized to a proof for all countable dimensional cases. O

We now proceed to establish a partial converse to Theorem 2. Recall that acceptance
zones for answers have the following form under probalogical rules:'®

plky Ei <= E; =v(p)
= Ei = \[=Ej:0(p); <1 —rj}
= Vj#i, o(p)<l—r;

e Vit — i1y
maxy pi

— Vj #i, ﬂ<,~1—r,~.
Pi

Namely, answer E; is accepted if and only if each rival has a sufficiently low odds
to E;. To allow for more generalized rules entertained below (Sect. 15), we relax the
conditions that the rejection threshold 1 —r; is in the unit interval and that itis constant
for all i. Accordingly, say that the acceptance zone of answer E; under « is a blunt

16 The last step follows because the condition p;/ maxg pg <1j 1 — r; implies that p; / maxy py < 1, for
each j # i. Therefore, maxy pr = p;.
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(a) (b)

Fig. 19 Acceptance zone of E)

diamond (Fig. 19a) if and only if it takes the following form: there exist thresholds
{t;j : j € I'\ {i}} ininterval [0, oo] and inequalities {<};; : j € I \ {i}} that are either
< or <, such that for each p € P:

1. plho Ei < Vj#£i,
2. if jj == then lij < o0
3. if j =< then tjj > 0.

Pj o fee
E <l./ tl./,

Say that acceptance rule « is corner-monotone if and only if (i) «(e;) = E; for each
i € I, and (ii) for each p € P such that «(p) = E;, we have that «(g) = E; for all g
in line segment p ¢;. Corner-monotonicity is a very natural constraint on acceptance
rules and it is satisfied by all the rules we have discussed. Our partial converse to
Theorem 2 is as follows.

Theorem 3 (blunt diamond, Lin 2011) Let o be an acceptance rule. If o is every-
where consistent, satisfies corner-monotonicity, and validates system P, then for each
answer E; to question &, the acceptance zone of E; under « is a blunt diamond.

Proof sketch Here we present a geometric argument for case || = 3, which can be
easily generalized to each countable dimension. Solve for the acceptance zone of E»
under «, as depicted in Fig. 19b. By corner-monotonicity, the credal states ez e; where
a accepts E; form a continuous, unbroken line segment with e; as an endpoint, which
is depicted as the heavy, grey line segment lying on e ej. The same is true for side
@ e3.!7 Connect the endpoints of the grey line segments to the opposite corners by
straight lines, which enclose the grey blunt diamond at the corner e;.

Argue as follows that p I, E», for each point p in the blunt diamond. Consider
the projection p’ of p to the facet P|(E; v E3). Note that p’ is in the heavy, grey line
segment alone side e; e3. On line segment e; p’, acceptance rule o accepts £ at one
endpoint (e1) and accepts E» at the other endpoint (p’), so o accepts E; v E; at both

17 There is an issue whether the line segments are open or closed at the endpoints distinct from e, which
would give rise to a possible mixture of strict and weak inequalities, as stated in the theorem. That detail is
handled in the formal proof in Lin (2011), but is ignored here.
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endpoints. Then, by Proposition 10, we have that p I, E; Vv E>. By applying the
same argument to the projection of p to the facet for proposition E1 vV E3, we have
that p IFq E3 Vv E>. Then p I-, E», since E» is entailed by £ V E; plus E; V E3.
Argue as follows that g I, E», for each point ¢ outside of the blunt diamond.
Since ¢ lies outside of the blunt diamond, there exists at least one answer E; other
than E5 such that the projection ¢’ of ¢ to the facet P|(E; Vv E;) does not touch the grey
line segment along side e; e;. Suppose for reductio that ¢ I, E5. Then, by applying
Proposition 9 to the projection ¢ of ¢, we have that ¢ I, E;. But ¢’ W, E», for ¢’
lies outside of the grey line segment—contradiction. O

11 AGM geometry is trivial

A popular, stronger system for the logic of flat conditionals, R, is obtained from P by
adding the following axiom (Lehmann and Magidor 1992):

p ¥y A= —B
(Rational Monotonicity) p -y A = C
plko (AANB) = C

Recall the probabilistic Ramsey test assumed in the preceding sections of this paper:
plFe A= B < a(p(:|]A)) < B or p(A)=0.

Given this test, validation of system R trivializes uncertain acceptance in the sense
defined as follows. Say that acceptance rule « is skeptical if and only if there is some
answer to & that is accepted by « over no open subset of P.'8 Say that « is opinionated
if and only if for each disjunction D of at least two distinct answers to question &,
there is no open subset of 7P over which « accepts D as strongest. Finally, B is trivial
if and only if « is either skeptical or opinionated.

Theorem 4 (skepticism or opinionation) Let question £ has cardinality > 3. Sup-
pose that acceptance rule « is everywhere consistent, corner-monotone, and validates
system R. Then « is trivial.

Since the probabilistic Ramsey test is based on probabilistic conditioning, accep-
tance rules must respect the geometry of conditioning in order to validate axioms of
nonmonotonic reasoning. What Theorem 4 says is that these geometrical constraints
become hopelessly severe when one adds rational monotonicity to system P. Of course,
the situation is quite different if one drops probabilistic conditioning from the Ram-
sey test.'” A conditional acceptance rule is a mapping 8 : P x A — A, where
B(plA) = B is interpreted as saying that B is the strongest proposition accepted in

18 This definition of skepticism is a bit stricter than the one introduced earlier, since non-skeptical methods
must accept each answer over some neighborhood of credal states in which it is uncertain, rather than at a
single such credal state.

19 The approach that follows is due to Hannes Leitgeb, who presented his unpublished results at the Open-
ing Celebration of the Center for Formal Epistemology at Carnegie Mellon University in the Summer of
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Baygsign
p conditioning > P(. |A)
o o
*p
S propositional S’
belief revision \\\B

Fig. 20 Two paths

p in light of new information A. Then one can state a new, non-probabilistic Ramsey
test directly in terms of conditional acceptance:

plkg A= B < B(p|lA) < B. (25)

Such a conditional acceptance rule is an abstract concept that can be filled out in var-
ious different ways. For example, say that conditional acceptance rule 8 is Bayesian
if and only if there exists a (non-conditional) acceptance rule « such that:

a(p(-|A)) if p(A) > 0;

BplA) = [J_ otherwise. (26)

When g is Bayesian, the new information A is used to condition the credal state p
to obtain p(:]A) and then some new propositional belief state S’ is accepted in light
of p(-|A) (the upper path in Fig. 20). If B is Bayesian, then the non-probabilistic
Ramsey test for 8 is equivalent to the probabilistic Ramsey test for «, so Theorem 4
still applies to 8. But B need not be Bayesian. For example, § may sidestep Bayesian
conditioning entirely by using « to accept a propositional belief state S = a(p) in p
and by subsequently applying a propositional belief revision operator *, (that may
depend on p) to convert «(p) into a new propositional belief state S’ = a(p) *, A
(the lower path in Fig. 20):

B(plA) = a(p) *p A. 27

In that case, the validation of system R depends entirely on the propositional revision
operator *,—probabilistic conditioning and « are both irrelevant, so the geometri-
cal proof of Theorem 4 is also sidestepped. To validate Rational Monotonicity, it is
sufficient to require that each %, be an AGM belief revision operator (Harper 1975;

Footnote 19 continued
2010. The discussion in this section is based on detailed slides he presented at that meeting and on personal
communication with him at that time.
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Alchourron et al. 1985), thanks to the translation between nonomonotonic logic and
belief revision due to Makinson and Girdenfors (1991).20

The escape route just described does not really vindicate or explain Rational Mono-
tonicity from a Bayesian perspective, since Bayesian conditioning is bypassed and
Rational Monotonicity is simply imposed on the propositional belief revision opera-
tor * . On the other hand, it is an immediate corollary of Theorem 2 that the Bayesian
rules of form:

B(plA) =v(p(-|A)) (28)

all validate system P with respect to the non-probabilistic Ramsey test. We propose,
therefore, that system P reflects Bayesian ideals better than system R.

The proof of Theorem 4 proceeds by establishing a slightly stronger result. The
following two properties of an acceptance rule are derivable from validation of system
R: Say that « satisfies preservation if and only if, for each credal state p and each prop-
osition E, if (new information) E is consistent with (the prior belief state) «(p), then
(the posterior belief state) o(p(-|E)) entails a(p) A E. Say that « satisfies inclusion
if and only if, for each credal state p and each proposition E, a(p(-|E)) is entailed by
a(p) A E 2! So, to prove Theorem 4, it suffices to prove the following theorem:

Theorem 5 Let question £ has cardinality > 3. Suppose that acceptance rule o is
everywhere consistent, corner-monotone, and satisfies preservation and inclusion.
Then «a is trivial.

The proof of Theorem 5 proceeds by a sequence of lemmas and occupies the bal-
ance of this section. Suppose that rule « is everywhere consistent, corner-monotone,
and satisfies preservation and inclusion. Suppose further that « is not skeptical. It
suffices to show that « is opinionated. Let E;, E; be distinct answers to £. Choose an
arbitrary, third answer E,, to € (since £ is assumed to have at least three answers). Let
A ejejey denote the two dimensional facet P|(E; V Ej V Ej,) (Fig. 21a). Let e; e,
denote the one-dimensional facet P|(E; V E,,), and similarly for e; e; and e; e,. Let
L;, be the set of the credal states on line segment ¢; e, at which E; is accepted by «
as strongest; namely:

Lim ={p €eiey :a(p) = E;}.

Lemma 4 L;,, is a connected line segment of nonzero length that contains e; but does
not contain ey,.

20 1t is not necessary, though, because to validate system R one does not have to require that ), satisfies
the consistency axiom in AGM—but all the other axioms have to be satisfied. We thank David Etlin for
pointing this out.

21 Inclusion is derivable from system P alone. Preservation is derivable from a special case Rational
Monotonicity alone in which A is replaced by the tautology T. They are so named because of their corre-
spondence to the AGM axioms K*3 and K*4.
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Fig. 21 Why system R is trivial

Proof By non-skepticism, there exists open subset O of P over which « accepts E; as
strongest. Let O’ be the image {o| E;VE, - 0 € O}of O under conditioning on E; VV Ey,.
Since O is open, O’ is an open subset of ¢; e,,. Note that the conditioning proposition
E; v E,, is consistent with the prior belief state E;, so preservation applies. Since o
satisfies preservation, o accepts old belief E; over O’. It follows that « accepts E; as
strongest over O’, because « is consistent and the only proposition strictly stronger
than E; in the algebra is the inconsistent proposition 1. So open set O is included
in L;,,, and thus L;;, has nonzero length. Then, since « is corner-monotone, L;,,, is a
connected line segment that contains e; . It remains to show that L;,, does not contain
em- Suppose for reductio that L;,, contains e,,. Then L;, must be so large that it is
identical to e; e,;, by corner-monotonicity. By the same argument for showing that
there is an open subset O’ of ¢; e,, over which o accepts E;, we have that there is an
open subset O” of ¢; e, over which « accepts E,,. So « accepts both E,, and E; over
0", and hence by closure under conjunction, « accepts their conjunction, which is an
inconsistent proposition. So « is not consistent—contradiction. O

Let a be the endpoint of L, that is closest to e;,; namely, probability measure a is
such that:

a € ej ey,

a(Ep) =sup{p(Ep) : p € Lim}.

By the lemma we just proved, point a lies in the interior of side e; e,,. Applying the
above argument for pair (i, m) to pair (j, m), we have that the set L j,,, defined by

Lim={pceje,:a(p)=Ej},

is a connected line segment of nonzero length that contains e; but does not contain
em, with endpoint b that lies in the interior of side e; e,,. Since both points a, b lie in
the interiors of their respective sides, we have the following constructions. Let A be
the line that connects a to ¢, B be the line that connects b to e;, and C be the line that
connects e;, through the intersection d of A and B, to point ¢ on side ¢; e;.
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Lemma 5 o accepts E; as strongest over the interior of A ade;.

Proof Consider an arbitrary point p in the interior of A ade; (Fig. 21b). Argue as
follows that o accepts E; V E; at p. Take p as a prior state and consider —E; as
the conditioning information. Note that credal state p(-|—E) falls inside L, so
accepts E; as strongest at the posterior credal state p(-|—E;). Then, since « satisfies
inclusion, we have that:

a(p) N—Ej = E;

(namely the posterior belief state E; is entailed by the conjunction of the prior belief
state and the conditioning information). Then, by the consistency of « and the mutual
exclusion among the answers, we have only three possibilities for o (p):

a(p)iseither E;, or E;, or E;VEj.

Rule out the last two alternatives as follows. Suppose for reductio that the prior belief
state a(p) is Ej or E; vV E;. Consider —E; as the conditioning information, which
is consistent with the prior belief state and thus makes preservation applicable. Then,
since « satisfies preservation, the posterior belief state o (p(-|—~E;)) must entail o (p) A
—E; (i.e. the conjunction of the prior belief state and the information). But the latter
proposition a(p) A —E; equals E, by the reductio hypothesis. So a(p(-|—=E;)) = E},
by the consistency of «. Hence p(-|—E;) lies on line segment L j,,, by the construction
of L j,—but that is impossible (Fig. 21b). Ruling out the last two alternatives for
a(p), we conclude that a(p) = E;. ]

Lemma 6 o accepts E; as strongest over the interior of e; .

Proof Let p be an arbitrary interior point of Aade;. So a(p) = E;. Consider proposi-
tion E; V E; as the conditioning information. Then, since « satisfies preservation, the
posterior belief state a(p(-|E; V E;)) entails a(p) A (E; Vv Ej) (i.e. the conjunction
of the prior belief state and the information), which equals E;. Then, by consistency,
the posterior belief state is determined:

a(p(-|E; vV Ej)) = E.

Let ¢ be an arbitrary point in the interior of ¢; ¢. Then ¢ can be expressed as ¢ =
p(-|E; V E ) for some point p in the interior of Aade; (Fig. 21c). So, by the formula
we just proved, a(g) = a(p(-|E; V E;)) = E;, as required. O

Lemma 7 There is no open subset of e; e over which o accepts E; V Ej as strongest.

Proof We have established in the last lemma that « accepts E; as strongest over the
interior of ¢; ¢. By the same argument, « accepts E as strongest over the interior of
e ¢ (Fig. 21¢). So if o accepts disjunction E; V E as strongest somewhere on ¢; e;,
a does so at some of the three points: ¢;, ¢;, and c. (We can rule out the first two
alternatives; but the for the sake of the lemma, this result suffices.) O
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Since the choice of E; and E; is arbitrary, the last lemma generalizes to the fol-
lowing:

Lemma 8 For each pair of distinct answers E;, E; to &, there is no open subset of
e; ej over which a accepts E; V E as strongest.

The last lemma establishes opinionation for all edges of the simplex. The next step
is to extend opinionation to the whole simplex.

Lemma 9 « is opinionated.

Proof Suppose for reductio that some disjunction E; Vv E; v X of at least two distinct
answers is accepted by « as strongest over some open subset O of P. Take E; V E; V X
as the prior belief state at each point in O and consider E; Vv E; as the conditioning
information. So the image O’ of O under conditioning on E; V E; is an open sub-
set of 1-dimensional space ¢; e;. Let p’ be an arbitrary point in O’. Since « satisfies
inclusion, posterior belief state «(p’) is entailed by (E; vV E; v X) A (E; V Ej) (i.e.
the conjunction of the prior state and the new information), which equals E; v E;.
But a(p’) also entails E; vV E j» for otherwise the process of conditioning p on —E j
to obtain e; would violate the fact that « satisfies inclusion and accepts E; at e;. So
a(p’) = E; vV Ej. Hence o accepts E; Vv E | as strongest over open subset O’ of ¢; ¢,
which contradicts the last lemma. O

Proof of Theorem 5 Since the last lemma states that « is opinionated, we are done. O

Proof of Theorem 4 ITmmediate from Theorem 5. O

12 A new probabilistic semantics for flat conditionals

Axiom system P is characteristic of Adams’ logic of flat conditionals, so it is not
surprising that the probalogical rules yield a new probabilistic semantics for which
Adams’ logic is sound. In fact, Adams’ logic is both sound and complete for the new
semantics.

Let £ be a set of sentences that contains atomic propositional letters and is closed
under conjunction, disjunction, and negation. Let = be a sentential connective stand-
ing for “if ... then ...”. The language for the logic of flat conditionals, written L_,
is the set of all sentences ¢ = ¢ with ¢, ¥ € L. Adams (1975) logic of flat condi-
tionals for language £, is just the system P that we have stated, except that now it is
construed as a system of rules of inference (with the symbol “p I, deleted). Say that
y is derivable from I" in Adams’ logic of flat conditionals, written I' Fagams ¥, if and
only if y is derivable from I" in a finite number of steps using the rules of inference
in system P.

A probabilistic model of acceptance for language L, is a triple:

M = (a, p, [-D,

where o : P — A is an acceptance rule, p is a probability measure in the domain
P of «, and [-] is a classical interpretation of £ to the codomain A4 of «. When
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M = («, p, [-1), say that « is the underlying acceptance rule of M. Let ¢ = i be a flat
conditional in £L_,. Acceptance of flat conditional ¢ = ¢ in model M = («, p, [-1),
written M |- ¢ = 1, is defined by the probabilistic Ramsey test:

MIF¢p=y < pl 6] = [¥],
< p(llloD) ke [¥ 1 or p(lel) =0.

Let I" be a set of flat conditionals in £—,. Acceptance of I" in model M is defined by:
M |- T if and only if M I y for all y € I'. Validity is defined straightforwardly, as
preservation of acceptance. Let C be a class of acceptance rules. Say that C validates
the inference from I' to y, written I" I, y, if and only if for each probabilistic model
M whose underlying acceptance rule is in C, if M I+ I", then M I y.

The proposed probabilistic semantics has the following attractive properties: (i) it is
based on the probabilistic Ramsey test for accepting conditionals; (ii) it defines valid-
ity simply as preservation of acceptance, which improves upon Adams’ (1975) €—§
semantics; and (iii) it allows for accepting propositions of probabilities significantly
less than 1, which improves upon Pearl’s (1989) infinitesimal semantics. To establish
the soundness and completeness result for Adams’ logic of flat conditionals, it suf-
fices to assume that the underlying acceptance rule is probalogical, or equivalently, a
camera shutter rule:

Theorem 6 (soundness and completeness, Lin 2011) Let N be the class of the camera
shutter rules. Then, for each finite sentence set I" and each sentence y in the language
L, of flat conditionals, I =adams ¥ if and only if I' I, y.

13 Question-invariance

To this point, we have considered acceptance only within a fixed question £. But one
can and should consider the behavior of acceptance rules across questions. Let €2
denote some infinite collection of possibilities. A question € = {E; : i € I} is a
countable partition of €2 such that each answer/cell E; is infinite—the requirement of
infinite answers rules out the artificial possibility of a maximally informative ques-
tion whose answers cannot be strengthened. Let Ag denote the least collection of
propositions containing £ and closed under negation and countable disjunction and
conjunction. Let [E denote the set of all such questions over €2, and let P denote the
set of all countably additive probability measures p such that p is defined on A¢ for
some question £ in [E. If p is in P, let A}, denote the domain of p and let £, denote
the (unique) question that generates A,. A (cross-question) acceptance rule is a map
B defined on P such that g always maps p to a proposition in A,. Then the rules
discussed earlier in this paper can be defined explicitly across questions as follows,
where I, is the index set of the question over which p is defined:
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a(p)= \{—Ei:pi<1—randiel,};

A(p) = Agpy(p), wheres(p) =1— —;
2|1p|

vr(p) = /\{—|E co(p)i<il—riandi € Ip};

T if 4, (p) = L;
7 (p) = [A,(p) otherwise.
Rule A, is the Lockean rule with a fixed threshold across all questions in E. Rule
v, is the probalogical rule. Rule A is the ad hoc Lockean rule whose threshold is
adjusted to avoid lottery paradoxes in finite questions. Rule r, is the Pollockian rule
that substitutes T for L whenever the latter is produced by A,-.
Say that cross-question acceptance rule g is question-invariant if and only if:

P(A)=q(A) = (plFg A = qlrg A),

for each p, g in IP and for each A that is in both 4, and 4,. Question-invariance is
appealing. First, question-invariance makes it easier to compute whether to accept A
in light of p(A), since all of the detailed structure of p aside from p(A) can be ignored.
Second, question-invariance allows for the accumulation of accepted propositions as
one’s question is refined by new concepts and theories. Third, question-invariance
allows individual scientists pursuing distinct questions to pool their accepted con-
clusions. Probalogical rules, however, are not even remotely question-invariant. For
example, in a four ticket lottery, the probalogical rule v5/3 licenses acceptance of
“ticket 1 will lose” when the question is “will ticket 1 lose or not?”, but not when the
question is “which ticket will win?”. That makes one wonder whether the question-
dependence of probalogical rules is a design defect that could have been avoided. We
now proceed to demonstrate that no question-invariant rule has the three crucial virtues
of the probalogical rules: consistency, logical closure, and non-skeptical acceptance
of uncertain propositions.

Here is the first sign of trouble. Say that acceptance rule g is non-skeptical about
answer E in question £ if and only if 8 accepts E at some probability measure p
defined on Ag such that p(E) < 1. Say that acceptance rule g is gullible about E in
€ if and only if B accepts E at some p defined on Ag such that p(E) = 0. Then:

Proposition 11 Suppose that B is question-invariant. If B is non-skeptical about
answer E in ternary question &, then f is gullible about E in &.

Proof Consider the equilateral triangle A g u v depicted in Fig. 22a. Note that p lies
on a line parallel to e; e3 extending the base u v of the triangle A g u v and ¢ is at the
apex. Suppose that p I-g Ey. Thenu, v I-g Ej, by question-invariance. Sou I-g —=E>
and v IFg —E3. Then by question-invariance again, g IFg —E> and g IFg —=E3. So
q IFg —=E» A—E3 = Ej. Therefore, if B accepts Ej at p, then 8 also accepts E; at g.
Now we can chain such triangles all the way to the bottom of P3 to obtain s such that
s I Ej and s(E1) = 0. Note that if p(E) < 1, there is room in P3 for such a chain.

O
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Fig. 22 Triangles preserve acceptance

It gets worse. Say that 8 is dogmatic about answer E in question & if and only if 8
accepts E at each probability measure defined on Ag.

Proposition 12 Suppose that B is question-invariant. If B is non-skeptical about
answer E in ternary question &, then B is dogmatic about E in &.

Proof Consider the situation depicted in Fig. 22b, in which question-invariant rule
accepts Ep at s, with s(E;) = 0, and let ¢ be an arbitrary credal state in P3. Then
there exists an equilateral triangle with s on its base and with ¢ at its apex, so § also
accepts E at the arbitrarily chosen state g. O

Here is the coup de grdce. Say that 8 is everywhere inconsistent if and only if (p) =
L, for all p in P. Nothing could be more useless than an acceptance rule that accepts
the contradiction in every possible credal state and every possible question.

Theorem 7 Suppose that B is question-invariant. If B is non-skeptical about at least
two distinct answers in some ternary question, then B is everywhere inconsistent.

Proof Suppose that B is non-skeptical about at least two distinct answers E;, E;
in ternary question £. Then, by Proposition 12, B accepts E; A E; and, thus, L at
every state in question £. But L has the same probability, namely 0, at every state
in every question. So, by question-invariance, L is accepted at every state in every
question. O

It follows from the preceding propositions that none of the rules listed above is
question-invariant. That fact is obvious for probalogical rules and the ad hoc rules, all
of which base acceptance explicitly on the underlying question. However, even the
logically closed Lockean rule with fixed threshold is question-dependent whenever
the threshold is strictly between 0 and 1—for then the rule is neither skeptical nor
everywhere inconsistent (at threshold O it is everywhere inconsistent and at threshold
1 it is skeptical). If closure under conjunction is dropped, the Lockean rule with a
fixed threshold is question-invariant and is non-skeptical, but is also consistent, so it
escapes Theorem 7 (recall that set-valued rules are not covered by that proposition).
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We are inclined to view Theorem 7 as a reductio argument against question-invari-
ance. That conclusion fits naturally with a minimalist, pragmatic interpretation of
accepted proposition A as a more or less apt proxy for one’s underlying credal state p,
rather than as new “information” that alters p (e.g., by conditioning p on A). Question-
invariance would be nice, but it is not rationally mandated under the minimalist concep-
tion of acceptance, and its price in terms of logical virtues within questions is too high.

14 Refinement-monotonicity

Invariance across all questions is a strong requirement. In this section, we consider the
consequences of requiring invariance only over questions that refine or coarsen the
given question. Say that & refines F (or that F coarsens £) if and only if each answer
to £ entails some answer to F. When & refines F, write £ < F. By extension, say
that p refines g (written p < g) when ¢ is the restriction of p to A, which implies
that £, < &,. Say that cross-question acceptance rule 8 is refinement-invariant if and
only if:

pﬁq:}(p”_ﬁA — q”—ﬁA),

for each p, ¢ in P and for each proposition A in 4,. However:

Proposition 13 Refinement-invariance is equivalent to question-invariance.

Proof Suppose that refinement-invariance holds and that p(A) = g(A). Let r =
(p(A), 1 — p(A)) over question {A, —=A}. Then p < r > g. By refinement-invari-
ance, if follows that p IFg A <= ¢ IFg A. The converse is immediate.

Refinement-invariance demands that acceptance be preserved under both refine-
ment and coarsening. Since questions tend to become more precise as inquiry proceeds,
perhaps it suffices merely to preserve acceptance under refinement. Accordingly, say
that B is refinement-monotone if and only if:

p=q = B(p) < Bq),

for all p, ¢ in P. Refinement-monotonicity suffices for the accumulation of accepted
conclusions as the question is refined and for the pooling of propositions accepted
across diverse questions. With respect to the latter, let p, g, r be in IP. Say that r is a
conjunction of p, q if and only if r is a maximally coarse common refinement of p,
q. Then say that 8 preserves conjunction if and only if S(r) < B(p) A B(g), for each
p and g in P and for each conjunction r of p and g. Then it is easy to show that:

Proposition 14 Conjunction-preservation is equivalent to refinement-monotonicity.

Alas, probalogical rules also violate refinement-monotonicity—as witnessed by the
simple lottery example in the preceding section of this paper. Again, the failure is not
a defect but an ineluctable consequence of the logical virtues of probalogical rules.
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Fig. 23 Acceptance snakes up the triangle

Theorem 8 Suppose that B is refinement-monotone, validates system P in each ques-
tion, and is non-skeptical about both answers in some binary question. Then there
exists a facet of at least two dimensions over which B accepts L everywhere.

The alternative rules listed above also violate refinement-monotonicity, even though
they all fail to validate system P. Choosing a probalogical rule at least yields the net
advantage of validating P.

The proof of Theorem 8 proceeds by a sequence of lemmas that rely heavily on the
geometrical characterizations of the axioms of P established in Sect. 9. Consider the
binary question { Eg, Fo}, whose space of credal states is depicted in Fig. 23a as the line
next to the triangle. Assume that § is non-skeptical about answers Eq and Fy, so that 8
accepts Eg at po and Fj at g. Since Ey is infinite, split Eq into infinite answers F; and
E to produce the refined, ternary question {Fy, F, E1} (Fig. 23b). Suppose that g is
refinement-monotone. Then proposition Fj is accepted throughout the line segment
L depicted in Fig. 23b, which is defined to be the set of all credal states that refine
q. Similarly, proposition Eg = E| Vv Fj is accepted throughout the line segment M,
which is the set of all credal states that refine pg. Let line segment N connect the right
endpoint of L in Fig. 23b to the opposite corner e, intersecting M at credal state u;
then project u to the (one-dimensional) facet for proposition E; Vv Fj to obtain credal
state p. The following lemma concerns pi.

Lemma 10 Suppose that B is refinement-monotone and validates system P. Then
p1 kg Ey.

Proof Proposition E| is accepted by 8 at ey, by the geometry of Reflexivity (Propo-
sition 8); and Fy is accepted at each point on L, by construction. So the disjunction
E1 Vv Fy is accepted by g at both endpoints of N. Then, since u lies on N, we have
that u IFg Ej V Fy, by the geometry of Or (Proposition 10). We have noted that
ulkg Ey Vv Fi.Sou l-g Ey, because E1 = (E|V Fp) A (E1V Fy). Then, since p;
is the projection of u onto the facet for a logical consequence of E, the geometry of
Cautious Monotonicity (Proposition 9) yields that py I-g E{, as required. O

The result is that E is accepted by 8 with a lower probability than Ey. Split E; into
two infinite, exclusive propositions E3 and F; and, thus, obtain the finer, quaternary
question {Fy, F1, F>, E»}. Restrict attention to the two-dimensional, triangular facet
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for proposition Fy vV F, v E,, as depicted in Fig. 23c. Construct credal state p» as
we did for pi, and argue similarly that E5 is accepted at p,, with an even lower prob-
ability. This construction can be repeated until we obtain a refined, finite question
{Fo, F1, ..., Fy, E,}suchthat E, is accepted at p,, with low probability (Fig. 23d)—
so low that p,, is far away from corner ¢, and lies on or above the line L. Therefore:

Lemma 11 Continuing from the preceding lemma, p, \Fg E,.
Then inconsistency arises:

Lemma 12 Continuing from the preceding lemma, let line segment p,, f, intersect L
atv. Thenv I-g L.

Proof Proposition E,, is accepted by S at p,, by construction; and Fj is accepted
at f,, by the geometry of Reflexivity (Proposition 8). So the disjunction E, Vv F is
accepted by S at both endpoints of line segment p, f,,. Then, by the geometry of Or
(Proposition 10), v IFg E, v F,. But v I-g Fp, because v lines on L and thus refines
q.Since L = Fy A (E,V Fy), we have that v I-g L, as required. O

Here is the coup de grdce, of which Theorem 8 is an immediate corollary.

Lemma 13 Continuing from the preceding lemma, let P, be the set of probabil-
ity measures defined on Agﬁz, where &£, is the question {Fy, ..., F,, E,}. Then
accepts L at each credal state p in facet Pyi2|(FoV F,V Ey).

Proof Let A denote the two-dimensional facet P, 12 |(FoV Fy, Vv E,). Suppose that v
lies in the interior, but not the sides, of A. Since L is accepted at v, we have that L
is accepted at the three corners fy, f,, en of A, by projecting v to the three corners
and by the geometry of Cautious Monotonicity (Proposition 9). Then, since each side
of A has endpoints that are corners, we have that L is accepted on the three sides of
A, by the geometry of Or (Proposition 10). Then, since each point on A is on a line
segment with endpoints on the sides of A, we have that _L is accepted at each credal
state on A, as required. When v is not in the interior of A, v lies on side e, fo of A
and, thus, cannot be projected to the opposite corner f,. But in that case we can apply
the geometry of Or (Proposition 10) to line segment v f, to show that F,, is accepted
at every credal state on v f,,. Similarly, Fy vV E, is accepted at every credal state on
w e,, where w is defined to be the intersection of line L and fo f,. So L is accepted
at the intersection of v f;,, and w e,, which is in the interior of A—the second case is
thus reduced to the first case. O

15 Probalogic generalized

We close with a natural generalization of the probalogical framework. The uniform
probability measure over £ is the center of the simplex P and serves as the probalog-
ically weakest credal state in P in the presentation to this point. But, as Levi (1967,
1969) has emphasized, the answers to question & typically have different contents
(e.g., “quantum mechanics is true” has a great deal of content but “quantum mechan-
ics is false” has very little). Therefore, a credal state that assigns less probability to an
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Fig. 24 Deformation of geologic and corresponding deformation of probalogic

answer that has more content could sensibly be understood as weaker than a uniform
state that accords the same probability to all answers. In that case, probalogic should
be relative not only to question &, but to an assignment of contents to the answers to
&. The result is a family of probalogics sensitive both to question £ and to the relative
contents of the answers to €.

We approach the issue as follows. If the answers E; differ in content, it is natural
to weight answers by weakness and to think of the neutral credal state as the center of
mass of the answers. As a result, the weakest credal state is biased toward answers of
low content. In particular, the center of P is stronger than a state closer to a very weak
answer. Recall that probalogic is just the geological cube in perspective. The sides of
the cube have equal length. To represent differences in content, deform the cube into
an oblong box whose side lengths are inversely proportional to the strengths of the
corresponding answers (Fig. 24). Just like the cube, the oblong box may be viewed as
a generalized geological semantics (recall that geological structure does not uniquely
determine the metric). Project the generalized geologic from the box to the triangular
credal state space, just as before, to induce a generalized probalogic on it. Then the
credal states stronger than p are those in the grey region of Fig. 24d. Disjunction and
conjunction are defined as before.
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Fig. 25 Generalized probalogical acceptance rule

The weakest proposition in the generalized geologic is (m1, mo, m3) (i.e. the ver-
tex of the box that is most distant from the origin), so its rectilinear projection w to
the triangle is the weakest credal state in the corresponding probalogic. Projection
preserves ratios between the rectangular coordinates, so we have: w = (% 9 %),
where M = 3, _; m;. The coordinates of w uniquely determine the generalized prob-
alogic that has w as the weakest state. Intuitively, the result is like viewing a phone
booth, rather than a cubical office, from the origin (Fig. 24d).?? Acceptance rules are
still defined as maps that preserve probalogical structure and they look like Fig. 25.
Although the generalized probalogical acceptance rules appear “oblique”, the bound-
aries of acceptance zones still follow rays from the corners—so they still validate
exactly Adams’ conditional logic. Algebraically, the generalized rules take the fol-
lowing form:

_ . PED/m; T )
a(p) = /\ I E;: —maxj DD/ Qi l—randi € I].

The acceptance rules introduced in Levi (1996, p. 286) are the same, except that we
allow different thresholds r; for different answers E; while Levi does not. As we men-
tioned at the outset, Levi sees no justification for these rules, relative to his momentous
understanding of acceptance as an explicit decision to condition one’s credal state on
the accepted proposition and, therefore, to bet one’s life on it against nothing. Our
own justification for the rules, grounded in a weaker conception of acceptance as apt
description of one’s credal state relative to a question, is again, that they preserve
naturally defined logical structures over credal states relative to a question and that
they validate exactly Adams’ logic of conditionals.
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