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Abstract It is argued in this study that (i) progress in the philosophy of mathematical
practice requires a general positive account of informal proof; (ii) the best candidate
is to think of informal proofs as arguments that depend on their matter as well as
their logical form; (iii) articulating the dependency of informal inferences on their
content requires a redefinition of logic as the general study of inferential actions; (iv)
it is a decisive advantage of this conception of logic that it accommodates the many
mathematical proofs that include actions on objects other than propositions; (v) this
conception of logic permits the articulation of project-sized tasks for the philosophy of
mathematical practice, thereby supplying a partial characterisation of normal research
in the field.

Keywords Informal proof · Mathematical practice · Inferential action ·
Argumentation theory · Speech-act

The philosophy of mathematical practice prides itself on paying attention to the proofs
that mathematicians offer each other, rather than the abstract models of proofs stud-
ied in formal logic. This is the mathematical version of the boast of informal logic
and argumentation theory, to study the arguments that people actually make—’real’
arguments (as in the titles of Corfield 2003 and Fisher 2004). The philosophy of math-
ematical practice has now acquired a body of literature (leading examples in addition
to Corfield 2003 being Aspray and Kitcher 1988; Buldt et al. 2008; Cellucci and
Gillies 2005; Grosholz and Breger 2000; Hanna et al. 2010; Hersh 2006; Lakatos
1976; Löwe and Müller 2010; Mancosu 2008; Nabonnand 2005; Tymoczko 1998;
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Van Kerkhove 2009; Van Kerkhove and Van Bendegem 2002, 2007) and a freshly
constituted international Association for the Philosophy of Mathematical Practice.
However, it remains somewhat under-theorised. Answers to the questions ’What is
the philosophy of mathematical practice?’ and ’How does one do it?’ do not usually
go far beyond the aspiration to study ’actual’ mathematical activity and some now
familiar complaints about other, better-established approaches to the philosophy of
mathematics that employ formal models of mathematics and mathematical argument.
Among other things, the field lacks an explication of ‘informal proof’ as it appears
in expressions such as ‘the informal proofs that mathematicians actually read and
write’. Without this, it is difficult to explain how studies of practice might diagnose
and overcome the short-comings of those approaches that take formal logic to sup-
ply an adequate account of mathematical inference. This shows up practically as a
methodological gap. It is not yet clear how the historical, sociological and psycholog-
ical studies presented at conferences on the philosophy of mathematical practice can
generate a significant challenge to the approaches that assume that formal logic can
provide a philosophically adequate model of mathematical proof.

Thus, the logic of informal proofs matters for two reasons. First, the complaints
about the ‘traditional’ approaches to the philosophy of mathematics need some theory
to turn them into robust objections. Philosophers of mathematical practice disagree
among themselves about the logical relation between the philosophy of mathematical
practice and other traditions in the philosophy of mathematics.1 Even the most ecumen-
ical philosopher of mathematical practice must convict the other traditions of at least
a sin of omission, namely, failing to pay attention to mathematical practice. However,
we require an argument to show that (and why) this omission is a sin. After all, the rival
traditions have replies available. They can point out that all models are idealisations,
that philosophy always abstracts from particulars, and that it is a philosophical virtue
to discard inessentials. They might continue thus: the essence of proof is the notion
of logical consequence, which formal logic models precisely; therefore formal logic
is just the right tool for the philosophical study of mathematical argument. Philoso-
phers of mathematical practice need to show that mathematical arguments suffer some
philosophically important loss or distortion in the abstraction from ‘real’ mathematical
proof to formal derivation. For the loss or distortion to be philosophically interesting,
it must have some logical significance. Whatever gets lost or distorted must play a
role in the account of how informal proofs work as proofs. Otherwise, opponents of
practice-based philosophy can safely park the results of psychological, sociological
and historical studies on the ‘discovery’ side of the discovery/justification distinction.
To counter this, philosophers of mathematical practice need a conception of argument
that permits them to say of (some of) their studies of mathematical practice that this,
too, is logic.

Second, the philosophy of mathematical practice has yet to establish an understand-
ing of normal research in its field. In spite of the growing literature, we do not have many

1 Mancosu sees philosophical attention to mathematical practice as a welcome and compatible addition to
the previously established traditions (editorial introduction in 2008); Corfield claims that mainstream philos-
ophy of mathematics is incompatible with a practice-based approach because it imposes a ‘foundationalist
filter’ that blinds it to real mathematical practice (2003 p. 8).
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exemplars for research students to emulate. We aim to study ‘what mathematicians
actually do’, yes, but some of the things they ‘actually’ do (such as drinking coffee or
going for solitary walks) probably are philosophically irrelevant. Other activities, such
as drawing diagrams, refining mathematical models and (of course) creating proofs,
clearly are philosophically interesting parts of mathematical practice. Then there are
activities that involve reasoning about mathematics, such as refereeing papers, judging
PhDs and awarding prizes, that occupy a grey area. In the absence of some background
philosophical theory, it is hard to judge which of the mathematicians’ actual activities
should be philosophically salient. The most influential works in the philosophy of
mathematical practice are often too singular to suggest themselves as models. There
would (for example) be little merit in mass production of fictional dialogues with his-
torical footnotes. For this reason too, the philosophy of mathematical practice needs to
specify what is philosophically important about mathematical practice, as represented
by ‘real’ mathematical proofs, that is absent from derivations in formal logic.

1 Essentially informal arguments: definition and problem

Happily, there is no difficulty identifying informal proofs. There is a via negativa,
thus: formal arguments (a) are expressed in a general logical language, the well-
formed formulae of which are explicitly defined (usually by recursion) and (b) consist
of successive applications of explicitly specified rules of logical inference (in some
systems some of these may be expressed as logical axioms). Informal arguments are all
the others. Notice that a mathematical proof may employ little or no natural language,
make no appeal to spatial or arithmetical intuition and proceed from explicit defini-
tions and/or axioms, yet still not satisfy (a) and (b) and therefore count as informal.
Almost all mathematical proofs are informal by this standard, including the proofs
published in research mathematics journals. No-one disputes this. Nor is it disputed
that many informal proofs can provide source material for formal derivations. The
problem before philosophers of mathematical practice is to identify and characterise
those informal arguments that would suffer some sort of violence or essential loss if
they were recast so as to satisfy (a) and (b). Call these ‘essentially informal’ arguments.
With this terminology, we can express the distinctive conviction of the philosophy of
mathematical practice on the subject of proof thus: almost all of the informal proofs
that mathematicians actually read, write and publish are essentially informal. Now, the
negative definition of informal proofs as ‘those proofs that fail to satisfy at least one
of (a) and (b)’ leaves open the possibility that all informal mathematical arguments
could be fully formalised without loss or violence. What we need is a positive account
of the notion of an essentially informal argument. Formal logic cannot supply this.
Where else might we look?

2 Argumentation theory and informal logic

Since the central claim of the philosophy of mathematical practice—the focus on
‘real’ proofs—is the mathematical case of the chief merit claimed for argumentation
theory, one might expect that the latter could supply some theory and method to the
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former. Alas, argumentation theory is less helpful than one might have hoped, because
it assumes (almost without exception) that arguments are made of speech-acts. This
is not unreasonable, since almost all argument (including, obviously, philosophical
argument) happens in and with spoken or written language. The central claim of this
study is that in an important sense this is not true of most mathematical argument.
In a slogan: inferential acts are not always speech-acts. Before considering the case
for this claim, it will be useful to make some orienting remarks about argumentation
theory and informal logic.

One strong current in contemporary argumentation theory is a tendency to distin-
guish real arguments from the artefacts of formal logic by pointing to the embedded-
ness of real arguments in practical contexts. Real arguments are the arguments that
real people address to other real people in real situations to try to achieve real ends.
Here is a typical statement from apostate formal logician Don Levi:

To determine [using formal logic] whether something is being argued or what the
argument is, and to evaluate it, the speaker’s words are supposed to be restated in
premise-conclusion form. This restatement leads to the neglect of the rhetorical
context—the argument in that form no longer has an audience, or for that matter
a speaker, whose concerns help to explain what she is arguing.2

In other words, the argumentation theorist of this stripe denies that the argument-
as-such can be lifted out of its argumentative context and evaluated ‘in purely logical
terms’. Such an act of abstraction violently severs the connections that make the argu-
ment intelligible. Here is a more technical version of the same thought, in the words
of two of the leading voices in the field:

Argumentation is adduced in reaction to, or in anticipation of, a difference of
opinion, and serves a role in the regulation of disagreement. Not only the need
for argumentation, but also its internal and external structure and the criteria that
it must meet, are directly related to the doubt or criticism that the argumentation
is intended to remove.3

It’s true that argumentation is sometimes used to regulate and resolve differences
of opinion. But is it always?

The history of mathematics (and perhaps some other disciplines4) suggests not.
Certainly, all (real) mathematical arguments have contexts. Proofs are tuned to and
pitched at particular intended audiences. They have dense intertextual relations with
prior works (in addition to citing previously established results as lemmas, a proof
may depend on prior works to show that it answers a pressing question, contributes to a
coherent body of knowledge, adopts reasonable conventions, promises further illumi-
nation either as corollaries or by the repeated use of its characteristic techniques, etc.).
Proofs are conceived in, born into and achieve maturity in richly specific cultural and

2 Levi (2010, pp. 80–81).
3 van Eemeren and Grootendorst (2004, p. 53). Since Grootendorst’s death in 2000, Eemeren has gone
further in this direction, writing several studies of ‘strategic manoeuvring’.
4 Andrew Aberdein made this plausible suggestion.

123



Synthese (2012) 187:715–730 719

historical locations. It is entirely proper and worthwhile to study this.5 This approach
is particularly relevant for mathematics education (see CadwalladerOlsker (2011)).
However, mathematical arguments tend to develop careers beyond the persuasive jobs
for which they are first invented. Few (if any) readers of Euclid’s Elements know whom
Euclid was trying to convince or what specific ‘doubt or criticism’ he was trying to
remove. Indeed, it is not clear that removing doubt or criticism was ever the purpose
of these proofs.6 They (and mathematical proofs in general) can be understood with-
out reconstructing the dialogical structure of their argumentative contexts. For this
reason, references to argumentative context cannot help us to unpack the meaning of
‘informal’ in phrases such as ‘the informal proofs that mathematicians actually read
and write’.7

If the notion of dialogical context does not supply a robust account of essentially
informal proofs, then what other options are available? There are some other candi-
date-accounts for the distinction between formal and informal arguments that we can
dispose of quickly, without having to ask whether they offer any insight into mathe-
matics. First, valid formal arguments are not ampliative, so one might imagine that this
is the vital difference. However, there are non-ampliative arguments that seem to be
essentially informal. For example, arguments from authority such as ‘This person is an
expert on tax law and he says that you are liable in such and such a respect, therefore,
you are so liable’ do not have anything in the conclusion that is not already present
in the premises. Moreover, neither informal mathematical proofs nor formal deriva-
tions are ampliative, so the ampliative/non-ampliative distinction cannot articulate the
difference between them. Second, one might think that the sought-after distinction is
between deduction and induction. However, not all informal arguments are inductive,
in any strict sense of the term ‘induction’. In fact, relatively few informal arguments
proceed from a common property of a lot of particulars to the claim that one or more
particulars not yet mentioned share that same property. Besides, we may doubt that
strictly inductive arguments are essentially informal. Turning to mathematics, nei-
ther informal mathematical proofs nor formal derivations are strictly inductive, so the
inductive/deductive distinction is no help in the project of grounding the philosophy
of mathematical practice. (Which is not to say that enumerative induction has no place
in mathematical reasoning. See Baker in Leng et al. (2007); Gowers op. cit. pp. 34–35;
and Corfield (2003, chap. 5)).

Another powerful stream in argumentation theory is the exploration of argumenta-
tion schemes. Here, the ambition is to develop a taxonomy and ultimately a general
theory of defeasible argument schemata such as analogy, appeals to expertise and tes-
timony and the various kinds of slippery slope. The quest for a taxonomy and general

5 Andrew Aberdein, for example, explores the dialogical nature of mathematical proof in Aberdein (2006).
6 Which is not to say that the logic of Euclid’s arguments is obvious or easy to make explicit. We do need
to know a lot about (for example) how the ancient Greeks thought about number. We do not need to know
what doubts and criticisms motivated the production of the Elements (see Manders (1995)).
7 Azzouni (2006) develops the claim that mathematics establishes beliefs and practices that last much
longer than any social structures or other social phenomena. Mathematics cannot be a social construction,
Azzouni argues, because social constructions don’t last as long as theorems (even if we think of theoremhood
as a social-historical category).
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theory means that this approach abstracts from both the dialogical context and the
content of the argument. The most developed product of this research programme,
Walton et al. (2008), has as its penultimate chapter a discussion of the work to date on
formalising argument schemes, and as its final chapter a survey of argument schemes
in computer systems. This version of the argument schemes research programme is
not a rival to the project of analysing all argument formally. It is, rather, the extension
of that project to include non-inductive defeasible argument. As such, it has to reject
the claim that the arguments it analyses are essentially informal. Moreover, as the
final chapters of Walton et al. illustrates, it substitutes a disembodied ideal reasoner
for the embodied human arguer. For these reasons, it is unsuited to the project of
understanding how embodied, human mathematicians use essentially informal proofs
to establish theorems.8 Of course, Walton et al. do not have exclusive ownership of the
argumentation schemes idea. It is possible to use it without attempting to formalise
argumentation schemes. However, to make a virtue of this, one would have to answer
our question: what is an informal argument?

3 Essentially informal proofs: solution

A more plausible account of essentially informal arguments, and the one that this study
will take up and develop, claims that the validity or invalidity of essentially informal
arguments does not depend on their logical form alone, but also on their content—they
are content-dependent.9 For example, an appeal to authority may or may not be a good
argument, depending on which expert is appealed to and on what question. Aside from
the credentials of this or that expert, note that arguments of this sort require that the
subject-matter be such as permits expertise. (A poor argument: ‘The Ferrari will win.
For, X says so, and he is an expert on loud things’. Loud things do not constitute a
possible field of expertise. The behaviour of jet aircraft is not systematically related to
the behaviour of rock bands.) To change the example, for a slippery-slope argument
to succeed, there must be a slope, it really must be slippery and there must be a force
drawing the argument down the slope. Determining whether these conditions obtain
requires examination of the argument’s content. The relevant point for this study is
that slippery-slope arguments can work only in domains with candidates to play the
roles of gradation, gravity and grease. This is the thought that I want to carry into the
mathematical case: that essentially informal arguments are content-dependent partly
because they require domains with suitable general features. The presence of such
features does not guarantee that an argument is sound. Rather, they are the necessary
conditions for attempting to make an argument of that sort at all. Note, these argu-
ment patterns are not strictly domain-specific, because they can work in more than
one domain (we appeal to authority on all sorts of topics and there are slopes in many
domains). The point is that unlike, say, modus ponens, they do not work in all domains.

8 For more on embodiment in mathematics, see Johansen (2010). See Van Kerkhove and Van Bendegem
(2009) for an extended discussion of the application of argument schemes to mathematics.
9 Lakatos glosses ‘informal’ in ‘informal mathematics’ as ‘inhaltliche’ (i.e. having or concerning content)
(1976, p. 1).
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Modus ponens may be expressed informally, but it is not essentially informal. It does
not depend on its content, that is, it applies in all domains, which is why it can be
rewritten to satisfy (a) and (b) without loss or distortion. Its topic-neutrality means
that it can be captured in a purely logical language, as (a) requires.

This thought, that essentially informal arguments depend for their inferential power
on their content as well as their forms, requires a shift in how we think about argu-
ments. If we think of an argument as a sequence of propositions connected by logical
relations, it is hard to see how the content of the argument can play a role in the
step from one proposition to the next. This is in part because a classically trained
philosophical imagination is dominated by general logic, but also because orthodox
philosophical education urges us to forget that the movement from one line of a proof
to the next is an action. The standard view, usually associated (perhaps unfairly) with
Frege, is that logic must be purged of the inferring agent, or else fall into psychologism.
Nevertheless, the rules of inference coded in formal systems are procedures, that is,
standardised actions. Proving is an activity, even when the results are mechanically
checkable. The liberating insight is to notice that in making arguments, we act on
all sorts of items in addition to propositions and well-formed formulae. Sometimes,
we act inferentially on non-propositional representations of the subject-matter such
as diagrams, notational expressions, physical models, mental models and computer
models. Sometimes, we re-describe the subject-matter in some insightful way, perhaps
with the aid of an analogy or metaphor. Sometimes, we act directly on the subject-
matter itself, taking measurements or performing physical experiments. Sometimes,
we perform thought-experiments and calculations, or show that something exists by
manufacturing it (as in the ‘search’ for sub atomic particles). Sometimes, we act on
experts by asking them questions. Some inferential actions do not have objects; for
example, one might show that an unlikely act (such as a new move in gymnastics) is
possible by performing it. Many of these actions are repeatable procedures, and learn-
ing to carry them out is part of the training of new experts. Every successful calculus
student learns how to change variables, and every competent accountant learns how
to draw up a balance sheet. On the other hand, very few of these actions are possible
in all domains. In summary: the subject-matter of an argument can play a role in the
argument’s inferences if it (the subject-matter) is the object of an inferential action (for
example, physical experiments); if a representation of it is the object of an inferential
action (for example, manipulation of models); or if it is manifested or expressed in an
inferential action (the case of the new gymnastic feat). Arguments that involve such
inferences are essentially informal; they cannot be fully formalised in a general logic.

4 Inferential acts are not always speech acts

Curiously, this insight, that argument is not all about propositions, is largely absent
from the informal logic literature, even though it suggests an account of what infor-
mal arguments are. Typically, both textbooks and theoretical works on informal logic
assume that arguments are made of statements10 and in doing so leave open the possi-

10 See Hoagland (1999) for an overview.
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bility that informal arguments are simply arguments that could be formalised but are
not for some practical reason. To pick some examples arbitrarily, Beardsley explains
that “to reason is just to take one statement as a reason for another” (1950, p. 9). In fact
we do not reason from statements alone. One might, for example, take the smell of
toast as a reason to think that someone is making breakfast. The first six out of Beards-
ley’s fifteen chapters are about language. Similarly, Fogelin and Sinnott-Armstrong
announce on page one that, “Arguing is... a linguistic activity” (italics in original)
and that “Arguments are constructed out of sentences” (2001). They do move in the
general direction of this paper by treating arguments as speech-acts (pp. 46–47). We
need only add that arguments are indeed acts, but not always speech-acts. One might
demonstrate that a well is deep by dropping a stone into it and staring pointedly at one’s
wristwatch until hearing the splash, without uttering a word. While this action might
be thought to have some illocutionary force, it is not best thought of as a speech-act
because there is no wholly linguistic performance that could substitute for the physical
experiment. Pace Derrida, il y a un hors-texte. Scriven, in his textbook, is more liberal:
“Reasoning isn’t all done with language,” but having opened the door, immediately
seeks to close it, “...but that’s how it’s usually conveyed and mostly how it’s taught,
and certainly how it’s written and thus best recorded” (1976, p. 3). This might come as
news to anyone who conveys, teaches and records reasoning with diagrams, models
or recordings of experiments. To be fair, on the next-but-one page, Scriven notes that
reasoning sometimes involves such activities as calculating, measuring and appealing
to authority. He is right, of course, that much reasoning is carried out in natural lan-
guage; it often is the best medium for inferential actions such as drawing analogies or
recalling precedents (and deploying philosophically interesting examples). If one has
(say) law or philosophy in mind, it is easy to fall into thinking that inferential acts are
all speech-acts.

Turning from textbooks to theoretical works, Eemeren & Grootendorst announce
that, “In principle, argumentation is a verbal activity, which takes place by means of
language use...” (italic in original) (2004, pp. 1–2). They add in a footnote: “In practice,
argumentation can also be partly, or even wholly, non-verbal... this is not adverse to our
pragma-dialectical approach as long as the (constellation of propositions constituting
the) argumentation is externalizable.” (p. 2n2). In keeping with this, studies of visual
argumentation in this tradition normally treat pictures and diagrams as alternative pre-
sentations of propositional content.11 This does not leave space for the thought that
(for example) a geometrical diagram is the object of geometrical inferential actions.

As already noted, the other major stream in argumentation theory is the categorisa-
tion and formalisation of argumentation schemes. These schemes relate propositions
as premises and conclusions, just as mainstream logical theory has since Aristotle.
Because they model defeasible arguments, they include critical questions as well as
statements, but these do not open space for any actions other than speech-acts.

Thinking of arguments as acts, and widening the scope of logic to include inferential
actions in addition to those performed on propositions does not invite subjectivism in
any worrying sense. There is an actor for every action, but for logical purposes we do

11 See, for example, Groarke (1999).
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not need to know anything about the agent beyond the fact that he or she performed this
act. The whole person may be phenomenologically implicit in the act, but considering
it as an inferential action permits us to bracket the agent (except in special cases such
as appeals to expertise or pro homine arguments). For an analysis of a proof into a
series of inferential actions to have any plausibility, the actions must be feasible for a
human actor, but this need not detract from their inferential power.

The benefit of viewing inference as action is that we can see how the subject-matter
of informal arguments shapes and contributes to inferences. Indeed, instead of two
highly abstract categories, the form of an argument and its content, we now have an
indicative list of many and various concrete objects of inferential action (diagrams,
models, expressions in special notations, experimental set-ups and so forth). This goes
some way towards answering (or at least, making more precise) our question about
which activities to count as mathematical practice. The cost is that we have to abandon
the hope of establishing a general test for validity. It may be possible to automate some
procedures (such as dendrochronology); for others (such as changing variables) it is
possible to run automatic checks, but this will not be possible for all informal argu-
ments. In any case, there is no hope of anticipating the invention of new inferential
actions. This is one reason, and a respectable reason at that, for trying to re-describe all
inferential action as action on propositions. Deductive formal logic is a partial model
of the inferential actions possible on propositions, and it offers a criterion for identi-
fying which actions are permissible. Twentieth-century philosophy of science made
heroic attempts to develop similar models for scientific reasoning, but the restriction of
inferential actions to actions on propositions resulted in philosophers treating exper-
iments as black boxes that emit ‘observation statements’ or Protokollsätze. Studies
of experimental practice have since12 revealed that there is reasoning going on inside
the experimental box, but in order to understand it, we have to recognise inferential
actions on a wider range of objects than propositions alone. (Similarly, one might
reconstruct the stone-dropping argument for the depth of a well as a sequence of state-
ments, starting with the statement that when a stone was dropped, there was an interval
of x seconds before a splash was heard, but this would have the perverse consequence
of leaving the central act of the argument, the dropping of the stone, out of the recon-
struction, and would obscure the argument’s tacit appeal to the embodied natures of
both the arguer and the viewer, the reliability of their sense organs, the transparent
familiarity of life in the gravitational and atmospheric conditions of the surface of the
Earth, the trustworthiness and competence of the experimenter, and so forth).

This section started out talking vaguely about informal arguments suffering distor-
tion or loss when formalised. We are now in a position to tidy this up. A fully formal
derivation (one that satisfies (a) and (b) above) is a sequence of actions performed on
well-formed formulae expressed in a logical language. These actions produce new,
well-formed combinations of non-logical expressions (the names, variables, atomic
propositional letters, predicates and relations), but they do not change the non-logical
expressions. Therefore, if an argument includes an inferential action that manifests
or manipulates the subject-matter, or a representation thereof, then formalising this

12 For example, Galison (1987, 1997). Versions of this point also occur in works by W. Whewell, N.R.
Hanson, T.S. Kuhn and subsequent contributors to the debate on the ‘theory-ladeness of data’.
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argument in a general logical language must either misrepresent or fail to include this
action. Moreover, we can say something in the direction of explaining how informal
arguments work as arguments: they are rigorous if they conform to the controls on
permissible actions in that domain. An action demonstrating (by performance) the
possibility of a new gymnastic feat had better conform to the rules of gymnastics;
ice-core samples must be kept free of contamination; and so on.

5 Philosophy of mathematical practice: the state of play

As noted at the outset, philosophers of mathematical practice like to insist on the
differences between ‘real’ informal mathematical proofs and the formal derivations
studied in the branch of mathematical logic called ‘proof theory’. All parties acknowl-
edge these differences. The debate arises out of the fact that the informal proofs
used by expert mathematicians are highly compressed abbreviations of mathemat-
ical arguments. As Russell and Whitehead observed, “Most mathematical investi-
gation is concerned not with the analysis of the complete process of reasoning but
with the presentation of such an abstract of the proof as is sufficient to convince
a properly instructed mind.”13 So what would the fully-explicated ‘complete pro-
cess of reasoning’ look like? Would it be a formal derivation? Saunders Mac Lane,
reflecting on mathematical rigour, claimed that, “In practice, a proof is a sketch, in
sufficient detail to make possible a routine translation of this sketch into a formal
proof.” (1986, p. 377). By ‘formal proof’, Mac Lane means a proof that is not con-
tent-dependent: “...the test for the correctness of a proposed proof is by formal criteria
and not by reference to the subject matter at issue” (1986, p. 378; emphasis added).
However, the proofs that mathematicians create and deploy typically make inferences
that exploit local features of the subject-matter in hand. Euclid’s proof of the infin-
itude of primes employs the fact that if a natural number m (>1) divides another,
n, it cannot divide n+1. In this proof, this fact licences an argument-pattern or mini-
method, namely, the trick of adding one to the factorial of some number n and then
noticing that n!+1 cannot share any divisors with n!. This trick has been used in proofs
of other theorems. This portability makes it logic-like, in the sense that it could be
used in proofs of indefinitely many theorems, but it is not wholly general, because
its use is restricted to subject-matters of the right sort. The strategy of Euclid’s proof
employs a construction that works for numbers but not for continuous magnitudes,
and which again has applications in other proofs [Rav calls it a ‘topic-specific move’
(1999, p. 26)].

To cite another (albeit related) example, Goldbach’s 1730 proof of the infinitude of
primes exploits a feature of Fermat numbers: any two Fermat numbers are relatively
prime (Aigner and Ziegler 2004). This is easy to prove from a recursive definition that
is itself easy to verify by induction. Mathematical induction is not a general rule of
inference like modus ponens; it works only where the subject-matter can be indexed
to the natural numbers. Mathematical proofs typically use tricks, strategies, methods
and devices that have some application beyond the proof in hand, but are not wholly

13 Whitehead and Russell (1962) p. 3—introduction to the first edition.
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general, in that they only work in domains of the right sort.14 These proof-ideas are
thus content-dependent in something like the way that essentially informal argument
patterns are.

Of course, Mac Lane recognised that proofs do more than secure the truth of their
theorems. He appeals to this fact to explain why mathematicians do not write out
derivations in full. They content themselves with the sketches and recipes because,
“proofs are not only a means to certainty, but also a means to understanding. Behind
each substantial formal proof there lies an idea... it will not do to bury the idea under
the formalism.” (ibid.). Mac Lane does not say what the proof-idea helps us to under-
stand; presumably either the theorem or the working of the proof. In either case, the
proof-idea is related in some intimate way to the content. Either it explains the truth of
just that particular theorem, or it is a proof-strategy that works for some limited range
of proof-types. When we combine the content-dependency of proof-ideas with Mac
Lane’s view that proofs should be tested by formal criteria only, we get the odd result
that an informal proof is a content-dependent recipe for producing a content-indepen-
dent derivation, and the (informal) proof-idea expressed in this proof should help us
to understand something about the content, even though the content plays no role in
the inferences that jointly constitute the (fully-explicated) proof.

Philosophers of mathematical practice have had plenty to say about the short-com-
ings of the view that ‘real’ proofs are sketches of derivations. One of the lessons
of Lakatos (1976) is that translating a mathematical argument into a more formal
idiom transforms it. By the time it is fully formalised [satisfying criteria (a) and (b)
above], it is no longer the same piece of reasoning.15 Such translations are not ‘rou-
tine’ (to pick up Mac Lane’s word); rather, traduttore, traditore. Since then, Rav has
argued with a wealth of examples that proof-ideas are among the most interesting
mathematical ideas (Rav 1999). In his view, what gets washed out in the process of
radical formalisation is most of the mathematics. Thinking of proofs as recipes for
creating derivations obscures this fact, because this approach requires us to regard the
mathematical proof-ideas as mere heuristics. Avigad (in Mancosu (2008)) argues with
examples that understanding proofs does not consist in seeing how a suitable deri-
vation could be manufactured. Articles by Goethe and Friend (2010), Nickel (2010),
Pelc (2009) and Thurston (2006) make versions of the same claim. It is true that
proofs written by experts for other experts are highly compressed. They omit steps
that a ‘properly instructed’ expert reader can be expected to reconstruct. In this sense,
published expert-level proofs are argument-recipes. However, they are not recipes for
creating derivations in the proof-theoretic sense. To see this, observe that in filling
in the gaps, an expert reader does not normally do the things required to translate a
proof-used-in-earnest into a derivation satisfying (a) and (b). In working over a proof,
one does not normally specify a formal language and a set of inference rules. On
the contrary, we use minor, inessential abuses of notation to keep the page free from

14 Note that operations that seem impossible in a domain may become possible as a result of mathematical
developments. See Larvor (2010).
15 See p. 116, where Epsilon’s translation turns the theorem about polyhedra into a theorem about the
dimensions of vector spaces, 99–105 (“How criticism may turn Mathematical Truth into Logical Truth”)
and 120–123, where the class discusses translation.
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unhelpful clutter. McLarty16 points out that mathematicians routinely conflate terms
that formal treatments would distinguish (such as identifying the real number x with
the complex number x + 0i). If McLarty’s argument is correct, then formalisation
does not only discard or distort the original mathematical content; it also introduces
irrelevancies such as the distinction between R and its image in C. Sometimes, we use
highly general inference-licences that are not recognised in standard formal systems,
such as symmetry considerations.17

Of course, the expert reader’s version—the published proof plus some gap-filling
workings-out—is still highly compressed. To continue the process, imagine a less
expert reader, who has to be shown in more detail why each step follows from what
has gone before. Translating the proof into a fully formal idiom would not help this
person at all. If the gap-filling process has a limit (on which see Rav 1999:14–15), it
would be the version one would have to give to a person with no prior mathematical
understanding at all. Far from having all the non-logical meanings washed out, this
proof would have to explicate all the mathematical concepts that the proof invokes.
Such explication cannot consist in replacing mathematical terms with their formal
definitions. To see why, consider the definition of a continuous real-valued function.
The formal version reads: for any real ε there is a δ such that... The vital ingredient, the
part that explains to the student why this is a definition of continuity, is missing. The
version the student needs in order to understand the mathematics reads: for any real
ε, however small, there is a δ such that... The vital mathematical thought, that there
is a suitable δ for arbitrarily small ε, is not ‘buried’ in the fully formal version, in the
sense of being spread over too many pages or obscured by thickets of notation. It is
absent from the formalised version. But it is precisely in grasping such thoughts that
one understands a proof, and it is prior understanding of such thoughts that allows
expert mathematicians to read the highly compressed proofs in mathematics journals.
Such is the common stock of the philosophy of mathematical practice.

As noted at the outset, this line of argument leaves the opposition with easy replies.
First, many of the points raised by philosophers of mathematical practice concern
understanding rather than the primary role of proofs, namely, securing the truth of
theorems. The phrase ‘however small’ is absent from formal proofs in real analysis
because the formal proof goes through without it. As is often the case in philosophy,
the disputants end up begging the questions against each other. The philosopher of
mathematical practice will insist that it is the informal, content-dependent proof that
does the proving; the opposition will reply that it does so only because it somehow
specifies or indicates a formal (i.e. content-independent) derivation. Practice-oriented
philosophers can stall for a while by pointing out that these derivations are rarely if
ever seen in practice. Therefore, if anything proves theorems, it must be the ‘real’
proofs. However, philosophers of practice must eventually substantiate this claim by
explaining how these proofs prove. This requires a development of logical theory.

16 McLarty (2008, p. 357).
17 Barwise (1989) p. 849; for discussion see Dawson (2006, p. 270). Barwise reports Kreisel’s remark that,
“99% of all mathematicians don’t know the rules of even one of these formal systems, but still manage to
give correct proofs.” (ibid).
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6 Proofs as systems of inferential actions

At the very least, the explanatory task requires a conception of inference that is broad
enough to include the moves that mathematicians make in the course of such proofs,
which is what the phrase ‘inferential action’ is intended to permit. Many of these
moves are not actions on propositions. This is most obvious in the case of manipula-
tions of diagrams, mental images or physical models, such as the simple proof that the
composition of knots is commutative (tie a thumb-knot in a piece of actual or mental
string; notice that you can shuffle the knot along the string; tie another knot on the
same string, but loosely; notice that you can shuffle the tighter knot all the way round
the looser knot until it ends up on the other side).18 Or consider J.W.H. Alexander’s
1923 proof that every knot can be represented as a closed braid. To prove this, it is
enough to show that every knot can be manipulated so that it is ‘coiled’ around a point,
the braid axis. In a coiled knot, a path along the string always goes the same way round
the braid axis (clockwise or anticlockwise). The core of the proof is this: if the knot in
hand has a section that goes the wrong way round the braid axis, ‘throw it over your
shoulder’ (that is, flip it to the opposite side of the braid axis). Demonstrating one such
throw with a piece of actual string or a chalkboard diagram (rubbing out the flipped
section and re-drawing it in its new position) is the core inferential act of the proof.19

For a more sophisticated case from the same area of mathematics, consider the
operation of ‘combing-out’ employed in Churchard and Spring (1988). To see the
unnaturalness of thinking of their proof as a series of operations on propositions,
consider this passage, in which they explain how to extend their principal result:

The above may be extended to more general target manifolds other than RP

when we look at the “combing out” procedure in terms of vector fields. Con-
sider the special case f : R1 → R3 and the radial vector field V on R3 given by
V (p) = p, p ∈ R3. To show the above proposition, we could have isotoped f
near the origin in R1 to lie along the paths of two trajectories of V emanating
from 0 ∈ R3 (e.g., the x-axis). Then using the flow of V, f could be “combed
out” along these trajectories. In this fashion, all the “knotted” behaviour of f
is swept out to ∞ by a proper isotopy, leaving behind the inclusion R1 → R3.
(1988:138)

Aside from referring to the ‘combing-out procedure’ and sweeping out the knotted
behaviour of f , they cheerfully turn ‘isotope’ into a verb—with f as its object. Other
proof-procedures that are not naturally described as actions on propositions include the
construction of numbers, functions, mappings and structures of every sort; artful index-
ing (think of Gödel numbering); and any instruction beginning “let”, “set” or “take”.

18 Sossinsky (2002, p. 49).
19 Op. cit. pp. 17–20. I owe this example to a conversation with David Corfield. See Jones (1998, pp.
209–213). Here I must record a mild terminological disagreement with Goethe and Friend (2010), who
describe a derivation from axioms as the ‘core’ of a proof (p. 277). Given their argument, this is odd. In the
example they offer (the proof that the rational numbers are equinumerous with the natural numbers), the
core of the proof is the act of drawing a path through the grid of rationals—which does not appear in the
fully formalised version (taking ‘core’ to mean something like ‘essence’).
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As noted above, for every kind of inferential action, there must be a corresponding
means of control, to ensure rigour.20 Sometimes these controls are simple rules like
‘do not divide by zero’. In other cases, these controls may be the fruit of mathematical
research (think of the seventeenth-century experiments in exponentiation, or the nine-
teenth-century developments necessary to establish rules for handling infinite series).
In some historical cases the controls are implicit, and there the historian-philosopher
has a task to perform in teasing them out explicitly (Manders’ work on Euclid (1995)
is a model of this). Such teasings-out are a job for a philosopher-historian rather than
a historian tout court because the outcome must be an explanation of how successful
inferences were possible, that is, a logical account (in our broad sense of ‘logic’ as the
study of inferential acts). Demonstrating rigour involves making the controls on infer-
ential acts explicit, which is why some diagrams disappear from the final published
version of a mathematical argument. The problem is not with diagrams as such, but
rather that the actions performed on these diagrams in this piece of work do not have
established, agreed controls.21

A related task for the philosopher is to understand the relationship between infer-
ential actions on non-propositional objects and the frame that turns a gesture into an
inference. There must be such a frame, even if it too is largely or wholly implicit.
Dropping a weight from a height is not an experiment unless it is framed as such.
Even performing a new gymnastic feat does not become an argument without a fram-
ing phrase such as, “Watch this!”, or a gesture with the same illocutionary force (recall
the pointed watch-staring in the earlier example of dropping a stone down a well). The
fact that such frames are usually linguistic or textual does not reduce inferential acts
to speech-acts. A diagram combines with a text to constitute an argument, but the
diagram does not thereby become a kind of text.22 A manipulation of physical matter
becomes an experiment when combined with the discursive practice of writing-up and
publication; this does not show that the manipulation of matter is a kind of discourse.
Inferential acts and speech-acts are overlapping categories, but neither one wholly
contains the other.

The notion of inferential action offered here is no more than a sketch, but, given
the diversity of domains and the inventiveness of inferring agents, there can never
be a complete taxonomy of inferential actions, let alone a comprehensive theoretical
treatment. Nevertheless, this sketch does set out practical tasks (the identification of
inferential actions and their objects; the identification of their associated systems of
control and rigour; the explication of their linguistic frames) that could constitute one
form of normal research in the philosophy of mathematical practice; the fruits of such
work could in turn provide readings of informal proofs that show how they work as
proofs without invoking non-existent formal derivations.

20 “At its most basic, a mathematical practice is a structure for cooperative effort in the control of self and
life... Successes of control may be seen in the way we can expect the world to behave...” (Manders 1995,
p. 82; emphasis in original).
21 See Carter (2010) for a case of disappearing diagrams.
22 In addition to Manders’ work on Euclid, See Dove 2002 for a careful account of how a diagram func-
tions in proofs that does not assimilate diagrams to text or reduce them to illustration or heuristics. See also
Grosholz (2007) and Reed (1995).
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