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Abstract Radical ontic structural realism (ROSR) claims that structure exists
independently of objects that may instantiate it. Critics of ROSR contend that this
claim is conceptually incoherent, insofar as, (i) it entails there can be relations without
relata, and (ii) there is a conceptual dependence between relations and relata. In this
essay I suggest that (ii) is motivated by a set-theoretic formulation of structure, and
that adopting a category-theoretic formulation may provide ROSR with more sup-
port. In particular, I consider how a category-theoretic formulation of structure can be
developed that denies (ii), and can be made to do work in the context of formulating
theories in physics.
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1 Introduction

The aim of this essay is to defend radical ontic structural realism against the charge
that it rests on an incoherent claim; namely, that there can be relations devoid of relata
in the physical world. I will suggest that this claim is incoherent under a notion of
physical structure informed by set theory, but not under a notion of physical struc-
ture informed by category theory. Section 3 argues for this in part by means of an
analogy from general relativity. The debate over ontic structural realism concerns the
ontological status of objects.1 In general relativity, there is a similar debate over the

1 Objects, in this sense, may or may not be considered individuals, depending on one’s notion of
individuation.
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ontological status of spacetime points. I’ll argue that, for a significant family of solu-
tions to the Einstein equations, one can speak meaningfully of spatiotemporal structure
in the absence of spacetime points, provided one adopts an appropriate mathematical
formalism. Section 4 discusses another example of structures in physics that cannot
be articulated simply in terms of invariant properties predicated on objects. Finally,
Sect. 5 identifies additional tasks that the category-theoretic radical ontic structural
realist might address in order to further strengthen her position.

2 No relations without relata?

Radical ontic structural realism (ROSR, hereafter) is based on a denial of what French
(2010, p. 178) calls “object oriented realism”, which posits an ontology of objects
and their properties and/or relations. ROSR, in contrast, claims that structure is what
is real, and that structure consists of relations devoid of relata (French and Ladyman
2003). This claim has come under much criticism. Esfeld and Lam (2008, p. 31),
for instance, acknowledge that one might posit the existence of abstract relations-as-
universals without reference to relata, but “…when it comes to the physical world,
the point at issue are concrete relations that are instantiated in the physical world and
that hence are particulars in contrast to universals. For the relations to be instantiated,
there has to be something that instantiates them….” With respect to the view that
there are only relations without relata, Stachel (2006, p. 54) states: “As applied to a
particular relation, this assertion seems incoherent. It only makes sense if it is inter-
preted as the metaphysical claim that ultimately there are only relations; that is, in any
given relation, all of its relata can in turn be interpreted as relations.” Wüthrich (2009,
p. 1041) agrees with Stachel’s assessment: “Taken at face value…[radical ontic struc-
tural realism] is clearly incoherent…”. Finally, Dorato (2008, p. 21) states “I daresay
that no ontic structural realist should be falling into the trap of accepting the view that
‘relations can exist without relata’.”

As Chakravartty (2003, p. 871) notes, criticism of this type assumes that there is a
conceptual dependence between the notions of relation and relata, and to the extent
that ROSR recommends a revision of such concepts, it cannot be faulted simply for
denying this dependence. On the other hand, as Greaves (2009, pp. 17–18) suggests,
the onus is still on ROSR to make good on just how such a dependence can be denied.
Towards this goal, I will now consider a typical set-theoretic formulation of the notion
of structure, and then compare it with a category-theoretic formulation. My claim
will be that a conceptual dependence between relation and relata is suggested by the
former, but not the latter.

2.1 Set theory versus category theory

If one adopts a set-theoretic formalism, then ROSR may indeed seem incoherent.
Suppose, for example, that by “structure” we mean “isomorphism class of structured
sets”, [{X, Ri }], where a structured set {X, Ri } consists of a domain X of individuals
together with a collection of n-ary relations Ri defined on it. The ontic structural real-
ist’s claim then is that the specification of the domain X of individuals is accidental to
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the concept of structure: what matters is the structure of the relations these arbitrary
individuals enter into. Now suppose, to take the simplest example, by “binary relation
R on X”, we mean “subset of the Cartesian product X × X”. Insofar as the latter con-
sists of all ordered pairs (x1, x2), where x1, x2 ∈ X , this definition makes ineliminable
reference to the elements of X (let the ordered pair (x1, x2) be the set {x1, {x1, x2}}).
Hence if the relata of a relation associated with a structure are identified with the ele-
ments of its domain, then the set-theoretic definition of structure as an isomorphism
class of structured sets makes ineliminable reference to relata. In general, one might
argue that any set-theoretic definition of structure does likewise, insofar as member-
ship “∈” is a primitive concept in set theory. This ineliminable reference to relata in
set-theoretic definitions of structure subsequently suggests a conceptual dependence
between structures and relations on the one hand, and relata on the other.

Now consider adopting a category-theoretic formalism to represent structure. In
category theory, the primitives are objects, and morphisms between objects.2 In par-
ticular, a category C consists of objects A, B, . . . and morphisms f : A → B, . . . . In
addition, we require that for each object A, there be an identity morphism 1A : A → A,
which satisfies the Identity Laws 1A ◦ f = f , and f ◦ 1A = f , for any morphism f
with A as domain; and we require that there be composite morphisms f ◦ g : A → C
for each pair of morphisms of the form f : A → B, g : B → C , which satisfy
the Associative Law f ◦ (g ◦ h) = ( f ◦ g) ◦ h, for h : C → D. It turns out that
set theory can be formulated as a category, Set, in which the objects are sets and the
morphisms are functions defined on sets. Moreover, for any given structured set, there
is a category in which the objects are that type of structured set and the morphisms
are functions that preserve the structure of the set (see Lawvere and Shanuel 1997 for
elementary examples). This suggests that the intuitions of the ontic structural realist
may be preserved by defining “structure” in this context to be “object in a category”.

To what extent does such a category theoretic definition of structure eliminate
reference to relata? As Bell (1988, p. 5) observes, “[i]n category theory many con-
cepts formulated in terms of elements are instead formulated in terms of arrows [viz.,
morphisms]”. In particular, the notion of an element of an object only makes sense in
those categories with certain types of objects; namely, terminal objects. An object 1
in a category C is a terminal object of C if for each object X of C, there is exactly one
C-morphism X → 1. In categories with terminal objects, an element of an object A
is then defined as a morphism 1 → A from the terminal object to A. (In the category
Set, the terminal object is the isomorphism class of singleton sets.) Thus, set-theo-
retic statements of the form “x ∈ X” (“x is an element of X”) are translated into
category-theoretic statements of the form “x : 1 → X” (“x is a morphism from the
terminal object to X”). In the latter statement, there is no explicit reference to an “inter-
nal constituent” of the object X ; rather, there are references to things external to X
(i.e., the object 1 and the morphism x).

As another example, consider the concept of Cartesian product which underlies the
set-theoretic concept of relation. In category theory, a product of an object X with

2 In category theory, the term “object” has a specific mathematical use that is distinct from its use in the
debate over ontic structural realism. Hopefully in the following the context will make it clear which use the
term “object” is being put to.
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itself is an object P together with a pair of morphisms p1 : P → X and p2 : P → X ,
such that, for any object T with morphisms f1 : T → X, f2 : T → X , there is
exactly one morphism f : T → P for which f1 = p1 ◦ f and f2 = p2 ◦ f . One can
demonstrate that in the category Set, such a product exists and is unique, and is given
by the Cartesian product with its ineliminable reference to the elements of X (i.e., the
morphisms 1 → X). In the general definition, however, there is no explicit reference
to the elements of X . In general, one might say that category theory lacks the resources
for direct reference to “internal” elements of an object. Thus in forming the definition
of a product of an object with itself, we need to construct the right external “probe”
(T, f1, f2, f ) that directly encodes what in set theory is the “internal” pair structure
of P . This suggests that the definition of structure as an object in a category does not
make ineliminable reference to relata in the set-theoretic sense.

Two issues should be made clear at this point. The first concerns the extent to which
set theory and category theory can be viewed as two distinct formalisms in which a
notion of structure can be expressed. In the category theoretic formalism, one can
represent a set by means of objects in the category Set. Similarly, in the set theoretic
formalism, one can represent a category in terms of set-theoretic constructions. The
point to be kept clear in this context is that the notion of a category can also be expressed
in purely category-theoretic terms: setting aside foundational issues for the moment,
a category can be specified without recourse to set-theoretic constructions. Thus, in
particular, one should make a clear distinction between set theory on the one hand,
and the category Set on the other. In general, one can distinguish between external and
internal descriptions of a given category.3 An external description is one framed in the
language of set theory; whereas an internal description is one framed in the language
“internal” to the category in question. Formally, internal descriptions gain traction in
categories known as toposes (see, e.g., Döring and Isham 2011, p. 769; Heunen et al.
2009, p. 73). Whereas a structured set provides the mathematical structure for a formal
semantics for classical logic, a topos provides the mathematical structure for a formal
semantics for intuitionistic logic. Thus if we restrict ourselves to categories that are
toposes, we have a formal means of distinguishing between set-theoretic discourse
in which relata play an ineliminable role, and category-theoretic discourse in which
relata are surplus.4

Given that set theory and category theory can be viewed in this way as distinct for-
malisms (or, if we restrict attention to toposes, distinct languages) in terms of which
a concept of physical structure can be expressed, a second issue concerns how these
formalisms compare with each other. In particular, one might ask, Is category theory

3 Thanks to a referee for raising these issues.
4 For the topos-theoretic contrast between internal and external descriptions, see, e.g., Mac Lane and
Moerdijk (1992, p. 235), or Bell (1988, p. 105). Awodey (2010, p. 29) suggests a similar contrast but
employs the terms “external” and “internal” in a different manner: “[Category-theoretic definitions] are
characterizations of properties of objects and arrows [i.e., morphisms] in a category solely in terms of other
objects and arrows, that is, just in the language of category theory. Such definitions may be said to be
abstract, structural, operational, relational, or perhaps external (as opposed to internal). The idea is that
objects and arrows are determined by the role they play in the category via their relations to other objects
and arrows, that is, by their position in a structure and not by what they ‘are’ or ‘are made of’ in some
absolute sense.”
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expressively equivalent to set theory in articulating an appropriate notion of physical
structure? The suggestion above is that set theory has too much mathematical structure
(“surplus” structure, if you will) in the form of relata when it comes to representing
structures in the physical world, and that category theory is to be preferred since it
removes this unnecessary surplus.

2.2 The elimination of relata in name only?

One might object to the above suggestion in the following way: Category theory elim-
inates reference to relata only in name. Instead of calling the relata associated with a
structure “elements of the structure’s domain”, as in set theory, category theory calls
them “morphisms from the terminal object”. Assumedly, or so the objection goes,
any given set theoretic structure will have a category theoretic analog, and however
many relata the former is associated with, so the latter will be associated with the same
number of morphisms from the terminal object. The argument against the radical ontic
structural realist then gets translated from the slogan no relations without relata to the
slogan no objects (of the relevant sort) without morphisms from the terminal object.

My response to this objection is to agree that set-theoretic relata do have corre-
lates in category theory, but to point out that, in many cases, these correlates are not
essential to the articulation of the relevant structure. In particular, category-theoretic
objects need not be structured sets, and the structure encoded in objects that do not
have structured set correlates does not depend in an essential way on their elements.
Now in order to guarantee that this mathematical fact has physical significance, it
behooves a category theoretic ROSRer to provide examples of “non-structured set”
objects that have roles to play in articulating relevant notions of structure in physics.
The next two sections attempt to make headway on this task.

3 An analogy from general relativity

My defense of ROSR rests on the suggestion that moving from a set-theoretic for-
malism to a category-theoretic formalism supports an ontology of structure in which
the articulating role that relata play in the former is eliminated. Similarly, in general
relativity (GR, hereafter), I will now argue, moving from the tensor formalism to the
Einstein algebra formalism supports an ontology of spatiotemporal structure in which
the articulating role that spacetime points play in the former is eliminated.

Typically, spacetime points are represented in the tensor formalism by the points
of a differentiable manifold M . Models of GR in this formalism consist of a pair
(M, gab), where gab is a metric field defined on M and satisfying the Einstein equa-
tions. From a set-theoretic point of view, such a tensor model is a structured set. It
consists of a domain of relata (manifold points) on which are predicated topological,
differentiable, and metrical properties.

General relativity can also be formulated in terms of Einstein algebras. An Einstein
algebra (alternatively, a model of GR in the Einstein algebra formalism) consists of a
pair (C, g) where C is a commutative ring satisfying three axioms, and g is a multi-
linear map defined on the space of derivations of C and its dual space, that satisfies
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the algebraic correlate of the Einstein equations.5 A 1-1 correspondence between
Einstein algebra (EA) models and tensor models exists, based on the 1-1 correspon-
dence between the points of a differentiable manifold and the maximal ideals of the
commutative ring of smooth functions defined on M .6 This correspondence allows all
the relevant tensorial objects defined on M in tensor models of GR to be translated into
appropriate algebraic objects defined in an Einstein algebra model. Thus the Einstein
algebra formalism is as expressive as the tensor formalism in the sense that any tensor
model of GR corresponds to an EA model of GR.

Now, arguably, tensor and EA models disagree at the level of “relata-based” ontol-
ogy. The relata associated with tensor models are manifold points, insofar as manifold
points are the objects of predication in tensor models (they are the relata on which
spatiotemporal properties are predicated). The relata associated with Einstein algebra
models are, under the correspondence mentioned above, maximal ideals of smooth
functions, which, at least at face-value, are mathematical entities distinct from mani-
fold points. However, the isomorphism between these models suggests they agree at
the level of structure. In general, tensor models of GR are invariant under the actions of
Di f f (M), the group of diffeomorphisms on M (but see Sect. 3.1 below). EA models
of GR share this invariance property, although in the EA formalism, it gets translated
into actions of the group of homomorphisms that leave invariant (C, g). In both cases,
the structure associated with these transformations may be identified as differentia-
ble structure. In tensor models, this is predicated on the points of M , whereas in EA
models, it is associated with the structure of a commutative ring of smooth functions
on M .

Insofar as the relata associated with tensor models are distinct from those associ-
ated with EA models, in adopting the EA formalism, we eliminate explicit reference to
manifold points. On the other hand, one might question whether this is an elimination
of manifold points in name only. Given the 1-1 correspondence between tensor models
and EA models, to every manifold point in the former, there corresponds a maximal
ideal in the latter (and vice-versa). Thus any reference to a manifold point in a tensor
model of GR will be translatable in a 1-1 fashion into a reference to a maximal ideal
in an EA model. A set-theoretic ROSRer may initially be happy with this, insofar as
it is a demonstration that tensor models and EA models belong to the same isomor-
phism class of structured sets, and hence encode the same structure. But to the extent
that tensor models depend ineliminably on manifold points, so EA models depend
ineliminably on maximal ideals. In what sense, then, can we say that the differentiable
structure associated with these models stands on its own, independently of relata?
I’ll now argue that, at least for some solutions to the Einstein equations, the move to
the Einstein algebra formalism is in fact a move that non-trivially eliminates manifold
points (and their EA correlates), but retains differentiable structure.

5 For details, see Heller and Sasin (1995, p. 3644). The original formulation was given in Geroch (1972).
6 A maximal ideal of a commutative ring is the largest subset of the ring closed under the ring product.
Each point of a differentiable manifold M corresponds to a maximal ideal of smooth functions on M that
vanish at that point.
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3.1 Asymptotic boundary conditions

The class of solutions I have in mind is characterized by asymptotic boundary condi-
tions. Examples include solutions to the Einstein equations that behave asymptotically
like spacetimes of constant curvature, and solutions involving certain types of curvature
singularities.7 In the tensor formalism, such boundary conditions can be represented
by encoding them in absolute objects defined on a boundary space ∂ M and attaching
it to the manifold M . The result is a manifold with boundary M ′ = M ∪ ∂ M . It is
then the case that, while tensor models (M, gab) without such boundary conditions
are invariant under the group Di f f (M) of diffeomorphisms on M , tensor models
(M ′, gab) with such boundary conditions are in general invariant under the subgroup
Di f fc(M) of diffeomorphisms on M with compact support. A diffeomorphism is in
Di f fc(M) just when there is a compact region of M outside of which it is the iden-
tity (Belot preprint, pp. 7, 13–14). One can think of such transformations as “local”
diffeomorphisms (“local” in the sense of being, possibly, non-trivial only in a local-
ized compact region of M). Intuitively, such local diffeomorphisms are guaranteed to
preserve the local structure of M and trivially preserve the boundary space ∂ M (since
they are the identity there). Elements of the larger group Di f f (M), on the other hand,
are only guaranteed to preserve the structure of M and may fail to preserve the absolute
structure of the boundary space. Thus, in general, there are no non-trivial morphisms
(i.e., transformations) that preserve both M and M ′ (no diffeomorphism on M is guar-
anteed to extend non-trivially to a diffeomorphism on M ′). Technically this means
that manifolds and manifolds with boundaries belong to different categories.

On the other hand, asymptotic boundary conditions of this type can be imposed on
Einstein algebra models of GR in two steps (Heller and Sasin 1995, p. 3657). One
first replaces the ring C ∼= C∞(M) of real-valued smooth functions on M with a
shea f C ∼= C∞(M ′) of real-valued smooth functions on the corresponding M ′. One
then replaces the Einstein algebra (C, g) defined on M with a sheaf of Einstein alge-
bras (C, g) defined on M ′. A sheaf of Einstein algebras can be thought of as a collection
of Einstein algebras indexed by the open regions on M induced by the topology on M ′
(see Sect. 3.2 below for more detail). It turns out that, as algebraic objects, (C, g) and
(C, g) belong to the same category, what Heller and Sasin (1995, p. 3647) have dubbed
the category of Einstein structured spaces. In particular, one can define morphisms
that preserve the structure of both (C, g) and (C, g).8

7 Examples of the former include solutions that are asymptotically spatially flat, and solutions that behave
asymptotically like de Sitter, anti-de Sitter, or Minkowski spacetime (see, e.g., Belot preprint, pp. 49–
55 for details and references). Examples of the latter include spacetimes with b-incomplete curves (see,
e.g., Earman 1995, p. 36).
8 A structured space is a pair (M, C), where M is a topological space and C is a sheaf of real continuous
functions on M satisfying the following condition (closure with respect to composition with smooth Euclid-
ean functions): For any open set U in the topology τ on M and any functions f1, . . . , fn in C(U ), and any
smooth function ω on R

n , the composite ω ◦ ( f1, . . . , fn) is in C(U ) (Heller and Sasin 1995, p. 3645).
Now let (M, C) and (N , D) be structured spaces. A continuous mapping f : M → N is said to be smooth
if, for any cross section g in D(U ), the composite g ◦ ( f | f −1(U )) is in C( f −1(U )) (Heller and Sasin
1995, p. 3647). One can now show that the collection of structured spaces, identified as objects, and smooth
mappings, identified as morphisms, forms a category. An Einstein structured space is a structured space on
which is defined the correlate of the Einstein equations.
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3.2 Sheaves and relata

In the debate over the ontological status of spacetime points, the concern with employ-
ing an Einstein algebra to describe a solution of the Einstein equations was that it
eliminates reference to manifold points in name only. Does a sheaf of Einstein alge-
bras fair any better? Consider first a more simple type of sheaf; namely, a sheaf of sets
(see, e.g., Jozsa 1984, pp. 68–69).9 Technically, a sheaf S of sets over a topological
space X is an assignment of a set S(U ) to each nonempty open set U ⊆ X , and a
restriction map ρU V : S(U ) → S(V ) whenever U ⊇ V , that together satisfy the
following conditions:

(i) If U ⊆ V ⊆ W , then ρW V = ρV U ◦ ρW V .
(ii) Let {Ui } be any open cover of U and let Ui j = Ui ∩ U j . If σi ∈ S(Ui ) is a

collection of elements such that ρUi Ui j (σi ) = ρU j Ui j (σ j ) for all i, j , then there
is a unique element σ ∈ S(U ) such that σi = ρUUi (σ ).

The elements σ ∈ S(U ) are referred to as sections of S over U . Condition (ii) is
the requirement that any collection of sections of S over an open cover of U can be
patched together to form a unique section over U , as long as they agree when restricted
to intersections. The identification of elements with sections allows one to define an
element of the sheaf itself. Technically, S is not a set; rather, it is a collection of
sets indexed by the open regions of X . A global section of S is an assignment of an
element of S(U ) to each open region U . Such global sections may be identified as the
elements of S. Category theory makes this more precise: Let Sh(X) be the category of
sheaves of sets over X .10 Then the global sections of a given object S(X) in this cate-
gory correspond to its elements in the category-theoretic sense (see Sect. 2.1 above).
It then turns out that a sheaf of sets in general need not possess global sections, and
even when it does, these fail to uniquely characterize it.

This situation should be compared with the case of the category Set of sets. Set can
be obtained from Sh(X) by identifying X as the one-element topological space. The
collection of sets characterized by any object S in Sh(X) then degenerates to a single
set, and the global sections of S are simply the elements (in the set-theoretic sense) of
the corresponding set. These elements completely characterize the set.

A slight generalization of a sheaf of sets over X replaces the sets with structured
sets. One obtains a sheaf of structured sets over X , and one can then form the category
of sheaves of structured sets over X , with a corresponding category of the appropriate
type of structured set as the degenerate case in which X is the one-element topological
space. The global cross sections of the latter are “structured” elements; i.e., elements
of a set imbued with the invariant properties that define the type of structured set.
Again, the existence of such structured elements for the degenerate set-theoretic case
does not guarantee the existence of global cross sections for the general sheaf-theoretic
case.

9 The following is an “external” description of a sheaf of sets over a topological space (i.e., a description
in set-theoretic terms). For an “internal” description, see, e.g., Mac Lane and Moerdijk (1992, p. 66).
10 The morphisms of this category are set maps that preserve the structure of the restriction maps ρ (Jozsa
1984, p. 69).
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In the Einstein algebra formalism, a sheaf of Einstein algebras is an assignment
of an Einstein algebra (a particular type of structured set) to every open region of a
differentiable manifold M .11 The degenerate case is given by a single Einstein algebra
(take M to be a one-element manifold). A section of a sheaf of Einstein algebras over
an open region U of M is an element of the Einstein algebra assigned to U ; namely,
it is a maximal ideal of that algebra. And again, the fact that each Einstein algebra
admits elements of this nature does not guarantee that a sheaf of Einstein algebras
does, insofar as the sheaf may not admit global sections.

3.3 Spatiotemporal structure sans relata

The upshot of this example seems to be the following. In both tensor models and EA
models of GR, the invariant structure being represented is differentiable structure.
In the case of tensor models, one might further characterize this structure as local
differentiable structure (i.e., that which is encoded in Di f fc(M)), in order to cover
cases of solutions both with and without asymptotic boundary conditions. This local
differentiable structure is predicated on the points (relata) of a differentiable mani-
fold M . In contrast, the structure associated with Einstein algebra models might be
referred to as global differentiable structure. This is the structure associated, in gen-
eral, with a sheaf of Einstein algebras, which cannot be said to be predicated on the
point-correlates (i.e., maximal ideals) of any given Einstein algebra. Rather, there’s
a sense in which it is a global feature of the sheaf. In category-theoretic terms, this
structure is encoded in the objects of the category of Einstein structured spaces.

The distinction between tensor models and EA models can be summarized by the
observation that the former can be characterized as structured sets, while the latter, in
general, cannot. I’d like to draw two conclusions from this distinction:

1. First, the point correlates (i.e., maximal ideals) in Einstein algebra models of GR
do not play an essential role in articulating the relevant notion of structure (i.e.,
global differentiable structure).

2. And second, Einstein algebra models of GR provide a more unifying description
of phenomena in GR, insofar as they belong to a single category. Tensor models of
GR (at least for the examples of solutions with and without asymptotic boundary
conditions) belong to two distinct categories.

This suggests the following analogy with radical ontic structural realism:

1′. First, the correlates of set-theoretic relata in category theory do not play an
essential role in articulating the relevant notion of structure, insofar as, in gen-
eral, objects in a category need not be structured sets.

2′. And second, this notion of structure does actual work in providing a more uni-
fying description of physical phenomena.

11 Technically, the open regions are identified as those that form a topology induced by the topology of
a manifold with boundary (Heller and Sasin 1995, p. 3657). In general, a sheaf over a base space is an
assignment of an algebraic object (set, algebra, etc.) to the open regions of the base space together with a
restriction map that satisfies appropriate generalizations of conditions (i) and (ii) above.
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The use of sheaves of Einstein algebras in general relativity provides one example of
Claim (2′). A category-theoretic radical ontic structural realist may view the global dif-
ferentiable structure associated with the objects in the category of Einstein structured
spaces as representing free-standing spatiotemporal structure that exists independently
of (the algebraic correlates of) spacetime points.

4 How to do category-theoretic physics

I’d now like to briefly look at two more examples of categories that have potential
use in physics and whose objects do not correspond to structured sets (these exam-
ples are discussed in Baez 2006, pp. 246–247). The first is the category nCob with
(n − 1)-dimensional compact oriented manifolds as objects and n-dimensional ori-
ented cobordisms between such manifolds as morphisms.12 The second example is the
category Hilb with finite-dimensional Hilbert spaces as objects and bounded linear
operators as morphisms. These differ from the category Set of sets (with functions as
morphisms) in the following three respects.

(i) First, the objects of nCob and Hilb cannot be considered structured sets, inso-
far as their morphisms are not simply functions that preserve the relevant
set-theoretic notion of structure associated with them. Set-theoretically, the
functions that preserve the structure of an (n − 1)-dim topological manifold
are homeomorphisms (i.e., maps that preserve the topological properties of
points). But the morphisms in nCob are not even functions. Set-theoretically,
the functions that preserve the structure of a Hilbert space are unitary operators
that preserve the inner-product. The morphisms in Hilb in contrast are general
bounded linear operators that do not necessarily have to be unitary. (Baez 2006,
p. 251, defines an inner-product on the objects in Hilb in terms of an adjoint
operation, thus turning Hilb into a *-category: see (iii) below.)

(ii) Second, unlike Set, the categories nCob and Hilb are monoidal categories. This
means they admit a tensor product but not a Cartesian product. In particular,
in both of these categories, for any pair of objects H, K , there is an object
H ⊗ K called the tensor product of H and K , but there are no morphisms
p1 : H ⊗ K → H and p2 : H ⊗ K → K with the properties of a Cartesian
product (Baez 2006, p. 257).

(iii) Third, unlike Set, the categories nCob and Hilb are *-categories. This means
they admit a morphism * that sends each morphism f : X → Y to a morphism
f ∗ : Y → X called the “adjoint” of f and satisfying 1∗

X = 1X , ( f ◦ g)∗ =
g∗ ◦ f ∗, and f ∗∗ = f (Baez 2006, p. 251).

Both nCob and Hilb admit terminal objects, and hence a well-defined notion of an
element of an object. As one might expect, the elements of nCob objects are manifold
points, and the elements of Hilb objects are vectors. But, insofar as the objects of

12 A cobordism in this context can be identified with an oriented manifold with boundary. The intended
interpretation of nCob identifies its objects as representing (n −1dim) spaces at different instances in time,
and its morphisms as representing (n-dim) segments of spacetime connecting these spaces.
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these categories are not structured sets, their elements are not essential in articulating
the relevant notions of structure. Again, because the objects of these categories are
not structured sets, the “properties” of their elements are not what get preserved under
the morphisms. Thus the structure associated with the objects in nCob and Hilb is
arguably more general than that associated with their set-theoretic counterparts. In
other words, the category-theoretic definitions of (n − 1)-dim topological manifold
and Hilbert space, as provided by the categories nCob and Hilb, are more general than
the set-theoretic definitions. Baez (2006) further argues that this generality is more
than cosmetic: Baez sees the similarities between nCob and Hilb—in particular, those
features mentioned above that distinguish them from Set—as suggestive of how GR
and quantum theory might be reconciled. Briefly, nCob and Hilb play essential roles
in a category-theoretic formulation of topological quantum field theories, which have
been viewed by some authors as a method of reconciling the background independent
nature of GR with quantum field theory.13 One might view this as one way that the
generality associated with the notions of structure in nCob and Hilb has the potential
to do actual work in articulating a notion of structure that addresses a key issue in
physics.

5 What the category-theoretic radical ontic structural realist must do

Of course if the types of structures that ROSR is (or should be) concerned with are
all of the structured set type (and hence depend ineliminably on reference to relata),
then adopting a category-theoretic definition of structure would not be all that helpful.
I’ve suggested that there are, in fact, non-trivial examples of structures in physics that
are not of the structured set variety. On the other hand, one might also argue that the
generality afforded by the category-theoretic definition of structure is a moot point
if it turns out that category theory presupposes set theoretic concepts. If this is the
case, then categories are really just sets in disguise, even those categories that do not
have structured sets as objects; thus there would be no greater expressiveness to be
associated with category theory. In particular, the claim would be that the member-
ship relation really is a primitive in category theory, the examples in this essay none
withstanding; hence a category-theoretic definition of structure would not, ultimately,
break free of relata. Thus there is still work to be done for the category-theoretic
radical ontic structural realist:
(1) She should provide a rationale for the fundamentality of category theory over set
theory. For instance, Kraus (2005, p. 114) claims the following:

The reason [ontic structural realists] don’t use category theory is still not clear
to me, but perhaps this is due to the fact that from an intuitive point of view a
category is nothing more than an ordered pair (hence a set) whose elements are a
collection of objects (the structures) and a collection whose elements are called

13 More precisely, a topological quantum field theory can be defined as a functor from nCob to Hilb; i.e.,
a map that assigns to each object in nCob, an object in Hilb, and to each morphism in nCob, a morphism
in Hilb, in such a way that composition of morphisms is preserved, as is the identity morphism (Baez 2006,
p. 248).
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morphisms (both concepts of course are subjected to adequate postulates). That
is, even in category theory we are not completely free from the intuitive notion
of sets.

If category theory can be shown to be more fundamental than set theory, this argument
is blunted. The fact that a category can be presented as an ordered pair would reduce
to the fact that a category can be presented as a category. More generally, the issue of
fundamentalism concerns not just the practice of using set theory as a meta-language
for category theory, but the status of the referents of this meta-language: are these ref-
erents ultimately sets or categories? Awodey (2010, p. 24) for instance observes that
while the axioms of set theory are typically taken as making existential claims about a
single universe of sets, the axioms of category theory are typically taken as definitions
of things which are assumed to exist in some foundational system. If one assumes the
foundational system is that of set theory, then issues arise in category theory concern-
ing the size of categories: one may have to distinguish between “small” categories
in which the objects and morphisms form sets, and “large” categories in which they
do not. On the other hand, these concerns are less pressing if the foundational sys-
tem is taken to be category theory itself. It is this concern over the fundamentality
of category theory that the category-theoretic ROSRer must address. This on-going
debate in the philosophy of mathematics deserves more space than can be provided
here (see, e.g., Pedroso (2009) who addresses standard charges in the literature against
category-theoretic fundamentalism).
(2) Second, the category-theoretic ROSRer should also provide additional category-
theoretic reformulations of theories in physics that explicitly do not depend on struc-
tured sets. Döring and Isham (2011) are engaged in this project in the context of theories
in quantum physics (see also Isham and Butterfield 2000; Heunen et al. 2009), and
Baez (2006) has argued against set-theoretic intuitions in formulating approaches to
quantum gravity.
(3) Finally, a deeper concern might be identified with the examples given by these
authors (as well as those discussed in this essay). The fundamentality of category the-
ory would be a moot point if it turned out that the majority of structures in the phys-
ical world of physical relevance are better represented by set-theoretic constructions.
Critics of ROSR might argue that the abstract spatiotemporal structure associated with
solutions to the Einstein equations with asymptotic boundary conditions is not relevant
when it comes to making concrete observations and/or measurements of spatiotempo-
ral phenomena, and perhaps doubly so for topological quantum field theories. Again,
as Esfeld and Lam (2008, p. 31) stress, “…the point at issue are concrete relations
that are instantiated in the physical world and that hence are particulars in contrast to
universals”.

There are two ways one might voice this worry. The first is to view it as a concern
over whether an adequate theory of measurement requires set-theoretic constructions;
in particular, explicit and ineliminable reference to relata. Theories of measurement,
assumedly, are where the abstract rubber of theories in physics hits the concrete road
of empirical tests, and the latter, so the objection would go, require representational
schemes that make ineliminable reference to relata. While this concern deserves an
extended treatment beyond the scope of this essay, I can think of two immediate
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responses. First, whether or not an adequate theory of measurement requires ineli-
minable reference to relata should be an empirical question. As such, it should not
be pre-judged by intuitions informed (implicitly, perhaps) by a particular represen-
tational scheme (viz., set theory). Second, even if it turns out empirically that an
adequate theory of measurement requires ineliminable reference to relata, it does not
necessarily follow that a theory of the physical structures being measured does like-
wise. Conceivably, physical structures could be globally free-standing (in the sense of
being independent of localized relata) in general, but instantiate locally during inter-
actions involving measurement processes. Classically, the latter can be represented
set-theoretically in terms of the instantiation of properties in relata; but who (other
than an instrumentalist, perhaps) would expect that measurement interactions uniquely
determine the ontological commitments of the physical systems that undergo them?
Many philosophers of physics, for instance, believe quantum field theories should be
interpreted as referring to globally-extended quantum fields, as opposed to localiz-
able particles (or “quanta”, if you will). Under this received view, a quantum field
is capable of instantiating itself in the form of localized particles/relata in particular
circumstances (scattering experiments, for instance); but such instantiations should
not be taken to uniquely determine the ontological status of the field itself. This is not
to say that quantum fields are in some sense inherently structural (nor is it to agree with
the received view); rather, it is to suggest that, while ontological commitments may
be informed by theories of measurement, they should not be completely determined
by them.

A second way to voice the worry associated with Esfeld and Lam is to view it
as a concern over whether, from a purely metaphysical point of view, it is coherent
to claim that physical structures can exist independently of objects that instantiate
them. The worry here is that it is one thing to demonstrate that, from a formal point
of view, category theoretic representations of structure are independent of relata, and
another thing to argue that structures in the physical world are likewise independent of
relata.14 Towards assuaging this concern, consider first the standard argument in sup-
port of ROSR. This argument is based on an appeal to metaphysical underdetermina-
tion in the context of quantum mechanics: ROSRers claim that, if we take the ontology
of quantum mechanics to be one of objects and properties, then whether these objects
are individuals or non-individuals is underdetermined by the theory; whereas if we
take the ontology to consist of relations devoid of relata, no such underdetermination
occurs (see, e.g., Ainsworth 2010, p. 52, for this reconstruction). As Pooley (2006,
p. 97) notes, metaphysical underdetermination occurs when a single formulation of
a theory admits multiple interpretations that involve incompatible ontologies (in this
case an ontology of individuals versus an ontology of non-individuals). The example
of general relativity in Sect. 3 above suggests a different type of underdetermination,
one that Pooley refers to as “Jones underdetermination”.15 This occurs when a sin-
gle theory admits different formulations that, under a realist interpretation, suggest
incompatible ontologies. Section 3 suggested that, whereas the tensor formulation of

14 Thanks to a referee for stressing the importance of this distinction.
15 Pooley (2006, p. 97) calls this “Jones Underdetermination” after its description in Jones (1991).
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general relativity supports an ontology of objects and properties/relations, the Einstein
algebra formulation of general relativity supports an ontology of structure devoid of
objects. The current essay thus motivates ROSR by examples of different formulations
of a single theory that disagree not just over the ontological status of individuals, but
over the ontological status of objects, regardless of whether or not they are individu-
als.16 Thus, regardless of whether spacetime points are considered to be individuals,
Sect. 3 suggested that they are inessential in representations of spatiotemporal structure
as described by general relativity in the Einstein algebra formalism.

The inference to ROSR from Jones underdetermination depends on some form of
semantic realism with respect to theories in physics (i.e., it assumes that we should
take the claims made by theories in physics at their face value). And it assumes a
naturalistic approach to metaphysics; one in which metaphysical commitments are
informed by contemporary theories in physics, say, as opposed to pre-theoretic intu-
itions (informed, perhaps, by out-dated physics). In particular, it suggests that the
manner in which some contemporary theories in physics represent natural phenomena
is in terms of structure devoid of relata; and it suggests that we should take these
representations at their face value and accommodate them into what we take to be the
ontology of the world; as opposed to attempting to reconcile them with pre-theoretic
intuitions (informed, perhaps, by set-theoretic representations of natural phenomena)
that implicitly privilege object oriented ontologies.

6 Conclusion

This essay has argued that a definition of structure as an object in a category does not,
in general, depend essentially on (set-theoretic) relata, insofar as category-theoretic
objects need not, in general, be structured sets. In particular, the structure associ-
ated with such objects cannot be articulated simply in terms of invariant properties
instantiated by arbitrary elements of a domain of individuals. Moreover, such (non-
structured set) objects have roles to play in representing relevant notions of structure
in contemporary physics. This suggests that radical ontic structural realism based on
such a category-theoretic definition of structure avoids the charge that it rests on an
incoherent claim; namely, that there can be relations devoid of relata.
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