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Abstract In concrete applications of probability, statistical investigation gives us
knowledge of some probabilities, but we generally want to know many others that are
not directly revealed by our data. For instance, we may know prob(P/Q) (the probabil-
ity of P given Q) and prob(P/R), but what we really want is prob(P/Q&R), and we
may not have the data required to assess that directly. The probability calculus is of no
help here. Given prob(P/Q) and prob(P/R), it is consistent with the probability cal-
culus for prob(P/Q&R) to have any value between 0 and 1. Is there any way to make
a reasonable estimate of the value of prob(P/Q&R)? A related problem occurs when
probability practitioners adopt undefended assumptions of statistical independence
simply on the basis of not seeing any connection between two propositions. This is
common practice, but its justification has eluded probability theorists, and researchers
are typically apologetic about making such assumptions. Is there any way to defend
the practice? This paper shows that on a certain conception of probability—nomic
probability—there are principles of “probable probabilities” that license inferences of
the above sort. These are principles telling us that although certain inferences from
probabilities to probabilities are not deductively valid, nevertheless the second-order
probability of their yielding correct results is 1. This makes it defeasibly reasonable to
make the inferences. Thus I argue that it is defeasibly reasonable to assume statistical
independence when we have no information to the contrary. And I show that there is a
function Y(r, s, a) such that if prob(P/Q) = r , prob(P/R) = s, and prob(P/U ) = a
(where U is our background knowledge) then it is defeasibly reasonable to expect that
prob(P/Q&R) = Y(r, s, a). Numerous other defeasible inferences are licensed by
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similar principles of probable probabilities. This has the potential to greatly enhance
the usefulness of probabilities in practical application.

Keywords Probability · Statistical independence · Defeasible reasoning ·
Direct inference · Nomic probability · Epistemology

1 The problem of sparse probability knowledge

The use of probabilities is ubiquitous in philosophy, science, engineering, artificial
intelligence, economics, and many other disciplines. It is generally supposed that the
logical and mathematical structure of probabilities is well understood, and completely
characterized by the probability calculus. The probability calculus is typically iden-
tified with some form of Kolmogoroff’s axioms, often supplemented with an axiom
of countable additivity. Mathematical probability theory is a mature subdiscipline of
mathematics based upon these axioms, and forms the mathematical basis for most
applications of probabilities in the sciences.

There is, however, a problem with the supposition that this is all there is to the
logical and mathematical structure of probabilities. The uninitiated often suppose that
if we know a few basic probabilities, we can compute the values of many others just
by applying the probability calculus. Thus it might be supposed that familiar sorts of
statistical inference provide us with our basic knowledge of probabilities, and then
appeal to the probability calculus enables us to compute other previously unknown
probabilities. The picture is of a kind of foundations theory of the epistemology of
probability, with the probability calculus providing the inference engine that enables us
to get beyond whatever probabilities are discovered by direct statistical investigation.

Regrettably, this simple image of the epistemology of probability cannot be correct.
The difficulty is that the probability calculus is not nearly so powerful as the uniniti-
ated suppose. If we know the probabilities of some basic propositions P , Q, R, S,. . .,
it is rare that we will be able to compute, just by appeal to the probability calculus, a
unique value for the probability of some logical compound like ((P&Q) ∨ (R&S)).
To illustrate, suppose we know that prob(P) = .7 and prob(Q) = .6. What can we
conclude about prob(P&Q)? All the probability calculus enables us to infer is that
.3 ≤ prob(P&Q) ≤ .6. That does not tell us much. Similarly, all we can conclude
about prob(P ∨ Q) is that .7 ≤ prob(P ∨ Q) ≤ 1.0. In general, the probability
calculus imposes constraints on the probabilities of logical compounds, but it falls far
short of enabling us to compute unique values.

Unless we come to a problem already knowing a great deal about the relevant
probabilities, the probability calculus will not enable us to compute the values of
unknown probabilities that subsequently become of interest to us. Suppose a prob-
lem is described by logical compounds of a set of simple propositions P1, . . . , Pn .
Then to be able to compute the probabilities of all logical compounds of these simple
propositions, what we must generally know is the probabilities of every conjunction
of the form prob((∼)P1& . . . &(∼)Pn). The tildes enclosed in parentheses can be
either present or absent. These n-fold conjunctions are called Boolean conjunctions,
and jointly they constitute a “partition”. Given fewer than all but one of them, the
only constraint the probability calculus imposes on the probabilities of the remaining
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Boolean conjunctions is that the sum of all of them must be 1. Together, the prob-
abilities of all the Boolean conjunctions determine a complete “probability distribu-
tion”—an assignment of unique probabilities to every logical compound of the simple
propositions.

In theoretical accounts of the use of probabilities in any discipline, it is generally
assumed that we come to a problem equipped with a complete probability distribution.
However, in real life this assumption is totally unrealistic. In general, given n simple
propositions, there will be 2n logically independent probabilities of Boolean conjunc-
tions. As Harman (1986) observed years ago, for a rather small number of simple
propositions, there is a completely intractable number of logically independent proba-
bilities. For example, given just 300 simple propositions, a grossly inadequate number
for describing many real-life problems, there will be 2300 logically independent proba-
bilities of Boolean conjunctions. 2300 is approximately equal to 1090. To illustrate what
an immense number this is, recent estimates of the number of elementary particles
in the universe put it at 1080–1085. Thus to know the probabilities of all the Bool-
ean conjunctions, we would have to know 5–10 orders of magnitude more logically
independent probabilities than the number of elementary particles in the universe.

Lest one think this is an unrealistic problem, consider a simple example. Pollock
(2006a) describes a challenge problem for AI planners. This problem generalizes
Kushmerick et al. (1995) “slippery gripper” problem. We are presented with a table
on which there are 300 numbered blocks, and a panel of correspondingly numbered
buttons. Pushing a button activates a robot arm which attempts to pick up the corre-
sponding block and remove it from the table. We get 100 dollars for each block that
is removed. Pushing a button costs two dollars. The hitch is that half of the blocks are
greasy. If a block is not greasy, pushing the button will result in its being removed
from the table with probability 1.0, but if it is greasy the probability is only 0.01. We
are given exactly 300 opportunities to either push a button or do nothing. Between
button pushes, we are given the opportunity to look at the table, which costs one dol-
lar. Looking will reveal what blocks are still on the table, but will not reveal directly
whether a block is greasy. What should we do? Humans find this problem terribly
easy. An informal survey reveals that most people quickly produce the optimal plan:
push each button once, and don’t bother to look at the table. But when Pollock (2006a)
surveyed existing AI planners, most could not even encode this problem, much less
solve it. The difficulty is that there are too many logically independent probabilities.
For every subset K of the 300 blocks, let pK ,i be the probability that, when K is the
set of blocks on the table, block i is still on the table after the button corresponding
to block i is pushed. There are 2300 choices of K , so there are more than 2300 prob-
abilities pK ,i such that i ∈ K . Furthermore, none of them can be derived from any
of the others. Thus they must each be encoded separately in describing a complete
probability distribution for the problem. It seems to be impossible for a real cognitive
agent to encode such a probability distribution.

Although we humans cannot encode a complete probability distribution for the
preceding problem, we can deal with problems like the slippery blocks problem. How
do we do that? It is, apparently, computationally impossible for the requisite probabil-
ities to be stored in us from the start, so they must be produced one at a time as we need
them. If they are produced as we need them, there must be some kind of inference
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mechanism that has the credentials to produce rationally acceptable estimates. We
have seen that, unless we begin with more information than it is computationally pos-
sible for us to store, we cannot derive the new probability estimates from previously
accepted probabilities by way of the probability calculus. So there must be some other
rational inference procedures that enable us to generate new probability estimates that
do not follow logically, via the probability calculus, from prior probability estimates.
What might these rational inference procedures be?

I will call this the problem of sparse probability knowledge. It is computationally
impossible for us to store explicit knowledge of a complete probability distribution.
At any given time, our knowledge of probabilities is worse than just incomplete. The
set of probabilities we know is many orders of magnitude smaller than the set of all
true probabilities. How then can we be as successful as we are in applying probability
to real-world problems?

It is noteworthy that in applying probabilities to concrete problems, probability
practitioners commonly adopt undefended assumptions of statistical independence.
The probabilities prob(P) and prob(Q) are statistically independent iff prob(P&Q)

= prob(P)·prob(Q). An equivalent definition is that prob(P/Q) = prob(P). In the
practical use of probabilities it is almost universally assumed, often apologetically,
that probabilities are independent unless we have some reason for thinking otherwise.
In most real-world applications of probabilities, if we did not make such assumptions
about independence we would not be able to compute any of the complex probabilities
that interest us. Imagine a case in which we know that the probability is .3 of a Xian
(a fictional Chinese car) having a defective door lock if it has power door locks and
was manufactured in a certain plant, whereas the probability of its having a defective
door lock otherwise is only .01. We also know that the probability of a Xian being
manufactured in that plant is .33, and the probability of a Xian having power door locks
is .85. If we know nothing else of relevance, we will normally assume that whether the
car has power door locks is statistically independent of whether it was manufactured
in that plant, and so compute

prob(power-locks & plant) = .33 × .85 = .28.

Then we can compute the general probability of a Xian having defective door locks:

prob(defect) = prob(defect/power-locks & plant) · prob(power-locks & plant)

+ prob(defect/ ∼ (power-locks & plant))

·(1 − prob(power-locks & plant))

= .3 × .28 + .01 × (1 − .28) = .09.

We could not perform this, or similar computations, without the assumption of inde-
pendence.

The independence assumption is a defeasible assumption, because obviously we
can discover that conditions we thought were independent are unexpectedly correlated.
The probability calculus can give us only necessary truths about probabilities, so the
justification of such a defeasible assumption must have some other source.
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If we have a problem in which we can assume that most propositions are statisti-
cally independent of one another, there are compact techniques for storing complete
probability distributions using what are called “Bayesian nets” (Pearl 1988). The use
of Bayesian nets allow us to explicitly store just that subset of probabilities that cannot
be derived from each other by assuming statistical independence, and provides an
efficient inference mechanism for recovering derivable probabilities from them. How-
ever, this is not the entire solution to the problem of sparse probability knowledge,
because in the slippery blocks problem, none of the probabilities pK ,i can be derived
from others, so they would all have to be encoded separately in a Bayesian net, and
that would make the Bayesian net impossibly large.

I will argue that a defeasible assumption of statistical independence is just the tip
of the iceberg. There are multitudes of defeasible inferences that we can make about
probabilities, and a very rich mathematical theory grounding them. It is these defeasi-
ble inferences that enable us to make practical use of probabilities without being able
to deduce everything we need via the probability calculus. I will argue that, on a certain
conception of probability, there are mathematically derivable second-order probabil-
ities to the effect that various inferences about first-order probabilities, although not
deductively valid, will nonetheless produce correct conclusions with probability 1,
and this makes it reasonable to accept these inferences defeasibly. The second-order
principles are principles of probable probabilities.

2 Two kinds of probability

No doubt the currently most popular theory of the foundations of probability is the
subjectivist theory due originally to Ramsey and Savage, and developed at length by
many more recent scholars. However, my solution to the problem of sparse probability
knowledge requires that we start with objective probabilities. Historically, there have
been two general approaches to probability theory. What I will call generic probabili-
ties1 are general probabilities, relating properties or relations. The generic probability
of an A being a B is not about any particular A, but rather about the property of being
an A. In this respect, its logical form is the same as that of relative frequencies. I write
generic probabilities using lower case “prob” and free variables: prob(Bx/Ax). For
example, we can talk about the probability of an adult male of Slavic descent being
lactose intolerant. This is not about any particular person—it expresses a relationship
between the property of being an adult male of Slavic descent and the property of
being lactose intolerant. Most forms of statistical inference or statistical induction are
most naturally viewed as giving us information about generic probabilities. On the
other hand, for many purposes we are more interested in propositions that are about
particular persons, or more generally, about specific matters of fact. For example, in
deciding how to treat Herman, an adult male of Slavic descent, his doctor may want
to know the probability that Herman is lactose intolerant. This illustrates the need
for a kind of probability that attaches to propositions rather than relating properties

1 In the past, I followed Jackson and Pargetter 1973 in calling these “indefinite probabilities”, but I never
liked that terminology.

123



322 Synthese (2011) 181:317–352

and relations. These are sometimes called “single case probabilities”, although that
terminology is not very good because such probabilities can attach to propositions of
any logical form. For example, we can ask how probable it is that there are no human
beings over the age of 130. In the past, I called these “definite probabilities”, but now
I will refer to them as singular probabilities.

The distinction between singular and generic probabilities is commonly overlooked
by contemporary probability theorists, perhaps because of the popularity of subjective
probability (which has no way to make sense of generic probabilities). But most objec-
tive approaches to probability tie probabilities to relative frequencies in some essential
way, and the resulting probabilities have the same logical form as the relative frequen-
cies. That is, they are generic probabilities. The simplest theories identify generic
probabilities with relative frequencies (Russell 1948; Braithwaite 1953; Kyburg 1961,
1974a; Sklar 1970, 1973).2 The simplest objection to such “finite frequency theories”
is that we often make probability judgments that diverge from relative frequencies. For
example, we can talk about a coin being fair (and so the generic probability of a flip
landing heads is 0.5) even when it is flipped only once and then destroyed (in which
case the relative frequency is either 1 or 0). For understanding such generic probabil-
ities, we need a notion of probability that talks about possible instances of properties
as well as actual instances. Theories of this sort are sometimes called “hypothetical
frequency theories”. C. S. Peirce was perhaps the first to make a suggestion of this
sort. Similarly, the statistician R. A. Fisher, regarded by many as “the father of modern
statistics”, identified probabilities with ratios in a “hypothetical infinite population, of
which the actual data is regarded as constituting a random sample” (1922, p. 311).
Popper (1956, 1957, 1959) endorsed a theory along these lines and called the resulting
probabilities propensities. Kyburg (1974a) was the first to construct a precise version
of this theory (although he did not endorse the theory), and it is to him that we owe the
name “hypothetical frequency theories”. Kyburg (1974a) also insisted that von Mises
should also be considered a hypothetical frequentist. There are obvious difficulties
for spelling out the details of a hypothetical frequency theory. More recent attempts
to formulate precise versions of what might be regarded as hypothetical frequency
theories are van Fraassen (1981), Bacchus (1990), Halpern (1990), Pollock (1990),
Bacchus et al. (1996). I will take my jumping-off point to be the theory of Pollock
(1990), which I will sketch briefly in section three.

After brief thought, most philosophers find the distinction between singular and
generic probabilities intuitively clear. However, this is a distinction that sometimes
puzzles probability theorists many of whom have been raised on an exclusive diet
of singular probabilities. They are sometimes tempted to confuse generic probabili-
ties with probability distributions over random variables. Although historically most
theories of objective probability were theories of generic probability, mathematical
probability theory tends to focus exclusively on singular probabilities. When math-
ematicians talk about variables in connection with probability, they usually mean
“random variables”, which are not variables at all but functions assigning values to
the different members of a population. Generic probabilities have single numbers as

2 Kneale (1949) traces the frequency theory to R. L. Ellis, writing in the 1840’s, and Venn (1888) and
C. S. Peirce in the 1880’s and 1890’s.
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their values. Probability distributions over random variables are just what their name
implies—distributions of singular probabilities rather than single numbers.

It has always been acknowledged that for practical decision-making we need singu-
lar probabilities rather than generic probabilities. For example, in deciding whether to
trust the door locks on my Xian, I want to know the probability of its having defective
locks, not the probability of Xians in general having defective locks. So theories that
take generic probabilities as basic need a way of deriving singular probabilities from
them. Theories of how to do this are theories of direct inference. Theories of objective
generic probability propose that statistical inference gives us knowledge of generic
probabilities, and then direct inference gives us knowledge of singular probabilities.
Reichenbach (1949) pioneered the theory of direct inference. The basic idea is that
if we want to know the singular probability prob(Fa), we look for the narrowest
reference class (or reference property) G such that we know the generic probability
prob(Fx/Gx) and we know Ga, and then we identify prob(Fa) with prob(Fx/Gx).
For example, actuarial reasoning aimed at setting insurance rates proceeds in roughly
this fashion. Kyburg (1974a) was the first to attempt to provide firm logical founda-
tions for direct inference. Pollock (1990) took that as its starting point and constructed
a modified theory with a more epistemological orientation. The present paper builds
upon some of the basic ideas of the latter.

The appeal to generic probabilities and direct inference has seemed promising for
avoiding the computational difficulties attendant on the need for a complete probabil-
ity distribution. Instead of assuming that we come to a problem with an antecedently
given complete probability distribution, one can assume more realistically that we
come to the problem with some limited knowledge of generic probabilities and then
infer singular probabilities from the latter as we need them. For example, I had no
difficulty giving a description of the probabilities involved in the slippery blocks
problem, but I did that by giving an informal description of the generic probabilities
rather than the singular probabilities. We described it by reporting that the generic
probability prob(Gx/Bx) of a block being greasy is .5, and the generic probability
prob(∼T x(s +1)/T xs & Pxs & Gx) of a block being successfully removed from the
table at step s if it is greasy is .01, but prob(∼T x(s + 1)/T xs & Pxs & ∼Gx) = 1.0.
We implicitly assumed that prob(∼T x(s + 1)/∼T xs) = 1. These probabilities com-
pletely describe the problem. For solving the decision-theoretic planning problem, we
need singular probabilities rather than generic probabilities, but one might hope that
these can be recovered by direct inference from this small set of generic probabilities
as they are needed.

Unfortunately, I do not think that this hope will be realized. The appeal to generic
probabilities and direct inference helps a bit with the problem of sparse probability
knowledge, but it falls short of constituting a complete solution. The difficulty is that
the problem recurs at the level of generic probabilities. Direct statistical investigation
will apprise us of the values of some generic probabilities, and then others can be
derived by appeal to the probability calculus. But just as for singular probabilities, the
probability calculus is a weak crutch. We will rarely be able to derive more than rather
broad constraints on unknown probabilities. A simple illustration of this difficulty
arises when we know that prob(Ax/Bx) = r and prob(Ax/Cx) = s, where r �= s,
and we know both that Ba and Ca. What should we conclude about the value of
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prob(Aa)? Direct inference gives us defeasible reasons for drawing the conflicting
conclusions that prob(Aa) = r and prob(Aa) = s, and standard theories of direct
inference give us no way to resolve the conflict, so they end up telling us that there is
no conclusion we can justifiably draw about the value of prob(Aa). Is this reasonable?
Suppose we have two unrelated diagnostic tests for some rare disease, and Bernard
tests positive on both tests. Intuitively, it seems this should make it more probable
that Bernard has the disease than if we only have the results of one of the tests. This
suggests that, given the values of prob(Ax/Bx) and prob(Ax/Cx), there ought to be
something useful we can say about the value of prob(Ax/Bx & Cx), and then we can
apply direct inference to the latter to compute the singular probability that Bernard has
the disease. Existing theories give us no way to do this, and the probability calculus
imposes no constraint at all on the value of prob(Ax/Bx & Cx).

I believe that standard theories of direct inference are much too weak to solve the
problem of sparse probability knowledge. What I will argue in this paper is that new
mathematical results, coupled with ideas from the theory of nomic probability intro-
duced in Pollock (1990), provide the justification for a wide range of new principles
supporting defeasible inferences about the expectable values of unknown probabili-
ties. These principles include familiar-looking principles of direct inference, but they
include many new principles as well. For example, among them is a principle enabling
us to defeasibly estimate the probability of Bernard having the disease when he tests
positive on both tests. I believe that this broad collection of new defeasible inference
schemes provides the solution to the problem of sparse probability knowledge and
explains how probabilities can be truly useful even when we are massively ignorant
about most of them.

3 Nomic probability

Pollock (1990) developed a possible worlds semantics for objective generic probabil-
ities,3 and I will take that as my starting point for the present theory of probable prob-
abilities. The proposal was that we can identify the nomic probability prob(Fx/Gx)

with the proportion of physically possible G’s that are F’s. A physically possible G
is defined to be an ordered pair 〈w, x〉 such that w is a physically possible world (one
compatible with all of the physical laws) and x has the property G at w. Let us define
the subproperty relation as follows:

F 	 G iff it is physically necessary (follows from true physical laws) that
(∀x)(Fx → Gx).
F ∼= G iff it is physically necessary (follows from true physical laws) that
(∀x)(Fx ↔ Gx).

We can think of the subproperty relation as a kind of nomic entailment relation (hold-
ing between properties rather than propositions). More generally, F and G can have
any number of free variables (not necessarily the same number), in which case F 	 G
iff the universal closure of (F → G) is physically necessary.

3 Somewhat similar semantics were proposed by Halpern (1990) and Bacchus et al. (1996).

123



Synthese (2011) 181:317–352 325

Given a suitable proportion function ρ, we could stipulate that, where F and G are
the sets of physically possible F’s and G’s respectively:

probx (Fx/Gx) = ρ(F,G).4

However, it is unlikely that we can pick out the right proportion function without
appealing to prob itself, so the postulate is simply that there is some proportion func-
tion related to prob as above. This is merely taken to tell us something about the
formal properties of prob. Rather than axiomatizing prob directly, it turns out to be
more convenient to adopt axioms for the proportion function. Proportion functions
are a generalization of measure functions, studied in mathematics in measure theory.
Pollock (1990) showed that, given the assumptions adopted there, ρ and prob are
interdefinable, so the same empirical considerations that enable us to evaluate prob
inductively also determine ρ.

Note that probx is a variable-binding operator, binding the variable x . When there
is no danger of confusion, I will omit the subscript “x”, but sometimes we will want
to quantify into probability contexts, in which case it will be important to distinguish
between the variables bound by “prob” and those that are left free. To simplify expres-
sions, I will often omit the variables, writing “prob(F/G)” for “prob(Fx/Gx)” when
no confusion will result.

It is often convenient to write proportions in the same logical form as proba-
bilities, so where ϕ and θ are open formulas with free variable x , let ρx (ϕ/θ) =
ρ({x |ϕ&θ}, {x |θ}). Note that ρx is a variable-binding operator, binding the var-
iable x . Again, when there is no danger of confusion, I will typically omit the
subscript “x”.

I will make three classes of assumptions about the proportion function. Let #X be
the cardinality of a set X . If Y is finite, I assume:

ρ(X, Y ) = #X ∩ Y

#Y
.

However, for present purposes the proportion function is most useful in talking about
proportions among infinite sets. The sets F and G will invariably be infinite, if for no
other reason than that there are infinitely many physically possible worlds in which
there are F’s and G’s.

My second set of assumptions is that the standard axioms for conditional probabil-
ities hold for proportions. These axioms automatically hold for relative frequencies
among finite sets, so the assumption is just that they also hold for proportions among
infinite sets.

That further assumptions are needed derives from the fact that the standard proba-
bility calculus is a calculus of singular probabilities rather than generic probabilities.
A calculus of generic probabilities is related to the calculus of singular probabili-
ties in a manner roughly analogous to the relationship between the predicate calculus

4 Probabilities relating n-place relations are treated similarly. I will generally just write the one-variable
versions of various principles, but they generalize to n-variable versions in the obvious way.
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and the propositional calculus. Thus we get some principles pertaining specifically
to relations that hold for generic probabilities but cannot even be formulated in the
standard probability calculus. For instance, Pollock (1990) endorsed the following two
principles:

Individuals

prob(Fxy/Gxy & y = a) = prob(Fxa/Gxa)

PPROB

prob(Fx/Gx & prob(Fx/Gx) = r) = r.

I will not assume either of these principles in this paper, but I mention them just to
illustrate that there are reasonable-seeming principles governing generic probabilities
that are not even well formed in the standard probability calculus.

What I do need in the present paper is three assumptions about proportions that go
beyond merely imposing the standard axioms for the probability calculus. The three
assumptions I will make are:

Finite set principle

For any set B, N > 0, and open formula �,

ρX (�(X)/X ⊆ B&#X = N ) =
ρx1,...,xN (�({x1, . . . , xN })/x1, . . . , xN are pairwise distinct & x1, . . . , xN ∈ B).

Projection principle

If 0 ≤ p, q ≤ 1 and (∀y)(Gy → ρx (Fx/Rxy) ∈ [p, q]), then ρx,y

(Fx/Rxy&Gy) ∈ [p, q].5

Crossproduct principle

If C and D are nonempty, ρ (A × B, C × D) = ρ(A, C) · ρ(B, D).

Note that these three principles are all theorems of elementary set theory when the sets
in question are finite. For instance, to illustrate the finite case of the projection principle,
let F be “x is an even non-negative integer”, let Rxy be “x and y are non-negative inte-
gers and x ≤ y”, and let Gy be “y ∈ {5, 6, 7}. Then ρx (Fx/Rx5) = ρx (Fx/Rx7) =
1/2 and ρx (Fx/Rx5) = 4/7. Thus (∀y)(Gy → ρx (Fx/Rxy) ∈ [4/7, 1/2]). And
ρx,y(Fx/Rxy & Gy) = 11/21 ∈ [4/7, 1/2].

5 Note that this is a different (and more conservative) principle than the one called “Projection” in Pollock
(1990).
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The crossproduct principle holds for finite sets because #(A × B) = (#A) · (#B),
and hence

ρ (A × B, C × D) = #((A × B) ∩ (C × D))

#(C × D)
= #((A ∩ C) × (B ∩ D))

#(C × D)

= #(A ∩ C) · #(B ∩ D)

#C · #D
= #(A ∩ C)

#C
· #(B ∩ D)

#D
= ρ(A, C) · ρ(B, D).

My assumption is simply that ρ continues to have these algebraic properties even when
applied to infinite sets. I take it that this is a fairly conservative set of assumptions.

I often hear the objection that in affirming the Crossproduct Principle, I must be
making a hidden assumption of statistical independence. However, that is to confuse
proportions with probabilities. The Crossproduct Principle is about proportions—not
probabilities. For finite sets, proportions are computed by simply counting members
and computing ratios of cardinalities. It makes no sense to talk about statistical inde-
pendence in this context. For infinite sets we cannot just count members any more,
but the algebra is the same. It is because the algebra of proportions is simpler than the
algebra of probabilities that it is useful to axiomatize nomic probabilities indirectly
by adopting axioms for proportions.

The preceding amounts to a “realistic possible worlds semantics” for nomic prob-
ability. A realistic possible world semantics takes possible worlds, objects in possi-
ble world, properties, relations, and propositions as basic. There are many different
approaches to how these concepts are to be understood, but for the most part it makes
no different to the present paper what approach is taken. All that my mathematics
requires is that propositions, properties, and relations are closed under various opera-
tions that everyone grants them to be closed under. As long as the proportion function
satisfies my postulates, the mathematical results follow.

To be contrasted with realistic possible world semantics are model theoretic seman-
tics (e.g., Halpern 1990; Bacchus et al. 1996). A model-theoretic approach constructs
set-theoretic models and interprets formal languages in terms of them. It it mathemat-
ically precise, but it is only as good as the model theory. You can construct model
theories that validate almost anything. If your objective is to use model theory to
illuminate pre-analytic concepts, it is important to justify the model theory. Model
theoretic approaches to modalities rely upon formal analogues to possible worlds,
but it has become apparent that the formal analogues are not precise. The simplest
analogue generates Carnap’s modal logic, which no one thinks is right. To get even
S5 one must make basically ad hoc moves regarding the accessibility relation. This is
a topic I discussed at great length in my (1984a). What I argued was that to get the
model theory right, you have to start with a realistic possible worlds semantics and
justify it. The appeal to model theory cannot replace the appeal to a realistic possible
world semantics.

Pollock (1990) derived the entire epistemological theory of nomic probability from
a single epistemological principle coupled with a mathematical theory that amounts to
a calculus of nomic probabilities. The single epistemological principle that underlies
probabilistic reasoning is the statistical syllogism, which can be formulated as follows:
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Statistical syllogism

If F is projectible with respect to G and r > 0.5, then �Gc & prob(F/G) ≥ r�
is a defeasible reason for �Fc�, the strength of the reason being a monotonic
increasing function of r .

I take it that the statistical syllogism is a very intuitive principle, and it is clear that
we employ it constantly in our everyday reasoning. For example, suppose you read in
the newspaper that George Bush is visiting Guatemala, and you believe what you read.
What justifies your belief? No one believes that everything printed in the newspaper
is true. What you believe is that certain kinds of reports published in certain kinds of
newspapers tend to be true, and this report is of that kind. It is the statistical syllogism
that justifies your belief.

The projectibility constraint in the statistical syllogism is the familiar projectibility
constraint on inductive reasoning, first noted by Goodman (1955). One might wonder
what it is doing in the statistical syllogism. But it was argued in Pollock (1990), on the
strength of what were taken to be intuitively compelling examples, that the statistical
syllogism must be so constrained. Furthermore, it was shown that without a projecti-
bility constraint, the statistical syllogism is self-defeating, because for any intuitively
correct application of the statistical syllogism it is possible to construct a conflicting
(but unintuitive) application to a contrary conclusion. This is the same problem that
Goodman first noted in connection with induction. Pollock (1990) then went on to
argue that the projectibility constraint on induction derives from that on the statistical
syllogism.

The projectibility constraint is important, but also problematic because no one has
a good analysis of it. I will not discuss it further here. I will just assume, without
argument, that the second-order probabilities employed below in the theory of prob-
able probabilities satisfy the projectibility constraint, and hence can be used in the
statistical syllogism.

The statistical syllogism is a defeasible inference scheme, so it is subject to defeat.
I believe that the only primitive (underived) principle of defeat required for the statis-
tical syllogism is that of subproperty defeat:

Subproperty defeat for the statistical syllogism

If H is projectible with respect to G, then�Hc & prob(F/G&H) < prob(F/G)�
is an undercutting defeater for the inference by the statistical syllogism from �Gc
& prob(F/G) ≥ r� to �Fc�.6

In other words, information about c that lowers the probability of its being F con-
stitutes a defeater. Note that if prob(Fx/G&H) is high, one may still be able to

6 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and under-
cutting defeaters attack the inference itself without attacking the conclusion. Here I assume some form of
the OSCAR theory of defeasible reasoning (Pollock 1995). For a sketch of that theory see Pollock (2006b).
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make a weaker inference to the conclusion that Fc, but from the distinct premise
�Gc & prob(F/G&H) = s�.

Pollock (1990) argued that we need additional defeaters for the statistical syllogism
besides subproperty defeaters, formulated several candidates for such defeaters. But
one of the conclusions of the research described in this paper is that the additional
defeaters can all be viewed as derived defeaters, with subproperty defeaters being the
only primitive defeaters for the statistical syllogism.

4 Indifference

Principles of probable probabilities are derived from combinatorial theorems about
proportions in finite sets. I will begin with a very simple principle that is in fact not
very useful, but will serve as a template for the discussion of more useful principles.

Suppose we have a set of 10,000,000 objects. I announce that I am going to select
a subset, and ask you how many members it will have. Most people will protest that
there is no way to answer this question. It could have any number of members from 0
to 10,000,000. However, if you answer, “Approximately 5,000,000,” you will almost
certainly be right. This is because, although there are subsets of all sizes from 0 to
10,000,000, there are many more subsets whose sizes are approximately 5,000,000
than there are of any other size. In fact, 99% of the subsets have cardinalities differing
from 5,000,000 by less than .08%. If we let “x ≈

δ
y” mean “the difference between x

and y is less than or equal to δ”, the general theorem is:

Finite indifference principle

For every ε, δ > 0 there is an N such that if U is finite and #U > N then

ρX

(
ρ(X, U )≈

δ
0.5/X ⊆ U

)
≥ 1 − ε.

In other words, the proportion of subsets of U which are such that ρ(X, U ) is approx-
imately equal to .5, to any given degree of approximation, goes to 1 as the size of U
goes to infinity. To see why this is true, suppose #U = n. If r ≤ n, the number of
r -membered subsets of U is C(n, r) = n!

r !(n−r)! . It is illuminating to plot C(n, r) for

variable r and various fixed values of n.7 See Fig. 1. This illustrates that the sizes of
subsets of U will cluster around n

2 , and they cluster more tightly as n increases. This
is precisely what the Indifference Principle tells us.

The reason the Indifference Principle holds is that C(n, r) becomes “needle-like”
in the limit. As we proceed, I will state a number of similar combinatorial theo-
rems, and in each case they have similar intuitive explanations. The cardinalities

7 Note that throughout this paper I employ the definition of n! in terms of the Euler gamma function.
Specifically, n! = ∫ ∞

0 tne−t dt . This has the result that n! is defined for any positive real number n, not just
for integers, but for the integers the definition agrees with the ordinary recursive definition. This makes the
mathematics more convenient.
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Fig. 1 C(n, r) for n = 100, n = 1000, and n = 10000

of relevant sets are products of terms of the form C(n, r), and their distribution
becomes needle-like in the limit. In this paper, I will omit the proofs of theorems.
They will be presented elsewhere in detail, and can be found on my website in a
much longer version of this paper (http://oscarhome.soc-sci.arizona.edu/ftp/PAPERS/
Probable%20Probabilities%20with%20proofs.pdf).

The finite indifference principle is a mathematical theorem about finite sets. It
tells us that for fixed ε, δ > 0, there is an N such that if U is finite but contains at
least N members, then the proportion of subsets X of a set U which are such that
ρ(X, U )≈

δ
0.5 is greater than 1− ε. This suggests that the proportion is also is greater

than 1 − ε when U is infinite. But if the proportion is greater than 1 − ε for every
ε > 0, it follows that the proportion is 1. In other words:

If U is infinite then for every δ > 0, ρX

(
ρ(X, U )≈

δ
0.5/X ⊆ U

)
= 1.

Given the rather simple assumptions I made about ρ in section three, we can derive
this infinitary principle from the finite principle. First, we can use familiar looking
mathematics to prove:

Law of large numbers for proportions

If B is infinite and ρ(A/B) = p then for every ε, δ > 0, there is an N such that

ρX

(
ρ(A/X)≈

δ
p/X ⊆ B & X is finite & #X ≥ N

)
≥ 1 − ε.

Note that unlike Laws of Large Numbers for probabilities, the Law of Large Num-
bers for Proportions does not require an assumption of statistical independence. This is
because it is derived from the crossproduct principle, and as remarked in section three,
no such assumption is required (or even intelligible) for the crossproduct principle.

Given the law of large numbers, the finite indifference principle can be shown to
entail:
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Infinitary indifference principle

If U is infinite then for every δ > 0,

ρX

(
ρ(X, U )≈

δ
0.5/X ⊆ U

)
= 1.

Nomic probabilities are proportions among physically possible objects. For any
property F that is not extraordinarily contrived, the set F of physically possible F’s
will be infinite.8 Thus the infinitary indifference principle for proportions implies an
analogous principle for nomic probabilities:

Probabilistic indifference principle

For any property G and for every δ > 0,

probX

(
prob(X/G)≈

δ
0.5/X 	 G

)
= 1.9

Next note that we can apply the statistical syllogism to the probability formulated
in the probabilistic indifference principle. For every δ > 0, this gives us a defeasi-
ble reason for expecting that if F 	 G, then prob(F/G)≈

δ
0.5, and these conclu-

sions jointly entail that prob(F/G) = 0.5. For any property F , (F & G) 	 G, and
prob(F/G) = prob(F & G/G). Thus we are led to a defeasible inference scheme:

Indifference principle

For any properties F and G, it is defeasibly reasonable to assume that prob
(F/G) = 0.5.

The indifference principle is my first example of a principle of probable probabil-
ities. We have a quadruple of principles that go together: (1) the finite indifference
principle, which is a theorem of combinatorial mathematics; (2) the infinitary indiffer-
ence principle, which follows from the finite principle given the law of large numbers
for proportions; (3) the probabilistic indifference principle, which is a theorem derived
from (2); and (4) the Indifference Principle, which is a principle of defeasible reasoning

8 The following principles apply only to properties for which there are infinitely many physically possible
instances, but I will not explicitly include the qualification “non-contrived” in the principles.
9 If we could assume countable additivity for nomic probability, the Indifference Principle would imply
that probX (prob(X, G) = 0.5/X 	 G) = 1. Countable additivity is generally assumed in mathematical
probability theory, but most of the important writers in the foundations of probability theory, including de
Finetti (1974), Reichenbach (1949), Jeffrey (1983), Skyrms (1980), Savage (1954), and Kyburg (1974a),
have either questioned it or rejected it outright. Pollock (2006a) gives what I consider to be a compelling
counter-example to countable additivity. So I will have to remain content with the more complex formulation
of the Indifference Principle.
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that follows from (3) with the help of the statistical syllogism. All of the principles
of probable probabilities that I will discuss have analogous quadruples of principles
associated with them. Rather than tediously listing all four principles in each case,
I will encapsulate the four principles in the simple form:

Expectable indifference principle

For any properties F and G, the expectable value of prob(F/G) = 0.5.

So in talking about expectable values, I am talking about this entire quadruple of
principles.

I have chosen the indifference principle as my first example of a principle of prob-
able probabilities because the argument for it is simple and easy to follow. How-
ever, as I indicated at the start, this principle is only occasionally useful. If we were
choosing the properties F in some random way, it would be reasonable to expect
that prob(F/G) = 0.5. However, pairs of properties F and G which are such that
prob(F/G) = 0.5 are not very useful to us from a cognitive perspective, because
knowing that something is a G then carries no information about whether it is an F .
As a result, we usually only enquire about the value of prob(F/G) when we have
reason to believe there is a connection between F and G such that prob(F/G) �= 0.5.
Hence in actual practice, application of the indifference principle to cases that really
interest us will almost invariably be defeated. This does not mean, however, that the
indifference principle is never useful. For instance, if I give Jones the opportunity
to pick either of two essentially identical balls, in the absence of information to the
contrary it seems reasonable to take the probability of either choice to be .5. This can
be justified as an application of either the indifference principle or the generalized
indifference principle.

That applications of the indifference principle are often defeated illustrates an
important point about nomic probability and principles of probable probabilities. The
fact that a nomic probability is 1 does not mean that there are no counter-instances.
In fact, there may be infinitely many counter-instances. Consider the probability of a
real number being irrational. Plausibly, this probability is 1, because the cardinality
of the set of irrationals is infinitely greater than the cardinality of the set of rationals.
But there are still infinitely many rationals. The set of rationals is infinite, but it has
measure 0 relative to the set of real numbers.

A second point is that in classical probability theory (which is about singular prob-
abilities), conditional probabilities are defined as ratios of unconditional probabilities:

prob(P/Q) = prob(P&Q)

prob(Q)
.

However, for generic probabilities, there are no unconditional probabilities, so condi-
tional probabilities must be taken as primitive. These are sometimes called “Popper
functions”. The first people to investigate them were Popper (1938, 1959) and the math-
ematician Renyi (1955). If conditional probabilities are defined as above, prob(P/Q)

is undefined when prob(Q) = 0. However, for nomic probabilities, prob(F/G&H)
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can be perfectly well-defined even when prob(G/H) = 0. One consequence of this is
that, unlike in the standard probability calculus, if prob(F/G) = 1, it does not follow
that prob(F/G&H) = 1. Specifically, this can fail when prob(H/G) = 0. Thus, for
example,

prob(2x is irrational/x is a real number) = 1

but

prob(2x is irrational/x is a real number & x is rational) = 0.

In the course of developing the theory of probable probabilities, we will find numer-
ous examples of this phenomenon, and they will generate defeaters for the defeasible
inferences licensed by our principles of probable probabilities.

5 Independence

Now let us turn to a truly useful principle of probable probabilities. It was remarked
above that probability practitioners commonly assume statistical independence when
they have no reason to think otherwise, and so compute that prob(A&B/C) =
prob(A/C) · prob(B/C). In other words, they assume that A and B are statistically
independent relative to C. This assumption is ubiquitous in almost every application of
probability to real-world problems. However, the justification for such an assumption
has heretofore eluded probability theorists, and when they make such assumptions
they tend to do so apologetically. We are now in a position to provide a justification
for a general assumption of statistical independence.

Although it is harder to prove than the finite indifference principle, the following
combinatorial principle holds in general:

Finite independence principle

For 0 ≤ r, s ≤ 1 and for every ε, δ > 0 there is an N such that if U is finite and
#U > N , then

ρX,Y,Z

(
ρ(X ∩ Y, Z)≈

δ
r · s/X, Y, Z ⊆ U & ρ(X, Z)

= r & ρ(Y, Z) = s
)

≥ 1 − ε.

In other words, for a large finite set U , subsets X, Y and Z of U tend to be such that
ρ(X ∩ Y, Z) is approximately equal to ρ(X, Z) · ρ(Y, Z), and for any fixed degree of
approximation, the proportion of subsets of U satisfying this approximation goes to 1
as the size of U goes to infinity.

Given the law of large numbers for proportions, the finite independence principle
entails:
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Infinitary independence principle

For 0 ≤, r, s ≤ 1, if U is infinite then for every δ > 0:

ρX,Y,Z

(
ρ(X ∩ Y, Z)≈

δ
r · s/X, Y, Z ⊆ U & ρ(X, Z)

= r&ρ(Y, Z) = s
)

= 1.

As before, this entails:

Probabilistic independence principle

For 0 ≤ r, s ≤ 1 and for any property U , for every δ > 0:

probX,Y,Z

(
prob(X&Y/Z)≈

δ
r · s/X, Y, Z 	 U & prob(X/Z)

= r& prob(Y/Z) = s

)
= 1.

Again, applying the statistical syllogism to the second-order probability in the proba-
bilistic independence principle, we get:

Principle of statistical independence

�prob(A/C) = r & prob(B/C) = s� is a defeasible reason for �prob(A&B/C) =
r · s�.

Again, we can encapsulate these four principles in a single principle of expectable
values:

Principle of expectable statistical independence

If prob(A/C) = r and prob(B/C) = s, the expectable value of prob(A &B /C) =
r · s.

So a provable combinatorial principle regarding finite sets ultimately makes it rea-
sonable to expect, in the absence of contrary information, that properties will be
statistically independent of one another. This is the reason why, when we see no con-
nection between properties that would force them to be statistically dependent, we can
reasonably expect them to be statistically independent.

The assumption of statistical independence sometimes fails. Clearly, this can hap-
pen when there are causal connections between properties. But it can also happen for
purely logical reasons. For example, if A = B, A and B cannot be independent unless
r = 1. More general defeaters for the principle of statistical independence will emerge
below.
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6 The probable probabilities theorem

Principles like that of Statistical Independence are supported by a general combina-
torial theorem, which underlies the entire theory of probable probabilities. Given a
list of variables X1, . . . , Xn ranging over subsets of a set U , Boolean compounds of
these sets are compounds formed by union, intersection, and set-complement. So, for
example (X∪Y)− Z is a Boolean compound of X, Y , and Z . Linear constraints on
the Boolean compounds either state the values of certain proportions, e.g., stipulating
that ρ(X,Y)=r , or they relate proportions using linear equations. For example, if we
know that X = Y ∪ Z , that generates the linear constraint

ρ(X, U ) = ρ(Y, U ) + ρ(Z , U ) − ρ(X ∩ Z , U ).

Our general theorem is:

Probable proportions theorem

Let U, X1, . . . , Xn be a set of variables ranging over sets, and consider a finite set LC
of linear constraints on proportions between Boolean compounds of those variables. If
LC is consistent with the probability calculus, then for any pair of Boolean compounds
P , Q of U, X1, . . . , Xn there is a real number r between 0 and 1 such that for every
ε, δ > 0, there is an N such that if U is finite and #U > N , then

ρX1,...,Xn

(
ρ(P, Q)≈

δ
r/LC&X1, . . . , Xn ⊆ U

)
≥ 1 − ε.

This is the theorem that underlies all of the principles developed in this paper. Given
the law of large numbers for proportions, we can prove:

Limit principle for proportions

Consider a finite set LC of linear constraints on proportions between Boolean
compounds of a list of variables U, X1, . . . , Xn . For any real number r between
0 and 1, if for every ε, δ > 0, if there is an N such that for any finite set U such
that #U > N ,

ρX1,...,Xn

(
ρ(P, Q)≈

δ
r/LC&X1, . . . , Xn ⊆ U

)
≥ 1 − ε,

then for any infinite set U , for every δ > 0:

ρX1,...,Xn

(
ρ(P, Q)≈

δ
r/LC&X1, . . . , Xn ⊆ U

)
= 1.

Given the limit principle for proportions, the Probable Proportions Theorem entails:
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Probable probabilities theorem

Let U, X1, . . . , Xn be a set of variables ranging over properties and relations,
and consider a finite set LC of linear constraints on probabilities between truth-
functional compounds of those variables. If LC is consistent with the probability
calculus, then for any pair of truth-functional compounds P , Q of U, X1, . . . , Xn

there is a real number r between 0 and 1 such that for every δ > 0,

probX1,...,Xn

(
prob(P/Q)≈

δ
r/LC&X1, . . . , Xn 	 U

)
= 1.

In other words, given the constraints LC, the expectable value of prob(P/Q) = r .
This establishes the existence of expectable values for probabilities under very gen-

eral circumstances. The theorem can probably be generalized further, e.g., to linear
inequalities, or even to nonlinear constraints, but this is what I have established so far.

The Probable Probabilities Theorem tells us that there are expectable values. It
turns out that there is a general strategy for finding and proving theorems describing
these expectable values, and I have written a computer program (in Common LISP)
that will often do this automatically, both finding the theorems and producing human
readable proofs. It can be downloaded from http://oscarhome.soc-sci.arizona.edu/ftp/
OSCAR-web-page/CODE/Code-for-probable-probabilities.zip.

I will go on to illustrate these general results with several interesting theorems about
probable probabilities.

7 Nonclassical direct inference

Pollock (1984a) noted (a restricted form of) the following limit principle:

Finite principle of agreement

For 0 ≤ a, b, c, r ≤ 1 and for every ε, δ > 0, there is an N such that if U is
finite and #U > N , then:

ρX,Y

⎛
⎜⎝

ρ(X, Y ∩ Z)≈
δ

r/X, Y, Z ⊆ U & ρ(X, Y ) = r

&ρ(X, U )

= a & ρ(Y, U ) = b & ρ(Z , U ) = c

⎞
⎟⎠ ≥ 1 − ε.

In the theory of nomic probability (Pollock 1984a, 1990), this used this to ground a
theory of direct inference. We can now improve upon that theory. As above, the Finite
Principle of Agreement yields a principle of expectable values:

Nonclassical direct inference

If prob(A/B) = r , the expectable value of prob(A/B & C) = r .
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This is a kind of “principle of insufficient reason”. It tells us that if we have no reason
for thinking otherwise, we should expect that strengthening the reference property in
a nomic probability leaves the value of the probability unchanged. This is called “non-
classical direct inference” because, although it only licenses inferences from generic
probabilities to other generic probabilities, it turns out to have strong formal similari-
ties to classical direct inference (which licenses inferences from generic probabilities
to singular probabilities), and as we will see in section seven, principles of classical
direct inference can be derived from it.

It is important to realize that the principle of agreement, and the corresponding prin-
ciple of nonclassical direct inference, are equivalent (with one slight qualification) to
the probabilistic product principle and the defeasible principle of statistical indepen-
dence. This turns upon the following simple theorem of the probability calculus:

Independence and agreement theorem

If prob(C/B) > 0 then prob(A/B&C) = prob(A/B) iff A and C are indepen-
dent relative to B.

As a result, anyone who shares the commonly held intuition that we should be able
to assume statistical independence in the absence of information to the contrary is
also committed to endorsing nonclassical direct inference. This is important, because
I have found that many people do have the former intuition but balk at the latter.

There is a variant of the principle of agreement that is equivalent to the first version
but often more useful:

Finite principle of agreement II

For 0 ≤ r ≤ 1 and for every ε, δ > 0, there is an N such that if U is finite and
#U > N , then:

ρX,Y

(
ρ(X, Z)≈

δ
r/X, Y ⊆ U & Z ⊆ Y & ρ(X, Y ) = r

)
≥ 1 − ε.

This yields an equivalent variant of the principle of nonclassical direct inference:

Nonclassical direct inference II

If C 	 B and prob(A/B) = r , the expectable value of prob(A/C) = r .

The principle of nonclassical direct inference supports many defeasible inferences that
seem intuitively reasonable but are not licensed by the probability calculus. For exam-
ple, suppose we know that the probability of a 20 year old male driver in Maryland
having an auto accident over the course of a year is .07. If we add that his girlfriend’s
name is “Martha”, we do not expect this to alter the probability. There is no way to
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justify this assumption within a traditional probability framework, but it is justified by
nonclassical direct inference.

Nonclassical direct inference is a principle of defeasible inference, so it is subject
to defeat. The simplest and most important kind of defeater is a subproperty defeater.
Suppose C 	 D 	 B and we know that prob(A/B) = r , but prob(A/D) = s, where
s �= r . This gives us defeasible reasons for drawing two incompatible conclusions,
viz., that prob(A/C) = r and prob(A/D) = s. The principle of subproperty defeat
tells us that because D 	 B, the latter inference takes precedence and defeats the
inference to the conclusion that prob(A/C) = r :

Subproperty defeat for nonclassical direct inference

�C 	 D 	 B and prob(A/D) = s �= r� is an undercutting defeater for the
inference by nonclassical direct inference from �C 	 B and prob(A/B) = r�
to �prob(A/C) = r�.

We obtain this defeater by noting that the principle of nonclassical direct inference is
licensed by an application of the statistical syllogism to the probability

probA,B,C

(
prob(A/C)≈

δ
r/A, B, C 	 U and C

	 B and prob(A/B) = r

)
= 1. (1)

We can easily establish the following principle, which appeals to a more comprehen-
sive set of assumptions:

probA,B,C

(
prob(A/C)≈

δ
s/A, B, C, D 	 U and C 	 D

and D 	 B and prob(A/B) = r and prob(A/D) = s

)

= 1. (2)

If r �= s then (2) entails:

probA,B,C

(
prob(A/C)≈

δ
r/A, B, C, D 	 U and C 	 D

and D 	 B and prob(A/B) = r and prob(A/D) = s

)

= 0. (3)

The reference property in (3) is more specific than that in (1), so (3) gives us a sub-
property defeater for the application of the statistical syllogism to (1).

A simpler way of putting all of this is that corresponding to (2) we have the following
principle of expectable values:
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Subproperty defeat for nonclassical direct inference

If C 	 D 	 B, prob(A/D) = s, prob(A/B) = r , prob(A/U ) = a,
prob(B/U ) = b, prob(C/U ) = c, prob(D/U ) = d, then the expectable value
of prob(A/C) = s (rather than r ).

As above, principles of expectable values that appeal to more information take prece-
dence over (i.e., defeat the inferences from) principles that appeal to a subset of that
information.

Because the principles of nonclassical direct inference and statistical independence
are equivalent, subproperty defeaters for nonclassical direct inference generate anal-
ogous defeaters for the principle of statistical independence:

Subproperty defeat for statistical independence

�(B&C) 	 D 	 C and prob(A/D) = p �= r� is an undercutting defeater for
the inference by the principle of statistical independence from �prob(A/C) = r
& prob(B/C) = s� to �prob(A&B/C) = r · s�.

This is because prob(A&B/C) = r · s only if prob(A/B&C) = prob(A/C), and this
defeater makes it unreasonable to believe the former.

8 Classical direct inference

Direct inference is normally understood as being a form of inference from generic
probabilities to singular probabilities rather than from generic probabilities to other
generic probabilities. However, I showed in my (1990) that these inferences are deriv-
able from nonclassical direct inference if we identify singular probabilities with a
special class of generic probabilities. The present treatment is a generalization of that
given in my (1984a and 1990).10 Let K be the conjunction of all the propositions the
agent knows to be true, and let K be the set of all physically possible worlds at which
K is true (“K-worlds”). I propose that we define the singular probability prob(P) to
be the proportion of K-worlds at which P is true. Where P is the set of all P-worlds:

prob(P) = ρ(P,K).

More generally, where Q is the set of all Q-worlds, we can define:

prob(P/Q) = ρ(P,Q ∩ K).

Formally, this is analogous to Carnap (1950, 1952) logical probability, with the impor-
tant difference that Carnap took ρ to be logically specified, whereas I take the identity
of ρ to be a contingent fact. ρ is determined by the values of contingently true nomic
probabilities, and their values are discovered by various kinds of statistical induction.

10 Bacchus (1990) gave a somewhat similar account of direct inference, drawing on my 1983 and 1984b.
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It turns out that singular probabilities, so defined, can be identified with a special
class of nomic probabilities:

Representation theorem for singular probabilities

(1) prob(Fa) = prob(Fx/x = a&K);
(2) If it is physically necessary that [K → (Q ↔ Sa1 . . . an)] and that [(Q&K) →

(P ↔ Ra1 . . . an)], and Q is consistent with K, then prob(P/Q) =
prob(Rx1 . . . xn/Sx1 . . . xn & x1 = a1 & . . . &xn = an&K).

(3) prob(P) = prob(P & x = x/x = x & K).

prob(P) is a kind of “mixed physical/epistemic probability”, because it combines
background knowledge in the form of K with generic probabilities.11

The probability prob(Fx/x = a & K) is a peculiar-looking nomic probability. It is
an generic probability, because “x” is a free variable, but the probability is only about
one object. As such it cannot be evaluated by statistical induction or other familiar
forms of statistical reasoning. However, it can be evaluated using nonclassical direct
inference. If K entails Ga, nonclassical direct inference gives us a defeasible reason
for expecting that prob(Fa) = prob(Fx/x = a & K) = prob(Fx/Gx). This is
a familiar form of “classical” direct inference—that is, direct inference from nomic
probabilities to singular probabilities. More generally, we can derive:

Classical direct inference

�Sa1...an is known and prob(Rx1 . . . xn/Sx1 . . . xn & T x1 . . . xn) = r� is a defea-
sible reason for �prob(Ra1 . . . an/T a1 . . . an) = r�.

Similarly, we get subproperty defeaters:

Subproperty defeat for classical direct inference

�V 	 S, V a1 . . . an is known, and prob(Rx1 . . . xn/V x1 . . . xn & T x1 . . . xn) �=
r� is an undercutting defeater for the inference by classical direct inference
from �Sa1 . . . an is known and prob(Rx1 . . . xn/Sx1 . . . xn & T x1 . . . xn) = r�
to �prob(Ra1 . . . an/T a1 . . . an) = r�.

Because singular probabilities are generic probabilities in disguise, we can also
use nonclassical direct inference to infer singular probabilities from singular prob-
abilities. Thus �prob(P/Q) = r� gives us a defeasible reason for expecting that
prob(P/Q&R) = r . We can employ principles of statistical independence similarly.
For example, �prob(P/R) = r &prob(Q/R) = s� gives us a defeasible reason for
expecting that prob(P&Q/R) = r · s.

11 See chapter six of my (2006a) for further discussion of these mixed physical/epistemic probabilities.
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9 Computational inheritance

Suppose we have two seemingly unrelated diagnostic tests for a disease, and Bernard
tests positive on both tests. We know that the probability of his having the disease if
he tests positive on the first test is .8, and the probability if he tests positive on the
second test is .75. But what should we conclude about the probability of his having the
disease if he tests positive on both tests? The probability calculus gives us no guidance
here. Nor does direct inference. Direct inference gives us one reason for thinking the
probability of Bernard having the disease is .8, and it gives us a different reason for
drawing the conflicting conclusion that the probability is .75. It gives us no way to
combine the information. Intuitively, it seems that the probability of his having the
disease should be higher if he tests positive on both tests. But how can we justify this?

This is a general problem for theories of direct inference. When we have some
conjunction �G1& . . . &Gn� of properties and we want to know the value of
prob(F/G1& . . . &Gn), if we know that prob(F/G1) = r and we don’t know any-
thing else of relevance, we can infer defeasibly that prob(F/G1& . . . &Gn) = r . Sim-
ilarly, if we know that an object a has the properties G1, . . . , Gn and we know that
prob(F/G1) = r and we don’t know anything else of relevance, we can infer defeasibly
that prob(Fa) = r . The difficulty is that we usually know more. We typically know the
value of prob(F/Gi ) for some i �= 1. If prob(F/Gi ) = s �= r , we have defeasible rea-
sons for both �prob(F/G1& . . . &Gn) = r� and �prob(F/G1& . . . &Gn) = s�, and
also for both �prob(Fa) = r� and �prob(Fa) = s�. As these conclusions are incom-
patible they all undergo collective defeat. Thus the standard theory of direct inference
leaves us without a conclusion to draw. The upshot is that the earlier suggestion that
direct inference can solve the computational problem of dealing with singular prob-
abilities without having to have a complete probability distribution was premature.
Direct inference will rarely give us the probabilities we need.

Knowledge of generic probabilities would be vastly more useful in real application
if there were a function Y(r, s) such that, in a case like the above, when prob(F/G) = r
and prob(F/H) = s, we could defeasibly expect that prob(F/G&H) = Y(r, s), and
hence (by nonclassical direct inference) that prob(Fa) = Y(r, s). I call this compu-
tational inheritance, because it computes a new value for prob(Fa) from previously
known generic probabilities. Direct inference, by contrast, is a kind of “noncompu-
tational inheritance”. It is direct in that prob(Fa) simply inherits a value from a
known generic probability. I call the function used in computational inheritance “the
Y-function” because its behavior would be as diagrammed in Fig. 2.

It has generally been assumed that there is no such function as the Y-function
(Reichenbach 1949). Certainly, there is no function Y(r, s) such that we can conclude

Fig. 2 The Y-function prob(F/G) = r       prob(F/H ) = s

prob(F/G&H) = Y(r,s)
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deductively that if prob(F/G) = r and prob(F/H) = s then prob(F/G&H) =
Y(r, s). For any r and s that are neither 0 nor 1, prob(F/G&H) can take any value
between 0 and 1. However, that is equally true for nonclassical direct inference. That
is, if prob(F/G) = r we cannot conclude deductively that prob(F/G&H) = r . Nev-
ertheless, that will tend to be the case, and we can defeasibly expect it to be the case.
Might something similar be true of the Y-function? That is, could there be a function
Y(r, s) such that we can defeasibly expect prob(F/G&H) to be Y(r, s)? It follows
from the Probable Probabilities Theorem that the answer is “Yes”. It is more useful
to begin by looking at a three-place function rather than a two-place function. Let us
define:

Y(r, s | a) = rs(1 − a)

a(1 − r − s) + rs

I use the non-standard notation “Y(r, s | a)” rather than “Y(r, s, a)” because the first
two variables will turn out to work differently than the last variable.

Let us define:

B and C are Y-independent for A relative to U iff A, B, C 	 U and
(a) prob(C/B & A) = prob(C/A), and
(b) prob(C/B &∼A) = prob(C/U &∼A).

The key theorem underlying computational inheritance is the following theorem of
the probability calculus:

Y-theorem

Let r = prob(A/B), s = prob(A/C), and a = prob(A/U ). If B and C are
Y-independent for A relative to U then prob(A/B&C) = Y(r, s | a).

In light of the Y-theorem, we can think of Y-independence as formulating an indepen-
dence condition for C and D which says that they make independent contributions to
A—contributions that “add” in accordance with the Y-function, rather than “under-
mining” each other.

By virtue of the principle of statistical independence, we have a defeasible reason
for expecting that the independence conditions (a) and (b) hold. Thus the Y-theorem
supports the following principle of defeasible reasoning:

Computational inheritance

�B, C 	 U & prob(A/B) = r & prob(A/C) = s & prob(A/U ) = a� is a
defeasible reason for �prob(A/B & C) = Y(r, s | a)�.

It should be noted that we can prove analogues of Computational Inheritance for
finite sets, infinite sets, and probabilities, in essentially the same way we prove the
Y-theorem. This yields the following principle of expectable values:
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Fig. 3 Y(z, x | .5), holding z constant (for several choices of z as indicated in the key)

Y-principle

If B, C 	 U, prob(A/B) = r , prob(A/C) = s, and prob(A/U ) = a, then the
expectable value of prob(A/B & C) = Y(r, s | a).

In the corresponding quadruple of principles, the Finite Y-Principle can be proven
directly, or derived from the Finite Principle of Agreement. Similarly, the Y-Principle
is derivable from the Principle of Agreement. Then the Y-Principle for Probabili-
ties is derivable from either the Y-Principle or from the Principle of Agreement for
Probabilities.

To get a better feel for what the principle of computational inheritance tells us, it
is useful to examine plots of the Y-function. Figure 3 illustrates that Y(r, s | .5) is
symmetric around the right-leaning diagonal.

Varying a has the effect of warping the Y-function up or down relative to the right-
leaning diagonal. This is illustrated in Fig. 4 for several choices of a.

The Y-function has a number of important properties.12 In particular, it is important
that the Y-function is commutative and associative in the first two variables:

Theorem 1 Y(r, s | a) = Y(s, r | a).

Theorem 2 Y(r, Y(s, t | a) | a) = Y(Y(r, s | a), t | a).

Theorems 1 and 2 are very important for the use of the Y-function in computing prob-
abilities. Suppose we know that prob(A/B) = .6, prob(A/C) = .7, and prob(A/D) =

12 It turns out that the Y-function has been studied for its desirable mathematical properties in the theory
of associative compensatory aggregation operators in fuzzy logic (Dombi 1982; Klement et al. 1996; Fodor
et al. 1997). Y(r, s | a) is the function Dλ(r, s) for λ = 1−a

a (Klement et al. 1996). The Y-theorem may
provide further justification for its use in that connection.
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Fig. 4 Y(z, x | a) holding z constant (for several choices of z), for a = .7, a = .3, a = .1, and a = .01

.75, where B, C, D 	 U and prob(A/U ) = .3. In light of theorems 1 and 2
we can combine the first three probabilities in any order and infer defeasibly that
prob(A/B&C&D) = Y(.6, Y(.7, .75 | .3) | .3) = Y(Y(.6, .7 | .3), .75 | .3) = .98.
This makes it convenient to extend the Y-function recursively so that it can be applied
to an arbitrary number of arguments (greater than or equal to 3):

If n ≥ 3, Y(r1, . . . , rn | a) = Y(r1, Y(r2, . . . , rn | a) | a).

Then we can then strengthen the Y-Principle as follows:

Generalized Y-principle

If B1, . . . , Bn 	 U , prob(A/B1) = r1, . . . , prob(A/Bn) = rn , and prob
(A/U ) = a, the expectable value of prob(A/B1 & . . . & Bn&C) = Y(r1, . . . ,

rn | a).

If we know that prob(A/B) = r and prob(A/C) = s, we can also use nonclassical
direct inference to infer defeasibly that prob(A/B&C) = r . If s �= a, Y(r, s | a) �= r ,

123



Synthese (2011) 181:317–352 345

so this conflicts with the conclusion that prob(A/B&C) = Y(r, s | a). However, as
above, the inference described by the Y-principle is based upon a probability with a
more inclusive reference property than that underlying Nonclassical Direct Inference
(that is, it takes account of more information), so it takes precedence and yields an
undercutting defeater for Nonclassical Direct Inference:

Computational defeat for nonclassical direct inference

�A, B, C 	 U and prob(A/C) �= prob(A/U )� is an undercutting defeater for
the inference from �prob(A/B) = r� to �prob(A/B&C) = r� by Nonclassical
Direct Inference.

It follows that follows that we have defeater for the principle of statistical indepen-
dence:

Computational defeat for statistical independence

�A, B, C 	 U and prob(A/B) �= prob(A/U )� is an undercutting defeater for
the inference from �prob(A/B) = r & prob(A/C) = s� to �prob(A&B/C) =
r · s� by Statistical Independence.

The phenomenon of Computational Inheritance makes knowledge of generic prob-
abilities useful in ways it was never previously useful. It tells us how to combine
different probabilities that would lead to conflicting direct inferences and still arrive
at a univocal value. Consider Bernard again, who has symptoms suggesting a partic-
ular disease, and tests positive on two independent tests for the disease. Suppose the
probability of a person with those symptoms having the disease is .6. Suppose the
probability of such a person having the disease is they test positive on the first test is
.7, and the probability of their having the disease if they test positive on the second test
is .75. What is the probability of their having the disease if they test positive on both
tests? We can infer defeasibly that it is Y(.7, .75 | .6) = .875. We can then apply clas-
sical direct inference to conclude that the probability of Bernard’s having the disease
is .875. This is a result that we could not have gotten from the probability calculus
alone. Similar reasoning will have significant practical applications, for example in
engineering where we have multiple imperfect sensors sensing some phenomenon and
we want to arrive at a joint probability regarding the phenomenon that combines the
information from all the sensors.

Again, because singular probabilities are generic probabilities in disguise, we can
apply computational inheritance to them as well and infer defeasibly that if prob
(P) = a, prob(P/Q) = r , and prob(P/R) = s then prob(P/Q&R) = Y(r, s | a).

10 Inverse probabilities and the statistical syllogism

All of the principles of probable probabilities that have been discussed so far are related
to defeasible assumptions of statistical independence. As we have seen, Nonclassical
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Direct Inference is equivalent to a defeasible assumption of statistical independence,
and Computational Inheritance follows from a defeasible assumption of Y-indepen-
dence. This might suggest that all principles of probable probabilities derive ultimately
from various defeasible independence assumptions. However, this section turns to a
set of principles that do not appear to be related to statistical independence in any way.

Where A, B 	 U , suppose we know the value of prob(A/B). If we know the base
rates prob(A/U ) and prob(B/U ), the probability calculus enables us to compute the
value of the inverse probability prob(∼B/∼A&U ):

Theorem 3 If A, B 	 U then

prob(∼B/∼A&U ) = 1 − prob(A/U ) − prob(B/U ) + prob(A/B) · prob(B/U )

1 − prob(A/U )
.

However, if we do not know the base rates then the probability calculus imposes
no constraints on the value of the inverse probability. It can nevertheless be shown
that there are expectable values for it, and generally, if prob(A/B) is high, so is
prob(∼ B/∼ A&U ).

Inverse probabilities I

If A, B 	 U and we know that prob(A/B) = r , but we do not know the base
rates prob(A/U ) and prob(B/U ), the following values are expectable:

prob(B/U ) = .5

rr (1 − r)1−r + .5
;

prob(A/U ) = .5 − .25 − .5r

rr (1 − r)1−r + .5
;

prob(∼A/∼B&U ) = .5;
prob(∼B/∼A&U ) = rr

(1 − r)r + rr
.

These values are plotted in Fig. 5. Note that when prob(A/B)>prob(A/U ), we can
expect prob(∼B/∼A&U ) to be almost as great as prob(A/B).

Sometimes we know one of the base rates but not both:

Inverse probabilities II

If A, B 	 U and we know that prob(A/B) = r prob(B/U ) = b, but we do not
know the base rate prob(A/U ), the following values are expectable:

prob(A/U ) = .5(1 − (1 − 2r)b);
prob(∼A/∼B&U ) = .5 + b(.5 − r)

1 + b(1 − r)
;
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Fig. 5 Expectable values of prob(∼B/∼A&U ), prob(A/U ), and prob(B/U ), as a function of prob(A/B),
when the base rates are unknown

prob(∼B/∼A&U ) = 1 − b

1 + b(1 − 2r)
.

Figure 6 plots the expectable values of prob(∼B/∼A&U ) (when they are greater
than .5) as a function of prob(A/B), for fixed values of prob(B/U ). The diagonal
dashed line indicates the value of prob(A/B), for comparison. The upshot is that for
low values of prob(B/U ), prob(∼B/ ∼ A&U ) can be expected to be higher than
prob(A/B), and for all values of prob(B/U ), prob(∼B/∼ A&U ) will be fairly high
if prob(A/B) is high. Furthermore, prob(∼ B/∼ A&U ) > .5 iff prob(B/U ) < 1

3−2r .
The most complex case occurs when we do know the base-rate prob(A/U ) but we

do not know the base-rate prob(B/U ):

Inverse probabilities III

If A, B 	 U and we know that prob(A/B) = r and prob(A/U ) = a, but we do
not know the base rate prob(B/U ), then:

(a) where b is the expectable value of prob(B/U ),
(

r ·b
a−r ·b

)r ·
(

(1−r)b
1−a−(1−r)b

)1−r

= 1;
(b) the expectable value of prob(∼B/∼A&U ) = 1 − 1−r

1−a b.
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Fig. 6 Expectable values of prob(∼B/∼A&U ) as a function of prob(A/B), when prob(A/U ) is unknown,
for fixed values of prob(B/U )

The equation characterizing the expectable value of prob(B/U ) does not have a
closed-form solution. However, for specific values of a and r , the solutions are easily
computed using hill-climbing algorithms. The results are contained in Fig. 7. When
prob(A/B) = prob(A/U ), the expected value for prob(∼B/∼A) is .5, and when
prob(A/B)>prob(A/U ), prob(∼B/∼A&U )> .5. If prob(A/U )< .5, the expected
value of prob(∼B/∼A&U ) is greater than prob(A/B).

The upshot is that even when we lack knowledge of the base rates, there is an
expectable value for the inverse probability prob(∼B/∼A&U ), and that expectable
value tends to be high when prob(A/B) is high.

11 Meeting some objections

I have argued that mathematical results, coupled with the statistical syllogism, justify
defeasible inferences about the values of unknown probabilities. Various worries arise
regarding this conclusion. A few people are worried about any defeasible (non-deduc-
tive) inference, but I presume that the last 50 years of epistemology has made it amply
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Fig. 7 Expectable values of prob(∼B/∼A&U ) as a function of prob(A/B), when prob(B/U ) is unknown,
for fixed values of prob(A/U )

clear that, in the real world, cognitive agents cannot confine themselves to conclusions
drawn deductively from their evidence. We employ multitudes of defeasible inference
schemes in our everyday reasoning, and the statistical syllogism is one of them.

Granted that we have to reason defeasibly, we can still ask what justifies any partic-
ular defeasible inference scheme. At least in the case of the statistical syllogism, the
answer seems clear. If prob(A/B) is high, then if we reason defeasibly from things
being B to their being A, we will generally get it right. That is the most we can
require of a defeasible inference scheme. We cannot require that the inference scheme
will always lead to true conclusions, because then it would not be defeasible. People
sometimes protest at this point that they are not interested in the general case. They
are concerned with some inference they are only going to make once. They want to
know why they should reason this way in the single case. But all cases are single cases.
If you reason in this way in single cases, you will tend to get them right. It does not
seem that you can ask for any firmer guarantee than that. You cannot avoid defeasible
reasoning.

But we can have a further worry. For any defeasible inference scheme, we know
that there will be at possible cases in which it gets things wrong. For each principle
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of probable probabilities, the possible exceptions constitute a set of measure 0, but it
is still an infinite set. The cases that actually interest us tend to be highly structured,
and perhaps they also constitute a set of measure 0. How do we know that the latter
set is not contained in the former? Again, there can be no logical guarantee that this is
not the case. However, the generic probability of an arbitrary set of cases falling in the
set of possible exceptions is 0. So without further specification of the structure of the
cases that interest us, the probability of the set of those cases all falling in the set of
exceptions is 0. Where defeasible reasoning is concerned, we cannot ask for a better
guarantee than that.

We should resist the temptation to think of the set of possible exceptions as an amor-
phous unstructured set about which we cannot reason using principles of probable
probabilities. The exceptions are exceptions to a single defeasible inference scheme.
Many of the cases in which a particular inference fails will be cases in which there
is a general defeater leading us to expect it to fail and leading us to make a different
inference in its place. For example, knowing that prob(A/B) = r gives us a defeasible
reason to expect that prob(A/B&C) = r . But if we also know that prob(A/C) = s
and prob(A/U ) = a, the original inference is defeated and we should expect instead
that prob(A/B&C) = Y (r, s|a). So this is one of the cases in which an inference by
nonclassical direct inference fails, but it is a defeasibly expectable case.

There will also be cases that are not defeasibly expectable. This follows from the
simple fact that there are primitive nomic probabilities representing statistical laws
of nature. These laws are novel, and cannot be predicted defeasibly by appealing to
other nomic probabilities. Suppose prob(A/B) = r , but �prob(A/B&C) = s� is a
primitive law. The latter is an exception to nonclassical direct inference. Furthermore,
we can expect that strengthening the reference property further will result in nomic
probabilities like �prob(A/B&C&D) = s�, and these will also be cases in which the
nonclassical direct inference from �prob(A/B) = r� fails. But, unlike the primitive
law, the latter is a defeasibly expectable failure arising from subproperty defeat. So
most of the cases in which a particular defeasible inference appealing to principles
of probable probabilities fails will be cases in which the failure is defeasibly predict-
able by appealing to other principles of probable probabilities. This is an observation
about how much structure the set of exceptions (of measure 0) must have. The set of
exceptions is a set of exceptions just to a single rule, not to all principles of probable
probabilities. The Probable Probabilities Theorem implies that even within the set
of exceptions to a particular defeasible inference scheme, most inferences that take
account of the primitive nomic probabilities will get things right, with probability 1.

12 Conclusions

The problem of sparse probability knowledge results from the fact that in the real
world we lack direct knowledge of most probabilities. If probabilities are to be useful,
we must have ways of making defeasible estimates of their values even when those
values are not computable from known probabilities using the probability calculus.
Within the theory of nomic probability, limit theorems from combinatorial mathemat-
ics provide the necessary bridge for these inferences. It turns out that in very general
circumstances, there will be expectable values for otherwise unknown probabilities.
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These are described by principles telling us that although certain inferences from
probabilities to probabilities are not deductively valid, nevertheless the second-order
probability of their yielding correct results is 1. This makes it defeasibly reasonable
to make the inferences.

I illustrated this by looking at indifference, statistical independence, classical and
nonclassical direct inference, computational inheritance, and inverse probabilities. But
these are just illustrations. There are a huge number of useful principles of probable
probabilities, some of which I have investigated, but most waiting to be discovered. I
proved the first such principles laboriously by hand. It took me six months to find and
prove the principle of computational inheritance. But it turns out that there is a uniform
way of finding and proving these principles. I have written a computer program (in
Common LISP) that analyzes the results of linear constraints and determines what the
expectable values of the probabilities are. If desired, it will produce a human-readable
proof. This makes it easy to find and investigate new principles.

This profusion of principles of probable probability is reminiscent of Carnap’s log-
ical probabilities (Carnap 1950, 1952; Hintikka 1966; Bacchus et al. 1996). Historical
theories of objective probability required probabilities to be assessed by empirical
methods, and because of the weakness of the probability calculus, they tended to
leave us in a badly impoverished epistemic state regarding probabilities. Carnap tried
to define a kind of probability for which the values of probabilities were determined
by logic alone, thus vitiating the need for empirical investigation. However, finding
the right probability measure to employ in a theory of logical probabilities proved to
be an insurmountable problem.

Nomic probability and the theory of probable probabilities lies between these two
extremes. This theory still makes the values of probabilities contingent rather than logi-
cally necessary, but it makes our limited empirical investigations much more fruitful by
giving them the power to license defeasible, non-deductive, inferences to a wide range
of further probabilities that we have not investigated empirically. Furthermore, unlike
logical probability, these defeasible inferences do not depend upon ad hoc postulates.
Instead, they derive directly from provable theorems of combinatorial mathematics.
So even when we do not have sufficient empirical information to deductively deter-
mine the value of a probability, purely mathematical facts may be sufficient to make
it reasonable, given what empirical information we do have, to expect the unknown
probabilities to have specific and computable values. Where this differs from logical
probability is (1) that the empirical values are an essential ingredient in the computa-
tion, and (2) that the inferences to these values are defeasible rather than deductive.
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